1
|
Dierichs NTOM, Piersma AH, Peeters RP, Visser WE, Meima ME, Hessel EVS. Mechanisms of developmental neurotoxicity mediated by perturbed thyroid hormone homeostasis in the brain: an adverse outcome pathway network. Crit Rev Toxicol 2025; 55:304-320. [PMID: 40062460 DOI: 10.1080/10408444.2025.2461076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/31/2024] [Accepted: 01/26/2025] [Indexed: 05/24/2025]
Abstract
Thyroid hormone (TH) is crucial for proper neurodevelopment. Insufficient TH concentrations in early life are associated with lower IQ and delayed motor development in children. Intracellular levels of TH are modulated via the transmembrane transport of TH and intracellular deiodination, and can mediate gene transcription via binding to the nuclear TH receptor. Chemical exposure can disrupt TH homeostasis via modes of action targeting intracellular mechanisms, thereby potentially influencing TH transport, deiodination or signaling. Understanding the cause and effect relationships of chemical hazards interfering with TH homeostasis in the developing brain is necessary to identify how chemicals might disturb brain development and result in neurodevelopmental disorders. Adverse Outcome Pathways (AOPs) can provide a template for mapping these relationships, and so far multiple AOPs have been developed for TH homeostasis and adverse effects on cognition. The present review aims to expand current AOP networks by (1) summarizing the most important factors in the regulation of brain development under influence of TH, (2) integrating human-based mechanistic information of biological pathways which can be disturbed by TH disrupting chemicals, and (3) by incorporating brain-specific TH-mediated physiology, including barriers and cell specificity, as well as clinical knowledge. TH-specific pathways in the fetal brain are highlighted and supported by distinguishing cell type specific Molecular Initiating Events (MIEs) and downstream Key Events (KEs) for astrocytes, neurons and oligodendrocytes. Two main pathways leading to adverse outcomes (AOs) in the areas of 'cognition' and 'motor function' are decreased myelination due to oligodendrocyte dysfunction, and decreased synaptogenesis and network formation via the neurons. The proposed AOP framework can form a basis for selecting developmental neurotoxic in vitro and in silico test systems for an innovative human-focused hazard testing strategy and risk assessment of chemical exposure.
Collapse
Affiliation(s)
- Nathalie T O M Dierichs
- Centre for Health Protection (GZB), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Academic Centre for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Aldert H Piersma
- Centre for Health Protection (GZB), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Robin P Peeters
- Academic Centre for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - W Edward Visser
- Academic Centre for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Marcel E Meima
- Academic Centre for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Ellen V S Hessel
- Centre for Health Protection (GZB), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
2
|
Aytac Bektas N, Yenigul NN, Pakay K, Dincgez B, Yuce Bilgin E, Ustundag Y, Ustunyurt E. Does Bisphenol-A play a role in the development of neural tube defects? J Perinatol 2024; 44:1029-1034. [PMID: 38499756 DOI: 10.1038/s41372-024-01925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE In this study, we aimed to evaluate BPA levels in the maternal serum and amniotic fluid of patients diagnosed with NTD. In addition, we wanted to investigate the relationship between neurodevelopmental defects, such as neural tube defects (NTD), and BPA levels. STUDY DESIGN This prospective observational study was carried out at Bursa Yüksek İhtisas Training and Research Hospital between April 15, 2021, and April 15, 2022. The study consisted of 92 patients between the ages of 18-45 who had an amniocentesis at 15-22 weeks of gestation. The patients were divided into two groups according to the indications of amniocentesis. Group 1 contained the patients with abnormal maternal serum screening results or cell-free DNA results and abnormal ultrasonography findings (45 patients). Group 2 contained the patients with a pre-diagnosis of NTD (47 patients). The first 5 cc fluids and maternal serum samples taken during the amniocentesis procedure of all patients were delivered to the biochemistry laboratory. The BPA values between groups were compared. RESULTS A statistically significant difference was found between the two groups in terms of amniotic fluid BPA levels (36.66 (19.00:82.00) and 39.62 (19.02-73.87)) and maternal blood BPA levels (22.26 (12.60-228) and 47.81 (12.89-228.39)). In cases with NTD, amniotic fluid BPA levels and maternal blood BPA levels were significantly higher than the control group. When AUC values were compared, the AFP numerical value was higher than the amniotic fluid and maternal blood BPA levels. CONCLUSION Plastic, which is indispensable for modern life, may negatively affect fetal development in intrauterine life. The data in this study says that high maternal blood BPA may be associated with NTD.
Collapse
Affiliation(s)
- Nisa Aytac Bektas
- University of Health Sciences School of Medicine Bursa Yuksek Ihtisas Research and Training Hospital, Department of Obstetrics and Gynecology, Bursa, Turkey
| | - Nefise Nazli Yenigul
- University of Health Sciences School of Medicine Bursa Yuksek Ihtisas Research and Training Hospital, Department of Obstetrics and Gynecology, Bursa, Turkey.
| | - Kaan Pakay
- University of Health Sciences School of Medicine Bursa Yuksek Ihtisas Research and Training Hospital, Department of Obstetrics and Gynecology, Division of Perinatology, Bursa, Turkey
| | - Burcu Dincgez
- University of Health Sciences School of Medicine Bursa Yuksek Ihtisas Research and Training Hospital, Department of Obstetrics and Gynecology, Bursa, Turkey
| | - Elif Yuce Bilgin
- University of Health Sciences School of Medicine Bursa Yuksek Ihtisas Research and Training Hospital, Department of Obstetrics and Gynecology, Bursa, Turkey
| | - Yasemin Ustundag
- University of Health Sciences School of Medicine Bursa Yuksek Ihtisas Research and Training Hospital, Department of Biochemistry, Bursa, Turkey
| | - Emin Ustunyurt
- University of Health Sciences School of Medicine Bursa City Hospital, Department of Obstetrics and Gynecology, Bursa, Turkey
| |
Collapse
|
3
|
Costa HE, Cairrao E. Effect of bisphenol A on the neurological system: a review update. Arch Toxicol 2024; 98:1-73. [PMID: 37855918 PMCID: PMC10761478 DOI: 10.1007/s00204-023-03614-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) and one of the most produced synthetic compounds worldwide. BPA can be found in epoxy resins and polycarbonate plastics, which are frequently used in food storage and baby bottles. However, BPA can bind mainly to estrogen receptors, interfering with various neurologic functions, its use is a topic of significant concern. Nonetheless, the neurotoxicity of BPA has not been fully understood despite numerous investigations on its disruptive effects. Therefore, this review aims to highlight the most recent studies on the implications of BPA on the neurologic system. Our findings suggest that BPA exposure impairs various structural and molecular brain changes, promoting oxidative stress, changing expression levels of several crucial genes and proteins, destructive effects on neurotransmitters, excitotoxicity and neuroinflammation, damaged blood-brain barrier function, neuronal damage, apoptosis effects, disruption of intracellular Ca2+ homeostasis, increase in reactive oxygen species, promoted apoptosis and intracellular lactate dehydrogenase release, a decrease of axon length, microglial DNA damage, astrogliosis, and significantly reduced myelination. Moreover, BPA exposure increases the risk of developing neurologic diseases, including neurovascular (e.g. stroke) and neurodegenerative (e.g. Alzheimer's and Parkinson's) diseases. Furthermore, epidemiological studies showed that the adverse effects of BPA on neurodevelopment in children contributed to the emergence of serious neurological diseases like attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), depression, emotional problems, anxiety, and cognitive disorders. In summary, BPA exposure compromises human health, promoting the development and progression of neurologic disorders. More research is required to fully understand how BPA-induced neurotoxicity affects human health.
Collapse
Affiliation(s)
- Henrique Eloi Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal.
| |
Collapse
|
4
|
Thongkorn S, Kanlayaprasit S, Kasitipradit K, Lertpeerapan P, Panjabud P, Hu VW, Jindatip D, Sarachana T. Investigation of autism-related transcription factors underlying sex differences in the effects of bisphenol A on transcriptome profiles and synaptogenesis in the offspring hippocampus. Biol Sex Differ 2023; 14:8. [PMID: 36803626 PMCID: PMC9940328 DOI: 10.1186/s13293-023-00496-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Bisphenol A (BPA) has been linked to susceptibility to autism spectrum disorder (ASD). Our recent studies have shown that prenatal BPA exposure disrupted ASD-related gene expression in the hippocampus, neurological functions, and behaviors associated with ASD in a sex-specific pattern. However, the molecular mechanisms underlying the effects of BPA are still unclear. METHODS Transcriptome data mining and molecular docking analyses were performed to identify ASD-related transcription factors (TFs) and their target genes underlying the sex-specific effects of prenatal BPA exposure. Gene ontology analysis was conducted to predict biological functions associated with these genes. The expression levels of ASD-related TFs and targets in the hippocampus of rat pups prenatally exposed to BPA were measured using qRT-PCR analysis. The role of the androgen receptor (AR) in BPA-mediated regulation of ASD candidate genes was investigated using a human neuronal cell line stably transfected with AR-expression or control plasmid. Synaptogenesis, which is a function associated with genes transcriptionally regulated by ASD-related TFs, was assessed using primary hippocampal neurons isolated from male and female rat pups prenatally exposed to BPA. RESULTS We found that there was a sex difference in ASD-related TFs underlying the effects of prenatal BPA exposure on the transcriptome profiles of the offspring hippocampus. In addition to the known BPA targets AR and ESR1, BPA could directly interact with novel targets (i.e., KDM5B, SMAD4, and TCF7L2). The targets of these TFs were also associated with ASD. Prenatal BPA exposure disrupted the expression of ASD-related TFs and targets in the offspring hippocampus in a sex-dependent manner. Moreover, AR was involved in the BPA-mediated dysregulation of AUTS2, KMT2C, and SMARCC2. Prenatal BPA exposure altered synaptogenesis by increasing synaptic protein levels in males but not in females, but the number of excitatory synapses was increased in female primary neurons only. CONCLUSIONS Our findings suggest that AR and other ASD-related TFs are involved in sex differences in the effects of prenatal BPA exposure on transcriptome profiles and synaptogenesis in the offspring hippocampus. These TFs may play an essential role in an increased ASD susceptibility associated with endocrine-disrupting chemicals, particularly BPA, and the male bias of ASD.
Collapse
Affiliation(s)
- Surangrat Thongkorn
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Songphon Kanlayaprasit
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| | - Kasidit Kasitipradit
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pattanachat Lertpeerapan
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pawinee Panjabud
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Valerie W. Hu
- grid.253615.60000 0004 1936 9510Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, The George Washington University, Washington, DC USA
| | - Depicha Jindatip
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tewarit Sarachana
- SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Yadav A, Verhaegen S, Filis P, Domanska D, Lyle R, Sundaram AYM, Leithaug M, Østby GC, Aleksandersen M, Berntsen HF, Zimmer KE, Fowler PA, Paulsen RE, Ropstad E. Exposure to a human relevant mixture of persistent organic pollutants or to perfluorooctane sulfonic acid alone dysregulates the developing cerebellum of chicken embryo. ENVIRONMENT INTERNATIONAL 2022; 166:107379. [PMID: 35792514 DOI: 10.1016/j.envint.2022.107379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/07/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Prenatal exposure to persistent organic pollutants (POPs) is associated with neurodevelopmental disorders. In the present study, we explored whether a human-relevant POP mixture affects the development of chicken embryo cerebellum. We used a defined mixture of 29 POPs, with chemical composition and concentrations based on blood levels in the Scandinavian population. We also evaluated exposure to a prominent compound in the mixture, perfluorooctane sulfonic acid (PFOS), alone. Embryos (n = 7-9 per exposure group) were exposed by injection directly into the allantois at embryonic day 13 (E13). Cerebella were isolated at E17 and subjected to morphological, RNA-seq and shot-gun proteomics analyses. There was a reduction in thickness of the molecular layer of cerebellar cortex in both exposure scenarios. Exposure to the POP mixture significantly affected expression of 65 of 13,800 transcripts, and 43 of 2,568 proteins, when compared to solvent control. PFOS alone affected expression of 80 of 13,859 transcripts, and 69 of 2,555 proteins. Twenty-five genes and 15 proteins were common for both exposure groups. These findings point to alterations in molecular events linked to retinoid X receptor (RXR) signalling, neuronal cell proliferation and migration, cellular stress responses including unfolded protein response, lipid metabolism, and myelination. Exposure to the POP mixture increased methionine oxidation, whereas PFOS decreased oxidation. Several of the altered genes and proteins are involved in a wide variety of neurological disorders. We conclude that POP exposure can interfere with fundamental aspects of neurodevelopment, altering molecular pathways that are associated with adverse neurocognitive and behavioural outcomes.
Collapse
Affiliation(s)
- Ajay Yadav
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, NO-0316 Oslo, Norway.
| | - Steven Verhaegen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Diana Domanska
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway.
| | - Robert Lyle
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Arvind Y M Sundaram
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| | - Magnus Leithaug
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| | - Gunn Charlotte Østby
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Mona Aleksandersen
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Hanne Friis Berntsen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; National Institute of Occupational Health, P.O. Box 5330 Majorstuen, NO-0304, Oslo, Norway.
| | - Karin Elisabeth Zimmer
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, NO-0316 Oslo, Norway.
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
| |
Collapse
|
6
|
Guignard D, Canlet C, Tremblay-Franco M, Chaillou E, Gautier R, Gayrard V, Picard-Hagen N, Schroeder H, Jourdan F, Zalko D, Viguié C, Cabaton NJ. Gestational exposure to bisphenol A induces region-specific changes in brain metabolomic fingerprints in sheep. ENVIRONMENT INTERNATIONAL 2022; 165:107336. [PMID: 35700571 DOI: 10.1016/j.envint.2022.107336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Fetal brain development depends on maternofetal thyroid function. In rodents and sheep, perinatal BPA exposure is associated with maternal and/or fetal thyroid disruption and alterations in central nervous system development as demonstrated by metabolic modulations in the encephala of mice. We hypothesized that a gestational exposure to a low dose of BPA affects maternofetal thyroid function and fetal brain development in a region-specific manner. Pregnant ewes, a relevant model for human thyroid and brain development, were exposed to BPA (5 µg/kg bw/d, sc). The thyroid status of ewes during gestation and term fetuses at delivery was monitored. Fetal brain development was assessed by metabolic fingerprints at birth in 10 areas followed by metabolic network-based analysis. BPA treatment was associated with a significant time-dependent decrease in maternal TT4 serum concentrations. For 8 fetal brain regions, statistical models allowed discriminating BPA-treated from control lambs. Metabolic network computational analysis revealed that prenatal exposure to BPA modulated several metabolic pathways, in particular excitatory and inhibitory amino-acid, cholinergic, energy and lipid homeostasis pathways. These pathways might contribute to BPA-related neurobehavioral and cognitive disorders. Discrimination was particularly clear for the dorsal hippocampus, the cerebellar vermis, the dorsal hypothalamus, the caudate nucleus and the lateral part of the frontal cortex. Compared with previous results in rodents, the use of a larger animal model allowed to examine specific brain areas, and generate evidence of the distinct region-specific effects of fetal BPA exposure on the brain metabolome. These modifications occur concomitantly to subtle maternal thyroid function alteration. The functional link between such moderate thyroid changes and fetal brain metabolomic fingerprints remains to be determined as well as the potential implication of other modes of action triggered by BPA such as estrogenic ones. Our results pave the ways for new scientific strategies aiming at linking environmental endocrine disruption and altered neurodevelopment.
Collapse
Affiliation(s)
- Davy Guignard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Marie Tremblay-Franco
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Elodie Chaillou
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Roselyne Gautier
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Véronique Gayrard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Nicole Picard-Hagen
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Henri Schroeder
- Université de Lorraine, INSERM U1256, NGERE, Nutrition Génétique et Exposition aux Risques Environnementaux, 54000 Nancy, France
| | - Fabien Jourdan
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Daniel Zalko
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Catherine Viguié
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Nicolas J Cabaton
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
7
|
Perspective: Chicken Models for Studying the Ontogenetic Origin of Neuropsychiatric Disorders. Biomedicines 2022; 10:biomedicines10051155. [PMID: 35625892 PMCID: PMC9138209 DOI: 10.3390/biomedicines10051155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 12/29/2022] Open
Abstract
Nutrients and xenobiotics cross the blood–placenta barrier, potentially depositing in the fetal brain. The prenatal exposure affects the neuroendocrine and microbial development. The mechanism underlying maternal risk factors reprograming the microbiota–gut–brain axis with long-term effects on psychosocial behaviors in offspring is not clear. In humans, it is not possible to assess the nutrient or xenobiotic deposition in the fetal brain and gastrointestinal system for ethical reasons. Moreover, the maternal–fetal microbe transfer during gestation, natural labor, and breast-feeding constitutes the initial gut microbiome in the progeny, which is inevitable in the most widely utilized rodent models. The social predisposition in precocial birds, including chickens, provides the possibility to test behavioral responses shortly after being hatched. Hence, chickens are advantageous in investigating the ontogenetic origin of behaviors. Chicken embryos are suitable for deposition assessment and mechanistic study due to the accessibility, self-contained development, uniform genetic background, robust microbiota, and easy in vivo experimental manipulation compared to humans and rodents. Therefore, chicken embryos can be used as an alternative to the rodent models in assessing the fetal exposure effect on neurogenesis and investigating the mechanism underlying the ontogenetic origin of neuropsychiatric disorders.
Collapse
|
8
|
Zosen D, Austdal LPE, Bjørnstad S, Lumor JS, Paulsen RE. Antiepileptic drugs lamotrigine and valproate differentially affect neuronal maturation in the developing chick embryo, yet with PAX6 as a potential common mediator. Neurotoxicol Teratol 2022; 90:107057. [DOI: 10.1016/j.ntt.2021.107057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
|
9
|
Kanlayaprasit S, Thongkorn S, Panjabud P, Jindatip D, Hu VW, Kikkawa T, Osumi N, Sarachana T. Autism-Related Transcription Factors Underlying the Sex-Specific Effects of Prenatal Bisphenol A Exposure on Transcriptome-Interactome Profiles in the Offspring Prefrontal Cortex. Int J Mol Sci 2021; 22:13201. [PMID: 34947998 PMCID: PMC8708761 DOI: 10.3390/ijms222413201] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022] Open
Abstract
Bisphenol A (BPA) is an environmental risk factor for autism spectrum disorder (ASD). BPA exposure dysregulates ASD-related genes in the hippocampus and neurological functions of offspring. However, whether prenatal BPA exposure has an impact on genes in the prefrontal cortex, another brain region highly implicated in ASD, and through what mechanisms have not been investigated. Here, we demonstrated that prenatal BPA exposure disrupts the transcriptome-interactome profiles of the prefrontal cortex of neonatal rats. Interestingly, the list of BPA-responsive genes was significantly enriched with known ASD candidate genes, as well as genes that were dysregulated in the postmortem brain tissues of ASD cases from multiple independent studies. Moreover, several differentially expressed genes in the offspring's prefrontal cortex were the targets of ASD-related transcription factors, including AR, ESR1, and RORA. The hypergeometric distribution analysis revealed that BPA may regulate the expression of such genes through these transcription factors in a sex-dependent manner. The molecular docking analysis of BPA and ASD-related transcription factors revealed novel potential targets of BPA, including RORA, SOX5, TCF4, and YY1. Our findings indicated that prenatal BPA exposure disrupts ASD-related genes in the offspring's prefrontal cortex and may increase the risk of ASD through sex-dependent molecular mechanisms, which should be investigated further.
Collapse
Grants
- FRB65_hea(80)_175_37_05 Fundamental Fund, Chulalongkorn University
- AHS-CU 61004 Faculty of Allied Health Sciences Research Fund, Chulalongkorn University
- GRU 6300437001-1 Ratchadapisek Somphot Fund for Supporting Research Unit, Chulalongkorn University
- GRU_64_033_37_004 Ratchadapisek Somphot Fund for Supporting Research Unit, Chulalongkorn University
- The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship, Graduate School, Chulalongkorn University
- The Overseas Research Experience Scholarship for Graduate Students from Graduate School, Chulalongkorn University
- PHD/0029/2561 The Royal Golden Jubilee Ph.D. Programme Scholarship, Thailand Research Fund and National Research Council of Thailand
- National Research Council of Thailand (NRCT)
- GCUGR1125623067D-67 The 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), Graduate School, Chulalongkorn University
- GCUGR1125632108D-108 The 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), Graduate School, Chulalongkorn University
- 2073011 Chulalongkorn University Laboratory Animal Center (CULAC) Grant
Collapse
Affiliation(s)
- Songphon Kanlayaprasit
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (S.T.); (P.P.)
| | - Surangrat Thongkorn
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (S.T.); (P.P.)
| | - Pawinee Panjabud
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (S.T.); (P.P.)
| | - Depicha Jindatip
- Systems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Valerie W. Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA;
| | - Takako Kikkawa
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai 980-8577, Miyagi, Japan; (T.K.); (N.O.)
| | - Noriko Osumi
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai 980-8577, Miyagi, Japan; (T.K.); (N.O.)
| | - Tewarit Sarachana
- Systems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
10
|
Morris J, Bealer EJ, Souza IDS, Repmann L, Bonelli H, Stanzione JF, Staehle MM. Chemical Exposure-Induced Developmental Neurotoxicity in Head-Regenerating Schmidtea Mediterranea. Toxicol Sci 2021; 185:220-231. [PMID: 34791476 DOI: 10.1093/toxsci/kfab132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The growing number of commercially-used chemicals that are under-evaluated for developmental neurotoxicity (DNT) combined with the difficulty in describing the etiology of exposure-related neurodevelopmental toxicity has created a reticent threat to human health. Current means of screening chemicals for DNT are limited to expensive, time-consuming, and labor-intensive traditional laboratory animal models. In this study, we hypothesize that exposed head regenerating planarian flatworms can effectively and efficiently categorize DNT in known developmental neurotoxins (ethanol and bisphenol A (BPA)). Planarian flatworms are an established alternative animal model for neurodevelopmental studies and have remarkable regenerative abilities allowing neurodevelopment to be induced via head resection. Here, we observed changes in photophobic behavior and central nervous system (CNS) morphology to evaluate the impact of exposure to low concentrations of ethanol, BPA, and BPA industry alternatives bisphenol F (BPF), and bisguaiacol (BG) on neurodevelopment. Our studies show that exposure to 1% v/v ethanol during regeneration induces a recoverable 48-hour delay in the development of proper CNS integrity, which aligns with behavioral assessments of cognitive ability. Exposure to BPA and its alternatives induced deviations to neurodevelopment in a range of severities, distinguished by suppressions, delays, or a combination of the two. These results suggest that quick and inexpensive behavioral assessments are a viable surrogate for tedious and costly immunostaining studies, equipping more utility and resolution to the planarian model for neurodevelopmental toxicity in the future of mass chemical screening. These studies demonstrate that behavioral phenotypes observed following chemical exposure are classifiable and also temporally correlated to the anatomical development of the central nervous system in planaria. This will facilitate and accelerate toxicological screening assays with this alternative animal model.
Collapse
Affiliation(s)
- J Morris
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ
| | - E J Bealer
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ
| | - I D S Souza
- Department of Chemical Engineering, Rowan University, Glassboro, NJ
| | - L Repmann
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ
| | - H Bonelli
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ
| | - J F Stanzione
- Department of Chemical Engineering, Rowan University, Glassboro, NJ
| | - M M Staehle
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ
| |
Collapse
|
11
|
Peripherally administered persistent organic pollutants distribute to the brain of developing chicken embryo in concentrations relevant for human exposure. Neurotoxicology 2021; 88:79-87. [PMID: 34757084 DOI: 10.1016/j.neuro.2021.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/01/2021] [Accepted: 10/27/2021] [Indexed: 11/21/2022]
Abstract
Persistent organic pollutants (POPs) can reach the fetal brain and contribute to developmental neurotoxicity. To explore the distribution of POPs to the fetal brain, we exposed chicken embryos to a POP mixture, containing 29 different compounds with concentrations based on blood levels measured in the Scandinavian human population. The mixture was injected into the allantois at embryonic day 13 (E13), aiming at a theoretical concentration of 10 times human blood levels. POPs concentrations in the brain were measured at 0.5, 1, 2, 4, 6, 24, 48, and 72 h after administration. Twenty-seven of the individual compounds were detected during at least one of the time-points analyzed. Generally, the concentrations of most of the measured compounds were within the order of magnitude of those reported in human brain samples. Differences in the speed of distribution to the brain were observed between the per- and polyfluoroalkyl substances (PFASs), which have protein binding potential, and the lipophilic polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and brominated flame retardants (BFRs). Based on pharmacokinetic modeling, PFASs were best described by a one compartment model. PFASs displayed relatively slow elimination (Kel) and persisted at high levels in the brain. Lipophilic OCPs and PCBs could be fitted to a 2-compartment model. These showed high levels in the brain relative to the dose administrated as calculated by area under the curve (AUC)/Dose. Altogether, our study showed that chicken is a suitable model to explore the distribution of POPs into the developing brain at concentrations which are relevant for humans.
Collapse
|
12
|
Abd Elkader HTAE, Abdou HM, Khamiss OA, Essawy AE. Anti-anxiety and antidepressant-like effects of astragaloside IV and saponins extracted from Astragalus spinosus against the bisphenol A-induced motor and cognitive impairments in a postnatal rat model of schizophrenia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35171-35187. [PMID: 33666843 DOI: 10.1007/s11356-021-12927-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a chemical endocrine disruptor to which humans are often exposed in daily life. Postnatal administration of BPA results in schizophrenia (SCZ)-like behaviours in rats. The present study was designed to elucidate whether treatment with astragaloside IV (ASIV) or saponins extracted from Astragalus spinosus improves the neurobehavioural and neurochemical disturbances induced by BPA. Fifty-two juvenile (PND20) male Sprague Dawley rats were divided into four groups. The rats in Group I were considered the control rats, while the rats in Group II were orally administered BPA (125 mg/kg) daily from PND20 to adult age (PND117). The rats in the third and fourth groups were administered BPA (125 mg/kg/day) supplemented with astragaloside IV (80 mg/kg/d) on PND20 or A. spinosus saponins (100 mg/kg/d) from PND50 to PND117, respectively. Administration of ASIV and saponins extracted from Astragalus spinosus reversed the anxiogenic and depressive-like behaviours and the social defects that were observed in the rats treated with BPA alone. Additionally, these compounds improved memory impairments, restored dopamine (DA), serotonin (5-HT), and monoamine oxidase (MAO-A) levels and normalized Tph2 mRNA expression towards the control values. Taken together, it can be concluded that orally administered ASIV and A. spinosus saponins exhibit neuroprotective effects and that these compounds can be used as therapeutic strategies against BPA-induced neuropsychiatric symptoms in a rat model of SCZ.
Collapse
Affiliation(s)
| | - Heba Mohamed Abdou
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Omaima Ahmed Khamiss
- Department of Genetic Engineering and Biotechnology, Institute of Genetic Engineering and Biotechnology, Sadat City University, Sadat City, Egypt
| | - Amina Essawy Essawy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
13
|
Verity EE, Stewart K, Vandenberg K, Ong C, Rockman S. Potency Testing of Venoms and Antivenoms in Embryonated Eggs: An Ethical Alternative to Animal Testing. Toxins (Basel) 2021; 13:toxins13040233. [PMID: 33805138 PMCID: PMC8064111 DOI: 10.3390/toxins13040233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
Venoms are complex mixtures of biologically active molecules that impact multiple physiological systems. Manufacture of antivenoms (AVs) therefore requires potency testing using in vivo models to ensure AV efficacy. As part of ongoing research to replace small animals as the standard model for AV potency testing, we developed an alternate in vivo method using the embryonated egg model (EEM). In this model, the survival of chicken embryos envenomated in ovo is determined prior to 50% gestation, when they are recognized as animals by animal welfare legislation. Embryos were found to be susceptible to a range of snake, spider, and marine venoms. This included funnel-web spider venom for which the only other vertebrate, non-primate animal model is newborn mice. Neutralization of venom with standard AV allowed correlation of AV potency results from the EEM to results from animal assays. Our findings indicate that the EEM provides an alternative, insensate in vivo model for the assessment of AV potency. The EEM may enable reduction or replacement of the use of small animals, as longer-term research that enables the elimination of animal use in potency testing continues.
Collapse
Affiliation(s)
- Erin E. Verity
- Technical Development, Seqirus Ltd., Parkville, VIC 3052, Australia; (E.E.V.); (K.S.); (K.V.); (C.O.)
| | - Kathy Stewart
- Technical Development, Seqirus Ltd., Parkville, VIC 3052, Australia; (E.E.V.); (K.S.); (K.V.); (C.O.)
| | - Kirsten Vandenberg
- Technical Development, Seqirus Ltd., Parkville, VIC 3052, Australia; (E.E.V.); (K.S.); (K.V.); (C.O.)
| | - Chi Ong
- Technical Development, Seqirus Ltd., Parkville, VIC 3052, Australia; (E.E.V.); (K.S.); (K.V.); (C.O.)
| | - Steven Rockman
- Technical Development, Seqirus Ltd., Parkville, VIC 3052, Australia; (E.E.V.); (K.S.); (K.V.); (C.O.)
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: ; Tel.: +61-3-9389-2712
| |
Collapse
|
14
|
A human relevant mixture of persistent organic pollutants (POPs) and perfluorooctane sulfonic acid (PFOS) differentially affect glutamate induced excitotoxic responses in chicken cerebellum granule neurons (CGNs) in vitro. Reprod Toxicol 2021; 100:109-119. [PMID: 33497742 DOI: 10.1016/j.reprotox.2021.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/14/2020] [Accepted: 01/18/2021] [Indexed: 12/31/2022]
Abstract
Primary cultures of cerebellar granule neurons (CGNs) derived from chicken embryos were used to explore the effects on developmental neurotoxicity by a complex defined mixture of persistent organic pollutants (POPs). Its chemical composition and concentrations were based on blood levels in the Norwegian/Scandinavian population. Perfluorooctane sulfonic acid (PFOS) alone, its most abundant compound was also evaluated. Different stages of CGNs maturation, between day in vitro (DIV) 1, 3, and 5 were exposed to the POP mixture, or PFOS alone. Their combination with glutamate, an excitatory endogenous neurotransmitter important in neurodevelopment, also known to cause excitotoxicity was evaluated. Outcomes with the mixture at 500x blood levels were compared to PFOS at its corresponding concentration of 20 μM. The POP mixture reduced tetrazolium salt (MTT) conversion at earlier stages of maturation, compared to PFOS alone. Glutamate-induced excitotoxicity was enhanced above the level of that induced by glutamate alone, especially in mature CGNs at DIV5. Glutathione (GSH) concentrations seemed to set the level of sensitivity for the toxic insults from exposures to the pollutants. The role of N-methyl-D-aspartate receptor (NMDA-R) mediated calcium influx in pollutant exposures was investigated using the non-competitive and competitive receptor antagonists MK-801 and CGP 39551. Observations indicate a calcium-independent, but still NMDA-R dependent mechanism in the absence of glutamate, and a calcium- and NMDA-R dependent one in the presence of glutamate. The outcomes for the POP mixture cannot be explained by PFOS alone, indicating that other chemicals in the mixture contribute its overall effect.
Collapse
|
15
|
Thongkorn S, Kanlayaprasit S, Panjabud P, Saeliw T, Jantheang T, Kasitipradit K, Sarobol S, Jindatip D, Hu VW, Tencomnao T, Kikkawa T, Sato T, Osumi N, Sarachana T. Sex differences in the effects of prenatal bisphenol A exposure on autism-related genes and their relationships with the hippocampus functions. Sci Rep 2021; 11:1241. [PMID: 33441873 PMCID: PMC7806752 DOI: 10.1038/s41598-020-80390-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023] Open
Abstract
Our recent study has shown that prenatal exposure to bisphenol A (BPA) altered the expression of genes associated with autism spectrum disorder (ASD). In this study, we further investigated the effects of prenatal BPA exposure on ASD-related genes known to regulate neuronal viability, neuritogenesis, and learning/memory, and assessed these functions in the offspring of exposed pregnant rats. We found that prenatal BPA exposure increased neurite length, the number of primary neurites, and the number of neurite branches, but reduced the size of the hippocampal cell body in both sexes of the offspring. However, in utero exposure to BPA decreased the neuronal viability and the neuronal density in the hippocampus and impaired learning/memory only in the male offspring while the females were not affected. Interestingly, the expression of several ASD-related genes (e.g. Mief2, Eif3h, Cux1, and Atp8a1) in the hippocampus were dysregulated and showed a sex-specific correlation with neuronal viability, neuritogenesis, and/or learning/memory. The findings from this study suggest that prenatal BPA exposure disrupts ASD-related genes involved in neuronal viability, neuritogenesis, and learning/memory in a sex-dependent manner, and these genes may play an important role in the risk and the higher prevalence of ASD in males subjected to prenatal BPA exposure.
Collapse
Affiliation(s)
- Surangrat Thongkorn
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Songphon Kanlayaprasit
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pawinee Panjabud
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Thanit Saeliw
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Thanawin Jantheang
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kasidit Kasitipradit
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Suthathip Sarobol
- grid.411628.80000 0000 9758 8584Specimen Center, Department of Laboratory Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Depicha Jindatip
- grid.7922.e0000 0001 0244 7875Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand ,grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Valerie W. Hu
- grid.253615.60000 0004 1936 9510Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, The George Washington University, Washington, DC USA
| | - Tewin Tencomnao
- grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Takako Kikkawa
- grid.69566.3a0000 0001 2248 6943Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Miyagi Japan
| | - Tatsuya Sato
- grid.412754.10000 0000 9956 3487Department of Healthcare Management, Faculty of Health Sciences, Tohoku Fukushi University, Sendai, Miyagi Japan
| | - Noriko Osumi
- grid.69566.3a0000 0001 2248 6943Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Miyagi Japan
| | - Tewarit Sarachana
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand ,grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
16
|
Berntsen HF, Duale N, Bjørklund CG, Rangel-Huerta OD, Dyrberg K, Hofer T, Rakkestad KE, Østby G, Halsne R, Boge G, Paulsen RE, Myhre O, Ropstad E. Effects of a human-based mixture of persistent organic pollutants on the in vivo exposed cerebellum and cerebellar neuronal cultures exposed in vitro. ENVIRONMENT INTERNATIONAL 2021; 146:106240. [PMID: 33186814 DOI: 10.1016/j.envint.2020.106240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/25/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Exposure to persistent organic pollutants (POPs), encompassing chlorinated (Cl), brominated (Br) and perfluoroalkyl acid (PFAA) compounds is associated with adverse neurobehaviour in humans and animals, and is observed to cause adverse effects in nerve cell cultures. Most studies focus on single POPs, whereas studies on effects of complex mixtures are limited. We examined the effects of a mixture of 29 persistent compounds (Cl + Br + PFAA, named Total mixture), as well as 6 sub-mixtures on in vitro exposed rat cerebellar granule neurons (CGNs). Protein expression studies of cerebella from in vivo exposed mice offspring were also conducted. The selection of chemicals for the POP mixture was based on compounds being prominent in food, breast milk or blood from the Scandinavian human population. The Total mixture and sub-mixtures containing PFAAs caused greater toxicity in rat CGNs than the single or combined Cl/Br sub-mixtures, with significant impact on viability from 500x human blood levels. The potencies for these mixtures based on LC50 values were Br + PFAA mixture > Total mixture > Cl + PFAA mixture > PFAA mixture. These mixtures also accelerated induced lipid peroxidation. Protection by the competitive N-methyl-D-aspartate (NMDA) receptor antagonist 3-((R)-2-Carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) indicated involvement of the NMDA receptor in PFAA and Total mixture-, but not Cl mixture-induced toxicity. Gene-expression studies in rat CGNs using a sub-toxic and marginally toxic concentration ((0.4 nM-5.5 µM) 333x and (1 nM-8.2 µM) 500x human blood levels) of the mixtures, revealed differential expression of genes involved in apoptosis, oxidative stress, neurotransmission and cerebellar development, with more genes affected at the marginally toxic concentration. The two important neurodevelopmental markers Pax6 and Grin2b were downregulated at 500x human blood levels, accompanied by decreases in PAX6 and GluN2B protein levels, in cerebellum of offspring mice from mothers exposed to the Total mixture throughout pregnancy and lactation. In rat CGNs, the glutathione peroxidase gene Prdx6 and the regulatory transmembrane glycoprotein gene Sirpa were highly upregulated at both concentrations. In conclusion, our results support that early-life exposure to mixtures of POPs can cause adverse neurodevelopmental effects.
Collapse
Affiliation(s)
- Hanne Friis Berntsen
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway; National Institute of Occupational Health, P.O. Box 5330 Majorstuen, 0304 Oslo, Norway.
| | - Nur Duale
- Section of Molecular Toxicology, Norwegian Institute of Public Health, N-0403 Oslo, Norway.
| | - Cesilie Granum Bjørklund
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | | | - Kine Dyrberg
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | - Tim Hofer
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, N-0403, Oslo, Norway.
| | - Kirsten Eline Rakkestad
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1072, Blindern, NO-0316 Oslo, Norway.
| | - Gunn Østby
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | - Ruth Halsne
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | - Gudrun Boge
- Department of Companion Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1072, Blindern, NO-0316 Oslo, Norway.
| | - Oddvar Myhre
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, N-0403, Oslo, Norway.
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| |
Collapse
|
17
|
Fang Y, Che X, You M, Xu Y, Wang Y. Perinatal exposure to nonylphenol promotes proliferation of granule cell precursors in offspring cerebellum: Involvement of the activation of Notch2 signaling. Neurochem Int 2020; 140:104843. [PMID: 32866557 DOI: 10.1016/j.neuint.2020.104843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 10/23/2022]
Abstract
Nonylphenol (NP), a widely diffused persistent organic pollutant (POP), has been shown to impair cerebellar development and cause cerebellum-dependent behavioral and motor deficits. The precise proliferation of granule cell precursors (GCPs), the source of granular cells (GCs), is required for normal development of cerebellum. Thus, we established an animal model of perinatal exposure to NP, investigated the effect of NP exposure on the cerebellar GCPs proliferation, and explored the potential mechanism involved. Our results showed that perinatal exposure to NP increased cerebellar weight, area, and internal granular cell layer (IGL) thickness in offspring rats. Perinatal exposure to NP also resulted in the GCPs hyperproliferation in the external granular layer (EGL) of the developing cerebellum, which may underlie the above-mentioned cerebellar alterations. However, our results suggested that perinatal exposure to NP had no effects on the length of GCPs proliferation. Meanwhile, perinatal exposure to NP also increased the activation of Notch2 signaling, the regulator of GCPs proliferation. In conclusion, our results supported the idea that exposure to NP caused the hyperproliferation of GCPs in the developing cerebellum. Furthermore, our study also provided the evidence that the activation of Notch2 signaling may be involved in the GCPs hyperproliferation.
Collapse
Affiliation(s)
- Yawen Fang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Xiaoyu Che
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
18
|
Atay E, Ertekin A, Bozkurt E, Aslan E. Impact of Bisphenol A on neural tube development in 48‐hr chicken embryos. Birth Defects Res 2020; 112:1386-1396. [DOI: 10.1002/bdr2.1791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Emre Atay
- Department of Anatomy, Medicine Faculty Afyonkarahisar Health Sciences University Afyonkarahisar Turkey
| | - Ayşe Ertekin
- Department of Emergency Medicine, Medicine Faculty Afyonkarahisar Health Sciences University Afyonkarahisar Turkey
| | - Erhan Bozkurt
- Department of Internal Medicine, Medicine Faculty Afyonkarahisar Health Sciences University Afyonkarahisar Turkey
| | - Esra Aslan
- Department of Histology Embryology, Medicine Faculty Afyonkarahisar Health Sciences University Afyonkarahisar Turkey
| |
Collapse
|
19
|
Maternal Dietary Exposure to Low-Dose Bisphenol A Affects Metabolic and Signaling Pathways in the Brain of Rat Fetuses. Nutrients 2020; 12:nu12051448. [PMID: 32429515 PMCID: PMC7285067 DOI: 10.3390/nu12051448] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 12/23/2022] Open
Abstract
Bisphenol A (BPA) is a synthetic compound widely used for the production of polycarbonate plasticware and epoxy resins. BPA exposure is widespread and more than 90% of individuals have detectable amounts of the molecule in their body fluids, which originates primarily from diet. Here, we investigated whether prenatal exposure to BPA affects the mevalonate (MVA) pathway in rat brain fetuses, and whether potential effects are sex-dependent. The MVA pathway is important for brain development and function. Our results demonstrate that the fetal brain, exposed in utero to a very low dose of BPA (2.5 µg/kg/day), displayed altered MVA pathway activation, increased protein prenylation, and a decreased level of pro-BDNF. Interestingly, the BPA-induced effects on estrogen receptor α were sex-dependent. In conclusion, this work demonstrates intergenerational effects of BPA on the brain at very low doses. Our results reveal new targets for BPA-induced interference and underline the impacts of BPA on health.
Collapse
|
20
|
Fjelldal MF, Hadera MG, Kongstorp M, Austdal LPE, Šulović A, Andersen JM, Paulsen RE. Opioid receptor-mediated changes in the NMDA receptor in developing rat and chicken. Int J Dev Neurosci 2019; 78:19-27. [PMID: 31351113 DOI: 10.1016/j.ijdevneu.2019.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/09/2019] [Accepted: 07/23/2019] [Indexed: 11/30/2022] Open
Abstract
The use of opioids during pregnancy has been associated with neurodevelopmental toxicity in exposed children, leading to cognitive and behavioural deficits later in life. The N-methyl-D-aspartate receptor (NMDAR) subunit GluN2B plays critical roles in cerebellar development, and methadone has been shown to possess NMDAR antagonist effect. Consequently, we wanted to explore if prenatal opioid exposure affected GluN2B subunit expression and NMDAR function in rat and chicken cerebellum. Pregnant rats were exposed to methadone (10 mg/kg/day) or buprenorphine (1 mg/kg/day) for the whole period of gestation, using an osmotic minipump. To further examine potential effects of prenatal opioid exposure in a limited time window, chicken embryos were exposed to a 20 mg/kg dose of methadone or morphine on embryonic days 13 and 14. Western blot analysis of cerebella isolated from 14 days old rat pups exposed to buprenorphine showed significantly lower level of the GluN2B subunit, while the opioid exposed chicken embryo cerebellar GluN2B expression remained unaffected at embryonic day 17. However, we observed increased NMDA/glycine-induced calcium influx in cerebellar granule neurone cultures from opioid exposed chicken embryos. We conclude that prenatal opioid exposure leads to opioid receptor-dependent reduction in the postnatal expression of GluN2B in rat cerebella, and increase in NMDA-induced calcium influx in chicken embryo cerebella.
Collapse
Affiliation(s)
- Marthe Fredheim Fjelldal
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Mussie Ghezu Hadera
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Mette Kongstorp
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Norway
| | - Lars Peter Engeset Austdal
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Ana Šulović
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Jannike Mørch Andersen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.,Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Norway
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| |
Collapse
|
21
|
Effects of BPA on expression of apoptotic genes and migration of ovine trophectoderm (oTr1) cells during the peri-implantation period of pregnancy. Reprod Toxicol 2019; 83:73-79. [DOI: 10.1016/j.reprotox.2018.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/17/2022]
|
22
|
Desai M, Ferrini MG, Han G, Jellyman JK, Ross MG. In vivo maternal and in vitro BPA exposure effects on hypothalamic neurogenesis and appetite regulators. ENVIRONMENTAL RESEARCH 2018; 164:45-52. [PMID: 29476947 PMCID: PMC8085909 DOI: 10.1016/j.envres.2018.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 06/01/2023]
Abstract
In utero exposure to the ubiquitous plasticizer, bisphenol A (BPA) is associated with offspring obesity. As food intake/appetite is one of the critical elements contributing to obesity, we determined the effects of in vivo maternal BPA and in vitro BPA exposure on newborn hypothalamic stem cells which form the arcuate nucleus appetite center. For in vivo studies, female rats received BPA prior to and during pregnancy via drinking water, and newborn offspring primary hypothalamic neuroprogenitor (NPCs) were obtained and cultured. For in vitro BPA exposure, primary hypothalamic NPCs from healthy newborns were utilized. In both cases, we studied the effects of BPA on NPC proliferation and differentiation, including putative signal and appetite factors. Maternal BPA increased hypothalamic NPC proliferation and differentiation in newborns, in conjunction with increased neuroproliferative (Hes1) and proneurogenic (Ngn3) protein expression. With NPC differentiation, BPA exposure increased appetite peptide and reduced satiety peptide expression. In vitro BPA-treated control NPCs showed results that were consistent with in vivo data (increase appetite vs satiety peptide expression) and further showed a shift towards neuronal versus glial fate as well as an increase in the epigenetic regulator lysine-specific histone demethylase1 (LSD1). These findings emphasize the vulnerability of stem-cell populations that are involved in life-long regulation of metabolic homeostasis to epigenetically-mediated endocrine disruption by BPA during early life.
Collapse
Affiliation(s)
- Mina Desai
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Monica G Ferrini
- Department of Health and Life Sciences Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA, USA
| | - Guang Han
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA
| | - Juanita K Jellyman
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA
| | - Michael G Ross
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Obstetrics and Gynecology, Charles R. Drew University, Los Angeles, CA, USA
| |
Collapse
|
23
|
Nesan D, Sewell LC, Kurrasch DM. Opening the black box of endocrine disruption of brain development: Lessons from the characterization of Bisphenol A. Horm Behav 2018; 101:50-58. [PMID: 29241697 DOI: 10.1016/j.yhbeh.2017.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 01/14/2023]
Abstract
Bisphenol A (BPA) is among the best-studied endocrine disrupting chemicals, known to act via multiple steroid hormone receptors to mediate a myriad of cellular effects. Pre-, peri-, and postnatal BPA exposure have been linked to a variety of altered behaviors in multiple model organisms, ranging from zebrafish to frogs to mammalian models. Given that BPA can cross the human placental barrier and has been found in the serum of human fetuses during gestation, BPA has been postulated to adversely affect ongoing neurodevelopment, ultimately leading to behavioral disorders later in life. Indeed, the brain has been identified as a key developmental target for BPA disruption. Despite these known associations between gestational BPA exposure and adverse developmental outcomes, as well as an extensive body of evidence existing in the literature, the mechanisms by which BPA induces its cellular- and tissue-specific effects on neurodevelopmental processes still remains poorly understood at a mechanistic level. In this review we will briefly summarize the effects of gestational BPA exposure on neural developmental mechanisms and resulting behaviors, and then present suggestions for how we might address gaps in our knowledge to develop a fuller understanding of endocrine neurodevelopmental disruption to better inform governmental policy against the use of BPA or other endocrine disruptors.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotckhiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Laronna C Sewell
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotckhiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotckhiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
24
|
Ahmed RG, Walaa GH, Asmaa FS. Suppressive effects of neonatal bisphenol A on the neuroendocrine system. Toxicol Ind Health 2018; 34:397-407. [DOI: 10.1177/0748233718757082] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The aim of this study was to assess the effects of neonatal bisphenol A (BPA) administration on neuroendocrine features (the thyroid–brain axis). BPA (20 or 40 µg/kg) was orally administered to juvenile male albino rats ( Rattus norvegicus) from postnatal days (PNDs) 15 to 30. Both doses resulted in lower serum thyroxine (T4), triiodothyronine (T3), and growth hormone levels and higher thyrotropin level than the control levels at PND 30. In the neonatal cerebellum and cerebrum, vacuolation, pyknosis, edema, degenerative changes, and reductions in the size and number of the cells were observed in both treated groups. Alternatively, elevations in oxidative markers (lipid peroxidation, nitric oxide, and hydrogen peroxide [H2O2]) at both dose levels were recorded at PND 30, along with decreased activities of antioxidant markers (ascorbic acid, total thiol [t-SH], glutathione, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, and catalase) with respect to control levels. Thus, the BPA-induced hypothyroid state may disturb the neonatal thyroid–brain axis via production of free radicals, and this could damage the plasma membrane and cellular components, delaying cerebrum and cerebellum development.
Collapse
Affiliation(s)
- RG Ahmed
- Anatomy and Embryology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - GH Walaa
- Biochemistry Division, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - FS Asmaa
- Biochemistry Division, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
25
|
Zsarnovszky A, Kiss D, Jocsak G, Nemeth G, Toth I, Horvath TL. Thyroid hormone- and estrogen receptor interactions with natural ligands and endocrine disruptors in the cerebellum. Front Neuroendocrinol 2018; 48:23-36. [PMID: 28987779 DOI: 10.1016/j.yfrne.2017.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/06/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
Although the effects of phytoestrogens on brain function is widely unknown, they are often regarded as "natural" and thus as harmless. However, the effects of phytoestrogens or environmental pollutants on brain function is underestimated. Estrogen (17beta-estradiol, E2) and thyroid hormones (THs) play pivotal roles in brain development. In the mature brain, these hormones regulate metabolism on cellular and organismal levels. Thus, E2 and THs do not only regulate the energy metabolism of the entire organism, but simultaneously also regulate important homeostatic parameters of neurons and glia in the CNS. It is, therefore, obvious that the mechanisms through which these hormones exert their effects are pleiotropic and include both intra- and intercellular actions. These hormonal mechanisms are versatile, and the experimental investigation of simultaneous hormone-induced mechanisms is technically challenging. In addition, the normal physiological settings of metabolic parameters depend on a plethora of interactions of the steroid hormones. In this review, we discuss conceptual and experimental aspects of the gonadal and thyroid hormones as they relate to in vitro models of the cerebellum.
Collapse
Affiliation(s)
- Attila Zsarnovszky
- Department of Animal Physiology and Animal Health, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100 Gödöllő, Hungary; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - David Kiss
- Departments of Physiology and Biochemistry, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Gergely Jocsak
- Departments of Physiology and Biochemistry, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Gabor Nemeth
- Department of Obstetrics and Gynecology, University of Szeged, School of Medicine, Szeged, Hungary
| | - Istvan Toth
- Departments of Physiology and Biochemistry, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Tamas L Horvath
- Department of Animal Physiology and Animal Health, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100 Gödöllő, Hungary; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Departments of Anatomy and Histology, University of Veterinary Medicine, Budapest 1078, Hungary.
| |
Collapse
|
26
|
da Conceição RR, de Souza JS, de Oliveira KC, de Barros Maciel RM, Romano MA, Romano RM, da Silva MRD, Chiamolera MI, Giannocco G. Anatomical specificity of the brain in the modulation of Neuroglobin and Cytoglobin genes after chronic bisphenol a exposure. Metab Brain Dis 2017; 32:1843-1851. [PMID: 28721559 DOI: 10.1007/s11011-017-0066-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/06/2017] [Indexed: 01/23/2023]
Abstract
The aim of this study was to investigate the influence of Bisphenol A (BPA) exposure on Neuroglobin (Ngb) and Cytoglobin (Cygb) as well as oxidative stress gene expression in the cerebellum, hippocampus, hypothalamus and cortex. Male Wistar rats were randomly divided into 3 groups: Control and two groups receiving 2 different daily BPA dosages, 5 or 25 mg/kg from postnatal day 50 (PND50) through PND90 and they were euthanized at PND105. In the cortex, we found an increase in Ngb gene expression and also in superoxide dismutase 1 and Catalase (Cat). In the cerebellum, we found an increase in Ngb and Cat, in the hypothalamus, there was a decrease in Cygb and an increase in glutathione peroxidase and Cat and in hypoxia-inducible factor 1 alpha (Hif1α) at the low dosage and a decrease in Hif1α at the high BPA dosage. Finally, in the hippocampus, we observed a decrease in Ngb and Cygb and an increase in Hif1α. In summary, BPA promotes the modulation of both Ngb and Cygb, but such changes occur by different mechanisms depending on the exposure dose and anatomical area.
Collapse
Affiliation(s)
- Rodrigo Rodrigues da Conceição
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp/EPM), São Paulo, SP, Brazil
| | - Janaina Sena de Souza
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp/EPM), São Paulo, SP, Brazil
| | - Kelen Carneiro de Oliveira
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp/EPM), São Paulo, SP, Brazil
| | - Rui Monteiro de Barros Maciel
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp/EPM), São Paulo, SP, Brazil
| | - Marco Aurélio Romano
- Department of Pharmacy, State University of Centro-Oeste, Curitiba, Parana, Brazil
| | - Renata Marino Romano
- Department of Pharmacy, State University of Centro-Oeste, Curitiba, Parana, Brazil
| | - Magnus Régios Dias da Silva
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp/EPM), São Paulo, SP, Brazil
| | - Maria Izabel Chiamolera
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp/EPM), São Paulo, SP, Brazil
| | - Gisele Giannocco
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp/EPM), São Paulo, SP, Brazil.
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil.
- Laboratório de Endocriologia Molecular e Translacional, Departamento de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, Vila Clementino, Sao Paulo, SP, 04039032, Brazil.
| |
Collapse
|
27
|
Wolska J, Cyganowski P, Koźlecki T. Fine polymer imprinted layers for the monitoring of bisphenol A in aqueous solutions. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1385627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Joanna Wolska
- Division of Polymer and Carbonaceous Materials, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Piotr Cyganowski
- Division of Polymer and Carbonaceous Materials, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Tomasz Koźlecki
- Department of Chemical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
28
|
Sørvik IB, Paulsen RE. High and low concentration of 17α-estradiol protect cerebellar granule neurons in different time windows. Biochem Biophys Res Commun 2017. [DOI: 10.1016/j.bbrc.2017.06.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Austdal LPE, Bjørnstad S, Mathisen GH, Aden PK, Mikkola I, Paulsen RE, Rakkestad KE. Glucocorticoid Effects on Cerebellar Development in a Chicken Embryo Model: Exploring Changes in PAX6 and Metalloproteinase-9 After Exposure to Dexamethasone. J Neuroendocrinol 2016; 28. [PMID: 27791298 DOI: 10.1111/jne.12438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/25/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022]
Abstract
The developing cerebellum is vulnerable to effects of glucocorticoids and cerebellar dysfunction is associated with neurodevelopmental disorders (e.g. autism). Transcription factor PAX6 and matrix metalloproteinase-9 (MMP-9) are critical for normal cerebellar development and are highly expressed in migrating neurones. Alterations in MMP-9 and PAX6 are associated with altered cerebellar development. In the present study, we characterised the growth rate and development of the cortical layers, and further investigated how the levels of PAX6 and MMP-9, as well as glucocorticoid receptor (GR) and proliferating cell nuclear antigen (PCNA), change in the cerebellum during the foetal period [embryonic day (E)12-21] in chicken, which corresponds to the human perinatal period. Dexamethasone (DEX) was administered in ovo at E13 and E16, aiming to investigate how prenatal exposure to glucocorticoids interferes with normal development. DEX reduced foetal and cerebellar weight at E17 in a dose-dependent manner linked to a reduced level of PCNA and, over time, down-regulation of GR. We report that promoter activity of PAX6 and MMP-9 increased as a result of GR-stimulation in vitro. Prenatal DEX increased the protein level of PAX6 in a transient manner. PAX6 is reduced in mature granule neurones, and this occurred earlier in embryos exposed to DEX than in non-exposed controls. DEX exposure also led to a slow-onset down-regulation of MMP-9. Taken together, these findings indicate that excess prenatal glucocorticoid stimulation disturbs normal development of the cerebellum through mechanisms associated with reduced proliferation and accelerated maturation where PAX6 and MMP-9 play important roles.
Collapse
Affiliation(s)
- L P E Austdal
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - S Bjørnstad
- Department of Pathology, Oslo University Hospital - Ullevål, Oslo, Norway
| | - G H Mathisen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - P K Aden
- Department of Neurosciences for Children, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - I Mikkola
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - R E Paulsen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - K E Rakkestad
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Calcium-induced apoptosis of developing cerebellar granule neurons depends causally on NGFI-B. Int J Dev Neurosci 2016; 55:82-90. [PMID: 27769911 DOI: 10.1016/j.ijdevneu.2016.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 11/23/2022] Open
Abstract
Immediate early gene nerve growth factor-induced clone B (NGFI-B), a nuclear receptor important for differentiation and apoptosis, is expressed in mice and rat cerebellum from an early stage of postnatal development. Following apoptotic stimuli NGFI-B translocates to mitochondria to initiate cell death processes. Controlled cell death is critical for correct cerebellar development. Immunohistochemical analysis of NGFI-B in sections of mice cerebella showed NGFI-B to be expressed in granule neurons in vivo at a time (P8-11) when apoptosis is known to occur. The importance of NGFI-B for apoptosis of cultured rat cerebellar granule neurons was investigated by inducing apoptosis with calcium ionophore A23187 (CaI, 0.1μM). Imaging studies of gfp-tagged NGFI-B confirmed that mitochondrial translocation of NGFI-B occurred following treatment with CaI and was reduced by addition of 9-cis-retinoic acid (1μM), a retinoid X receptor (RXR) agonist that prevents dimerization of RXR and NGFI-B that is known to occur before translocation. Consequently, 9-cis-retinoic acid partly reduced cell death. To address the causality of NGFI-B in apoptosis further, knock-down by siRNA was performed and it removed 85% of the NGFI-B protein. This resulted in a complete inhibition of apoptosis after CaI exposure. Together these findings suggest that NGFI-B plays a role in controlling correct cerebellar development.
Collapse
|
31
|
Hayes L, Weening A, Morey LM. Differential Effects of Estradiol and Bisphenol A on SET8 and SIRT1 Expression in Ovarian Cancer Cells. Dose Response 2016; 14:1559325816640682. [PMID: 27114721 PMCID: PMC4831029 DOI: 10.1177/1559325816640682] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Exposure to estrogenic compounds has been shown to epigenetically reprogram the female reproductive tract and may contribute to ovarian cancer. The goal of this study was to compare the effect of estradiol or bisphenol A (BPA) on the expression of histone-modifying enzymes (HMEs) in ovarian cancer cells. Using 2 human ovarian cancer cell lines, we examined the expression of SET8, a histone methyltransferase, and SIRT1, a histone deacetylase, after exposure to estrogen or BPA. These experiments were carried out in complete media (fetal bovine serum) that contain natural hormones to understand the impact of additional exposure to estrogen or BPA on HME expression. We found differential expression of the HMEs in the different models examined and between the different compounds. Further, we determined that the changes in gene expression occurred via estrogen receptor signaling using the estrogen receptor antagonist, ICI 182,780 (fulvestrant).
Collapse
Affiliation(s)
- Laura Hayes
- Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Allison Weening
- Vermont Department of Health Laboratory, Colchester, VT, USA
| | - Lisa M. Morey
- Department of Biology, Canisius College, Buffalo, NY, USA
| |
Collapse
|
32
|
Kondolot M, Ozmert EN, Ascı A, Erkekoglu P, Oztop DB, Gumus H, Kocer-Gumusel B, Yurdakok K. Plasma phthalate and bisphenol a levels and oxidant-antioxidant status in autistic children. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:149-158. [PMID: 26991849 DOI: 10.1016/j.etap.2016.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/04/2016] [Accepted: 03/06/2016] [Indexed: 06/05/2023]
Abstract
Phthalates and bisphenol A (BPA) are endocrine disruting chemicals (EDCs) that are suggested to exert neurotoxic effects. This study aimed to determine plasma phthalates and BPA levels along with oxidant/antioxidant status in autistic children [n=51; including 12 children were diagnosed with "Pervasive Developmental Disorder-Not Otherwise Specified (PDD-NOS)]. Plasma levels of BPA, di (2-ethylhexyl)-phthalate (DEHP) and its main metabolite mono (2-ethylhexyl)-phthalate (MEHP); thiobarbituric acid reactive substance (TBARS) and carbonyl groups; erythrocyte glutathione peroxidase (GPx1), thioredoxin reductase (TrxR), catalase (CAT), superoxide dismutase (SOD) and glutathione reductase (GR) activities and glutathione (GSH) and selenium levels were measured. Plasma BPA levels of children with PDD-NOS were significantly higher than both classic autistic children and controls (n=50). Carbonyl, selenium concentrations and GPx1, SOD and GR activities were higher (p<0.05); CAT activity was markedly lower in study group. BPA exposure might be associated with PDD-NOS. Intracellular imbalance between oxidant and antioxidant status might facilitate its neurotoxicity.
Collapse
Affiliation(s)
- Meda Kondolot
- Erciyes University Faculty of Medicine, Department of Pediatrics, Social Pediatrics Unit, Kayseri 38039, Turkey.
| | - Elif N Ozmert
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Social Pediatrics Unit, Developmental Pediatrics Unit, Ankara 06100, Turkey
| | - Ali Ascı
- Hacettepe University Faculty of Pharmacy, Department of Toxicology, Ankara 06100, Turkey
| | - Pınar Erkekoglu
- Hacettepe University Faculty of Pharmacy, Department of Toxicology, Ankara 06100, Turkey
| | - Didem B Oztop
- Erciyes University Faculty of Medicine, Department of Child Psychiatry, Kayseri 38039, Turkey
| | - Hakan Gumus
- Erciyes University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Kayseri 38039, Turkey
| | - Belma Kocer-Gumusel
- Hacettepe University Faculty of Pharmacy, Department of Toxicology, Ankara 06100, Turkey.
| | - Kadriye Yurdakok
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Social Pediatrics Unit, Developmental Pediatrics Unit, Ankara 06100, Turkey
| |
Collapse
|
33
|
Ling W, Endo T, Kubo KI, Nakajima K, Kakeyama M, Tohyama C. In Utero Bisphenol A Exposure Induces Abnormal Neuronal Migration in the Cerebral Cortex of Mice. Front Endocrinol (Lausanne) 2016; 7:7. [PMID: 26869994 PMCID: PMC4733926 DOI: 10.3389/fendo.2016.00007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/15/2016] [Indexed: 01/21/2023] Open
Abstract
Bisphenol A (BPA) has been known to have endocrine-disrupting activity to induce reproductive and behavioral abnormalities in offspring of laboratory animal species. However, morphological basis of this abnormality during brain development is largely unknown. Cerebral cortex plays a crucial role in higher brain function, and its precisely laminated structure is formed by neuronal migration. In the present study, transfecting a plasmid (pCAG-mCherry) by in utero electroporation (IUE), we visualized developing neurons and investigated the possible effects of in utero BPA exposure on neuronal migration. Pregnant mice were exposed to BPA by osmotic pump at estimated daily doses of 0, 40 (BPA-40), or 400 (BPA-400) μg/kg from embryonic day 14.5 (E14.5) to E18.5. IUE was performed at E14.5 and neuronal migration was analyzed at E18.5. Compared with the control group, neuronal migration in the cortical plate was significantly decreased in the BPA-40 group; however, there was no significant difference in the BPA-400 group. Among several neuronal migration-related genes and cortical layer-specific genes, TrkB in the BPA-400 group was found significantly upregulated. In conclusion, in utero exposure to low BPA dose was found to disrupt neuronal migration in the cerebral cortex in a dose-specific manner.
Collapse
Affiliation(s)
- Wenting Ling
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshihiro Endo
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ken-ichiro Kubo
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Masaki Kakeyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Neuroscience and Preventive Medicine, Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Chiharu Tohyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Chiharu Tohyama,
| |
Collapse
|
34
|
Bjørnstad S, Austdal LPE, Roald B, Glover JC, Paulsen RE. Cracking the Egg: Potential of the Developing Chicken as a Model System for Nonclinical Safety Studies of Pharmaceuticals. J Pharmacol Exp Ther 2015; 355:386-96. [PMID: 26432906 DOI: 10.1124/jpet.115.227025] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/01/2015] [Indexed: 03/08/2025] Open
Abstract
The advance of perinatal medicine has improved the survival of extremely premature babies, thereby creating a new and heterogeneous patient group with limited information on appropriate treatment regimens. The developing fetus and neonate have traditionally been ignored populations with regard to safety studies of drugs, making medication during pregnancy and in newborns a significant safety concern. Recent initiatives of the Food and Drug Administration and European Medicines Agency have been passed with the objective of expanding the safe pharmacological treatment options in these patients. There is a consensus that neonates should be included in clinical trials. Prior to these trials, drug leads are tested in toxicity and pharmacology studies, as governed by several guidelines summarized in the multidisciplinary International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use M3 (R2). Pharmacology studies must be performed in the major organ systems: cardiovascular, respiratory, and central nervous system. The chicken embryo and fetus have features that make the chicken a convenient animal model for nonclinical safety studies in which effects on all of these organ systems can be tested. The developing chicken is inexpensive, accessible, and nutritionally self-sufficient with a short incubation time and is ideal for drug-screening purposes. Other high-throughput models have been implemented. However, many of these have limitations, including difficulty in mimicking natural tissue architecture and function (human stem cells) and obvious differences from mammals regarding the respiratory organ system and certain aspects of central nervous system development (Caenorhabditis elegans, zebrafish).This minireview outlines the potential and limitations of the developing chicken as an additional model for the early exploratory phase of development of new pharmaceuticals.
Collapse
Affiliation(s)
- Sigrid Bjørnstad
- Department of Pathology, Oslo University Hospital HF, Ullevål, Oslo, Norway (S.B., B.R.); Institute of Clinical Medicine (B.R.), Department of Pharmaceutical Biosciences, School of Pharmacy (L.P.E.A., R.E.P.), and NDEVOR, Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences (J.C.G.), University of Oslo, Oslo, Norway; and Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital HF, Rikshospitalet, Oslo, Norway (J.C.G.)
| | - Lars Peter Engeset Austdal
- Department of Pathology, Oslo University Hospital HF, Ullevål, Oslo, Norway (S.B., B.R.); Institute of Clinical Medicine (B.R.), Department of Pharmaceutical Biosciences, School of Pharmacy (L.P.E.A., R.E.P.), and NDEVOR, Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences (J.C.G.), University of Oslo, Oslo, Norway; and Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital HF, Rikshospitalet, Oslo, Norway (J.C.G.)
| | - Borghild Roald
- Department of Pathology, Oslo University Hospital HF, Ullevål, Oslo, Norway (S.B., B.R.); Institute of Clinical Medicine (B.R.), Department of Pharmaceutical Biosciences, School of Pharmacy (L.P.E.A., R.E.P.), and NDEVOR, Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences (J.C.G.), University of Oslo, Oslo, Norway; and Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital HF, Rikshospitalet, Oslo, Norway (J.C.G.)
| | - Joel Clinton Glover
- Department of Pathology, Oslo University Hospital HF, Ullevål, Oslo, Norway (S.B., B.R.); Institute of Clinical Medicine (B.R.), Department of Pharmaceutical Biosciences, School of Pharmacy (L.P.E.A., R.E.P.), and NDEVOR, Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences (J.C.G.), University of Oslo, Oslo, Norway; and Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital HF, Rikshospitalet, Oslo, Norway (J.C.G.)
| | - Ragnhild Elisabeth Paulsen
- Department of Pathology, Oslo University Hospital HF, Ullevål, Oslo, Norway (S.B., B.R.); Institute of Clinical Medicine (B.R.), Department of Pharmaceutical Biosciences, School of Pharmacy (L.P.E.A., R.E.P.), and NDEVOR, Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences (J.C.G.), University of Oslo, Oslo, Norway; and Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital HF, Rikshospitalet, Oslo, Norway (J.C.G.)
| |
Collapse
|
35
|
Abstract
Brain development is an organized, but constantly adaptive, process in which genetic and epigenetic signals allow neurons to differentiate, to migrate, and to develop correct connections. Gender specific prenatal sex hormone milieu participates in the dimorphic development of many neuronal networks. Environmental cues may interfere with these developmental programs, producing adverse outcomes. Bisphenol A (BPA), an estrogenic/antiandrogenic endocrine disruptor widely diffused in the environment, produces adverse effects at levels below the acceptable daily intake. This review analyzes the recent literature on the consequences of perinatal exposure to BPA environmental doses on the development of a dimorphic brain. The BPA interference with the development and function of the neuroendocrine hypothalamus and of the nuclei controlling energy balance, and with the hippocampal memory processing is also discussed. The detrimental action of BPA appears complex, involving different hormonal and epigenetic pathways activated, often in a dimorphic way, within clearcut susceptibility windows. To date, discrepancies in experimental approaches and in related outcomes make unfeasible to translate the available information into clear dose-response models for human risk assessment. Evaluation of BPA brain levels in relation to the appearance of adverse effects in future basic studies will certainly give better definition of the warning threshold for human health.
Collapse
Affiliation(s)
- P Negri-Cesi
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, INBB Research Unit, Milano, Italy
| |
Collapse
|
36
|
Lee TW, Tumanov S, Villas-Bôas SG, Montgomery JM, Birch NP. Chemicals eluting from disposable plastic syringes and syringe filters alter neurite growth, axogenesis and the microtubule cytoskeleton in cultured hippocampal neurons. J Neurochem 2015; 133:53-65. [PMID: 25522164 DOI: 10.1111/jnc.13009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/27/2014] [Accepted: 11/28/2014] [Indexed: 12/29/2022]
Abstract
Cultures of dissociated hippocampal neurons are often used to study neuronal cell biology. We report that the development of these neurons is strongly affected by chemicals leaching from commonly used disposable medical-grade syringes and syringe filters. Contamination of culture medium by bioactive substance(s) from syringes and filters occurred with multiple manufacturing lots and filter types under normal use conditions and resulted in changes to neurite growth, axon formation and the neuronal microtubule cytoskeleton. The effects on neuronal morphology were concentration dependent and significant effects were detected even after substantial dilution of the contaminated medium. Gas chromatography-mass spectrometry analyses revealed many chemicals eluting from the syringes and filters. Three of these chemicals (stearic acid, palmitic acid and 1,2-ethanediol monoacetate) were tested but showed no effects on neurite growth. Similar changes in neuronal morphology were seen with high concentrations of bisphenol A and dibutyl phthalate, two hormonally active plasticisers. Although no such compounds were detected by gas chromatography–mass spectrometry, unknown plasticisers in leachates may affect neurites. This is the first study to show that leachates from laboratory consumables can alter the growth of cultured hippocampal neurons. We highlight important considerations to ensure leachate contamination does not compromise cell biology experiments.
Collapse
Affiliation(s)
- Tet Woo Lee
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
37
|
Burton K, Shaw L, Morey LM. Differential effect of estradiol and bisphenol A on Set8 and Sirt1 expression in prostate cancer. Toxicol Rep 2015; 2:817-823. [PMID: 28962417 PMCID: PMC5598099 DOI: 10.1016/j.toxrep.2015.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/19/2014] [Accepted: 01/28/2015] [Indexed: 11/28/2022] Open
Abstract
Exposure to estrogenic compounds has been shown to epigenetically reprogram the prostate and may contribute to prostate cancer. The goal of this study was to determine the effect of physiological doses of estradiol and bisphenol A (BPA) on the expression of histone modifying enzymes (HMEs) in prostate cancer. Using two human prostate cancer cell lines we examined the expression of Set8, a histone methyltransferase, and Sirt1, a histone deacetylase, after exposure to estrogen or BPA. These experiments were carried out in the presence of natural hormones to understand the impact of additional exposure to estrogen or BPA on HME expression. We found differential expression of the HMEs in the different models and between the different compounds. Further, we determined that the changes in gene expression occurred via estrogen receptor signaling using the ER antagonist, ICI 182,780 (fulvestrant). Interestingly we found that the combination of ICI with estrogen or BPA greatly affected the expression of Set8, even when the hormone alone had no effect. This study demonstrates that the effects of estrogen and BPA on HME expression vary and that the presence of both the estrogen receptor and androgen receptor may be important for therapeutic intervention.
Collapse
Affiliation(s)
- Kevin Burton
- Department of Biology, Canisius College, Buffalo, NY 14208, United States
| | - Lisa Shaw
- Department of Biology, Canisius College, Buffalo, NY 14208, United States
| | - Lisa M Morey
- Department of Biology, Canisius College, Buffalo, NY 14208, United States
| |
Collapse
|
38
|
Katic J, Loers G, Kleene R, Karl N, Schmidt C, Buck F, Zmijewski JW, Jakovcevski I, Preissner KT, Schachner M. Interaction of the cell adhesion molecule CHL1 with vitronectin, integrins, and the plasminogen activator inhibitor-2 promotes CHL1-induced neurite outgrowth and neuronal migration. J Neurosci 2014; 34:14606-23. [PMID: 25355214 PMCID: PMC6608427 DOI: 10.1523/jneurosci.3280-13.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 02/05/2023] Open
Abstract
The cell adhesion molecule close homolog of L1 (CHL1) plays important functional roles in the developing and adult nervous system. In search of the binding partners that mediate the diverse and sometimes opposing functions of CHL1, the extracellular matrix-associated proteins vitronectin and plasminogen activator inhibitor-2 (PAI-2) were identified as novel CHL1 interaction partners and tested for involvement in CHL1-dependent functions during mouse cerebellar development. CHL1-induced cerebellar neurite outgrowth and cell migration at postnatal days 6-8 were inhibited by a CHL1-derived peptide comprising the integrin binding RGD motif, and by antibodies against vitronectin or several integrins, indicating a vitronectin-dependent integrin-mediated pathway. A PAI-2-derived peptide, or antibodies against PAI-2, urokinase type plasminogen activator (uPA), uPA receptor, and several integrins reduced cell migration. CHL1 colocalized with vitronectin, PAI-2, and several integrins in cerebellar granule cells, suggesting an association among these proteins. Interestingly, at the slightly earlier age of 4-5 d, cerebellar neurons did not depend on CHL1 for neuritogenesis and cell migration. However, differentiation of progenitor cells into neurons at this stage was dependent on homophilic CHL1-CHL1 interactions. These observations indicate that homophilic CHL1 trans-interactions regulate differentiation of neuronal progenitor cells at early postnatal stages, while heterophilic trans-interactions of CHL1 with vitronectin, integrins, and the plasminogen activator system regulate neuritogenesis and neuronal cell migration at a later postnatal stage of cerebellar morphogenesis. Thus, within very narrow time windows in postnatal cerebellar development, distinct types of molecular interactions mediated by CHL1 underlie the diverse functions of this protein.
Collapse
Affiliation(s)
| | | | | | | | | | - Friedrich Buck
- Institut für Klinische Chemie, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jaroslaw W Zmijewski
- Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, BMRII-304, Birmingham, Alabama 35294
| | | | - Klaus T Preissner
- Department of Biochemistry, Medical School, Justus-Liebig-University, 35392 Giessen, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, Center for Neuroscience, Shantou University Medical College, Shantou 515041, People's Republic of China, and
| |
Collapse
|