1
|
Filho CC, Melfior L, Ramos SL, Pizi MSO, Taruhn LF, Muller ME, Nunes TK, Schmitt LDO, Gaspar JM, de Oliveira MDA, Tassinari G, Cruz L, Latini A. Tetrahydrobiopterin and Autism Spectrum Disorder: A Systematic Review of a Promising Therapeutic Pathway. Brain Sci 2025; 15:151. [PMID: 40002484 PMCID: PMC11853471 DOI: 10.3390/brainsci15020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by persistent deficits in social communication and interaction, along with restricted and repetitive patterns of behavior, interests, or activities. ASD encompasses a wide spectrum of clinical presentations and functional impairments, ranging from mild to severe. Despite its prevalence, the underlying physiopathological mechanisms of ASD remain largely unknown, resulting in a lack of effective targeted therapeutic interventions, contributing to significant financial and emotional burdens on affected families and the healthcare system. Emerging evidence suggests that dysfunction in the tetrahydrobiopterin (BH4) pathway may impair the activity of monoaminergic and nitric oxide (NO)-dependent neurons in individuals with ASD. To explore this potential mechanism, we conducted a systematic review to analyze such impairments to gather information on whether the off-label use of BH4 could represent a novel pharmacological approach for managing ASD. Following the PRISMA 2020 guidelines, we systematically reviewed the literature from four databases: PubMed, Virtual Health Library, Cochrane Library, and SciELO, from January 1967 to December 2021. The quality of the included studies was assessed using the Newcastle-Ottawa scale. The inclusion criteria for this systematic review focused on identifying articles published in English that contained the following keywords, used in various combinations: autism, ASD, autism spectrum disorder, BH4, tetrahydrobiopterin, neopterin, NO, nitric oxide. The analysis was performed between December 2020 and December 2021. The collected data demonstrated that BH4 metabolism was altered in individuals with ASD. Lower levels of BH4 were reported in biological samples from ASD-affected individuals compared to age- and sex-matched controls. Additionally, neopterin levels were elevated in plasma and urine, but decreased in cerebrospinal fluid, while nitric oxide levels were consistently reported to be higher across studies. Treatment with BH4 has shown potential in improving ASD-related symptoms. The reported increase in neopterin in biological fluids indicates inflammation, while the reduction in BH4 levels suggests a potential shift in its metabolic role. Specifically, BH4 may be diverted from its primary role in neurotransmitter synthesis to function as an antioxidant or to perpetuate inflammation through NO production. Given that BH4 is a critical cofactor in monoaminergic neurotransmission, its dysfunction highlights the molecule's therapeutic potential. BH4, already FDA-approved for other conditions, emerges as a promising off-label candidate to alleviate ASD symptomatology.
Collapse
Affiliation(s)
- Clóvis Colpani Filho
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
- Medicine School, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Lucas Melfior
- Medicine School, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Sthephanie Luiz Ramos
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
- Medicine School, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | | | - Lilian Freitas Taruhn
- Medicine School, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Margrit Ellis Muller
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
- Medicine School, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Thiago Kucera Nunes
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Luísa de Oliveira Schmitt
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
- Pharmacy School, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Joana Margarida Gaspar
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Miguel de Abreu de Oliveira
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Giovanna Tassinari
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Luisa Cruz
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
2
|
Kumar M, Mehan S, Kumar A, Sharma T, Khan Z, Tiwari A, Das Gupta G, Narula AS. Therapeutic efficacy of Genistein in activation of neuronal AC/cAMP/CREB/PKA and mitochondrial ETC-Complex pathways in experimental model of autism: Evidence from CSF, blood plasma and brain analysis. Brain Res 2024; 1846:149251. [PMID: 39384128 DOI: 10.1016/j.brainres.2024.149251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 10/11/2024]
Abstract
Autism is a complex neurodevelopmental condition characterized by repetitive behaviors, impaired social communication, and various associated conditions such as depression and anxiety. Its multifactorial etiology includes genetic, environmental, dietary, and gastrointestinal contributions. Pathologically, Autism is linked to mitochondrial dysfunction, oxidative stress, neuroinflammation, and neurotransmitter imbalances involving GABA, glutamate, dopamine, and oxytocin. Propionic acid (PRPA) is a short-chain fatty acid produced by gut bacteria, influencing central nervous system functions. Elevated PRPA levels can exacerbate Autism-related symptoms by disrupting metabolic processes and crossing the blood-brain barrier. Our research investigates the neuroprotective potential of Genistein (GNT), an isoflavone compound with known benefits in neuropsychiatric and neurodegenerative disorders, through modulation of the AC/cAMP/CREB/PKA signaling pathway and mitochondrial ETC complex (I-IV) function. In silico analyses revealed GNT's high affinity for these targets. Subsequent in vitro and in vivo experiments using a PRPA-induced rat model of autism demonstrated that GNT (40 and 80 mg/kg., orally) significantly improves locomotion, neuromuscular coordination, and cognitive functions in PRPA-treated rodents. Behavioral assessments showed reduced immobility in the forced swim test, enhanced Morris water maze performance, and restored regular locomotor activity. On a molecular level, GNT restored levels of key signaling molecules (AC, cAMP, CREB, PKA) and mitochondrial complexes (I-V), disrupted by PRPA exposure. Additionally, GNT reduced neuroinflammation and apoptosis, normalized neurotransmitter levels, and improved the complete blood count profile. Histopathological analyses confirmed that GNT ameliorated PRPA-induced brain injuries, restored normal brain morphology, reduced demyelination, and promoted neurogenesis. The study supports GNT's potential in autism treatment by modulating neural pathways, reducing inflammation, and restoring neurotransmitter balance.
Collapse
Affiliation(s)
- Manjeet Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India.
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India; Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
3
|
Lin P, Zhang Q, Sun J, Li Q, Li D, Zhu M, Fu X, Zhao L, Wang M, Lou X, Chen Q, Liang K, Zhu Y, Qu C, Li Z, Ma P, Wang R, Liu H, Dong K, Guo X, Cheng X, Sun Y, Sun J. A comparison between children and adolescents with autism spectrum disorders and healthy controls in biomedical factors, trace elements, and microbiota biomarkers: a meta-analysis. Front Psychiatry 2024; 14:1318637. [PMID: 38283894 PMCID: PMC10813399 DOI: 10.3389/fpsyt.2023.1318637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024] Open
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is a multifaceted developmental condition that commonly appears during early childhood. The etiology of ASD remains multifactorial and not yet fully understood. The identification of biomarkers may provide insights into the underlying mechanisms and pathophysiology of the disorder. The present study aimed to explore the causes of ASD by investigating the key biomedical markers, trace elements, and microbiota factors between children with autism spectrum disorder (ASD) and control subjects. METHODS Medline, PubMed, ProQuest, EMBASE, Cochrane Library, PsycINFO, Web of Science, and EMBSCO databases have been searched for publications from 2012 to 2023 with no language restrictions using the population, intervention, control, and outcome (PICO) approach. Keywords including "autism spectrum disorder," "oxytocin," "GABA," "Serotonin," "CRP," "IL-6," "Fe," "Zn," "Cu," and "gut microbiota" were used for the search. The Joanna Briggs Institute (JBI) critical appraisal checklist was used to assess the article quality, and a random model was used to assess the mean difference and standardized difference between ASD and the control group in all biomedical markers, trace elements, and microbiota factors. RESULTS From 76,217 records, 43 studies met the inclusion and exclusion criteria and were included in this meta-analysis. The pooled analyses showed that children with ASD had significantly lower levels of oxytocin (mean differences, MD = -45.691, 95% confidence interval, CI: -61.667, -29.717), iron (MD = -3.203, 95% CI: -4.891, -1.514), and zinc (MD = -6.707, 95% CI: -12.691, -0.722), lower relative abundance of Bifidobacterium (MD = -1.321, 95% CI: -2.403, -0.238) and Parabacteroides (MD = -0.081, 95% CI: -0.148, -0.013), higher levels of c-reactive protein, CRP (MD = 0.401, 95% CI: 0.036, 0.772), and GABA (MD = 0.115, 95% CI: 0.045, 0.186), and higher relative abundance of Bacteroides (MD = 1.386, 95% CI: 0.717, 2.055) and Clostridium (MD = 0.281, 95% CI: 0.035, 0.526) when compared with controls. The results of the overall analyses were stable after performing the sensitivity analyses. Additionally, no substantial publication bias was observed among the studies. INTERPRETATION Children with ASD have significantly higher levels of CRP and GABA, lower levels of oxytocin, iron, and zinc, lower relative abundance of Bifidobacterium and Parabacteroides, and higher relative abundance of Faecalibacterium, Bacteroides, and Clostridium when compared with controls. These results suggest that these indicators may be a potential biomarker panel for the diagnosis or determining therapeutic targets of ASD. Furthermore, large, sample-based, and randomized controlled trials are needed to confirm these results.
Collapse
Affiliation(s)
- Ping Lin
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianwen Zhang
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
- Hangzhou Calibra Diagnostics, Hangzhou, China
| | - Junyu Sun
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Qingtian Li
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyuan Zhu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomei Fu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhao
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengxia Wang
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Lou
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Chen
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kangyi Liang
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxin Zhu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caiwei Qu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenhua Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peijun Ma
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renyu Wang
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huafen Liu
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
- Hangzhou Calibra Diagnostics, Hangzhou, China
| | - Ke Dong
- Institute for Global Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaokui Guo
- Institute for Global Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yang Sun
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
| | - Jing Sun
- School of Medicine and Dentistry, Institute for Integrated Intelligence and Systems, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
- Charles Sturt University, Orange, NSW, Australia
| |
Collapse
|
4
|
Oge-Enver E, Isat E, Cansever MS, Zubarioglu T, Yilmaz G, Cebi MN, Aktuglu-Zeybek C, Kiykim E. Urinary neopterin and biopterin indicate that inflammation has a role in autism spectrum disorder. Metab Brain Dis 2023; 38:2645-2651. [PMID: 37688715 DOI: 10.1007/s11011-023-01287-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
Inflammation is thought to be involved in the pathogenesis of autism spectrum disorder (ASD). Pteridine metabolites are biomarkers of inflammation that increase on immune system activation. In this study, we investigated the urinary pteridine metabolites in ASD patients as a possible biomarker for immune activation and inflammation. This observational, cross-sectional, prospective study collected urine samples from 212 patients with ASD and 68 age- and sex-matched healthy individuals. Urine neopterin (NE) and biopterin (BIO) levels were measured. Patients who had chronic disorders, active infection at the time of sampling, or high C-reactive protein levels were excluded. The urine NE and BIO concentrations were determined by high-performance liquid chromatography. The ratios of both NE and BIO to creatinine (CRE) were used to standardise the measurements. The NE/CRE and NE/BIO levels were significantly higher in ASD patients than controls. Univariate and multivariate models revealed a significant increase in NE/CRE and NE/BIO in ASD patients. There was a significant relationship between the NE/BIO [average area under the curve (AUC) = 0.717; range: 0.637-0.797] and NE/CRE (average AUC = 0.756; range: 0.684-0.828) ratios, which distinguished individuals with ASD from controls. The elevated NE/CRE and NE/BIO ratios suggest that inflammation and T cell-mediated immunity are involved in the pathophysiology of autism. NE/BIO could serve as a diagnostic inflammatory marker in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Ece Oge-Enver
- Cerrahpasa Medical Faculty, Department of Pediatrics, Division of Nutrition and Metabolism, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Esra Isat
- Cerrahpasa Medical Faculty, Department of Pediatrics, Division of Nutrition and Metabolism, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mehmet Serif Cansever
- Department of Medical Services and Techniques, Vocational School of Health Services, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Tanyel Zubarioglu
- Cerrahpasa Medical Faculty, Department of Pediatrics, Division of Nutrition and Metabolism, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Gizem Yilmaz
- Cerrahpasa Medical Faculty, Department of Pediatrics, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Memnune Nur Cebi
- Cerrahpasa Medical Faculty, Department of Pediatrics, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Cigdem Aktuglu-Zeybek
- Cerrahpasa Medical Faculty, Department of Pediatrics, Division of Nutrition and Metabolism, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ertugrul Kiykim
- Cerrahpasa Medical Faculty, Department of Pediatrics, Division of Nutrition and Metabolism, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
5
|
Arteaga-Henríquez G, Gisbert L, Ramos-Quiroga JA. Immunoregulatory and/or Anti-inflammatory Agents for the Management of Core and Associated Symptoms in Individuals with Autism Spectrum Disorder: A Narrative Review of Randomized, Placebo-Controlled Trials. CNS Drugs 2023; 37:215-229. [PMID: 36913130 PMCID: PMC10024667 DOI: 10.1007/s40263-023-00993-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition with a so far poorly understood underlying pathogenesis, and few effective therapies for core symptoms. Accumulating evidence supports an association between ASD and immune/inflammatory processes, arising as a possible pathway for new drug intervention. However, current literature on the efficacy of immunoregulatory/anti-inflammatory interventions on ASD symptoms is still limited. The aim of this narrative review was to summarize and discuss the latest evidence on the use of immunoregulatory and/or anti-inflammatory agents for the management of this condition. During the last 10 years, several randomized, placebo-controlled trials on the effectiveness of (add-on) treatment with prednisolone, pregnenolone, celecoxib, minocycline, N-acetylcysteine (NAC), sulforaphane (SFN), and/or omega-3 fatty acids have been performed. Overall, a beneficial effect of prednisolone, pregnenolone, celecoxib, and/or omega-3 fatty acids on several core symptoms, such as stereotyped behavior, was found. (Add-on) treatment with prednisolone, pregnenolone, celecoxib, minocycline, NAC, SFN, and/or omega-3 fatty acids was also associated with a significantly higher improvement in other symptoms, such as irritability, hyperactivity, and/or lethargy when compared with placebo. The mechanisms by which these agents exert their action and improve symptoms of ASD are not fully understood. Interestingly, studies have suggested that all these agents may suppress microglial/monocyte proinflammatory activation and also restore several immune cell imbalances (e.g., T regulatory/T helper-17 cell imbalances), decreasing the levels of proinflammatory cytokines, such as interleukin (IL)-6 and/or IL-17A, both in the blood and in the brain of individuals with ASD. Although encouraging, the performance of larger randomized placebo-controlled trials, including more homogeneous populations, dosages, and longer periods of follow-up, are urgently needed in order to confirm the findings and to provide stronger evidence.
Collapse
Affiliation(s)
- Gara Arteaga-Henríquez
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Catalonia, Spain
- Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
- NCRR-The National Center for Register-Based Research, Aahrus University, Aahrus, Denmark
| | - Laura Gisbert
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Catalonia, Spain
- Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Josep Antoni Ramos-Quiroga
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Catalonia, Spain.
- Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain.
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
6
|
Activation of the Monocyte/Macrophage System and Abnormal Blood Levels of Lymphocyte Subpopulations in Individuals with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 23:ijms232214329. [PMID: 36430805 PMCID: PMC9699353 DOI: 10.3390/ijms232214329] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition with a so far unknown etiology. Increasing evidence suggests that a state of systemic low-grade inflammation may be involved in the pathophysiology of this condition. However, studies investigating peripheral blood levels of immune cells, and/or of immune cell activation markers such as neopterin are lacking and have provided mixed findings. We performed a systematic review and meta-analysis of studies comparing total and differential white blood cell (WBC) counts, blood levels of lymphocyte subpopulations and of neopterin between individuals with ASD and typically developing (TD) controls (PROSPERO registration number: CRD CRD42019146472). Online searches covered publications from 1 January 1994 until 1 March 2022. Out of 1170 publication records identified, 25 studies were finally included. Random-effects meta-analyses were carried out, and sensitivity analyses were performed to control for potential moderators. Results: Individuals with ASD showed a significantly higher WBC count (k = 10, g = 0.29, p = 0.001, I2 = 34%), significantly higher levels of neutrophils (k = 6, g = 0.29, p = 0.005, I2 = 31%), monocytes (k = 11, g = 0.35, p < 0.001, I2 = 54%), NK cells (k = 7, g = 0.36, p = 0.037, I2 = 67%), Tc cells (k = 4, g = 0.73, p = 0.021, I2 = 82%), and a significantly lower Th/Tc cells ratio (k = 3, g = −0.42, p = 0.008, I2 = 0%), compared to TD controls. Subjects with ASD were also characterized by a significantly higher neutrophil-to-lymphocyte ratio (NLR) (k = 4, g = 0.69, p = 0.040, I2 = 90%), and significantly higher neopterin levels (k = 3, g = 1.16, p = 0.001, I2 = 97%) compared to TD controls. No significant differences were found with respect to the levels of lymphocytes, B cells, Th cells, Treg cells, and Th17 cells. Sensitivity analysis suggested that the findings for monocyte and neutrophil levels were robust, and independent of other factors, such as medication status, diagnostic criteria applied, and/or the difference in age or sex between subjects with ASD and TD controls. Taken together, our findings suggest the existence of a chronically (and systemically) activated inflammatory response system in, at least, a subgroup of individuals with ASD. This might have not only diagnostic, but also, therapeutic implications. However, larger longitudinal studies including more homogeneous samples and laboratory assessment methods and recording potential confounding factors such as body mass index, or the presence of comorbid psychiatric and/or medical conditions are urgently needed to confirm the findings.
Collapse
|
7
|
Dzhambov AM, Lercher P, Rüdisser J, Browning MH, Markevych I. Home gardens and distances to nature associated with behavior problems in alpine schoolchildren: Role of secondhand smoke exposure and biomarkers. Int J Hyg Environ Health 2022; 243:113975. [DOI: 10.1016/j.ijheh.2022.113975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 01/13/2023]
|
8
|
Sodium Benzoate—Harmfulness and Potential Use in Therapies for Disorders Related to the Nervous System: A Review. Nutrients 2022; 14:nu14071497. [PMID: 35406109 PMCID: PMC9003278 DOI: 10.3390/nu14071497] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
Currently, due to the large number of reports regarding the harmfulness of food additives, more and more consumers follow the so-called “clean label” trend, i.e., prefer and choose the least-processed food products. One of the compounds known as a preservative with a high safety profile is sodium benzoate. While some studies show that it can be used to treat conditions such as depression, pain, schizophrenia, autism spectrum disorders, and neurodegenerative diseases, others report its harmfulness. For example, it was found to cause mutagenic effects, generate oxidative stress, disrupt hormones, and reduce fertility. Due to such disparate results, the purpose of this study is to comprehensively discuss the safety profile of sodium benzoate and its potential use in neurodegenerative diseases, especially in autism spectrum disorder (ASD), schizophrenia, major depressive disorder (MDD), and pain relief.
Collapse
|
9
|
Abdel Ghaffar HMGED, Abdelghaffar NK, Ahmed HH, Dawoud ME. Study of serum neopterin in children with attention deficit hyperactivity disorder and autistic spectrum disorder: Fayoum Governorate, Egypt. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00448-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
There is evidence supporting that cellular immunity may play a role in the pathophysiology of autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). Neopterin, a pteridine mainly synthesized by activated macrophages, is a marker of inflammation, immune system activation that may be involved in the pathophysiology of both disorders.
Methods
Fifty drug-naïve patients were diagnosed according to DSM-5 (25 with ASD, 25 with ADHD), in addition to 25 healthy volunteers matched in age and gender with the patients were included. The CARS, Conners’ scales used to assess the severity of the disorders, respectively. Serum neopterin level was measured using ELISA technique for all participants.
Results
Statistically nonsignificant difference in mean neopterin level between control and both patients groups with significant negative correlation between neopterin level and younger ages in ASD group were found. Statistically nonsignificant difference also was found between its levels among subtypes of ADHD as well and with the degree of ASD symptoms severity.
Conclusions
There was no statistically significant difference between serum neopterin level in ADHD, ASD patients groups and control group reference.
Collapse
|
10
|
Prasanna JS, Sumadhura C. Estimation of neopterin as a biomarker in biofluids of pre and post-menopausal women after initial periodontal therapy: A biochemical assay. J Indian Soc Periodontol 2021; 25:300-306. [PMID: 34393400 PMCID: PMC8336780 DOI: 10.4103/jisp.jisp_516_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/26/2021] [Accepted: 02/09/2021] [Indexed: 11/17/2022] Open
Abstract
Context: Periodontitis (PDD) is a chronic inflammatory condition by nature which destroys the surrounding tooth structures. Menopause (pre and post) worsens the inflammatory state. Biofluids could serve as sources of biomarkers that could diagnose or indicate the intensity and extent of both conditions. Aims: This study aimed to guestimate the various biofluids of neopterin (NP) levels in premenopause (pre-m) and postmenopausal (post-m) women with PDD after initial periodontal therapy (IPT). Settings and Design: This was an interventional cross-sectional study. Materials and Methods: Based on menstrual history, within the age range of 40–60 years, 30 female patients having PDD participated, who were grouped into pre-m and post-m, each group comprised 15 subjects. A biochemical test of NP levels was done at the initial and three months following IPT. Statistics used: Group comparisons and percentage decrement using independent sample t-test and paired t-test for intragroup comparison were done with the version 21, IBM SPSS software. Results: Intragroup NP analysis at different time points showed significant improvement. Intergroup comparison, however, has shown significant improvement in the premenopausal group (Group I) only. Conclusions: Reduced levels of NP were found in pre-m and post-m groups 3 months after IPT, inferring that IPT is a paragon in periodontal therapy and NP might be a good diagnostic marker to detect PDD.
Collapse
Affiliation(s)
- Jammula Surya Prasanna
- Department of Periodontics, Panineeya Institute of Dental Sciences and Research Centre, Hyderabad, Telangana, India
| | - Chinta Sumadhura
- Department of Periodontics, Panineeya Institute of Dental Sciences and Research Centre, Hyderabad, Telangana, India
| |
Collapse
|
11
|
Yin F, Wang H, Liu Z, Gao J. Association between peripheral blood levels of C-reactive protein and Autism Spectrum Disorder in children: A systematic review and meta-analysis. Brain Behav Immun 2020; 88:432-441. [PMID: 32272227 DOI: 10.1016/j.bbi.2020.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION In the past five years, a growing number of studies have tried to illustrate the association between the peripheral blood level of C-reactive protein (CRP) and Autism Spectrum Disorders (ASD). However, the results have been inconsistent. To assess whether abnormal CRP in peripheral blood was associated with ASD, we conducted a systematic review and meta-analysis. METHODS A systematic literature search was performed using the Embase, PubMed, Web of Knowledge, PsycINFO, and Cochrane databases through August 27, 2019. Reference lists were also checked by hand-searching. Clinical studies exploring CRP concentration in the peripheral blood of autistic children and healthy controls were included in our meta-analysis. Overlapping samples were excluded. We pooled obtained data using a fixed- or random-effect model based on a heterogeneity test with Comprehensive Meta-Analysis software and STATA software. Standardized mean differences were converted to Hedges' g statistic in order to obtain the effect size adjusted for sample size. Subgroup analyses, sensitivity analyses, meta-regression, and publication bias tests were also undertaken. RESULTS Nine studies with 592 ASD children and 604 healthy children were included in our meta-analysis. Significantly elevated CRP levels in peripheral blood were found in ASD children compared with healthy controls (Hedges' g = 0.527, 95% CI: 0.224-0.830, p = 0.001). Subgroup analyses based on sample types and ethnicity also showed similar results, except for the plasma subgroup. There was also a significant association between peripheral CRP concentration and ASD after removing the studies identified by Galbraith plots. The results of the sensitivity analysis revealed that no single study could reverse our results. Meta-regression analyses revealed that the gender of autistic children had a moderating effect on the outcome of the meta-analysis. In addition, no obvious publication bias was found in the meta-analysis. CONCLUSIONS AND RELEVANCE In our study, peripheral CRP levels were significantly elevated in autistic children compared with healthy children. These results may provide us some new insights about ASD.
Collapse
Affiliation(s)
- Fangna Yin
- Clinical Laboratory, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China
| | - Hongbing Wang
- Department of Radiotherapy Oncology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China
| | - Zeya Liu
- Department of Blood Transfusion, China-Japan Friendship Hospital, Beijing 100029, China
| | - Junwei Gao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
12
|
Prasanna JS, Sumadhura C. Biochemical Analysis of Three Biological Fluids and its Response to Non-Surgical Periodontal Therapy in Pre and Postmenopausal Women with Periodontitis. J Menopausal Med 2020; 25:149-157. [PMID: 32307940 PMCID: PMC6952703 DOI: 10.6118/jmm.18179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/02/2019] [Accepted: 11/03/2019] [Indexed: 12/23/2022] Open
Abstract
Objectives Periodontitis is a common chronic inflammatory disease characterized by the destruction of the supporting structures of the teeth. The stages of menopause also worsen inflammatory condition. Biomarkers from biological fluids can be used as a diagnostic indicator to correlate these two conditions of present and future disease activity. The aim of the present study was to evaluate the neopterin levels in three biological fluids obtained from pre- and postmenopausal women with periodontitis following non-surgical periodontal therapy (NSPT, that is, scaling). Methods This was a cross-sectional interventional study. Thirty women, aged 40–60 years, with periodontitis were selected according to their menstrual history. They were divided into the pre- and postmenopausal groups, with each group including 15 participants. The neopterin levels were measured in both groups at baseline and 3 months after NSPT. Intergroup comparison and percentage decrement analysis were performed using the independent sample t test, and intragroup comparison was performed using the paired t test. Results There were statistically significant reductions in the mean values of saliva, urine, and plasma from baseline to 3 months after NSPT in the groups. Intergroup comparison showed no significant values in the postmenopausal group, and a significant reduction was seen in the mean values was seen in the mean values. Conclusions Neopterin levels decreased at 3 months after NSPT in both the groups, suggesting that NSPT can be a gold standard therapy and that the neopterin level could be a indicator to identify periodontal destruction.
Collapse
Affiliation(s)
- Jammula Surya Prasanna
- Department of Periodontics, Panineeya Institute of Dental Sciences and Research Centre, Hyderabad, India.
| | - Chinta Sumadhura
- Department of Periodontics, Panineeya Institute of Dental Sciences and Research Centre, Hyderabad, India
| |
Collapse
|
13
|
Ansel A, Posen Y, Ellis R, Deutsch L, Zisman PD, Gesundheit B. Biomarkers for Autism Spectrum Disorders (ASD): A Meta-analysis. Rambam Maimonides Med J 2019; 10:RMMJ.10375. [PMID: 31675302 PMCID: PMC6824829 DOI: 10.5041/rmmj.10375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To compare the reported accuracy and sensitivity of the various modalities used to diagnose autism spectrum disorders (ASD) in efforts to help focus further biomarker research on the most promising methods for early diagnosis. METHODS The Medline scientific literature database was searched to identify publications assessing potential clinical ASD biomarkers. Reports were categorized by the modality used to assess the putative markers, including protein, genetic, metabolic, or objective imaging methods. The reported sensitivity, specificity, area under the curve, and overall agreement were summarized and analyzed to determine weighted averages for each diagnostic modality. Heterogeneity was measured using the I2 test. RESULTS Of the 71 papers included in this analysis, each belonging to one of five modalities, protein-based followed by metabolite-based markers provided the highest diagnostic accuracy, each with a pooled overall agreement of 83.3% and respective weighted area under the curve (AUC) of 89.5% and 88.3%. Sensitivity provided by protein markers was highest (85.5%), while metabolic (85.9%) and protein markers (84.7%) had the highest specificity. Other modalities showed degrees of sensitivity, specificity, and overall agreements in the range of 73%-80%. CONCLUSIONS Each modality provided for diagnostic accuracy and specificity similar or slightly higher than those reported for the gold-standard Autism Diagnostic Observation Schedule (ADOS) instrument. Further studies are required to identify the most predictive markers within each modality and to evaluate biological pathways or clustering with possible etiological relevance. Analyses will also be necessary to determine the potential of these novel biomarkers in diagnosing pediatric patients, thereby enabling early intervention.
Collapse
Affiliation(s)
| | - Yehudit Posen
- Cell-El Therapeutics Ltd, Jerusalem, Israel
- PSW Ltd, Rehovot, Israel
| | - Ronald Ellis
- Cell-El Therapeutics Ltd, Jerusalem, Israel
- Biotech & Biopharma Consulting, Jerusalem, Israel
| | - Lisa Deutsch
- Biostats Statistical Consulting Ltd, Modiin, Israel
| | | | - Benjamin Gesundheit
- Cell-El Therapeutics Ltd, Jerusalem, Israel
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
14
|
Gabriel T, Paul S, Berger A, Massoubre C. Anorexia Nervosa and Autism Spectrum Disorders: Future Hopes Linked to Mucosal Immunity. Neuroimmunomodulation 2019; 26:265-275. [PMID: 31715599 DOI: 10.1159/000502997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/28/2019] [Indexed: 11/19/2022] Open
Abstract
Mental health is becoming a public health priority worldwide. Anorexia nervosa and autism spectrum disorders are 2 important types of childhood disorders with a bad prognosis. They share cognitive impairments and, in both cases, the microbiota appears to be a crucial factor. Alteration of the microbiota-gut-brain axis is an appealing hypothesis to define new pathophysiological mechanisms. Mucosal immunity plays a key role between the microbiota and the brain. The mucosal immune system receives and integrates messages from the intestinal microenvironment and the microbiota and then transmits the information to the nervous system. Abnormalities in this sensorial system may be involved in the natural history of mental diseases and might play a role in their maintenance. This review aims to highlight data about the relationship between intestinal mucosal immunity and these disorders. We show that shared cognitive impairments could be found in these 2 disorders, which both present dysbiosis. This literature review provides details on the immune status of anorexic and autistic patients, with a focus on intestinal mucosal factors. Finally, we suggest future research hypotheses that seem important for understanding the implication of the gut-brain-axis in psychiatric diseases.
Collapse
Affiliation(s)
- Tristan Gabriel
- Laboratoire d'Immunologie, GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, Saint-Etienne, France
- Centre Référent des Troubles du Comportement Alimentaire, CHU Saint Etienne Hôpital Nord, Saint-Etienne, France
| | - Stéphane Paul
- Laboratoire d'Immunologie, GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, Saint-Etienne, France
| | - Anne Berger
- Laboratoire d'Immunologie, GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, Saint-Etienne, France
| | - Catherine Massoubre
- Centre Référent des Troubles du Comportement Alimentaire, CHU Saint Etienne Hôpital Nord, Saint-Etienne, France,
| |
Collapse
|
15
|
Diagnostic and Severity-Tracking Biomarkers for Autism Spectrum Disorder. J Mol Neurosci 2018; 66:492-511. [DOI: 10.1007/s12031-018-1192-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/25/2018] [Indexed: 01/06/2023]
|
16
|
Gładysz D, Krzywdzińska A, Hozyasz KK. Immune Abnormalities in Autism Spectrum Disorder-Could They Hold Promise for Causative Treatment? Mol Neurobiol 2018; 55:6387-6435. [PMID: 29307081 PMCID: PMC6061181 DOI: 10.1007/s12035-017-0822-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/05/2017] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorders (ASD) are characterized by impairments in language and communication development, social behavior, and the occurrence of stereotypic patterns of behavior and interests. Despite substantial speculation about causes of ASD, its exact etiology remains unknown. Recent studies highlight a link between immune dysfunction and behavioral traits. Various immune anomalies, including humoral and cellular immunity along with abnormalities at the molecular level, have been reported. There is evidence of altered immune function both in cerebrospinal fluid and peripheral blood. Several studies hypothesize a role for neuroinflammation in ASD and are supported by brain tissue and cerebrospinal fluid analysis, as well as evidence of microglial activation. It has been shown that immune abnormalities occur in a substantial number of individuals with ASD. Identifying subgroups with immune system dysregulation and linking specific cellular immunophenotypes to different symptoms would be key to defining a group of patients with immune abnormalities as a major etiology underlying behavioral symptoms. These determinations would provide the opportunity to investigate causative treatments for a defined patient group that may specifically benefit from such an approach. This review summarizes recent insights into immune system dysfunction in individuals with ASD and discusses the potential implications for future therapies.
Collapse
Affiliation(s)
- Dominika Gładysz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland
| | | | - Kamil K Hozyasz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland.
| |
Collapse
|
17
|
Li C, Shen K, Chu L, Liu P, Song Y, Kang X. Decreased levels of urinary free amino acids in children with autism spectrum disorder. J Clin Neurosci 2018; 54:45-49. [PMID: 29853226 DOI: 10.1016/j.jocn.2018.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/09/2018] [Accepted: 05/17/2018] [Indexed: 11/26/2022]
Abstract
Autism spectrum disorder (ASD) is a range of neurodevelopmental problems without certain causes. Conventional diagnostic or screening tools for ASD rely on the observation of children's behavioral presentations. Novel methods are focused on the alterations of some important biochemical matters in ASD patients, which are applicable in the screening for ASD. This study investigated and compared amino acids in the first morning urine from age and sex matched ASD and non-ASD children using high performance liquid chromatography. Significantly lower urinary free methionine, phenylalanine, valine, tryptophan, and leucine plus isoleucine were observed in ASD children. The effects of using urinary free amino acids (UFAAs) singly or conjointly to classify participants into ASD or control group were analyzed and compared. ROC curves on these UFAAs singly in classification performed the sensitivity of 0.593-0.889 and the specificity of 0.704-0.963. Binary-logistic regression analysis of these UFAAs obtained a final regression model comprised of urinary free valine and tryptophan. The ROC curve established by the linear combination of the two amino acids achieved a sensitivity of 0.926 and a specificity of 0.889, which showed superiority to single UFAA and comparability to existing diagnostic or screening tools. It was suggested that the multivariate model based on UFAAs was possibly applicable in screening for children at higher risk of ASD.
Collapse
Affiliation(s)
- Chen Li
- Key Laboratory of Child Development and Learning Science of Ministry of Education of China, School of Biological Sciences and Medical Engineering, Southeast University, China
| | - Kangwei Shen
- Key Laboratory of Child Development and Learning Science of Ministry of Education of China, School of Biological Sciences and Medical Engineering, Southeast University, China
| | - Lanling Chu
- School of Public Health, Southeast University, China
| | - Ping Liu
- Division of Child Care, Suzhou Municipal Hospital, China
| | - Yuan Song
- Division of Child Care, Suzhou Municipal Hospital, China
| | - Xuejun Kang
- Key Laboratory of Child Development and Learning Science of Ministry of Education of China, School of Biological Sciences and Medical Engineering, Southeast University, China.
| |
Collapse
|
18
|
Significant Changes in Plasma Alpha-Synuclein and Beta-Synuclein Levels in Male Children with Autism Spectrum Disorder. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4503871. [PMID: 29850516 PMCID: PMC5911343 DOI: 10.1155/2018/4503871] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/06/2018] [Indexed: 01/09/2023]
Abstract
Alpha-synuclein (α-synuclein) and beta-synuclein (β-synuclein) are presynaptic proteins playing important roles in neuronal plasticity and synaptic vesicle regulation. To evaluate the association of these two proteins and autism spectrum disorder (ASD), we investigated the plasma α-synuclein and β-synuclein levels in 39 male children with ASD (2 subgroups: 25 autism and 14 pervasive developmental disorder-not otherwise specified (PDD-NOS)) comparing with 29 sex- and age-matched controls by using enzyme-linked immunosorbent assay (ELISA). We first determined the levels of these two proteins in the ASD subgroups and found that there were no significant differences in both plasma α-synuclein and β-synuclein levels in the autism and PDD-NOS groups. Thus, we could combine the 2 subgroups into one ASD group. Interestingly, the mean plasma α-synuclein level was significantly lower (P < 0.001) in the ASD children (10.82 ± 6.46 ng/mL) than in the controls (29.47 ± 18.62 ng/mL), while the mean plasma β-synuclein level in the ASD children (1344.19 ± 160.26 ng/mL) was significantly higher (P < 0.05) than in the controls (1219.16 ± 177.10 ng/mL). This is the first study examining the associations between α-synuclein and β-synuclein and male ASD patients. We found that alterations in the plasma α-synuclein and β-synuclein levels might be implicated in the association between synaptic abnormalities and ASD pathogenesis.
Collapse
|
19
|
Neurotrophins and neuroinflammation in fetuses exposed to maternal depression and anxiety disorders during pregnancy: a comparative study on cord blood. Arch Womens Ment Health 2018; 21:105-111. [PMID: 28884439 DOI: 10.1007/s00737-017-0774-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/24/2017] [Indexed: 12/27/2022]
Abstract
In recent years, there have been changes in the approach to maternal psychiatric disorders and their effects on the fetus, with the focus redirected to the search for biological markers. Neurotrophic factors and inflammatory processes have received particular attention in the past few years. According to the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), the study sample (n = 136) consisted of three groups: mothers with major depressive disorder (MDD group, n = 25), mothers with anxiety disorder (AD group, n = 18), and mothers without any psychiatric disorders (not diagnosed (ND) group, n = 93). During the delivery/cesarean section, a blood sample was obtained from the umbilical cord. Serum concentrations of BDNF, NT-3, FGF2, TNF-α, and neopterin were determined by enzyme-linked immunosorbent assay (ELISA), according to the manufacturer's procedure. Clinical and biochemical characteristics were assessed. We did not find a significant difference among the three study groups with regard to BDNF, NT-3, and TNF-α levels. The ANOVA test indicated statistically significant differences in FGF2 levels and neopterin between the study groups. The newborns of mothers with AD had significantly higher FGF2 levels and significantly higher neopterin levels when compared with those of mothers with MDD and healthy mothers. The present study sheds light on the effects of higher FGF2 and neopterin levels in fetuses exposed to AD. Our results should be replicated through further prospective studies with a larger sample size.
Collapse
|
20
|
Tural Hesapcioglu S, Kasak M, Cıtak Kurt AN, Ceylan MF. High monocyte level and low lymphocyte to monocyte ratio in autism spectrum disorders. INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2017; 65:73-81. [PMID: 34141326 PMCID: PMC8115457 DOI: 10.1080/20473869.2017.1371369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Objective: This study aims to investigate the level of peripheral blood mononuclear cells and their ratios which may point to the immunological mechanisms involved in the etiopathogenesis of ASD. Method: The complete blood count parameters of the 45 ASD cases were compared with those of healthy controls.Childhood Autism Rating Scale (CARS) was performed to measure the disease severity. Results: The monocytes of ASD group were significantly higher; and the lymphocyte-to-monocyte ratio (LMR) was lower than the controls'. LMR and neutrophil-to-lymphocyte ratio were found to be predictors of ASD. The decrease in LMR (B: -0.744; P=0.035; CI: -1.431 to -0.056) and the increase in age (B: 0.432; P=0.045; CI: 0.011-0.853) were related to high CARS scores in linear regression analyses. Conclusions: The results of this study support the role of altered immune cell counts and ratios in ASD. A high monocyte level and low LMR may have diagnostic values in autism.
Collapse
Affiliation(s)
- Selma Tural Hesapcioglu
- Faculty of Medicine, Child and Adolescent Psychiatry Department, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Meryem Kasak
- Faculty of Medicine, Child and Adolescent Psychiatry Department, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Aysegül Nese Cıtak Kurt
- Faculty of Medicine, Child Neurology Department, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Mehmet Fatih Ceylan
- Faculty of Medicine, Child and Adolescent Psychiatry Department, Ankara Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
21
|
Fluegge K. Levels of peripheral neopterin in neurodevelopmental disorders. J Neuroimmunol 2017; 306:53-54. [PMID: 28385188 DOI: 10.1016/j.jneuroim.2017.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/10/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Keith Fluegge
- Institute of Health and Environmental Research, P.O. Box 18442, Cleveland, OH 44118, USA.
| |
Collapse
|
22
|
Heritability of plasma neopterin levels in the Old Order Amish. J Neuroimmunol 2017; 307:37-41. [PMID: 28495136 DOI: 10.1016/j.jneuroim.2017.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/07/2017] [Accepted: 02/21/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND We examined the heritability of neopterin, a biomarker for cell-mediated immunity and oxidative stress, and potentially for psychiatric disorders, in the Old Order Amish. METHODS Plasma neopterin levels were determined in 2015 Old Order Amish adults. Quantitative genetic procedures were used to estimate heritability of neopterin. RESULTS Heritability of log-neopterin was estimated at 0.07 after adjusting for age, gender, and household (p=0.03). The shared household effect was 0.06 (p<0.02). CONCLUSIONS We found a low heritability of neopterin and small household effect, suggesting that non-household environmental factors are more important determinants of variance of neopterin levels in the Amish.
Collapse
|
23
|
Mohyuddin H, Georgiou P, Wadhawan A, Daue ML, Brenner LA, Gragnoli C, Saunders EFH, Fuchs D, Lowry CA, Postolache TT. Seasonality of blood neopterin levels in the Old Order Amish. Pteridines 2017; 28:163-176. [PMID: 29657362 DOI: 10.1515/pterid-2017-0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Seasonal changes in non-human animals and seasonal affective disorder (SAD) in humans are associated with immune activation in winter relative to summer. We intended to measure seasonal variation in neopterin, a marker of cellular immunity, and its interactions with gender and seasonality of mood. We studied 320 Amish from Lancaster, PA, USA (men = 128; 40%) with an average age [Standard deviation (SD)] of 56.7 (13.9) years. Blood neopterin level was measured with enzyme-linked immunosorbent assay (ELISA). Seasonality was measured with Seasonal Pattern Assessment Questionnaire (SPAQ). Statistical analysis included analysis of covariance (ANCOVAs) and multivariate linear regression. We also investigated interactions of seasonal differences in neopterin with gender, seasonality scores and estimation of SAD diagnosis. We found a significantly higher neopterin level in winter than in summer (p = 0.006). There were no significant gender or seasonality interactions. Our study confirmed the hypothesized higher neopterin level in winter. A cross sectional design was our major limitation. If this finding will be replicated by longitudinal studies in multiple groups, neopterin could be used to monitor immune status across seasons in demographically diverse samples, even if heterogeneous in gender distribution, and degree of seasonality of mood.
Collapse
Affiliation(s)
- Hira Mohyuddin
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Polymnia Georgiou
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; and Saint Elizabeths' Hospital, Psychiatry Residency Training Program, Washington, DC, USA
| | - Melanie L Daue
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; and Geriatrics Research and Education Clinical Center, Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Lisa A Brenner
- Departments of Psychiatry, Physical Medicine and Rehabilitation and Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Denver, CO, USA; and Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO, USA
| | - Claudia Gragnoli
- Division of Endocrinology, Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA; and Molecular Biology Laboratory, Bios Biotech Multi Diagnostic Health Center, Rome, Italy
| | - Erika F H Saunders
- Department of Psychiatry, Penn State College of Medicine and Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Christopher A Lowry
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Denver, CO, USA; Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO, USA; Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA; and Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO, USA; and Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD, USA
| |
Collapse
|
24
|
Liu X, Liu J, Xiong X, Yang T, Hou N, Liang X, Chen J, Cheng Q, Li T. Correlation between Nutrition and Symptoms: Nutritional Survey of Children with Autism Spectrum Disorder in Chongqing, China. Nutrients 2016; 8:294. [PMID: 27187463 PMCID: PMC4882707 DOI: 10.3390/nu8050294] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 02/07/2023] Open
Abstract
Restricted diets and inadequate nutrient intake of children with autism spectrum disorder (ASD) have been reported. This study examined the nutritional statuses of children with ASD and the relationships between their behaviors and nutritional intake. A total of 154 children with ASD (age = 5.21 ± 1.83 years) and 73 typically-developing (TD) children (age = 4.83 ± 0.84 years) from Chongqing, China, were enrolled. The severity of ASD was evaluated using the Childhood Autism Rating Scale (CARS). The serum ferritin, folate, vitamin B12, 25(OH) vitamin D, and vitamin A concentrations in the children with ASD were determined. All participants underwent anthropometric examinations, dietary assessments, and questionnaire assessments about their feeding behaviors, and gastrointestinal symptoms. The ZHA, ZWA, and ZBMIA were found to be significantly lower in the children with ASD compared with those without ASD. In addition, the percentages of children exhibiting severe picky eating and severe resistance to new foods, as well as those with a reported general impression of severe eating problems and constipation, were higher among the children with ASD. These children consumed significantly fewer macronutrients compared with the children without ASD. In addition, the children with ASD had the highest rate of vitamin A deficiency, followed by iron deficiency. After adjusting for sex, the vitamin A concentration was found to be negatively correlated with the CARS score (rs = -0.222, p = 0.021). No correlation between the ferritin, folate, vitamin D, or vitamin B12 concentration and the CARS score was found. These results suggest that reduced macronutrient intakes, severe feeding behavior issues, constipation, and vitamin A deficiency are quite common among children with ASD. Further, a low serum vitamin A level may be a risk factor for symptoms of ASD. However, the underlying mechanism should be further studied.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
- Children's Nutrition Research Center, Hospital of Chongqing Medical University, Chongqing 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.
| | - Juan Liu
- Department of Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
- Children's Nutrition Research Center, Hospital of Chongqing Medical University, Chongqing 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.
| | - Xueqin Xiong
- Pediatric Department of Clinical Medicine of Dazhou Vocational and Technical College, Dazhou 635001, China.
| | - Ting Yang
- Children's Nutrition Research Center, Hospital of Chongqing Medical University, Chongqing 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.
| | - Nali Hou
- Department of Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
- Children's Nutrition Research Center, Hospital of Chongqing Medical University, Chongqing 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.
| | - Xiaohua Liang
- Children's Nutrition Research Center, Hospital of Chongqing Medical University, Chongqing 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.
| | - Jie Chen
- Children's Nutrition Research Center, Hospital of Chongqing Medical University, Chongqing 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.
| | - Qian Cheng
- Department of Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
- Children's Nutrition Research Center, Hospital of Chongqing Medical University, Chongqing 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.
| | - Tingyu Li
- Department of Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
- Children's Nutrition Research Center, Hospital of Chongqing Medical University, Chongqing 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.
| |
Collapse
|
25
|
Abruzzo PM, Ghezzo A, Bolotta A, Ferreri C, Minguzzi R, Vignini A, Visconti P, Marini M. Perspective Biological Markers for Autism Spectrum Disorders: Advantages of the Use of Receiver Operating Characteristic Curves in Evaluating Marker Sensitivity and Specificity. DISEASE MARKERS 2015; 2015:329607. [PMID: 26648598 PMCID: PMC4655021 DOI: 10.1155/2015/329607] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/08/2015] [Accepted: 10/11/2015] [Indexed: 12/15/2022]
Abstract
Autism Spectrum Disorders (ASD) are a heterogeneous group of neurodevelopmental disorders. Recognized causes of ASD include genetic factors, metabolic diseases, toxic and environmental factors, and a combination of these. Available tests fail to recognize genetic abnormalities in about 70% of ASD children, where diagnosis is solely based on behavioral signs and symptoms, which are difficult to evaluate in very young children. Although it is advisable that specific psychotherapeutic and pedagogic interventions are initiated as early as possible, early diagnosis is hampered by the lack of nongenetic specific biological markers. In the past ten years, the scientific literature has reported dozens of neurophysiological and biochemical alterations in ASD children; however no real biomarker has emerged. Such literature is here reviewed in the light of Receiver Operating Characteristic (ROC) analysis, a very valuable statistical tool, which evaluates the sensitivity and the specificity of biomarkers to be used in diagnostic decision making. We also apply ROC analysis to some of our previously published data and discuss the increased diagnostic value of combining more variables in one ROC curve analysis. We also discuss the use of biomarkers as a tool for advancing our understanding of nonsyndromic ASD.
Collapse
Affiliation(s)
- Provvidenza M. Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Belmeloro 8, 40126 Bologna, Italy
- Don Carlo Gnocchi Foundation ONLUS, IRCCS “S. Maria Nascente”, Via Alfonso Capecelatro 66, 20148 Milan, Italy
| | - Alessandro Ghezzo
- Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Belmeloro 8, 40126 Bologna, Italy
| | - Alessandra Bolotta
- Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Belmeloro 8, 40126 Bologna, Italy
- Don Carlo Gnocchi Foundation ONLUS, IRCCS “S. Maria Nascente”, Via Alfonso Capecelatro 66, 20148 Milan, Italy
| | | | | | - Arianna Vignini
- Section of Biochemistry, Biology and Physics, Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, 60128 Ancona, Italy
| | - Paola Visconti
- Child Neurology and Psychiatry Unit, IRCCS Institute of Neurological Sciences, 40139 Bologna, Italy
| | - Marina Marini
- Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Belmeloro 8, 40126 Bologna, Italy
- Don Carlo Gnocchi Foundation ONLUS, IRCCS “S. Maria Nascente”, Via Alfonso Capecelatro 66, 20148 Milan, Italy
| |
Collapse
|