1
|
Shin J, Fredericks AM, Armstead BE, Ayala A, Cohen M, Fairbrother WG, Levy MM, Lillard KK, Raggi E, Nau GJ, Monaghan SF. Predicting Nonsense-mediated mRNA Decay from Splicing Events in Sepsis using RNA-Sequencing Data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.31.25324958. [PMID: 40236428 PMCID: PMC11996588 DOI: 10.1101/2025.03.31.25324958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Alternative splicing (AS) and nonsense-mediated mRNA decay (NMD) are highly conserved cellular mechanisms that modulate gene expression. Here we introduce NMD pipeline that computes how splicing events introduce premature termination codons to mRNA transcripts via frameshift, then predicts the rate of PTC-dependent NMD. We utilize whole blood, deep RNA-sequencing data from critically ill patients to study gene expression in sepsis. Statistical significance was determined as adjusted p value < 0.05 and |log2foldchange| > 2 for differential gene expression and probability >= 0.9 and |DeltaPsi| > 0.1 for AS. NMD pipeline was developed based on AS data from Whippet. We demonstrate that the rate of NMD is higher in sepsis and deceased groups compared to control and survived groups, which signify purposeful downregulation of transcripts by AS-NMD or aberrant splicing due to altered physiology. Predominance of non-exon skipping events was associated with disease and mortality states. The NMD pipeline also revealed proteins with potential novel roles in sepsis. Together, these results emphasize the utility of NMD pipeline in studying AS-NMD along with differential gene expression and discovering potential protein targets in sepsis.
Collapse
Affiliation(s)
- Jaewook Shin
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital/Alpert Medical School of Brown University; Providence, 02903, USA
| | - Alger M. Fredericks
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital/Alpert Medical School of Brown University; Providence, 02903, USA
| | - Brandon E. Armstead
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital/Alpert Medical School of Brown University; Providence, 02903, USA
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital/Alpert Medical School of Brown University; Providence, 02903, USA
| | - Maya Cohen
- Division of Pulmonary, Critical Care, and Sleep Medicine, Rhode Island Hospital/Alpert Medical School of Brown University; Providence, 02903, USA
| | - William G. Fairbrother
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University; Providence, 02903, USA
| | - Mitchell M. Levy
- Division of Pulmonary, Critical Care, and Sleep Medicine, Rhode Island Hospital/Alpert Medical School of Brown University; Providence, 02903, USA
| | - Kwesi K. Lillard
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital/Alpert Medical School of Brown University; Providence, 02903, USA
| | - Emanuele Raggi
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital/Alpert Medical School of Brown University; Providence, 02903, USA
| | - Gerard J. Nau
- Division of Infectious Diseases, Department of Medicine, Rhode Island Hospital/Alpert Medical School of Brown University; Providence, 02903, USA
| | - Sean F. Monaghan
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital/Alpert Medical School of Brown University; Providence, 02903, USA
- Division of Trauma and Critical Care, Department of Surgery, Rhode Island Hospital/Alpert Medical School of Brown University; Providence, 02903, USA
| |
Collapse
|
2
|
Neil CR, Schaening-Burgos C, Alexis MS, Reynolds DJ, Smith PG, Seiler MW, Vaillancourt FH, Agrawal AA. Poison exons: tuning RNA splicing for targeted gene regulation. Trends Pharmacol Sci 2025; 46:264-278. [PMID: 39915130 DOI: 10.1016/j.tips.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 03/09/2025]
Abstract
Poison exons (PEs) are a class of alternatively spliced exons whose inclusion targets mRNA transcripts for degradation via the nonsense-mediated decay (NMD) pathway. Although a role for NMD as an essential mRNA quality control pathway has long been appreciated, recent advances in RNA sequencing (RNA-seq) strategies and analyses have revealed that its coupling to RNA splicing is broadly used to regulate mRNA stability and abundance. Regulation of PE splicing affects patterns of targeted degradation across the transcriptome and influences gene expression in both healthy and disease states. Importantly, PEs represent a novel therapeutic opportunity to modulate the expression of disease-relevant genes with sequence-specific resolution. We review the emergence of PE splicing in endogenous gene regulation, its misregulation in disease, and the ways in which it can be leveraged for therapeutic benefit.
Collapse
|
3
|
Embree CM, Stephanou A, Singh G. Direct and indirect effects of spliceosome disruption compromise gene regulation by Nonsense-Mediated mRNA Decay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.27.630533. [PMID: 39763844 PMCID: PMC11703147 DOI: 10.1101/2024.12.27.630533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Pre-mRNA splicing, carried out in the nucleus by a large ribonucleoprotein machine known as the spliceosome, is functionally and physically coupled to the mRNA surveillance pathway in the cytoplasm called nonsense mediated mRNA decay (NMD). The NMD pathway monitors for premature translation termination signals, which can result from alternative splicing, by relying on the exon junction complex (EJC) deposited on exon-exon junctions by the spliceosome. Recently, multiple genetic screens in human cell lines have identified numerous spliceosome components as putative NMD factors. Using publicly available RNA-seq datasets from K562 and HepG2 cells depleted of 18 different spliceosome components, we find that natural NMD targeted mRNA isoforms are upregulated when members of the catalytic spliceosome are reduced. While some of this increase could be due to widespread pleiotropic effects of spliceosome dysfunction (e.g., reduced expression of NMD factors due to mis-splicing of their mRNAs), we identify that AQR, SF3B1, SF3B4 and CDC40 may have a more direct role in NMD. We also test the hypothesis that increased production of novel NMD substrates may overwhelm the pathway to find a direct correlation between the amount of novel NMD substrates detected and the degree of NMD inhibition observed. Finally, similar transcriptome alterations and NMD substrate upregulation are also observed in cells treated with spliceosome inhibitors and in cells derived from retinitis pigmentosa patients with mutations in PRPF8 and PRPF31. Overall, our results show that regardless of the cause, spliceosome disruption upregulates a broad set of NMD targets, which could contribute to cellular dysfunction in spliceosomopathies.
Collapse
Affiliation(s)
- Caleb M Embree
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, 43210
| | - Andreas Stephanou
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, 43210
| | - Guramrit Singh
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
4
|
Margasyuk S, Kuznetsova A, Zavileyskiy L, Vlasenok M, Skvortsov D, Pervouchine D. Human introns contain conserved tissue-specific cryptic poison exons. NAR Genom Bioinform 2024; 6:lqae163. [PMID: 39664813 PMCID: PMC11632617 DOI: 10.1093/nargab/lqae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/10/2024] [Accepted: 11/10/2024] [Indexed: 12/13/2024] Open
Abstract
Eukaryotic cells express a large number of transcripts from a single gene due to alternative splicing. Despite hundreds of thousands of splice isoforms being annotated in databases, it has been reported that the current exon catalogs remain incomplete. At the same time, introns of human protein-coding (PC) genes contain a large number of evolutionarily conserved elements with unknown function. Here, we explore the possibility that some of them represent cryptic exons that are expressed in rare conditions. We identified a group of cryptic exons that are similar to the annotated exons in terms of evolutionary conservation and RNA-seq read coverage in the Genotype-Tissue Expression dataset. Most of them were poison, i.e. generated an nonsense-mediated decay (NMD) isoform upon inclusion, and many showed signs of tissue-specific and cancer-specific expression and regulation. We performed RNA-seq in A549 cell line treated with cycloheximide to inactivate NMD and confirmed using quantitative polymerase chain reaction that seven of eight exons tested are, indeed, expressed. This study shows that introns of human PC genes contain cryptic poison exons, which reside in conserved intronic regions and remain not fully annotated due to insufficient representation in RNA-seq libraries.
Collapse
Affiliation(s)
- Sergey Margasyuk
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, 121205, Moscow, Russia
| | - Antonina Kuznetsova
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, 121205, Moscow, Russia
| | - Lev Zavileyskiy
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, 121205, Moscow, Russia
| | - Maria Vlasenok
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, 121205, Moscow, Russia
| | - Dmitry Skvortsov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, 121205, Moscow, Russia
- Faculty of Chemistry, Moscow State University, Ul Kolmogorova, 1, 119991, Moscow, Russia
| | - Dmitri D Pervouchine
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, 121205, Moscow, Russia
| |
Collapse
|
5
|
Bolikhova AK, Buyan AI, Mariasina SS, Rudenko AY, Chekh DS, Mazur AM, Prokhortchouk EB, Dontsova OA, Sergiev PV. Study of the RNA splicing kinetics via in vivo 5-EU labeling. RNA (NEW YORK, N.Y.) 2024; 30:1356-1373. [PMID: 39048310 PMCID: PMC11404452 DOI: 10.1261/rna.079937.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Splicing is an important step of gene expression in all eukaryotes. Splice sites might be used with different efficiency, giving rise to alternative splicing products. At the same time, splice sites might be used at a variable rate. We used 5-ethynyl uridine labeling to sequence a nascent transcriptome of HeLa cells and deduced the rate of splicing for each donor and acceptor splice site. The following correlation analysis showed a correspondence of primary transcript features with the rate of splicing. Some dependencies we revealed were anticipated, such as a splicing rate decrease with a decreased complementarity of the donor splice site to U1 and acceptor sites to U2 snRNAs. Other dependencies were more surprising, like a negative influence of a distance to the 5' end on the rate of the acceptor splicing site utilization, or the differences in splicing rate between long, short, and RBM17-dependent introns. We also observed a deceleration of last intron splicing with an increase of the distance to the poly(A) site, which might be explained by the cooperativity of the splicing and polyadenylation. Additional analysis of splicing kinetics of SF3B4 knockdown cells suggested the impairment of a U2 snRNA recognition step. As a result, we deconvoluted the effects of several examined features on the splicing rate into a single regression model. The data obtained here are useful for further studies in the field, as they provide general splicing rate dependencies as well as help to justify the existence of slowly removed splice sites.
Collapse
Affiliation(s)
- Anastasiia K Bolikhova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrey I Buyan
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sofia S Mariasina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Y Rudenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Daria S Chekh
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander M Mazur
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Egor B Prokhortchouk
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Functioning of Living Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Petr V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
6
|
Sonti S, Littleton SH, Pahl MC, Zimmerman AJ, Chesi A, Palermo J, Lasconi C, Brown EB, Pippin JA, Wells AD, Doldur-Balli F, Pack AI, Gehrman PR, Keene AC, Grant SFA. Perturbation of the insomnia WDR90 genome-wide association studies locus pinpoints rs3752495 as a causal variant influencing distal expression of neighboring gene, PIG-Q. Sleep 2024; 47:zsae085. [PMID: 38571402 PMCID: PMC11236950 DOI: 10.1093/sleep/zsae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/28/2024] [Indexed: 04/05/2024] Open
Abstract
Although genome-wide association studies (GWAS) have identified loci for sleep-related traits, they do not directly uncover the underlying causal variants and corresponding effector genes. The majority of such variants reside in non-coding regions and are therefore presumed to impact cis-regulatory elements. Our previously reported 'variant-to-gene mapping' effort in human induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs), combined with validation in both Drosophila and zebrafish, implicated phosphatidyl inositol glycan (PIG)-Q as a functionally relevant gene at the insomnia "WDR90" GWAS locus. However, importantly that effort did not characterize the corresponding underlying causal variant. Specifically, our previous 3D genomic datasets nominated a shortlist of three neighboring single nucleotide polymorphisms (SNPs) in strong linkage disequilibrium within an intronic enhancer region of WDR90 that contacted the open PIG-Q promoter. We sought to investigate the influence of these SNPs collectively and then individually on PIG-Q modulation to pinpoint the causal "regulatory" variant. Starting with gross level perturbation, deletion of the entire region in NPCs via CRISPR-Cas9 editing and subsequent RNA sequencing revealed expression changes in specific PIG-Q transcripts. Results from individual luciferase reporter assays for each SNP in iPSCs revealed that the region with the rs3752495 risk allele (RA) induced a ~2.5-fold increase in luciferase expression. Importantly, rs3752495 also exhibited an allele-specific effect, with the RA increasing the luciferase expression by ~2-fold versus the non-RA. In conclusion, our variant-to-function approach and in vitro validation implicate rs3752495 as a causal insomnia variant embedded within WDR90 while modulating the expression of the distally located PIG-Q.
Collapse
Affiliation(s)
- Shilpa Sonti
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sheridan H Littleton
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew C Pahl
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amber J Zimmerman
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory, Medicine University of Pennsylvania Perelman School of Medicine, Philadelphia PA, USA
| | - Justin Palermo
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Chiara Lasconi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth B Brown
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James A Pippin
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fusun Doldur-Balli
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allan I Pack
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Phillip R Gehrman
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Divisions of Human Genetics and Endocrinology & Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
7
|
Mazuecos L, Artigas-Jerónimo S, Pintado C, Gómez O, Rubio B, Arribas C, Andrés A, Villar M, Gallardo N. Central leptin signaling deficiency induced by leptin receptor antagonist leads to hypothalamic proteomic remodeling. Life Sci 2024; 346:122649. [PMID: 38626868 DOI: 10.1016/j.lfs.2024.122649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
AIMS Leptin irresponsiveness, which is often associated with obesity, can have significant impacts on the hypothalamic proteome of individuals, including those who are lean. While mounting evidence on leptin irresponsiveness has focused on obese individuals, understanding the early molecular and proteomic changes associated with deficient hypothalamic leptin signaling in lean individuals is essential for early intervention and prevention of metabolic disorders. Leptin receptor antagonists block the binding of leptin to its receptors, potentially reducing its effects and used in cases where excessive leptin activity might be harmful. MATERIALS AND METHODS In this work, we blocked the central actions of leptin in lean male adult Wistar rat by chronically administering intracerebroventricularly the superactive leptin receptor antagonist (SLA) (D23L/L39A/D40A/F41A) and investigated its impact on the hypothalamic proteome using label-free sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) for quantitative proteomics. KEY FINDINGS Our results show an accumulation of proteins involved in mRNA processing, mRNA stability, and translation in the hypothalamus of SLA-treated rats. Conversely, hypothalamic leptin signaling deficiency reduces the representation of proteins implicated in energy metabolism, neural circuitry, and neurotransmitter release. SIGNIFICANCE The alterations in the adult rat hypothalamic proteome contribute to dysregulate appetite, metabolism, and energy balance, which are key factors in the development and progression of obesity and related metabolic disorders. Additionally, using bioinformatic analysis, we identified a series of transcription factors that are potentially involved in the upstream regulatory mechanisms responsible for the observed signature.
Collapse
Affiliation(s)
- Lorena Mazuecos
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Sara Artigas-Jerónimo
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Cristina Pintado
- Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Oscar Gómez
- Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Blanca Rubio
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Carmen Arribas
- Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Antonio Andrés
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Margarita Villar
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - Nilda Gallardo
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain.
| |
Collapse
|
8
|
Moreno-Aguilera M, Neher AM, Mendoza MB, Dodel M, Mardakheh FK, Ortiz R, Gallego C. KIS counteracts PTBP2 and regulates alternative exon usage in neurons. eLife 2024; 13:e96048. [PMID: 38597390 PMCID: PMC11045219 DOI: 10.7554/elife.96048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024] Open
Abstract
Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.
Collapse
Affiliation(s)
| | - Alba M Neher
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Mónica B Mendoza
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Martin Dodel
- Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Faraz K Mardakheh
- Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Raúl Ortiz
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Carme Gallego
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| |
Collapse
|
9
|
Fair B, Najar CBA, Zhao J, Lozano S, Reilly A, Mossian G, Staley JP, Wang J, Li YI. Global impact of aberrant splicing on human gene expression levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557588. [PMID: 37745605 PMCID: PMC10515962 DOI: 10.1101/2023.09.13.557588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Alternative splicing (AS) is pervasive in human genes, yet the specific function of most AS events remains unknown. It is widely assumed that the primary function of AS is to diversify the proteome, however AS can also influence gene expression levels by producing transcripts rapidly degraded by nonsense-mediated decay (NMD). Currently, there are no precise estimates for how often the coupling of AS and NMD (AS-NMD) impacts gene expression levels because rapidly degraded NMD transcripts are challenging to capture. To better understand the impact of AS on gene expression levels, we analyzed population-scale genomic data in lymphoblastoid cell lines across eight molecular assays that capture gene regulation before, during, and after transcription and cytoplasmic decay. Sequencing nascent mRNA transcripts revealed frequent aberrant splicing of human introns, which results in remarkably high levels of mRNA transcripts subject to NMD. We estimate that ~15% of all protein-coding transcripts are degraded by NMD, and this estimate increases to nearly half of all transcripts for lowly-expressed genes with many introns. Leveraging genetic variation across cell lines, we find that GWAS trait-associated loci explained by AS are similarly likely to associate with NMD-induced expression level differences as with differences in protein isoform usage. Additionally, we used the splice-switching drug risdiplam to perturb AS at hundreds of genes, finding that ~3/4 of the splicing perturbations induce NMD. Thus, we conclude that AS-NMD substantially impacts the expression levels of most human genes. Our work further suggests that much of the molecular impact of AS is mediated by changes in protein expression levels rather than diversification of the proteome.
Collapse
Affiliation(s)
- Benjamin Fair
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Carlos Buen Abad Najar
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Junxing Zhao
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Stephanie Lozano
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Present address: Center for Neuroscience, University of California Davis, Davis, CA 95618, USA
| | - Austin Reilly
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Gabriela Mossian
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Jonathan P Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jingxin Wang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Yang I Li
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Petrić Howe M, Patani R. Nonsense-mediated mRNA decay in neuronal physiology and neurodegeneration. Trends Neurosci 2023; 46:879-892. [PMID: 37543480 DOI: 10.1016/j.tins.2023.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/19/2023] [Accepted: 07/09/2023] [Indexed: 08/07/2023]
Abstract
The processes of mRNA export from the nucleus and subsequent mRNA translation in the cytoplasm are of particular relevance in eukaryotic cells. In highly polarised cells such as neurons, finely-tuned molecular regulation of these processes serves to safeguard the spatiotemporal fidelity of gene expression. Nonsense-mediated mRNA decay (NMD) is a cytoplasmic translation-dependent quality control process that regulates gene expression in a wide range of scenarios in the nervous system, including neurodevelopment, learning, and memory formation. Moreover, NMD dysregulation has been implicated in a broad range of neurodevelopmental and neurodegenerative disorders. We discuss how NMD and related aspects of mRNA translation regulate key neuronal functions and, in particular, we focus on evidence implicating these processes in the molecular pathogenesis of neurodegeneration. Finally, we discuss the therapeutic potential and challenges of targeting mRNA translation and NMD across the spectrum of largely untreatable neurological diseases.
Collapse
Affiliation(s)
- Marija Petrić Howe
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London (UCL), Queen Square, WC1N 3BG London, UK.
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London (UCL), Queen Square, WC1N 3BG London, UK.
| |
Collapse
|
11
|
Gittings LM, Alsop EB, Antone J, Singer M, Whitsett TG, Sattler R, Van Keuren-Jensen K. Cryptic exon detection and transcriptomic changes revealed in single-nuclei RNA sequencing of C9ORF72 patients spanning the ALS-FTD spectrum. Acta Neuropathol 2023; 146:433-450. [PMID: 37466726 PMCID: PMC10412668 DOI: 10.1007/s00401-023-02599-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023]
Abstract
The C9ORF72-linked diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by the nuclear depletion and cytoplasmic accumulation of TAR DNA-binding protein 43 (TDP-43). Recent studies have shown that the loss of TDP-43 function leads to the inclusion of cryptic exons (CE) in several RNA transcript targets of TDP-43. Here, we show for the first time the detection of CEs in a single-nuclei RNA sequencing (snRNA-seq) dataset obtained from frontal and occipital cortices of C9ORF72 patients that phenotypically span the ALS-FTD disease spectrum. We assessed each cellular cluster for detection of recently described TDP-43-induced CEs. Transcripts containing CEs in the genes STMN2 and KALRN were detected in the frontal cortex of all C9ORF72 disease groups with the highest frequency in excitatory neurons in the C9ORF72-FTD group. Within the excitatory neurons, the cluster with the highest proportion of cells containing a CE had transcriptomic similarities to von Economo neurons, which are known to be vulnerable to TDP-43 pathology and selectively lost in C9ORF72-FTD. Differential gene expression and pathway analysis of CE-containing neurons revealed multiple dysregulated metabolic processes. Our findings reveal novel insights into the transcriptomic changes of neurons vulnerable to TDP-43 pathology.
Collapse
Affiliation(s)
- Lauren M Gittings
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | - Eric B Alsop
- Neurogenomics Division, Translational Genomics Research Institute, part of City of Hope, Phoenix, AZ, USA
| | - Jerry Antone
- Neurogenomics Division, Translational Genomics Research Institute, part of City of Hope, Phoenix, AZ, USA
| | - Mo Singer
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | - Timothy G Whitsett
- Neurogenomics Division, Translational Genomics Research Institute, part of City of Hope, Phoenix, AZ, USA
| | - Rita Sattler
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA.
| | - Kendall Van Keuren-Jensen
- Neurogenomics Division, Translational Genomics Research Institute, part of City of Hope, Phoenix, AZ, USA.
| |
Collapse
|
12
|
Sonti S, Littleton SH, Pahl MC, Zimmerman AJ, Chesi A, Palermo J, Lasconi C, Brown EB, Pippin JA, Wells AD, Doldur-Balli F, Pack AI, Gehrman PR, Keene AC, Grant SFA. Perturbation of the insomnia WDR90 GWAS locus pinpoints rs3752495 as a causal variant influencing distal expression of neighboring gene, PIG-Q. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553739. [PMID: 37645863 PMCID: PMC10462147 DOI: 10.1101/2023.08.17.553739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Although genome wide association studies (GWAS) have been crucial for the identification of loci associated with sleep traits and disorders, the method itself does not directly uncover the underlying causal variants and corresponding effector genes. The overwhelming majority of such variants reside in non-coding regions and are therefore presumed to impact the activity of cis-regulatory elements, such as enhancers. Our previously reported 'variant-to-gene mapping' effort in human induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs), combined with validation in both Drosophila and zebrafish, implicated PIG-Q as a functionally relevant gene at the insomnia 'WDR90' locus. However, importantly that effort did not characterize the corresponding underlying causal variant at this GWAS signal. Specifically, our genome-wide ATAC-seq and high-resolution promoter-focused Capture C datasets generated in this cell setting brought our attention to a shortlist of three tightly neighboring single nucleotide polymorphisms (SNPs) in strong linkage disequilibrium in a candidate intronic enhancer region of WDR90 that contacted the open PIG-Q promoter. The objective of this study was to investigate the influence of the proxy SNPs collectively and then individually on PIG-Q modulation and to pinpoint the causal "regulatory" variant among the three SNPs. Starting at a gross level perturbation, deletion of the entire region harboring all three SNPs in human iPSC-derived neural progenitor cells via CRISPR-Cas9 editing and subsequent RNA sequencing revealed expression changes in specific PIG-Q transcripts. Results from more refined individual luciferase reporter assays for each of the three SNPs in iPSCs revealed that the intronic region with the rs3752495 risk allele induced a ~2.5-fold increase in luciferase expression (n=10). Importantly, rs3752495 also exhibited an allele specific effect, with the risk allele increasing the luciferase expression by ~2-fold compared to the non-risk allele. In conclusion, our variant-to-function approach and subsequent in vitro validation implicates rs3752495 as a causal insomnia risk variant embedded at the WDR90-PIG-Q locus.
Collapse
Affiliation(s)
- Shilpa Sonti
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sheridan H Littleton
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew C Pahl
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Amber J Zimmerman
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Justin Palermo
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Chiara Lasconi
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Elizabeth B Brown
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James A Pippin
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fusun Doldur-Balli
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Allan I Pack
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Phillip R Gehrman
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - S F A Grant
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Divisions of Human Genetics and Endocrinology & Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| |
Collapse
|
13
|
Sun B, Chen L. Mapping genetic variants for nonsense-mediated mRNA decay regulation across human tissues. Genome Biol 2023; 24:164. [PMID: 37434206 PMCID: PMC10337212 DOI: 10.1186/s13059-023-03004-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/30/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Nonsense-mediated mRNA decay (NMD) was originally conceived as an mRNA surveillance mechanism to prevent the production of potentially deleterious truncated proteins. Research also shows NMD is an important post-transcriptional gene regulation mechanism selectively targeting many non-aberrant mRNAs. However, how natural genetic variants affect NMD and modulate gene expression remains elusive. RESULTS Here we elucidate NMD regulation of individual genes across human tissues through genetical genomics. Genetic variants corresponding to NMD regulation are identified based on GTEx data through unique and robust transcript expression modeling. We identify genetic variants that influence the percentage of NMD-targeted transcripts (pNMD-QTLs), as well as genetic variants regulating the decay efficiency of NMD-targeted transcripts (dNMD-QTLs). Many such variants are missed in traditional expression quantitative trait locus (eQTL) mapping. NMD-QTLs show strong tissue specificity especially in the brain. They are more likely to overlap with disease single-nucleotide polymorphisms (SNPs). Compared to eQTLs, NMD-QTLs are more likely to be located within gene bodies and exons, especially the penultimate exons from the 3' end. Furthermore, NMD-QTLs are more likely to be found in the binding sites of miRNAs and RNA binding proteins. CONCLUSIONS We reveal the genome-wide landscape of genetic variants associated with NMD regulation across human tissues. Our analysis results indicate important roles of NMD in the brain. The preferential genomic positions of NMD-QTLs suggest key attributes for NMD regulation. Furthermore, the overlap with disease-associated SNPs and post-transcriptional regulatory elements implicates regulatory roles of NMD-QTLs in disease manifestation and their interactions with other post-transcriptional regulators.
Collapse
Affiliation(s)
- Bo Sun
- Department of Quantitative and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA
| | - Liang Chen
- Department of Quantitative and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA.
| |
Collapse
|
14
|
Elucidation of the Landscape of Alternatively Spliced Genes and Features in the Dorsal Striatum of Aggressive/Aggression-Deprived Mice in the Model of Chronic Social Conflicts. Genes (Basel) 2023; 14:genes14030599. [PMID: 36980872 PMCID: PMC10048575 DOI: 10.3390/genes14030599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Both aggressive and aggression-deprived (AD) individuals represent pathological cases extensively studied in psychiatry and substance abuse disciplines. We employed the animal model of chronic social conflicts curated in our laboratory for over 30 years. In the study, we pursued the task of evaluation of the key events in the dorsal striatum transcriptomes of aggression-experienced mice and AD species, as compared with the controls, using RNA-seq profiling. We evaluated the alternative splicing-mediated transcriptome dynamics based on the RNA-seq data. We confined our attention to the exon skipping (ES) events as the major AS type for animals. We report the concurrent posttranscriptional and posttranslational regulation of the ES events observed in the phosphorylation cycles (in phosphoproteins and their targets) in the neuron-specific genes of the striatum. Strikingly, we found that major neurospecific splicing factors (Nova1, Ptbp1, 2, Mbnl1, 2, and Sam68) related to the alternative splicing regulation of cAMP genes (Darpp-32, Grin1, Ptpn5, Ppp3ca, Pde10a, Prkaca, Psd95, and Adora1) are upregulated specifically in aggressive individuals as compared with the controls and specifically AD animals, assuming intense switching between isoforms in the cAMP-mediated (de)phosphorylation signaling cascade. We found that the coding alternative splicing events were mostly attributed to synaptic plasticity and neural development-related proteins, while the nonsense-mediated decay-associated splicing events are mostly attributed to the mRNA processing of genes, including the spliceosome and splicing factors. In addition, considering the gene families, the transporter (Slc) gene family manifested most of the ES events. We found out that the major molecular systems employing AS for their plasticity are the ‘spliceosome’, ‘chromatin rearrangement complex’, ‘synapse’, and ‘neural development/axonogenesis’ GO categories. Finally, we state that approximately 35% of the exon skipping variants in gene coding regions manifest the noncoding variants subject to nonsense-mediated decay, employed as a homeostasis-mediated expression regulation layer and often associated with the corresponding gene expression alteration.
Collapse
|
15
|
Fisher E, Feng J. RNA splicing regulators play critical roles in neurogenesis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1728. [PMID: 35388651 DOI: 10.1002/wrna.1728] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Alternative RNA splicing increases transcript diversity in different cell types and under varying conditions. It is executed with the help of RNA splicing regulators (RSRs), which are operationally defined as RNA-binding proteins (RBPs) that regulate alternative splicing, but not directly catalyzing the chemical reactions of splicing. By systematically searching for RBPs and manually identifying those that regulate splicing, we curated 305 RSRs in the human genome. Surprisingly, most of the RSRs are involved in neurogenesis. Among these RSRs, we focus on nine families (PTBP, NOVA, RBFOX, ELAVL, CELF, DBHS, MSI, PCBP, and MBNL) that play essential roles in the neurogenic pathway. A better understanding of their functions will provide novel insights into the role of splicing in brain development, health, and disease. This comprehensive review serves as a stepping-stone to explore the diverse and complex set of RSRs as fundamental regulators of neural development. This article is categorized under: RNA-Based Catalysis > RNA Catalysis in Splicing and Translation RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Emily Fisher
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York, USA
- Veterans Affairs Western New York Healthcare System, Buffalo, New York, USA
| | - Jian Feng
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York, USA
- Veterans Affairs Western New York Healthcare System, Buffalo, New York, USA
| |
Collapse
|
16
|
Martin H, Rupkey J, Asthana S, Yoon J, Patel S, Mott J, Pei Z, Mao Y. Diverse Roles of the Exon Junction Complex Factors in the Cell Cycle, Cancer, and Neurodevelopmental Disorders-Potential for Therapeutic Targeting. Int J Mol Sci 2022; 23:ijms231810375. [PMID: 36142288 PMCID: PMC9499366 DOI: 10.3390/ijms231810375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
The exon junction complex (EJC) plays a crucial role in regulating gene expression at the levels of alternative splicing, translation, mRNA localization, and nonsense-mediated decay (NMD). The EJC is comprised of three core proteins: RNA-binding motif 8A (RBM8A), Mago homolog (MAGOH), eukaryotic initiation factor 4A3 (eIF4A3), and a peripheral EJC factor, metastatic lymph node 51 (MLN51), in addition to other peripheral factors whose structural integration is activity-dependent. The physiological and mechanistic roles of the EJC in contribution to molecular, cellular, and organismal level function continue to be explored for potential insights into genetic or pathological dysfunction. The EJC’s specific role in the cell cycle and its implications in cancer and neurodevelopmental disorders prompt enhanced investigation of the EJC as a potential target for these diseases. In this review, we highlight the current understanding of the EJC’s position in the cell cycle, its relation to cancer and developmental diseases, and potential avenues for therapeutic targeting.
Collapse
Affiliation(s)
- Hannah Martin
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Julian Rupkey
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Shravan Asthana
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
| | - Joy Yoon
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Shray Patel
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Jennifer Mott
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Zifei Pei
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Correspondence:
| |
Collapse
|
17
|
Hu X, Zou Q, Yao L, Yang X. Survey of the binding preferences of RNA-binding proteins to RNA editing events. Genome Biol 2022; 23:169. [PMID: 35927743 PMCID: PMC9351184 DOI: 10.1186/s13059-022-02741-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Adenosine-to-inosine (A-to-I) editing is an important RNA posttranscriptional process related to a multitude of cellular and molecular activities. However, systematic characterizations of whether and how the events of RNA editing are associated with the binding preferences of RNA sequences to RNA-binding proteins (RBPs) are still lacking. RESULTS With the RNA-seq and RBP eCLIP-seq datasets from the ENCODE project, we quantitatively survey the binding preferences of 150 RBPs to RNA editing events, followed by experimental validations. Such analyses of the RBP-associated RNA editing at nucleotide resolution and genome-wide scale shed light on the involvement of RBPs specifically in RNA editing-related processes, such as RNA splicing, RNA secondary structures, RNA decay, and other posttranscriptional processes. CONCLUSIONS These results highlight the relevance of RNA editing in the functions of many RBPs and therefore serve as a resource for further characterization of the functional associations between various RNA editing events and RBPs.
Collapse
Affiliation(s)
- Xiaolin Hu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Qin Zou
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Li Yao
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
18
|
Vuong JK, Ergin V, Chen L, Zheng S. Multilayered regulations of alternative splicing, NMD, and protein stability control temporal induction and tissue-specific expression of TRIM46 during axon formation. Nat Commun 2022; 13:2081. [PMID: 35440129 PMCID: PMC9019110 DOI: 10.1038/s41467-022-29786-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
The gene regulation underlying axon formation and its exclusiveness to neurons remains elusive. TRIM46 is postulated to determine axonal fate. We show Trim46 mRNA is expressed before axonogenesis, but TRIM46 protein level is inhibited by alternative splicing of two cassette exons coupled separately to stability controls of Trim46 mRNA and proteins, effectively inducing functional knockout of TRIM46 proteins. Exon 8 inclusion causes nonsense-mediated mRNA decay of Trim46 transcripts. PTBP2-mediated exon 10 skipping produces transcripts encoding unstable TRIM46 proteins. During axonogenesis, transcriptional activation, decreased exon 8 inclusion, and enhanced exon 10 inclusion converge to increase TRIM46 proteins, leading to its neural-specific expression. Genetic deletion of these exons alters TRIM46 protein levels and shows TRIM46 is instructive though not always required for AnkG localization nor a determinant of AnkG density. Therefore, two concurrently but independently regulated alternative exons orchestrate the temporal induction and tissue-specific expression of TRIM46 proteins to mediate axon formation.
Collapse
Affiliation(s)
- John K Vuong
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Volkan Ergin
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Liang Chen
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sika Zheng
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA.
- Center for RNA Biology and Medicine, University of California Riverside, Riverside, CA, 91521, USA.
| |
Collapse
|
19
|
Li ZJ, Zheng S. Quantitative Measurement of Alternatively Spliced RNA Isoform Levels. Methods Mol Biol 2022; 2537:63-79. [PMID: 35895259 DOI: 10.1007/978-1-0716-2521-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conventional approaches to quantify alternative splicing are exon-centric and derive a ratio based on relative levels of the isoforms (or isoform groups) that include versus exclude a particular alternative RNA segment. The ratio measurement to study alternative splicing regulation can be confounded when alternative isoforms undergo differential RNA decay, for example, nonsense-mediated mRNA decay (NMD). Isoform-centric quantification is more informative for functional studies of alternative splicing, but challenges remain in distinguishing specific isoforms. Here, we provide a practical guide on addressing the specificity of isoform quantification and describe a simple sensitive method. Quantitative measurement of alternatively spliced RNA isoforms can be used to differentiate splicing regulation from transcriptional control and isoform-specific RNA decay regulation.
Collapse
Affiliation(s)
- Zhelin Jeff Li
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Sika Zheng
- Division of Biomedical Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
20
|
Aygün N, Elwell AL, Liang D, Lafferty MJ, Cheek KE, Courtney KP, Mory J, Hadden-Ford E, Krupa O, de la Torre-Ubieta L, Geschwind DH, Love MI, Stein JL. Brain-trait-associated variants impact cell-type-specific gene regulation during neurogenesis. Am J Hum Genet 2021; 108:1647-1668. [PMID: 34416157 PMCID: PMC8456186 DOI: 10.1016/j.ajhg.2021.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
Interpretation of the function of non-coding risk loci for neuropsychiatric disorders and brain-relevant traits via gene expression and alternative splicing quantitative trait locus (e/sQTL) analyses is generally performed in bulk post-mortem adult tissue. However, genetic risk loci are enriched in regulatory elements active during neocortical differentiation, and regulatory effects of risk variants may be masked by heterogeneity in bulk tissue. Here, we map e/sQTLs, and allele-specific expression in cultured cells representing two major developmental stages, primary human neural progenitors (n = 85) and their sorted neuronal progeny (n = 74), identifying numerous loci not detected in either bulk developing cortical wall or adult cortex. Using colocalization and genetic imputation via transcriptome-wide association, we uncover cell-type-specific regulatory mechanisms underlying risk for brain-relevant traits that are active during neocortical differentiation. Specifically, we identified a progenitor-specific eQTL for CENPW co-localized with common variant associations for cortical surface area and educational attainment.
Collapse
Affiliation(s)
- Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Angela L Elwell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael J Lafferty
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kerry E Cheek
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kenan P Courtney
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Mory
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ellie Hadden-Ford
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Oleh Krupa
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Luis de la Torre-Ubieta
- Neurogenetics Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel H Geschwind
- Neurogenetics Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
21
|
TF-RBP-AS Triplet Analysis Reveals the Mechanisms of Aberrant Alternative Splicing Events in Kidney Cancer: Implications for Their Possible Clinical Use as Prognostic and Therapeutic Biomarkers. Int J Mol Sci 2021; 22:ijms22168789. [PMID: 34445498 PMCID: PMC8395830 DOI: 10.3390/ijms22168789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Abstract
Aberrant alternative splicing (AS) is increasingly linked to cancer; however, how AS contributes to cancer development still remains largely unknown. AS events (ASEs) are largely regulated by RNA-binding proteins (RBPs) whose ability can be modulated by a variety of genetic and epigenetic mechanisms. In this study, we used a computational framework to investigate the roles of transcription factors (TFs) on regulating RBP-AS interactions. A total of 6519 TF–RBP–AS triplets were identified, including 290 TFs, 175 RBPs, and 16 ASEs from TCGA–KIRC RNA sequencing data. TF function categories were defined according to correlation changes between RBP expression and their targeted ASEs. The results suggested that most TFs affected multiple targets, and six different classes of TF-mediated transcriptional dysregulations were identified. Then, regulatory networks were constructed for TF–RBP–AS triplets. Further pathway-enrichment analysis showed that these TFs and RBPs involved in triplets were enriched in a variety of pathways that were associated with cancer development and progression. Survival analysis showed that some triplets were highly associated with survival rates. These findings demonstrated that the integration of TFs into alternative splicing regulatory networks can help us in understanding the roles of alternative splicing in cancer.
Collapse
|
22
|
García-Moreno JF, Romão L. Perspective in Alternative Splicing Coupled to Nonsense-Mediated mRNA Decay. Int J Mol Sci 2020; 21:ijms21249424. [PMID: 33321981 PMCID: PMC7764535 DOI: 10.3390/ijms21249424] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Alternative splicing (AS) of precursor mRNA (pre-mRNA) is a cellular post-transcriptional process that generates protein isoform diversity. Nonsense-mediated RNA decay (NMD) is an mRNA surveillance pathway that recognizes and selectively degrades transcripts containing premature translation-termination codons (PTCs), thereby preventing the production of truncated proteins. Nevertheless, NMD also fine-tunes the gene expression of physiological mRNAs encoding full-length proteins. Interestingly, around one third of all AS events results in PTC-containing transcripts that undergo NMD. Numerous studies have reported a coordinated action between AS and NMD, in order to regulate the expression of several genes, especially those coding for RNA-binding proteins (RBPs). This coupling of AS to NMD (AS-NMD) is considered a gene expression tool that controls the ratio of productive to unproductive mRNA isoforms, ultimately degrading PTC-containing non-functional mRNAs. In this review, we focus on the mechanisms underlying AS-NMD, and how this regulatory process is able to control the homeostatic expression of numerous RBPs, including splicing factors, through auto- and cross-regulatory feedback loops. Furthermore, we discuss the importance of AS-NMD in the regulation of biological processes, such as cell differentiation. Finally, we analyze interesting recent data on the relevance of AS-NMD to human health, covering its potential roles in cancer and other disorders.
Collapse
Affiliation(s)
- Juan F. García-Moreno
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal;
- Faculty of Science, BioISI—Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Luísa Romão
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal;
- Faculty of Science, BioISI—Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: ; Tel.: +351-217-508-155
| |
Collapse
|
23
|
Li X, Han X, Tu X, Zhu D, Feng Y, Jiang T, Yang Y, Qu J, Chen JG. An Autism-Related, Nonsense Foxp1 Mutant Induces Autophagy and Delays Radial Migration of the Cortical Neurons. Cereb Cortex 2020; 29:3193-3208. [PMID: 30124790 DOI: 10.1093/cercor/bhy185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that has a strong genetic component. Disruptions of FOXP1, a transcription factor expressed in the developing cerebral cortex, were associated with ASD. FOXP1(R525X) is a de novo heterozygous mutation found in patients with autism and severe mental retardation. To explore the neuronal basis of FOXP1(R525X) in ASD, we created Foxp1(R521X), a mouse homolog of the human variant. Ectopic expression of Foxp1(R521X) led to cytoplasmic aggregates and activated macroautophagy in neuroblastoma N2a cells and the developing neuronal cells. Cortical neurons expressing Foxp1(R521X) exhibited delayed migration and altered dendritic morphology. As a control, mutant Y435X that was expressed diffusively in the cytoplasm did not induce autophagy and migration delay in the cortex. The embryonic cortical cells had a minimal activity of nonsense-mediated mRNA decay (NMD) as assayed by a splicing-dependent NMD reporter. We hypothesize that the developing neuronal cells use autophagy but not NMD as a safeguard mechanism against nonsense mutant aggregates, resulting in impairment of the cortical development. This study suggests a novel mechanism other than heterozygous loss of FOXP1 for the development of ASD and may advance our understanding of the complex relationships between gene mutation and the related psychiatric disorders.
Collapse
Affiliation(s)
- Xue Li
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| | - Xin Han
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| | - Xiaomeng Tu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| | - Dan Zhu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| | - Yue Feng
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| | - Tian Jiang
- Research Center for Translational Medicine, the Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, PR China
| | - Youping Yang
- Research Center for Translational Medicine, the Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, PR China
| | - Jia Qu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| | - Jie-Guang Chen
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| |
Collapse
|
24
|
Developmental Attenuation of Neuronal Apoptosis by Neural-Specific Splicing of Bak1 Microexon. Neuron 2020; 107:1180-1196.e8. [PMID: 32710818 DOI: 10.1016/j.neuron.2020.06.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/29/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022]
Abstract
Continuous neuronal survival is vital for mammals because mammalian brains have limited regeneration capability. After neurogenesis, suppression of apoptosis is needed to ensure a neuron's long-term survival. Here we describe a robust genetic program that intrinsically attenuates apoptosis competence in neurons. Developmental downregulation of the splicing regulator PTBP1 in immature neurons allows neural-specific splicing of the evolutionarily conserved Bak1 microexon 5. Exon 5 inclusion triggers nonsense-mediated mRNA decay (NMD) and unproductive translation of Bak1 transcripts (N-Bak mRNA), leading to suppression of pro-apoptotic BAK1 proteins and allowing neurons to reduce apoptosis. Germline heterozygous ablation of exon 5 increases BAK1 proteins exclusively in the brain, inflates neuronal apoptosis, and leads to early postnatal mortality. Therefore, neural-specific exon 5 splicing and depletion of BAK1 proteins uniquely repress neuronal apoptosis. Although apoptosis is important for development, attenuation of apoptosis competence through neural-specific splicing of the Bak1 microexon is essential for neuronal and animal survival.
Collapse
|
25
|
de la Fuente L, Arzalluz-Luque Á, Tardáguila M, Del Risco H, Martí C, Tarazona S, Salguero P, Scott R, Lerma A, Alastrue-Agudo A, Bonilla P, Newman JRB, Kosugi S, McIntyre LM, Moreno-Manzano V, Conesa A. tappAS: a comprehensive computational framework for the analysis of the functional impact of differential splicing. Genome Biol 2020; 21:119. [PMID: 32423416 PMCID: PMC7236505 DOI: 10.1186/s13059-020-02028-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/23/2020] [Indexed: 12/26/2022] Open
Abstract
Recent advances in long-read sequencing solve inaccuracies in alternative transcript identification of full-length transcripts in short-read RNA-Seq data, which encourages the development of methods for isoform-centered functional analysis. Here, we present tappAS, the first framework to enable a comprehensive Functional Iso-Transcriptomics (FIT) analysis, which is effective at revealing the functional impact of context-specific post-transcriptional regulation. tappAS uses isoform-resolved annotation of coding and non-coding functional domains, motifs, and sites, in combination with novel analysis methods to interrogate different aspects of the functional readout of transcript variants and isoform regulation. tappAS software and documentation are available at https://app.tappas.org.
Collapse
Affiliation(s)
- Lorena de la Fuente
- Genomics of Gene Expression Laboratory, Prince Felipe Research Center, Valencia, Spain
- Present Address: Bioinformatics Unit, IIS Fundación Jiménez Díaz, Madrid, Spain
| | - Ángeles Arzalluz-Luque
- Department of Statistics and Operational Research, Polytechnical University of Valencia, Valencia, Spain
| | - Manuel Tardáguila
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
- Present Address: Human Genetics Department, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Héctor Del Risco
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Cristina Martí
- Genomics of Gene Expression Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Sonia Tarazona
- Department of Statistics and Operational Research, Polytechnical University of Valencia, Valencia, Spain
| | - Pedro Salguero
- Genomics of Gene Expression Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Raymond Scott
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Alberto Lerma
- Genomics of Gene Expression Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Ana Alastrue-Agudo
- Present Address: Human Genetics Department, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Pablo Bonilla
- Present Address: Human Genetics Department, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Jeremy R B Newman
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Department of Pathology, University of Florida, Gainesville, FL, USA
| | - Shunichi Kosugi
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Wako, Japan
| | - Lauren M McIntyre
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | | | - Ana Conesa
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
- Genetics Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
26
|
Ergin V, Zheng S. Putative Coiled-Coil Domain-Dependent Autoinhibition and Alternative Splicing Determine SHTN1's Actin-Binding Activity. J Mol Biol 2020; 432:4154-4166. [PMID: 32371045 DOI: 10.1016/j.jmb.2020.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 11/16/2022]
Abstract
The actin cytoskeleton plays a pivotal role in cell development, morphogenesis, and other cellular functions. Precise control of actin dynamics requires actin-binding proteins. Here, we characterize multifarious regulation of SHTN1 (shootin1) and show that, unlike known actin-binding proteins, SHTN1's actin binding activity is intrinsically inhibited by a putative coiled-coil domain (CCD) and the autoinhibition is overcome by alternative splicing regulation. We found SHTN1 contains a noncanonical WH2 domain and an upstream proline-rich region (PRR) that by themselves are sufficient for actin interaction. Alternative splicing of Shtn1 at the C terminus and downstream of the WH2-PRR domain produces a long (SHTN1L or shootin1b) and a short (SHTN1S or shootin1a) isoform, which both contain the described PRR and WH2 domains. However, SHTN1S does not interact with actin due to inhibition mediated by an N-terminal CCD. A SHTN1L-specific C-terminal motif counters the intramolecular inhibition and allows SHNT1L to bind actin. A nuclear localization signal is embedded between PRR and WH2 and is subject to similar autoinhibition. SHTN1 would be the first WH2-containing molecule that adopts CCD-dependent autoinhibition and alternative splicing-dependent actin interaction.
Collapse
Affiliation(s)
- Volkan Ergin
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Sika Zheng
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
27
|
Zheng S. Alternative splicing programming of axon formation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1585. [PMID: 31922356 DOI: 10.1002/wrna.1585] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 01/02/2023]
Abstract
Alternative pre-mRNA splicing generates multiple mRNA isoforms of different structures and functions from a single gene. While the prevalence of alternative splicing control is widely recognized, and the underlying regulatory mechanisms have long been studied, the physiological relevance and biological necessity for alternative splicing are only slowly being revealed. Significant inroads have been made in the brain, where alternative splicing regulation is particularly pervasive and conserved. Various aspects of brain development and function (from neurogenesis, neuronal migration, synaptogenesis, to the homeostasis of neuronal activity) involve alternative splicing regulation. Recent studies have begun to interrogate the possible role of alternative splicing in axon formation, a neuron-exclusive morphological and functional characteristic. We discuss how alternative splicing plays an instructive role in each step of axon formation. Converging genetic, molecular, and cellular evidence from studies of multiple alternative splicing regulators in different systems shows that a biological process as complicated and unique as axon formation requires highly coordinated and specific alternative splicing events. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Sika Zheng
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| |
Collapse
|
28
|
Lopez Soto EJ, Gandal MJ, Gonatopoulos-Pournatzis T, Heller EA, Luo D, Zheng S. Mechanisms of Neuronal Alternative Splicing and Strategies for Therapeutic Interventions. J Neurosci 2019; 39:8193-8199. [PMID: 31619487 PMCID: PMC6794923 DOI: 10.1523/jneurosci.1149-19.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 01/15/2023] Open
Abstract
Many cellular and physiological processes are coordinated by regulatory networks that produce a remarkable complexity of transcript isoforms. In the mammalian nervous system, alternative pre-mRNA splicing generates functionally distinct isoforms that play key roles in normal physiology, supporting development, plasticity, complex behaviors, and cognition. Neuronal splicing programs controlled by RNA-binding proteins, are influenced by chromatin modifications and can exhibit neuronal subtype specificity. As highlighted in recent publications, aberrant alternative splicing is a major contributor to disease phenotypes. Therefore, understanding the underlying mechanisms of alternative splicing regulation and identifying functional splicing isoforms with critical phenotypic roles are expected to provide a comprehensive resource for therapeutic development, as illuminated by recent successful interventions of spinal muscular atrophy. Here, we discuss the latest progress in the study of the emerging complexity of alternative splicing mechanisms in neurons, and how these findings inform new therapies to correct and control splicing defects.
Collapse
Affiliation(s)
| | - Michael J Gandal
- Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095
| | | | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5158
| | - Diou Luo
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, and
| | - Sika Zheng
- Division of Biomedical Sciences, University of California at Riverside, Riverside, California 92521
| |
Collapse
|
29
|
Stork C, Li Z, Lin L, Zheng S. Developmental Xist induction is mediated by enhanced splicing. Nucleic Acids Res 2019; 47:1532-1543. [PMID: 30496473 PMCID: PMC6379716 DOI: 10.1093/nar/gky1198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 11/12/2022] Open
Abstract
X-inactive-specific transcript (Xist) is a long noncoding RNA (lncRNA) essential for inactivating one of the two X chromosomes in mammalian females. Random X chromosome inactivation is mediated by Xist RNA expressed from the inactive X chromosome. We found that Xist RNA is unspliced in naïve embryonic stem (ES) cells. Upon differentiation, Xist splicing becomes efficient across all exons independent of transcription, suggesting interdependent or coordinated removal of Xist introns. In female cells with mutated polypyrimidine tract binding protein 1 (Ptbp1), differentiation fails to substantially upregulate mature Xist RNA because of a defect in Xist splicing. We further found both Xist129 and XistCAS RNA are unspliced in Mus musculus 129SvJ/Mus castaneous (CAS) hybrid female ES cells. Upon differentiation, Xist129 exhibits a higher splicing efficiency than XistCAS, likely contributing to preferential inhibition of the X129 chromosome. Single cell analysis shows that the allelic choice of Xist splicing is linked to the inactive X chromosome. We conclude post-transcriptional control of Xist RNA splicing is an essential regulatory step of Xist induction. Our studies shed light on the developmental roles of splicing for nuclear-retained Xist lncRNA and suggest inefficient Xist splicing is an additional fail-safe mechanism to prevent Xist activity in ES cells.
Collapse
Affiliation(s)
- Cheryl Stork
- Graduate Program in Cell, Molecular and Developmental Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Zhelin Li
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California, Riverside, Riverside, CA 92521, USA
| | - Lin Lin
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Sika Zheng
- Graduate Program in Cell, Molecular and Developmental Biology, University of California, Riverside, Riverside, CA 92521, USA.,Graduate Program in Genetics, Genomics and Bioinformatics, University of California, Riverside, Riverside, CA 92521, USA.,Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
30
|
Singh NN, Singh RN. How RNA structure dictates the usage of a critical exon of spinal muscular atrophy gene. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194403. [PMID: 31323435 DOI: 10.1016/j.bbagrm.2019.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022]
Abstract
Role of RNA structure in pre-mRNA splicing has been implicated for several critical exons associated with genetic disorders. However, much of the structural studies linked to pre-mRNA splicing regulation are limited to terminal stem-loop structures (hairpins) sequestering splice sites. In few instances, role of long-distance interactions is implicated as the major determinant of splicing regulation. With the recent surge of reports of circular RNA (circRNAs) generated by backsplicing, role of Alu-associated RNA structures formed by long-range interactions are taking central stage. Humans contain two nearly identical copies of Survival Motor Neuron (SMN) genes, SMN1 and SMN2. Deletion or mutation of SMN1 coupled with the inability of SMN2 to compensate for the loss of SMN1 due to exon 7 skipping causes spinal muscular atrophy (SMA), one of the leading genetic diseases of children. In this review, we describe how structural elements formed by both local and long-distance interactions are being exploited to modulate SMN2 exon 7 splicing as a potential therapy for SMA. We also discuss how Alu-associated secondary structure modulates generation of a vast repertoire of SMN circRNAs. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA 50011, United States of America
| | - Ravindra N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA 50011, United States of America.
| |
Collapse
|
31
|
2-Aminothiazole-4-carboxamides Enhance Readthrough of Premature Termination Codons by Aminoglycosides. ACS Med Chem Lett 2019; 10:726-731. [PMID: 31097990 DOI: 10.1021/acsmedchemlett.8b00610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
Nonsense mutations introduce a premature termination codon (PTC) and are the underlying cause of multiple rare genetic diseases and cancers. Although certain aminoglycosides bind to eukaryotic ribosomes enabling incorporation of an amino acid at the PTC and formation of full-length protein, they are inefficient and toxic at therapeutic doses. Library screening in assays that measure readthrough at a PTC in the TP53 gene in human HDQ-P1 cells identified six novel 2-aminothiazole-4-carboxamide derivatives that potentiate the PTC readthrough (PTCR) efficiency of G418 when used in combination. The two most potent compounds incorporated a 4-indazole motif on the 2-aminothiazole nitrogen and a hydrophobic aryl substituent on the carboxamide nitrogen. These compounds are valuable tools to further investigate the therapeutic potential of aminoglycoside-induced PTCR.
Collapse
|
32
|
Zhang M, Ergin V, Lin L, Stork C, Chen L, Zheng S. Axonogenesis Is Coordinated by Neuron-Specific Alternative Splicing Programming and Splicing Regulator PTBP2. Neuron 2019; 101:690-706.e10. [PMID: 30733148 DOI: 10.1016/j.neuron.2019.01.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 11/08/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
How a neuron acquires an axon is a fundamental question. Piecemeal identification of many axonogenesis-related genes has been done, but coordinated regulation is unknown. Through unbiased transcriptome profiling of immature primary cortical neurons during early axon formation, we discovered an association between axonogenesis and neuron-specific alternative splicing. Known axonogenesis genes exhibit little expression alternation but widespread splicing changes. Axonogenesis-associated splicing is governed by RNA binding protein PTBP2, which is enriched in neurons and peaks around axonogenesis in the brain. Cortical depletion of PTBP2 prematurely induces axonogenesis-associated splicing, causes imbalanced expression of axonogenesis-associated isoforms, and specifically affects axon formation in vitro and in vivo. PTBP2-controlled axonogenesis-associated Shtn1 splicing determines SHTN1's capacity to regulate actin interaction, polymerization, and axon growth. Precocious Shtn1 isoform switch contributes to disorganized axon formation of Ptbp2-/- neurons. We conclude that PTBP2-orchestrated alternative splicing programming is required for robust generation of a single axon in mammals.
Collapse
Affiliation(s)
- Min Zhang
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Volkan Ergin
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Lin Lin
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Cheryl Stork
- Graduate Program in Cell, Molecular and Developmental Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Liang Chen
- Department of Biological Sciences, Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Sika Zheng
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA; Graduate Program in Cell, Molecular and Developmental Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
33
|
Jaffrey SR, Wilkinson MF. Nonsense-mediated RNA decay in the brain: emerging modulator of neural development and disease. Nat Rev Neurosci 2018; 19:715-728. [PMID: 30410025 PMCID: PMC6396682 DOI: 10.1038/s41583-018-0079-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Steady-state RNA levels are controlled by the balance between RNA synthesis and RNA turnover. A selective RNA turnover mechanism that has received recent attention in neurons is nonsense-mediated RNA decay (NMD). NMD has been shown to influence neural development, neural stem cell differentiation decisions, axon guidance and synaptic plasticity. In humans, NMD factor gene mutations cause some forms of intellectual disability and are associated with neurodevelopmental disorders, including schizophrenia and autism spectrum disorder. Impairments in NMD are linked to neurodegenerative disorders, including amyotrophic lateral sclerosis. We discuss these findings, their clinical implications and challenges for the future.
Collapse
Affiliation(s)
- Samie R Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA.
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, La Jolla, CA, USA.
| |
Collapse
|
34
|
Abstract
Alternative splicing, a key regulatory process of gene expression, is controlled by trans-acting factors that recognize cis-elements in premature RNA transcripts to affect spliceosome assembly and splice site choices. Extracellular stimuli and signaling cascades can converge on RNA binding splicing regulators to affect alternative splicing. Defects in splicing regulation have been associated with various human diseases, and modification of disease-causing splicing events presents great therapeutic promise. Determining splicing regulators and/or upstream modulators has been difficult with low throughput, low sensitivity, and low specificity. IRAS (identifying regulators of alternative splicing) is a novel cell-based high-throughput screening strategy designed specifically to address these challenges and has achieved high throughput, high sensitivity, and high specificity. Here, we describe the IRAS method in detail with a pair of dual-fluorescence minigene reporters that produces GFP and RFP fluorescent signals to assay the two spliced isoforms exclusively. These two complementary mini-gene reporters alter GFP/RFP output ratios in the opposite direction in response to only a true splicing change. False positives from a signal screen do not stimulate opposite changes in GFP/RFP ratios. The reporter pair in conjunction with robotic liquid handlers and arrayed libraries allows IRAS to screen for both positive and negative splicing regulators with high sensitivity and specificity in a high-throughput manner.
Collapse
|
35
|
Beyond quality control: The role of nonsense-mediated mRNA decay (NMD) in regulating gene expression. Semin Cell Dev Biol 2018; 75:78-87. [DOI: 10.1016/j.semcdb.2017.08.053] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 11/23/2022]
|
36
|
Xie S, Zhang X, Zhou Z, Li X, Huang Y, Zhang J, Weng J. Identification of genes alternatively spliced in developing maize endosperm. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:59-66. [PMID: 28945323 DOI: 10.1111/plb.12631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/17/2017] [Indexed: 06/07/2023]
Abstract
The process of alternative splicing is critical for the regulation of growth and development of plants. Thus far, little is known about the role of alternative splicing in the regulation of maize (Zea mays L.) endosperm development. RNA sequencing (RNA-seq) data of endosperms from two maize inbred lines, Mo17 and Ji419, at 15 and 25 days after pollination (DAP), respectively, were used to identify genes that were alternatively spliced during endosperm development. Intron retention (IR) in GRMZM2G005887 was further validated using PCR and re-sequencing technologies. In total, 49,000 alternatively spliced events and ca. 20,000 alternatively spliced genes were identified in the two maize inbred lines. Of these, 30 genes involved in amino acid biosynthesis and starch biosynthesis were identified, with IR occurring only in a specific sample, and were significantly co-expressed with ten well-known genes related to maize endosperm development. Moreover, IR in GRMZM2G005887, which encodes a cysteine synthase, was confirmed to occur only in the endosperm of Mo17 at 15 DAP, resulting in the retention of a 121-bp fragment in its 5' untranslated region. Two cis-acting regulatory elements, CAAT-box and TATA-box were observed in the retained fragment in Mo17 at 15 DAP; this could regulate the expression of this gene and influence endosperm development. The results suggest that the 30 genes with IR identified herein might be associated with maize endosperm development, and are likely to play important roles in the developing maize endosperm.
Collapse
Affiliation(s)
- S Xie
- College of Life Science, Sichuan Agricultural University, Ya'an, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - X Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Z Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - X Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Y Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - J Zhang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - J Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
37
|
Vuong JK, Lin CH, Zhang M, Chen L, Black DL, Zheng S. PTBP1 and PTBP2 Serve Both Specific and Redundant Functions in Neuronal Pre-mRNA Splicing. Cell Rep 2017; 17:2766-2775. [PMID: 27926877 DOI: 10.1016/j.celrep.2016.11.034] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/10/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023] Open
Abstract
Families of alternative splicing regulators often contain multiple paralogs presumed to fulfill different functions. Polypyrimidine tract binding proteins PTBP1 and PTBP2 reprogram developmental pre-mRNA splicing in neurons, but how their regulatory networks differ is not understood. To compare their targeting, we generated a knockin allele that conditionally expresses PTBP1. Bred to a Ptbp2 knockout, the transgene allowed us to compare the developmental and molecular phenotypes of mice expressing only PTBP1, only PTBP2, or neither protein in the brain. This knockin Ptbp1 rescued a forebrain-specific, but not a pan-neuronal, Ptbp2 knockout, demonstrating both redundant and distinct roles for the proteins. Many developmentally regulated exons exhibited different sensitivities to PTBP1 and PTBP2. Nevertheless, the two paralogs displayed similar RNA binding across the transcriptome, indicating that their differential targeting does not derive from their RNA interactions, but from possible different cofactor interactions.
Collapse
Affiliation(s)
- John K Vuong
- Division of Biomedical Science, University of California, Riverside, Riverside, CA 92521, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Min Zhang
- Division of Biomedical Science, University of California, Riverside, Riverside, CA 92521, USA
| | - Liang Chen
- Division of Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Sika Zheng
- Division of Biomedical Science, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
38
|
Popovitchenko T, Rasin MR. Transcriptional and Post-Transcriptional Mechanisms of the Development of Neocortical Lamination. Front Neuroanat 2017; 11:102. [PMID: 29170632 PMCID: PMC5684109 DOI: 10.3389/fnana.2017.00102] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/25/2017] [Indexed: 12/31/2022] Open
Abstract
The neocortex is a laminated brain structure that is the seat of higher cognitive capacity and responses, long-term memory, sensory and emotional functions, and voluntary motor behavior. Proper lamination requires that progenitor cells give rise to a neuron, that the immature neuron can migrate away from its mother cell and past other cells, and finally that the immature neuron can take its place and adopt a mature identity characterized by connectivity and gene expression; thus lamination proceeds through three steps: genesis, migration, and maturation. Each neocortical layer contains pyramidal neurons that share specific morphological and molecular characteristics that stem from their prenatal birth date. Transcription factors are dynamic proteins because of the cohort of downstream factors that they regulate. RNA-binding proteins are no less dynamic, and play important roles in every step of mRNA processing. Indeed, recent screens have uncovered post-transcriptional mechanisms as being integral regulatory mechanisms to neocortical development. Here, we summarize major aspects of neocortical laminar development, emphasizing transcriptional and post-transcriptional mechanisms, with the aim of spurring increased understanding and study of its intricacies.
Collapse
Affiliation(s)
- Tatiana Popovitchenko
- Neuroscience and Cell Biology, Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Mladen-Roko Rasin
- Neuroscience and Cell Biology, Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
39
|
Babenko VN, Bragin AO, Chadaeva IV, Markel AL, Orlov YL. Differential alternative splicing in brain regions of rats selected for aggressive behavior. Mol Biol 2017. [DOI: 10.1134/s002689331705003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Li Z, Vuong JK, Zhang M, Stork C, Zheng S. Inhibition of nonsense-mediated RNA decay by ER stress. RNA (NEW YORK, N.Y.) 2017; 23:378-394. [PMID: 27940503 PMCID: PMC5311500 DOI: 10.1261/rna.058040.116] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 12/06/2016] [Indexed: 05/26/2023]
Abstract
Nonsense-mediated RNA decay (NMD) selectively degrades mutated and aberrantly processed transcripts that contain premature termination codons (PTC). Cellular NMD activity is typically assessed using exogenous PTC-containing reporters. We overcame some inherently problematic aspects of assaying endogenous targets and developed a broadly applicable strategy to reliably and easily monitor changes in cellular NMD activity. Our new method was genetically validated for distinguishing NMD regulation from transcriptional control and alternative splicing regulation, and unexpectedly disclosed a different sensitivity of NMD targets to NMD inhibition. Applying this robust method for screening, we identified NMD-inhibiting stressors but also found that NMD inactivation was not universal to cellular stresses. The high sensitivity and broad dynamic range of our method revealed a strong correlation between NMD inhibition, endoplasmic reticulum (ER) stress, and polysome disassembly upon thapsigargin treatment in a temporal and dose-dependent manner. We found little evidence of calcium signaling mediating thapsigargin-induced NMD inhibition. Instead, we discovered that of the three unfolded protein response (UPR) pathways activated by thapsigargin, mainly protein kinase RNA-like endoplasmic reticulum kinase (PERK) was required for NMD inhibition. Finally, we showed that ER stress compounded TDP-43 depletion in the up-regulation of NMD isoforms that had been implicated in the pathogenic mechanisms of amyotrophic lateral sclerosis and frontotemporal dementia, and that the additive effect of ER stress was completely blocked by PERK deficiency.
Collapse
Affiliation(s)
- Zhelin Li
- Division of Biomedical Sciences, University of California, Riverside, California 92521, USA
| | - John K Vuong
- Division of Biomedical Sciences, University of California, Riverside, California 92521, USA
| | - Min Zhang
- Division of Biomedical Sciences, University of California, Riverside, California 92521, USA
| | - Cheryl Stork
- Division of Biomedical Sciences, University of California, Riverside, California 92521, USA
| | - Sika Zheng
- Division of Biomedical Sciences, University of California, Riverside, California 92521, USA
| |
Collapse
|