1
|
Borrego-Ruiz A, Borrego JJ. Human gut microbiome, diet, and mental disorders. Int Microbiol 2025; 28:1-15. [PMID: 38561477 PMCID: PMC11775079 DOI: 10.1007/s10123-024-00518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Diet is one of the most important external factor shaping the composition and metabolic activities of the gut microbiome. The gut microbiome plays a crucial role in host health, including immune system development, nutrients metabolism, and the synthesis of bioactive molecules. In addition, the gut microbiome has been described as critical for the development of several mental disorders. Nutritional psychiatry is an emerging field of research that may provide a link between diet, microbial function, and brain health. In this study, we have reviewed the influence of different diet types, such as Western, Mediterranean, vegetarian, and ketogenic, on the gut microbiota composition and function, and their implication in various neuropsychiatric and psychological disorders.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga. Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina BIONAND, Málaga, Spain.
| |
Collapse
|
2
|
Yuan D, Meng Y, Ai Z, Zhou S. Research trend of epigenetics and depression: adolescents' research needs to strengthen. Front Neurosci 2024; 17:1289019. [PMID: 38249586 PMCID: PMC10799345 DOI: 10.3389/fnins.2023.1289019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024] Open
Abstract
Objective With its high prevalence, depression's pathogenesis remains unclear. Recent attention has turned to the interplay between depression and epigenetic modifications. However, quantitative bibliometric analyses are lacking. This study aims to visually analyze depression epigenetics trends, utilizing bibliometric tools, while comprehensively reviewing its epigenetic mechanisms. Methods Utilizing the Web of Science core dataset, we collected depression and epigenetics-related studies. Employing VOSViewer software, we visualized data on authors, countries, journals, and keywords. A ranking table highlighted field leaders. Results Analysis encompassed 3,469 depression epigenetics studies published from January 2002 to June 2023. Key findings include: (1) Gradual publication growth, peaking in 2021; (2) The United States and its research institutions leading contributions; (3) Need for enhanced collaborations, spanning international and interdisciplinary efforts; (4) Keyword clustering revealed five main themes-early-life stress, microRNA, genetics, DNA methylation, and histone acetylation-highlighting research hotspots; (5) Limited focus on adolescent depression epigenetics, warranting increased attention. Conclusion Taken together, this study revealed trends and hotspots in depression epigenetics research, underscoring global collaboration, interdisciplinary fusion, and multi-omics data's importance. It discussed in detail the potential of epigenetic mechanisms in depression diagnosis and treatment, advocating increased focus on adolescent research in this field. Insights aid researchers in shaping their investigative paths toward understanding depression's epigenetic mechanisms and antidepressant interventions.
Collapse
Affiliation(s)
- Dongfeng Yuan
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yitong Meng
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhongzhu Ai
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Modern Engineering Research Center of Traditional Chinese Medicine and Ethnic Medicine of Hubei Province, Wuhan, China
| | - Shiquan Zhou
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
3
|
Ngoupaye GT, Mokgokong M, Madlala T, Mabandla MV. Alteration of the α5 GABA receptor and 5HTT lead to cognitive deficits associated with major depressive-like behaviors in a 14-day combined stress rat model. Int J Neurosci 2023; 133:959-976. [PMID: 34937496 DOI: 10.1080/00207454.2021.2019033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 07/13/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Current models used to study the pathophysiology of major depressive disorder (MDD) are laborious and time consuming. This study examined the effect of a 14-day combined stress model (CS; corticosterone injection and restraint stress) in male Sprague-Dawley rats and also compare the effect of CS versus 28-day corticosterone treatment on depressive-like behaviour and cognitive deficits. MATERIEL AND METHODS Depressive-like behaviours and cognitive deficits were assessed in the forced swim test (FST), sucrose preference (SPT), Morris water maze (MWM) and novel object recognition (NORT) tests. Real-time PCR and ELISA were respectively used to detect expression of the serotonin transporter (5-HTT), serotonin 1 A receptor (5-HT1A), α5 GABAA receptor, and the concentrations of corticosterone (plasma), GABA and acetylcholinesterase (AChE) in the hippocampus and Prefrontal cortex (PFC).Results CS group showed increased immobility time in the FST, time to reach the MWM platform, higher corticosterone level, and increased expressions of hippocampal and PFC 5-HT1A and α5 GABAA receptors, and AChE compared to their control groups. In contrast, reductions in SPT ratio, discrimination index in NORT, time in target quadrant, and hippocampal 5-HTT expression was noted relative to their control group. Compared to the 28-day corticosterone only group, PFC 5-HT1A, Hippocampal 5-HTT were reduced, while PFC 5-HTT, Hippocampal α5 GABAA receptors, and AChE concentrations were higher in the CS group. CONCLUSION Our CS model induced depressive-like behaviour with early cognitive deficits in rats affecting both hippocampus and PFC. The CS model may be useful in investigating new and comprehensive treatment strategies for MDD.
Collapse
Affiliation(s)
- Gwladys Temkou Ngoupaye
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Makwena Mokgokong
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thobeka Madlala
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Musa Vuyisile Mabandla
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
4
|
Castillo-Navarrete JL, Bustos C, Guzman-Castillo A, Vicente B. Increased academic stress is associated with decreased plasma BDNF in Chilean college students. PeerJ 2023; 11:e16357. [PMID: 37941931 PMCID: PMC10629390 DOI: 10.7717/peerj.16357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction Academic stress (AS) is a prevalent challenge faced by university students, potentially affecting molecular indicators such as brain-derived neurotrophic factor (BDNF) and global DNA methylation (G-DNA-M). These indicators could illuminate the physiological ramifications of academic stress. Study Design and Methods This research followed a quantitative, non-experimental, longitudinal panel design spanning two academic semesters, observing phenomena in their natural context. Students from the Medical Technology program at Universidad de Concepción, Chile were involved, with assessments at the beginning and during heightened academic stress periods. Sample Of the total participants, 63.0% were females, with an average age of 21.14 years at baseline, and 36.92% were males, averaging 21.36 years. By the study's conclusion, female participants averaged 21.95 years, and males 22.13 years. Results Significant differences were observed between initial and final assessments for the SISCO-II Inventory of Academic Stress and Beck Depression Inventory-II, notably in stressor scores, and physical, and psychological reactions. Gender differences emerged in the final physical and psychological reactions. No significant changes were detected between the two assessments in plasma BDNF or G-DNA-M values. A refined predictive model showcased that, on average, there was a 3.56% decrease in females' plasma BDNF at the final assessment and a 17.14% decrease in males. In the sample, the G-DNA-M percentage at the final assessment increased by 15.06% from the baseline for females and 18.96% for males. Conclusions The study underscores the physiological impact of academic stress on university students, evidenced by changes in markers like BDNF and G-DNA-M. These findings offer an in-depth understanding of the intricate mechanisms regulating academic stress responses and highlight the need for interventions tailored to mitigate its physiological and psychological effects.
Collapse
Affiliation(s)
- Juan-Luis Castillo-Navarrete
- Departamento Tecnología Médica, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- PhD Programme in Mental Health, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
| | - Claudio Bustos
- PhD Programme in Mental Health, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
- Departamento de Psicología, Facultad de Ciencias Sociales, Universidad de Concepción, Chile, Chile
| | - Alejandra Guzman-Castillo
- PhD Programme in Mental Health, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
- Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Benjamin Vicente
- PhD Programme in Mental Health, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
5
|
Corrigan M, O'Rourke A, Moran B, Fletcher J, Harkin A. Inflammation in the pathogenesis of depression: a disorder of neuroimmune origin. Neuronal Signal 2023; 7:NS20220054. [PMID: 37457896 PMCID: PMC10345431 DOI: 10.1042/ns20220054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
There are several hypotheses concerning the underlying pathophysiological mechanisms of major depression, which centre largely around adaptive changes in neuronal transmission and plasticity, neurogenesis, and circuit and regional connectivity. The immune and endocrine systems are commonly implicated in driving these changes. An intricate interaction of stress hormones, innate immune cells and the actions of soluble mediators of immunity within the nervous system is described as being associated with the symptoms of depression. Bridging endocrine and immune processes to neurotransmission and signalling within key cortical and limbic brain circuits are critical to understanding depression as a disorder of neuroimmune origins. Emergent areas of research include a growing recognition of the adaptive immune system, advances in neuroimaging techniques and mechanistic insights gained from transgenic animals. Elucidation of glial-neuronal interactions is providing additional avenues into promising areas of research, the development of clinically relevant disease models and the discovery of novel therapies. This narrative review focuses on molecular and cellular mechanisms that are influenced by inflammation and stress. The aim of this review is to provide an overview of our current understanding of depression as a disorder of neuroimmune origin, focusing on neuroendocrine and neuroimmune dysregulation in depression pathophysiology. Advances in current understanding lie in pursuit of relevant biomarkers, as the potential of biomarker signatures to improve clinical outcomes is yet to be fully realised. Further investigations to expand biomarker panels including integration with neuroimaging, utilising individual symptoms to stratify patients into more homogenous subpopulations and targeting the immune system for new treatment approaches will help to address current unmet clinical need.
Collapse
Affiliation(s)
- Myles Corrigan
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- Transpharmation Ireland, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Aoife M. O'Rourke
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Barry Moran
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Jean M. Fletcher
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
6
|
Abstract
Epigenetic mechanisms such as DNA methylation (DNAm) have been associated with stress responses and increased vulnerability to depression. Abnormal DNAm is observed in stressed animals and depressed individuals. Antidepressant treatment modulates DNAm levels and regulates gene expression in diverse tissues, including the brain and the blood. Therefore, DNAm could be a potential therapeutic target in depression. Here, we reviewed the current knowledge about the involvement of DNAm in the behavioural and molecular changes associated with stress exposure and depression. We also evaluated the possible use of DNAm changes as biomarkers of depression. Finally, we discussed current knowledge limitations and future perspectives.
Collapse
|
7
|
Olfactory learning and memory in the greater short-nosed fruit bat Cynopterus sphinx: the influence of conspecifics distress calls. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:667-679. [PMID: 34426872 DOI: 10.1007/s00359-021-01505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 07/13/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
This study was designed to test whether Cynopterus sphinx distress calls influence olfactory learning and memory in conspecifics. Bats were exposed to distress calls/playbacks (PBs) of distress calls/modified calls and were then trained to novel odors. Bats exposed to distress calls/PBs made significantly fewer feeding attempts and bouts of PBs exposed to modified calls, which significantly induced the expression of c-Fos in the caudomedial neostriatum (NCM) and the amygdala compared to bats exposed to modified calls and trained controls. However, the expression of c-Fos in the hippocampus was not significantly different between the experimental groups. Further, protein phosphatase-1 (PP-1) expression was significantly lower, and the expression levels of E1A homologue of CREB-binding protein (CBP) (P300), brain-derived neurotrophic factor (BDNF) and its tyrosine kinase B1 (TrkB1) receptor were significantly higher in the hippocampus of control/bats exposed to modified calls compared to distress calls/PBs of distress call-exposed bats. Exposure to the call possibly alters the reciprocal interaction between the amygdala and the hippocampus, accordingly regulating the expression levels of PP1, P300 and BDNF and its receptor TrkB1 following training to the novel odor. Thus, the learning and memory consolidation processes were disrupted and showed fewer feeding attempts and bouts. This model may be helpful for understanding the contributions of stressful social communications to human disorders.
Collapse
|
8
|
Taghadosi Z, Zarifkar A, Razban V, Owjfard M, Aligholi H. Effect of chronically electric foot shock stress on spatial memory and hippocampal blood brain barrier permeability. Behav Brain Res 2021; 410:113364. [PMID: 33992668 DOI: 10.1016/j.bbr.2021.113364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Maintaining blood-brain barrier (BBB) contributes critically to preserving normal brain functions. According to the available evidence, intense or chronic exposure to stress would potentially affect different brain structures, such as the hippocampus, negatively. The purpose of this study was to define the relationship between the BBB permeability of the hippocampus and the performance of spatial learning and memory under chronically electric foot shock stress. Sixteen rats were divided into the control and stress groups equally. Animals in the stress group were exposed to foot shock (1 mA, 1 Hz) for 10-s duration every 60 s (1 h/day) for 10 consecutive days. The anxiety-related behavior, spatial learning, and memory were assessed by an Open Field (OF) and the Morris Water Maze (MWM) respectively. The hippocampal BBB permeability was determined by Evans blue penetration assay. Our results demonstrated that the stress model not only increased locomotor activities in the OF test but reduced spatial learning and memory in MWM. Moreover, these effects coincided with a significant increase in hippocampal BBB permeability. In sum, the stress model can be used in future studies focusing on the relationship between stress and BBB permeability of the hippocampus.
Collapse
Affiliation(s)
- Zohreh Taghadosi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asadollah Zarifkar
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Science and Technology, Shiraz University of Medical Science, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Cotter J, Fawkes N, Shah N. Coffee fruit extract - a nutritional stimulator of endogenous BDNF. Nutr Neurosci 2021; 25:2008-2010. [PMID: 33856273 DOI: 10.1080/1028415x.2021.1913953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jack Cotter
- Medical and Scientific Affairs, RB Nutrition Institute, Slough, UK
| | - Neil Fawkes
- Medical and Scientific Affairs, RB Nutrition Institute, Slough, UK
| | - Neil Shah
- Medical and Scientific Affairs, RB Nutrition Institute, Slough, UK.,Department of Paediatric Gastroenterology, UCL, London, UK
| |
Collapse
|
10
|
López-Taboada I, González-Pardo H, Conejo NM. Western Diet: Implications for Brain Function and Behavior. Front Psychol 2020; 11:564413. [PMID: 33329193 PMCID: PMC7719696 DOI: 10.3389/fpsyg.2020.564413] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
The Western diet (WD) pattern characterized by high daily intake of saturated fats and refined carbohydrates often leads to obesity and overweight, and it has been linked to cognitive impairment and emotional disorders in both animal models and humans. This dietary pattern alters the composition of gut microbiota, influencing brain function by different mechanisms involving the gut-brain axis. In addition, long-term exposure to highly palatable foods typical of WD could induce addictive-like eating behaviors and hypothalamic-pituitary-adrenal (HPA) axis dysregulation associated with chronic stress, anxiety, and depression. In turn, chronic stress modulates eating behavior, and it could have detrimental effects on different brain regions such as the hippocampus, hypothalamus, amygdala, and several cortical regions. Moreover, obesity and overweight induce neuroinflammation, causing neuronal dysfunction. In this review, we summarize the current scientific evidence about the mechanisms and factors relating WD consumption with altered brain function and behavior. Possible therapeutic interventions and limitations are also discussed, aiming to tackle and prevent this current pandemic.
Collapse
Affiliation(s)
| | | | - Nélida María Conejo
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| |
Collapse
|
11
|
Collett G, Craenen K, Young W, Gilhooly M, Anderson RM. The psychological consequences of (perceived) ionizing radiation exposure: a review on its role in radiation-induced cognitive dysfunction. Int J Radiat Biol 2020; 96:1104-1118. [PMID: 32716221 DOI: 10.1080/09553002.2020.1793017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Exposure to ionizing radiation following environmental contamination (e.g., the Chernobyl and Fukushima nuclear accidents), radiotherapy and diagnostics, occupational roles and space travel has been identified as a possible risk-factor for cognitive dysfunction. The deleterious effects of high doses (≥1.0 Gy) on cognitive functioning are fairly well-understood, while the consequences of low (≤0.1 Gy) and moderate doses (0.1-1.0 Gy) have been receiving more research interest over the past decade. In addition to any impact of actual exposure on cognitive functioning, the persistent psychological stress arising from perceived exposure, particularly following nuclear accidents, may itself impact cognitive functioning. In this review we offer a novel interdisciplinary stance on the cognitive impact of radiation exposure, considering psychological and epidemiological observations of different exposure scenarios such as atomic bombings, nuclear accidents, occupational and medical exposures while accounting for differences in dose, rate of exposure and exposure type. The purpose is to address the question that perceived radiation exposure - even where the actual absorbed dose is 0.0 Gy above background dose - can result in psychological stress, which could in turn lead to cognitive dysfunction. In addition, we highlight the interplay between the mechanisms of perceived exposure (i.e., stress) and actual exposure (i.e., radiation-induced cellular damage), in the generation of radiation-induced cognitive dysfunction. In all, we offer a comprehensive and objective review addressing the potential for cognitive defects in the context of low- and moderate-dose IR exposures. CONCLUSIONS Overall the evidence shows prenatal exposure to low and moderate doses to be detrimental to brain development and subsequent cognitive functioning, however the evidence for adolescent and adult low- and moderate-dose exposure remains uncertain. The persistent psychological stress following accidental exposure to low-doses in adulthood may pose a greater threat to our cognitive functioning. Indeed, the psychological implications for instructed cohorts (e.g., astronauts and radiotherapy patients) is less clear and warrants further investigation. Nonetheless, the psychosocial consequences of low- and moderate-dose exposure must be carefully considered when evaluating radiation effects on cognitive functioning, and to avoid unnecessary harm when planning public health response strategies.
Collapse
Affiliation(s)
- George Collett
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Kai Craenen
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - William Young
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Mary Gilhooly
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Rhona M Anderson
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
12
|
Rafia A, Oryan S, Eidi A, Sahraei H. Stress-Induced Spatial Memory Deficit Reversed by Basolateral Amygdala NMDA Receptor Inhibition in Male Wistar Rats. Basic Clin Neurosci 2020; 11:447-456. [PMID: 33613882 PMCID: PMC7878049 DOI: 10.32598/bcn.11.4.15.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/24/2019] [Accepted: 02/10/2020] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION The present study investigated the role of the Basolateral Amygdala (BLA) N-methyl-D-aspartate (NMDA) receptors in stress-induced spatial memory disturbance among the male Wistar rats. METHODS The male Wistar rats (Average weight =200 g) were cannulated bilaterally in the BLA, and entered the study (n=6-8) after one week. They received seven electro-foot-shock stress sessions on seven consecutive days. Memantine (0.1, 1, and 5 μg/rat) or saline (0.5 μL/ rat) was injected into the BLA, five minutes before each stress session. The control groups received the same doses of memantine and no stress. After the end of the stress sessions, blood samples were taken from all animals to evaluate their plasma corticosterone. Also, the spatial learning and memory of the study animals were evaluated using the Barnes maze method. The animals experienced five consecutive days of training on the maze for spatial learning. On the sixth day, their spatial memory was evaluated on the maze. Time, distance, the number of errors, and the taking strategy for reaching the target hole were considered as the parameters for the spatial learning and memory evaluation. RESULTS Stress increases the plasma corticosterone level, while memantine preadministration reduces the stress effects. Besides, stress increases the time and distance to the target hole and the number of errors. Stress changed the animals' strategy from serial to random type. However, the intra-BLA memantine reversed all the disturbances induced by the stress. CONCLUSION This study indicated that the BLA glutamate NMDA receptors modulate the effect of stress on spatial learning and memory deficit.
Collapse
Affiliation(s)
- Ahmad Rafia
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Tehran, Iran
| | - Shahrbanoo Oryan
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Tehran, Iran
| | - Hedayat Sahraei
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Arias JA, Williams C, Raghvani R, Aghajani M, Baez S, Belzung C, Booij L, Busatto G, Chiarella J, Fu CH, Ibanez A, Liddell BJ, Lowe L, Penninx BWJH, Rosa P, Kemp AH. The neuroscience of sadness: A multidisciplinary synthesis and collaborative review. Neurosci Biobehav Rev 2020; 111:199-228. [PMID: 32001274 DOI: 10.1016/j.neubiorev.2020.01.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/17/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023]
Abstract
Sadness is typically characterized by raised inner eyebrows, lowered corners of the mouth, reduced walking speed, and slumped posture. Ancient subcortical circuitry provides a neuroanatomical foundation, extending from dorsal periaqueductal grey to subgenual anterior cingulate, the latter of which is now a treatment target in disorders of sadness. Electrophysiological studies further emphasize a role for reduced left relative to right frontal asymmetry in sadness, underpinning interest in the transcranial stimulation of left dorsolateral prefrontal cortex as an antidepressant target. Neuroimaging studies - including meta-analyses - indicate that sadness is associated with reduced cortical activation, which may contribute to reduced parasympathetic inhibitory control over medullary cardioacceleratory circuits. Reduced cardiac control may - in part - contribute to epidemiological reports of reduced life expectancy in affective disorders, effects equivalent to heavy smoking. We suggest that the field may be moving toward a theoretical consensus, in which different models relating to basic emotion theory and psychological constructionism may be considered as complementary, working at different levels of the phylogenetic hierarchy.
Collapse
Affiliation(s)
- Juan A Arias
- Department of Psychology, Swansea University, United Kingdom; Department of Statistics, Mathematical Analysis, and Operational Research, Universidade de Santiago de Compostela, Spain
| | - Claire Williams
- Department of Psychology, Swansea University, United Kingdom
| | - Rashmi Raghvani
- Department of Psychology, Swansea University, United Kingdom
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam UMC, Location VUMC, GGZ InGeest Research & Innovation, Amsterdam Neuroscience, the Netherlands
| | | | | | - Linda Booij
- Department of Psychology, Concordia University Montreal, Canada; CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | | | - Julian Chiarella
- Department of Psychology, Concordia University Montreal, Canada; CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | - Cynthia Hy Fu
- School of Psychology, University of East London, United Kingdom; Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Agustin Ibanez
- Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile; Universidad Autonoma del Caribe, Barranquilla, Colombia; Centre of Excellence in Cognition and its Disorders, Australian Research Council (ARC), New South Wales, Australia
| | | | - Leroy Lowe
- Neuroqualia (NGO), Turo, Nova Scotia, Canada
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC, Location VUMC, GGZ InGeest Research & Innovation, Amsterdam Neuroscience, the Netherlands
| | - Pedro Rosa
- Department of Psychiatry, University of Sao Paulo, Brazil
| | - Andrew H Kemp
- Department of Psychology, Swansea University, United Kingdom; Department of Psychiatry, University of Sao Paulo, Brazil; Discipline of Psychiatry, and School of Psychology, University of Sydney, Sydney, Australia.
| |
Collapse
|
14
|
Takaki N, Uchiwa T, Furuse M, Yasuo S. Effect of postnatal photoperiod on DNA methylation dynamics in the mouse brain. Brain Res 2020; 1733:146725. [DOI: 10.1016/j.brainres.2020.146725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 10/26/2019] [Accepted: 02/10/2020] [Indexed: 02/06/2023]
|
15
|
Vidrascu EM, Bashore AC, Howard TD, Moore JB. Effects of early- and mid-life stress on DNA methylation of genes associated with subclinical cardiovascular disease and cognitive impairment: a systematic review. BMC MEDICAL GENETICS 2019; 20:39. [PMID: 30866842 PMCID: PMC6417232 DOI: 10.1186/s12881-019-0764-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/04/2019] [Indexed: 12/18/2022]
Abstract
Background Traditional and novel risk factors cannot sufficiently explain the differential susceptibility to cardiovascular disease (CVD). Epigenetics may serve to partially explain this residual disparity, with life course stressors shown to modify methylation of genes implicated in various diseases. Subclinical CVD is often comorbid with cognitive impairment (CI), which warrants research into the identification of common genes for both conditions. Methods We conducted a systematic review of the existing literature to identify studies depicting the relationship between life course stressors, DNA methylation, subclinical CVD, and cognition. Results A total of 16 articles (8 human and 8 animal) were identified, with the earliest published in 2008. Four genes (COMT, NOS3, Igfl1, and Sod2) were analyzed by more than one study, but not in association with both CVD and CI. One gene (NR3C1) was associated with both outcomes, albeit not within the same study. There was some consistency among studies with markers used for subclinical CVD and cognition, but considerable variability in stress exposure (especially in human studies), cell type/tissue of interest, method for detection of DNA methylation, and risk factors. Racial and ethnic differences were not considered, but analysis of sex in one human study found statistically significant differentially methylated X-linked loci associated with attention and intelligence. Conclusions This review suggests the need for additional studies to implement more comprehensive and methodologically rigorous study designs that can better identify epigenetic biomarkers to differentiate individuals vulnerable to both subclinical CVD and associated CI. Electronic supplementary material The online version of this article (10.1186/s12881-019-0764-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena M Vidrascu
- Department of Family & Community Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Alexander C Bashore
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Timothy D Howard
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Justin B Moore
- Department of Family & Community Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
16
|
Wilkinson L, Verhoog NJD, Louw A. Disease- and treatment-associated acquired glucocorticoid resistance. Endocr Connect 2018; 7:R328-R349. [PMID: 30352419 PMCID: PMC6280593 DOI: 10.1530/ec-18-0421] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022]
Abstract
The development of resistance to glucocorticoids (GCs) in therapeutic regimens poses a major threat. Generally, GC resistance is congenital or acquired over time as a result of disease progression, prolonged GC treatment or, in some cases, both. Essentially, disruptions in the function and/or pool of the glucocorticoid receptor α (GRα) underlie this resistance. Many studies have detailed how alterations in GRα function lead to diminished GC sensitivity; however, the current review highlights the wealth of data concerning reductions in the GRα pool, mediated by disease-associated and treatment-associated effects, which contribute to a significant decrease in GC sensitivity. Additionally, the current understanding of the molecular mechanisms involved in driving reductions in the GRα pool is discussed. After highlighting the importance of maintaining the level of the GRα pool to combat GC resistance, we present current strategies and argue that future strategies to prevent GC resistance should involve biased ligands with a predisposition for reduced GR dimerization, a strategy originally proposed as the SEMOGRAM-SEDIGRAM concept to reduce the side-effect profile of GCs.
Collapse
Affiliation(s)
- Legh Wilkinson
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
- Correspondence should be addressed to A Louw:
| |
Collapse
|
17
|
Ibn Lahmar Andaloussi Z, Taghzouti K, Abboussi O. Behavioural and epigenetic effects of paternal exposure to cannabinoids during adolescence on offspring vulnerability to stress. Int J Dev Neurosci 2018; 72:48-54. [PMID: 30476535 DOI: 10.1016/j.ijdevneu.2018.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/03/2018] [Accepted: 11/21/2018] [Indexed: 12/29/2022] Open
Abstract
Chronic cannabinoid exposure during adolescence in male rats induces chronic cognitive and emotional impairments. However, the impact of this form of exposure on offspring vulnerability to stress is unknown. The aim of this study was to evaluate the behavioural and epigenetic effects of stress in the offspring of male rats whose fathers were exposed to cannabinoids during adolescence. Male adolescent offspring of Win55,212-2 (1.2 mg/kg) treated rats were exposed during one week to variable stressors and subjected to behavioural tests of anxiety and episodic-like memory, followed by an assessment of global DNA methylation and expression of DNA methyltransferases enzymes DNMT1 and DNMT3a mRNA in the prefrontal cortex. Stress exposure induced a significant anxiogenic-like effect but did not affect the episodic-like memory in the offspring of Win55,212-2 exposed fathers in comparison to the offspring of non-exposed fathers. These behavioural changes were subsequent to a significant increase in global DNA methylation and DNMT1 and DNMTa3 transcription in the prefrontal cortex. These data suggest that the deleterious effect of chronic exposure to cannabinoids during adolescence are not limited to the exposed individuals but may increase the vulnerability to stress-induced anxiety in the offspring and alter their epigenetic programming.
Collapse
Affiliation(s)
- Zineb Ibn Lahmar Andaloussi
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Morocco
| | - Khalid Taghzouti
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Morocco
| | - Oualid Abboussi
- Institute of Academic Anaesthesia, Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK.
| |
Collapse
|
18
|
Makhathini KB, Mabandla MV, Daniels WMU. Rosmarinic acid reverses the deleterious effects of repetitive stress and tat protein. Behav Brain Res 2018; 353:203-209. [PMID: 30029998 DOI: 10.1016/j.bbr.2018.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 06/29/2018] [Accepted: 07/17/2018] [Indexed: 12/27/2022]
Abstract
Human immunodeficiency virus type 1 (HIV) has infected more than 40 million people worldwide and is associated with central nervous system (CNS) disruption in at least 30% of these persons. The use of highly active antiretroviral therapy (HAART) has significantly reduced the systemic immunopathology associated with HIV, but the occurrence of neurological disorders continues to be reported in notable numbers. The present study evaluated the potential of rosmarinic acid to reverse the detrimental effects of an intracerebral injection of the viral protein tat. Control and tat-injected rats were also subjected to repetitive restrain stress (RRS) for 28 days, 6 h per day, to investigate whether subsequent stress exposure would worsen the effects of tat. 14 days after the initiation of RRS, animals were treated with rosmarinic acid (10 mg/kg given intraperitoneally) daily until the end of the stress exposure period. We assessed locomotor activity and anxiety-like behavioral changes. We also measured plasma corticosterone levels and quantified the expression of mineralocorticoid receptors (MR), glucocorticoid receptors (GR) and brain-derived neurotrophic factor (BDNF) in the hippocampus. Rosmarinic acid attenuated anxiety-like behavior induced by tat and stress, reduced plasma corticosterone levels and increased the expression of hippocampal GR, MR and BDNF when compared to controls. These results suggest that rosmarinic acid may reverse the anxiogenic effect of HIV-1 viral protein tat and related stress through modulation of the hypothalamic-pituitary-adrenal axis and hippocampal neurotrophic factor levels.
Collapse
Affiliation(s)
- Khayelihle B Makhathini
- School of Laboratory Medicine and Medical Science, College of Health Science, University of KwaZulu-Natal, Durban, 4000, South Africa.
| | - Musa V Mabandla
- School of Laboratory Medicine and Medical Science, College of Health Science, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - William M U Daniels
- School of Phyisiology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
19
|
Makhathini KB, Abboussi O, Mabandla MV, Daniels WMU. The effects of repetitive stress on tat protein-induced pro-inflammatory cytokine release and steroid receptor expression in the hippocampus of rats. Metab Brain Dis 2018; 33:1743-1753. [PMID: 29987524 DOI: 10.1007/s11011-018-0283-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/29/2018] [Indexed: 12/22/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) affects the central nervous system (CNS) that may lead to the development of HIV-associated neuropathologies. Tat protein is one of the viral proteins that have been linked to the neurotoxic effects of HIV. Since many individuals living with HIV often experience significant adverse circumstances, the present study investigated whether exposure to stressful conditions would exacerbate harmful effects of tat protein on brain function. Tat protein (10 μg/10 μl) was injected bilaterally into the dorsal hippocampus of the animal using stereotaxic techniques. The control group received an injection of saline (10 μl). Some control and tat protein-treated animals were subjected to restrain stress for 6 h per day for 28 days and compared to a non-stress group. All animals underwent two behavioural tests, the open field test (OFT) and the novel object recognition test (NORT) to assess their mood state and cognitive function respectively. The release of pro-inflammatory cytokines (TNF-α and IL-1β) and the expression of mineralocorticoid (MR) and glucocorticoid (GR) receptors were also measured to see whether the impact of the repetitive stress on Tat protein-induced behavioural effects was mediated by elements of the immune system and the HPA axis. Rats treated with tat protein showed the following behavioural changes when compared to control animals: there was a significant decrease in time spent in the center of the open field during the OFT, a significant reduction in time spent with the novel object during the NORT, but no change in locomotor activity. Real-time PCR data showed that the expression levels of GR and MR mRNA were significantly reduced, while Western blot analysis showed that the protein expression levels of TNF-α and IL-1β were significantly increased. The present findings indicated that injection of tat protein into the hippocampus of rats not subjected to stress may lead to anxiety-like behaviour and deficits in learning and memory. Tat-treated animals subjected to stress evoked only a modest effect on their behaviour and neurochemistry, while stress alone led to behavioural and neurochemical changes similar to tat protein.
Collapse
Affiliation(s)
- Khayelihle B Makhathini
- Department of Human Physiology, College of Health Sciences, University of KwaZulu-Natal, University Drive, Westville, Durban, 4000, South Africa.
| | - Oualid Abboussi
- Department of Human Physiology, College of Health Sciences, University of KwaZulu-Natal, University Drive, Westville, Durban, 4000, South Africa
| | - Musa V Mabandla
- Department of Human Physiology, College of Health Sciences, University of KwaZulu-Natal, University Drive, Westville, Durban, 4000, South Africa
| | - William M U Daniels
- School of Phyisiology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
20
|
Morshedi M, Valenlia KB, Hosseinifard ES, Shahabi P, Abbasi MM, Ghorbani M, Barzegari A, Sadigh-Eteghad S, Saghafi-Asl M. Beneficial psychological effects of novel psychobiotics in diabetic rats: the interaction among the gut, blood and amygdala. J Nutr Biochem 2018; 57:145-152. [PMID: 29730508 DOI: 10.1016/j.jnutbio.2018.03.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/20/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus (T2DM) can lead to major complications such as psychiatric disorders which include depressive and anxiety-like behaviors. The association of the gut-brain axis in the development of such disorders, especially in T2DM, has been elucidated; however, gut dysbiosis is also reported in patients with T2DM. Hence, the regulation of the gut-brain axis, in particular, the gut-amygdala, as a vital region for the regulation of behavior is essential. Thirty-five male Wistar rats were divided into six groups. To induce T2DM, treatment groups received high-fat diet and 35 mg/kg streptozotocin. Then, supplements of Lactobacillus plantarum, inulin or their combination were administered to each group for 8 weeks. Finally, the rats were sacrificed for measurement of blood and tissue parameters after behavioral testing. The findings demonstrated the favorable effects of the psychobiotics (L. plantarum, inulin or their combination) on oxidative markers of the blood and amygdala (superoxide dismutase, glutathione peroxidase, malondialdehyde and total antioxidant capacity), as well as on concentrations of amygdala serotonin and brain-derived neurotrophic factor, in the diabetic rats. In addition, beneficial effects were observed on the elevated plus maze and forced swimming tests with no change in locomotor activity of the rats. There was a strong correlation between the blood and amygdala oxidative markers, insulin and fasting blood sugar with depressive and anxiety-like behaviors. Our results identified L. plantarum ATCC 8014 and inulin or their combination as novel psychobiotics that could improve the systemic and nervous antioxidant status and improve amygdala performance and beneficial psychotropic effects.
Collapse
Affiliation(s)
- Mohammad Morshedi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Bavafa Valenlia
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Sadat Hosseinifard
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences Tabriz, Iran
| | | | - Meysam Ghorbani
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Saghafi-Asl
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences Tabriz, Iran; Department of Biochemistry and Diet Therapy, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Roth TL. Epigenetic Advances in Behavioral and Brain Sciences have Relevance for Public Policy. ACTA ACUST UNITED AC 2017; 4:202-209. [PMID: 29202007 DOI: 10.1177/2372732217719091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nature and nurture work together to drive development, behavior, and health. Behavioral epigenetics research has uncovered the underlying mechanisms for how this happens. Children's early years in development may offer the greatest opportunity for environmental and experiential factors to influence epigenome (chemical compounds telling our genes what to do), but evidence suggests it is never too late. The policy implications of this research are vast, including relevance for child development, health, and disease intervention and prevention.
Collapse
Affiliation(s)
- Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark DE
| |
Collapse
|
22
|
Assessment of Brain Derived Neurotrophic Factor in hair to study stress responses: A pilot investigation. Psychoneuroendocrinology 2017; 86:134-143. [PMID: 28957772 DOI: 10.1016/j.psyneuen.2017.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 08/01/2017] [Accepted: 09/06/2017] [Indexed: 02/02/2023]
Abstract
To study pathogenic stress-effects in health and disease, it is paramount to define easy access parameters for non-invasive analysis of biological change in response to stress. Hair samples successfully provide this access for the study of hypothalamus-pituitary-adrenal axis (HPA) changes. In this study, we assess the hair expression and corresponding epigenetic changes of a neurotrophin essential for autonomic nervous system function and mental health: brain derived neurotrophic factor (BDNF). In three independent studies in healthy academic volunteers (study I: German students, N=36; study II, German academic population sample, N=28; study III: Mexican students, N=115), BDNF protein expression or BDNF gene (BDNF) histone acetylation was determined. Simultaneously, mental distress and distress-associated somatic complaints were assessed by self-report. In study I, we found a negative correlation between hair-BDNF protein level and hair-cortisol as well as between hair-BDNF and somatic complaints, while hair-cortisol correlated positively with mental distress. In study II, we found a negative correlation between H4 histone acetylation at the BDNF gene P4-promoter and somatic complaints. Regression analysis confirmed confounder stability of associations in both studies. In study III, we confirmed study I and found lower hair-BDNF protein level in volunteers with high somatic complaints, who also reported higher mental distress during the end of term exams. The results indicate that BDNF protein levels can be detected in clipped hair and are associated with somatic complaints and stress in life. In addition, we concluded that plucked hair can provide material for the study of epigenetic changes in stress-affected tissues. These tools can prove valuable for future studies on distress, both under experimental and field conditions.
Collapse
|