1
|
Schlechter RO, Marti E, Remus-Emsermann MNP, Drissner D, Gekenidis MT. Correlation of in vitro biofilm formation capacity with persistence of antibiotic-resistant Escherichia coli on gnotobiotic lamb's lettuce. Appl Environ Microbiol 2025; 91:e0029925. [PMID: 40293242 DOI: 10.1128/aem.00299-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Bacterial contamination of fresh produce is a growing concern for food safety, as apart from human pathogens, antibiotic-resistant bacteria (ARB) can persist on fresh leafy produce. A prominent persistence trait in bacteria is biofilm formation, as it provides increased tolerance to stressful conditions. We screened a comprehensive collection of 174 antibiotic-susceptible and -resistant Escherichia coli originating from fresh leafy produce and its production environment. We tested the ability of these strains to produce biofilms, ranging from none or weak to extreme biofilm-forming bacteria. Next, we tested the ability of selected antibiotic-resistant isolates to colonize gnotobiotic lamb's lettuce (Valerianella locusta) plants. We hypothesized that a higher in vitro biofilm formation capacity correlates with increased colonization of gnotobiotic plant leaves. Despite a marked difference in the ability to form in vitro biofilms for a number of E. coli strains, in vitro biofilm formation was not associated with increased survival on gnotobiotic V. locusta leaf surfaces. However, all tested strains persisted for at least 21 days, highlighting potential food safety risks through unwanted ingestion of resistant bacteria. Population densities of biofilm-forming E. coli exhibited a complex pattern, with subpopulations more successful in colonizing gnotobiotic V. locusta leaves. These findings emphasize the complex behavior of ARB on leaf surfaces and their implications for human safety.IMPORTANCEEach raw food contains a collection of microorganisms, including bacteria. This is of special importance for fresh produce such as leafy salads or herbs, as these foods are usually consumed raw or after minimal processing, whereby higher loads of living bacteria are ingested than with a food that is heated before consumption. A common bacterial lifestyle involves living in large groups embedded in secreted protective substances. Such bacterial assemblies, so-called biofilms, confer high persistence and resistance of bacteria to external harsh conditions. In our research, we investigated whether stronger in vitro biofilm formation by antibiotic-resistant Escherichia coli correlates with better survival on lamb's lettuce leaves. Although no clear correlation was observed between biofilm formation capacity and population density on the salad, all tested isolates could survive for at least 3 weeks with no significant decline over time, highlighting a potential food safety risk independently of in vitro biofilm formation.
Collapse
Affiliation(s)
- Rudolf O Schlechter
- Institute of Microbiology, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Elisabet Marti
- Research Group Microbiological Food Safety, Agroscope, Bern, Switzerland
| | - Mitja N P Remus-Emsermann
- Institute of Microbiology, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - David Drissner
- Department of Life Sciences, Albstadt-Sigmaringen University, Sigmaringen, Germany
| | | |
Collapse
|
2
|
Deblais L, Ranjit S, Vrisman C, Antony L, Scaria J, Miller SA, Rajashekara G. Role of Stress-Induced Proteins RpoS and YicC in the Persistence of Salmonella enterica subsp. enterica Serotype Typhimurium in Tomato Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:109-118. [PMID: 36394339 DOI: 10.1094/mpmi-07-22-0152-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the functional role of bacterial genes in the persistence of Salmonella in plant organs can facilitate the development of agricultural practices to mitigate food safety risks associated with the consumption of fresh produce contaminated with Salmonella spp. Our study showed that Salmonella enterica subsp. enterica serotype Typhimurium (strain MDD14) persisted less in inoculated tomato plants than other Salmonella Typhimurium strains tested (JSG210, JSG626, JSG634, JSG637, JSG3444, and EV030415; P < 0.01). In-vitro assays performed in limited-nutrient conditions (growth rate, biofilm production, and motility) were inconclusive in explaining the in-planta phenotype observed with MDD14. Whole-genome sequencing combined with non-synonymous single nucleotide variations analysis was performed to identify genomic differences between MDD14 and the other Salmonella Typhimurium strains. The genome of MDD14 contained a truncated version (123 bp N-terminal) of yicC and a mutated version of rpoS (two non-synonymous substitutions, i.e., G66E and R82C), which are two stress-induced proteins involved in iron acquisition, environmental sensing, and cell envelope integrity. The rpoS and yicC genes were deleted in Salmonella Typhimurium JSG210 with the Lambda Red recombining system. Both mutants had limited persistence in tomato plant organs, similar to that of MDD14. In conclusion, we demonstrated that YicC and RpoS are involved in the persistence of Salmonella in tomato plants in greenhouse conditions and, thus, could represent potential targets to mitigate persistence of Salmonella spp. in planta. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Loïc Deblais
- Department of Animal Sciences, The Ohio State University, Wooster, OH, U.S.A
| | - Sochina Ranjit
- Department of Animal Sciences, The Ohio State University, Wooster, OH, U.S.A
| | - Claudio Vrisman
- Department of Plant Pathology, The Ohio State University, Wooster, OH, U.S.A
| | - Linto Antony
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, U.S.A
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, U.S.A
| | - Sally A Miller
- Department of Plant Pathology, The Ohio State University, Wooster, OH, U.S.A
| | - Gireesh Rajashekara
- Department of Animal Sciences, The Ohio State University, Wooster, OH, U.S.A
| |
Collapse
|
3
|
Zhou W, Sarpong F, Zhou C. Use of Ultrasonic Cleaning Technology in the Whole Process of Fruit and Vegetable Processing. Foods 2022; 11:foods11182874. [PMID: 36141006 PMCID: PMC9498452 DOI: 10.3390/foods11182874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
In an era of rapid technological development, ultrasound technology is being used in a wide range of industries. The use of ultrasound technology in fruit and vegetable processing to improve production efficiency and product quality has been an important research topic. The cleaning of whole fresh fruits and vegetables is an important part of fruit and vegetable processing. This paper discusses the development process of components of the ultrasonic equipment, the application of ultrasonic technology in fruit and vegetable cleaning, and the research advances in ultrasonic cleaning technology. Moreover, the feasibility of ultrasonication of fruits and vegetables for cleaning from the perspectives of microbial inactivation, commodity storage, and sensory analysis were discussed. Finally, the paper identified the inevitable disadvantages of cavitation noise, erosion, and tissue damage in fruit and vegetable processing and points out the future directions of ultrasonic fruit and vegetable cleaning technology.
Collapse
Affiliation(s)
- Wenhao Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Frederick Sarpong
- Value Addition Division, CSIR-Oil Palm Research Institute, Kade P.O. Box 74, Ghana
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Correspondence: ; Tel.: +86-511-88780201
| |
Collapse
|
4
|
Fratty IS, Shachar D, Katsman M, Yaron S. The activity of BcsZ of Salmonella Typhimurium and its role in Salmonella-plants interactions. Front Cell Infect Microbiol 2022; 12:967796. [PMID: 36081768 PMCID: PMC9445439 DOI: 10.3389/fcimb.2022.967796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica is one of the most common human pathogens associated with fresh produce outbreaks. The present study suggests that expression of BcsZ, one of the proteins in the bcs complex, enhances the survival of Salmonella Typhimurium on parsley. BcsZ demonstrated glucanase activity with the substrates carboxymethylcellulose and crystalline cellulose, and was responsible for a major part of the S. Typhimurium CMCase activity. Moreover, there was constitutive expression of BcsZ, which was also manifested after exposure to plant polysaccharides and parsley-leaf extract. In an in-planta model, overexpression of BcsZ significantly improved the epiphytic and endophytic survival of S. Typhimurium on/in parsley leaves compared with the wild-type strain and bcsZ null mutant. Interestingly, necrotic lesions appeared on the parsley leaf after infiltration of Salmonella overexpressing BcsZ, while infiltration of the wild-type S. Typhimurium did not cause any visible symptoms. Infiltration of purified BcsZ enzyme, or its degradation products also caused symptoms on parsley leaves. We suggest that the BcsZ degradation products trigger the plant’s defense response, causing local necrotic symptoms. These results indicate that BcsZ plays an important role in the Salmonella-plant interactions, and imply that injured bacteria may take part in these interactions.
Collapse
|
5
|
Ababneh Q, Al-Rousan E, Jaradat Z. Fresh produce as a potential vehicle for transmission of Acinetobacter baumannii. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2022. [DOI: 10.1186/s40550-022-00092-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AbstractAcinetobacter baumannii is a Gram-negative bacterium that has gained a stronghold inside healthcare settings. Due to the ability of A. baumannii to acquire antibiotic resistance easily, its presence in food products could pose a major threat to the public health. The aim of this study therefore, was to investigate the prevalence of A. baumannii in fresh produce and study their genetic diversity. A total of 234 samples of vegetables and fruits were collected. A. baumannii isolates were identified using CHROMagar and two different PCR assays. Also, the isolates were tested for their ability to resist antibiotics and form biofilms. The genetic diversity of the isolates was determined using multi-locus sequence typing (MLST). Of the 234 samples collected, 10 (6.5%) and 7 (8.75%) A. baumannii isolates were recovered from vegetables and fruits, respectively. Antibiotic susceptibility testing revealed that 4 of these isolates were extensively drug-resistant (XDR). All isolates were able to form biofilms and MLST analysis revealed 6 novel strains. This study demonstrated that fresh produce constitutes a reservoir for A. baumannii, including strong biofilm formers and XDR strains. This represents a significant concern to public health because vegetables and fruits may serve as a vehicle for the spread of A. baumannii and antibiotic resistance into the community and healthcare settings.
Collapse
|
6
|
Enhanced inactivation of Salmonella enterica Enteritidis biofilms on the stainless steel surface by proteinase K in the combination with chlorine. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Pelissari EMR, Covre KV, do Rosario DKA, de São José JFB. Application of chemometrics to assess the influence of ultrasound and chemical sanitizers on vegetables: Impact on natural microbiota, Salmonella Enteritidis and physicochemical nutritional quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Course CE, Boerlin P, Slavic D, Vaillancourt JP, Guerin MT. Factors associated with Salmonella enterica and Escherichia coli during downtime in commercial broiler chicken barns in Ontario. Poult Sci 2021; 100:101065. [PMID: 33765489 PMCID: PMC8008170 DOI: 10.1016/j.psj.2021.101065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/29/2021] [Accepted: 02/06/2021] [Indexed: 11/22/2022] Open
Abstract
Salmonella enterica and Escherichia coli are bacteria of concern to veterinary public health and poultry health. Our research aimed to determine the factors associated with S. enterica and E. coli in commercial broiler chicken barns during the rest period between flocks to identify the best methods of sanitation for bacterial load reduction. This involved collecting samples from September 2015 to July 2016 from the floors of 36 barns before sanitation (baseline) and at 2 time intervals after sanitation, followed by microbiological and molecular analysis. A priori variables of interest included sanitation procedure (dry cleaning, wet cleaning, disinfection), sampling point (baseline, 2 d after sanitation, 6 d after sanitation), and flooring type (concrete, wood). The odds of detecting S. enterica were higher on wooden floors that were wet-cleaned than on concrete floors that were dry-cleaned, lower in the winter and spring than in the fall, and lower when samples were collected 2 d and 6 d after sanitation than at baseline. For E. coli, the concentration was higher on wooden floors than on concrete floors and in the summer than in the fall, and it was lower in postsanitation samples from disinfected barns than in presanitation samples from dry-cleaned barns and in the winter than in the fall. Among E. coli isolates, factors associated with the presence of qacEΔ1, a gene associated with resistance to quaternary ammonium compounds, included sanitation procedure, flooring type, cycle length, and the number of times per yr the barn is disinfected. Our findings highlight the importance of cleaning after litter removal, although the sanitation procedure chosen might differ depending on which pathogen is present and causing disease issues; dry cleaning appears to be preferable for S. enterica control, especially in barns with wooden floors, whereas disinfection appears to be preferable for E. coli reduction.
Collapse
Affiliation(s)
- Chelsea E Course
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | - Patrick Boerlin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Durda Slavic
- Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, Ontario, Canada N1H 6R8
| | - Jean-Pierre Vaillancourt
- Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada J2S 2M2
| | - Michele T Guerin
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
9
|
Reid AN, Conklin C, Beaton K, Donahue N, Jackson E, LoCASCIO B, Marsocci C, Szemreylo E, Szemreylo K. Inoculum Preparation Conditions Influence Adherence of Salmonella enterica Serovars to Red Leaf Lettuce (Lactuca sativa). J Food Prot 2021; 84:857-868. [PMID: 33411904 DOI: 10.4315/jfp-20-301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/21/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Salmonella enterica has been increasingly linked to outbreaks involving consumption of fresh produce. Although researchers have identified genes whose products are involved in mediating S. enterica-plant interactions, the use of various experimental approaches, serovars, and plant types has generated variable and conflicting data. The purpose of this study was to determine whether conditions under which inocula are prepared for in vitro plant interaction studies influence the outcome of these studies. Seven S. enterica serovars were grown in media that differed in salinity and physical state with incubation at 25 or 37°C. These cultures were then used to inoculate red leaf lettuce, and adherent microbes were subsequently recovered. Although all Salmonella serovars were influenced by inoculum preparation conditions, the amount of variation differed. Analysis of pooled serovar data revealed that inocula prepared from either agar plates or biphasic cultures had higher levels of interaction with red leaf lettuce than those prepared from broth cultures. Incubation at 37°C enhanced adherence after 30 s or 5 days of contact time, and adherence after 1 h of contact time was increased in low-salt medium. Broth inoculum cultures were highly influenced by medium salinity and incubation temperature, whereas plate and biphasic inoculum cultures were only minimally affected. Therefore, inocula prepared from bacteria grown on plates or in biphasic culture would be most suitable for evaluation of strategies used to interfere with plant-Salmonella interactions. However, pooled data mask serovar-specific responses, and care should be taken when extrapolating these findings to individual serovars. The previous association of a serovar with outbreaks involving leafy greens was not correlated with levels of interaction with red leaf lettuce, suggesting that the occurrence of these serovars in or on these commodities does not reflect their fitness in the plant environment. HIGHLIGHTS
Collapse
Affiliation(s)
- Anne N Reid
- Department of Biology and Biomedical Sciences, Salve Regina University, 100 Ochre Point Avenue, Newport, Rhode Island 02840, USA
| | - Courtney Conklin
- Department of Biology and Biomedical Sciences, Salve Regina University, 100 Ochre Point Avenue, Newport, Rhode Island 02840, USA
| | - Kimberly Beaton
- Department of Biology and Biomedical Sciences, Salve Regina University, 100 Ochre Point Avenue, Newport, Rhode Island 02840, USA
| | - Nora Donahue
- Department of Biology and Biomedical Sciences, Salve Regina University, 100 Ochre Point Avenue, Newport, Rhode Island 02840, USA
| | - Emily Jackson
- Department of Biology and Biomedical Sciences, Salve Regina University, 100 Ochre Point Avenue, Newport, Rhode Island 02840, USA
| | - Brianna LoCASCIO
- Department of Biology and Biomedical Sciences, Salve Regina University, 100 Ochre Point Avenue, Newport, Rhode Island 02840, USA
| | - Cristina Marsocci
- Department of Biology and Biomedical Sciences, Salve Regina University, 100 Ochre Point Avenue, Newport, Rhode Island 02840, USA
| | - Emily Szemreylo
- Department of Biology and Biomedical Sciences, Salve Regina University, 100 Ochre Point Avenue, Newport, Rhode Island 02840, USA
| | - Katlin Szemreylo
- Department of Biology and Biomedical Sciences, Salve Regina University, 100 Ochre Point Avenue, Newport, Rhode Island 02840, USA
| |
Collapse
|
10
|
Fu Y, Bhunia AK, Yao Y. Abrasive brushing reduces pathogen biofilms at cantaloupe rind surface. Int J Food Microbiol 2020; 329:108685. [DOI: 10.1016/j.ijfoodmicro.2020.108685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 04/20/2020] [Accepted: 05/20/2020] [Indexed: 11/28/2022]
|
11
|
Lin L, Liao X, Li C, Abdel-Samie MA, Cui H. Inhibitory effect of cold nitrogen plasma on Salmonella Typhimurium biofilm and its application on poultry egg preservation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Przekwas J, Wiktorczyk N, Budzyńska A, Wałecka-Zacharska E, Gospodarek-Komkowska E. Ascorbic Acid Changes Growth of Food-Borne Pathogens in the Early Stage of Biofilm Formation. Microorganisms 2020; 8:E553. [PMID: 32290491 PMCID: PMC7232495 DOI: 10.3390/microorganisms8040553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Since bacterial biofilm may contribute to the secondary contamination of food during the manufacturing/processing stage there is a need for new methods allowing its effective eradication. Application of food additives such as vitamin C already used in food industry as antioxidant food industry antioxidants may be a promising solution. The aim of this research was evaluation of the impact of vitamin C (ascorbic acid), in a range of concentrations 2.50 µg mL-1-25.0 mg mL-1, on biofilms of Staphylococcus aureus, Escherichia coli, and Listeria monocytogenes strains isolated from food. The efficacy of ascorbic acid was assessed based on the reduction of optical density (λ = 595 nm). The greatest elimination of the biofilm was achieved at the concentration of vitamin C of 25.0 mg mL-1. The effect of the vitamin C on biofilm, however, was strain dependent. The concentration of 25.0 mg mL-1 reduced 93.4%, 74.9%, and 40.5% of E. coli, L. monocytogenes, and S. aureus number, respectively. For E. coli and S. aureus lower concentrations were ineffective. In turn, for L. monocytogenes the biofilm inhibition was observed even at the concentration of 0.25 mg mL-1. The addition of vitamin C may be helpful in the elimination of bacterial biofilms. Nonetheless, some concentrations can induce growth of the pathogens, posing risk for the consumers' health.
Collapse
Affiliation(s)
- Jana Przekwas
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 9 Maria Skłodowska-Curie Street, 85-094 Bydgoszcz, Poland
| | - Natalia Wiktorczyk
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 9 Maria Skłodowska-Curie Street, 85-094 Bydgoszcz, Poland
| | - Anna Budzyńska
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 9 Maria Skłodowska-Curie Street, 85-094 Bydgoszcz, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, 31 C.K. Norwida St., 50-375 Wrocław, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 9 Maria Skłodowska-Curie Street, 85-094 Bydgoszcz, Poland
| |
Collapse
|
13
|
Gurtler JB. Two Generally Recognized as Safe Surfactants plus Acidulants Inactivate Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes in Suspension or on Dip-Inoculated Grape Tomatoes. J Food Prot 2020; 83:637-643. [PMID: 32221569 DOI: 10.4315/0362-028x.jfp-19-286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/04/2019] [Indexed: 11/11/2022]
Abstract
ABSTRACT Contamination of fresh produce with the foodborne pathogens Salmonella enterica, Listeria monocytogenes, and Escherichia coli O157:H7 continues to be problematic, resulting in outbreaks of foodborne illness and costly corporate recalls. Various individual concentrations of citric or lactic acids (0.35 to 0.61%) or isopropyl citrate (0.16 to 0.54%) combined with two generally recognized as safe surfactants, 0.025% sodium-2-ethyl-hexyl sulfate and 0.025% sodium dodecylbenzene-sulfonate, were tested against these three pathogens in suspension and when inoculated and dried on the surface of grape tomatoes. The efficacy of sodium hypochlorite (NaClO; at 46 ppm) was also evaluated under dirty and clean conditions in suspension after addition of 0.3 or 0.03% bovine serum albumin, respectively, as an organic load. NaClO (46 ppm) inactivated the three pathogens in suspension by <0.76 log CFU/mL after 5 min in the presence of 0.3% bovine serum albumin, whereas 9 and 15 ppm of free chlorine inactivated the pathogens by 0.64 and 2.77 log CFU/mL, respectively, after 5 min under clean conditions. Isopropyl citrate (0.16% acidulant) plus 0.05% total concentration of the two surfactants inactivated the pathogens in suspension by up to 7.0 log CFU/mL within 2 min. When applied to grape tomatoes for 2 min, 0.54% isopropyl citrate plus 0.025% concentrations of each of the two surfactants reduced Salmonella, E. coli O157:H7, and L. monocytogenes by as much as ca. 5.47, 4.89, and 4.19 log CFU/g, respectively. These reductions were significantly greater than those achieved with 49 ppm of free chlorine. Citric acid and lactic acid plus surfactant washes achieved greater inactivation than water-only washes, reducing Salmonella, E. coli O157:H7, and L. monocytogenes on tomatoes by up to 4.90, 4.37, and 3.98 log CFU/g, respectively. These results suggest that these combinations of acidulants and surfactants may be an effective tool for preventing cross-contamination during the washing of grape tomatoes, for reducing pathogens on the fruit itself, and as an alternative to chlorine for washing fresh produce. HIGHLIGHTS
Collapse
Affiliation(s)
- Joshua B Gurtler
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Food Safety and Intervention Technologies Research Unit, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038-8551, USA (ORCID: https://orcid.org/0000-0001-5844-7794)
| |
Collapse
|
14
|
Bergamo G, Demoliner F, Timm CD, Carvalho NR, Helbig E, Gandra EA. Formação de biofilmes e resistência a antimicrobianos de isolados de Salmonella spp. CIÊNCIA ANIMAL BRASILEIRA 2020. [DOI: 10.1590/1809-6891v21e-48029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Resumo O presente estudo avaliou a presença de Salmonella spp. em 89 amostras de produtos cárneos comercializados na região sul do Rio Grande do Sul e, a partir dos isolados obtidos, foi verificada a capacidade de resistência a agentes antimicrobianos e de formação de biofilme em superfícies de poliestireno. Foi constatada a presença de Salmonella spp. em 19,1% das amostras avaliadas e, dos isolados obtidos, 40% mostraram resistência a pelo menos um dos agentes antimicrobianos testados e 33,3% manifestaram-se multirresistentes. Apenas o antimicrobiano amicacina (30 µg) foi eficaz na inibição de todos os isolados testados. Nenhum isolado mostrou-se capaz de formar biofilmes em superfícies de poliestireno.
Collapse
|
15
|
Rossi C, Chaves-López C, Možina SS, Di Mattia C, Scuota S, Luzzi I, Jenič T, Paparella A, Serio A. Salmonella enterica adhesion: Effect of Cinnamomum zeylanicum essential oil on lettuce. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Ku S, Ximenes E, Kreke T, Foster K, Couetil JL, Zuponcic J, Zhao X, Hoagland L, Deering AJ, Ladisch MR. Microbial enrichment and multiplexed microfiltration for accelerated detection of Salmonella in spinach. Biotechnol Prog 2019; 35:e2874. [PMID: 31228331 DOI: 10.1002/btpr.2874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 01/01/2023]
Abstract
To attain Salmonella detection thresholds in spinach suspensions using enrichment media requires at least 24 hr. Separation and concentration of selected microorganisms via microfiltration and microfugation reduce time for sample preparation, especially when working with large volumes of vegetable suspensions. This facilitates accelerated detection of Salmonella in spinach suspensions, and may contribute to effectively monitoring this pathogen before it reaches the consumer. We report a microfiltration-based protocol for accelerated sample preparation to concentrate and recover ≤1 colony forming unit (CFU) Salmonella/g pathogen-free spinach. Store-bought samples of spinach and a spinach plant subjected to two environmental conditions (temperature and light exposure) during its production were tested. The overall procedure involves extraction with buffer, a short enrichment step, prefiltration using a nylon filter, crossflow hollow fiber microfiltration, and retentate centrifugation to bring microbial cells to detection levels. Based on 1 CFU Salmonella/g frozen spinach, and a Poisson distribution statistical analyses with 99% probability, we calculated that 3 hr of incubation, when followed by microfiltration, is sufficient to reach the 2 log concentration required for Salmonella detection within 7 hr. Longer enrichment times (5 hr or more) is needed for concentrations lower than 1 CFU Salmonella/g of ready to eat spinach. The recovered microbial cells were identified and confirmed as Salmonella using both polymerase chain reaction (PCR) and plating methods. Different environmental conditions tested during production did not affect Salmonella viability; this demonstrated the broad adaptability of Salmonella and emphasized the need for methods that enable efficient monitoring of production for the presence of this pathogen.
Collapse
Affiliation(s)
- Seockmo Ku
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, Indiana
| | - Eduardo Ximenes
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, Indiana.,Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana
| | - Thomas Kreke
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, Indiana
| | - Kirk Foster
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Justin L Couetil
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, Indiana
| | - Jessica Zuponcic
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, Indiana.,Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana
| | - Xiaojun Zhao
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana
| | - Lori Hoagland
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana
| | - Amanda J Deering
- Department of Food Science, Purdue University, West Lafayette, Indiana
| | - Michael R Ladisch
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, Indiana.,Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| |
Collapse
|
17
|
Mustapha AT, Zhou C, Sun Y, Wahia H, Sarpong F, Owusu‐Ansah P, Osae R, Otu P, Ma H. Simultaneous multifrequency: A possible alternative to improve the efficacy of ultrasound treatment on cherry tomato during storage. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Cunshan Zhou
- School of Food and Biological Engineering Jiangsu University Zhenjiang People's Republic of China
- School of Biological and Food Engineering Chuzhou University Chuzhou People's Republic of China
| | - Yanhui Sun
- School of Biological and Food Engineering Chuzhou University Chuzhou People's Republic of China
| | - Hafida Wahia
- School of Food and Biological Engineering Jiangsu University Zhenjiang People's Republic of China
| | - Frederick Sarpong
- School of Food and Biological Engineering Jiangsu University Zhenjiang People's Republic of China
| | - Patrick Owusu‐Ansah
- School of Food and Biological Engineering Jiangsu University Zhenjiang People's Republic of China
| | - Richard Osae
- School of Food and Biological Engineering Jiangsu University Zhenjiang People's Republic of China
| | - Phyllis Otu
- School of Food and Biological Engineering Jiangsu University Zhenjiang People's Republic of China
| | - Haile Ma
- School of Food and Biological Engineering Jiangsu University Zhenjiang People's Republic of China
| |
Collapse
|
18
|
Kim SI, Yoon H. Roles of YcfR in Biofilm Formation in Salmonella Typhimurium ATCC 14028. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:708-716. [PMID: 30566029 DOI: 10.1094/mpmi-06-18-0166-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An increasing number of foodborne diseases are currently attributable to farm produce contaminated with enteric pathogens such as Salmonella enterica. Recent studies have shown that a variety of enteric pathogens are able to colonize plant surfaces by forming biofilms and thereby persist for long periods, which can subsequently lead to human infections. Therefore, biofilm formation by enteric pathogens on plants poses a risk to human health. Here, we deciphered the roles of YcfR in biofilm formation by Salmonella enterica. YcfR is a putative outer membrane protein associated with bacterial stress responses. The lack of YcfR facilitated the formation of multicellular aggregates on cabbage leaves as well as glass surfaces while reducing bacterial motility. ycfR deletion caused extensive structural alterations in the outer membrane, primarily in lipopolysaccharides, outer membrane proteins, cellulose, and curli fimbria, thereby increasing cell surface hydrophobicity. However, the absence of YcfR rendered Salmonella susceptible to stressful treatments, despite the increased multicellular aggregation. These results suggest that YcfR is an essential constituent of Salmonella outer membrane architecture and its absence may cause multifaceted structural changes, thereby compromising bacterial envelope integrity. In this context, YcfR may be further exploited as a potential target for controlling Salmonella persistence on plants.
Collapse
Affiliation(s)
- Seul I Kim
- 1 Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; and
| | - Hyunjin Yoon
- 2 Department of Applied Chemistry and Biological Engineering, Ajou University
| |
Collapse
|
19
|
Biofilm formation by Salmonella sp. in the poultry industry: Detection, control and eradication strategies. Food Res Int 2019; 119:530-540. [DOI: 10.1016/j.foodres.2017.11.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/06/2017] [Accepted: 11/19/2017] [Indexed: 12/23/2022]
|
20
|
Kim NN, Kim WJ, Kang SS. Anti-biofilm effect of crude bacteriocin derived from Lactobacillus brevis DF01 on Escherichia coli and Salmonella Typhimurium. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Klintham P, Tongchitpakdee S, Chinsirikul W, Mahakarnchanakul W. Two-step washing with commercial vegetable washing solutions, and electrolyzed oxidizing microbubbles water to decontaminate sweet basil and Thai mint: A case study. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Exopolymeric substances (EPS) from Salmonella enterica: polymers, proteins and their interactions with plants and abiotic surfaces. J Microbiol 2018; 57:1-8. [DOI: 10.1007/s12275-019-8353-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 11/26/2022]
|
23
|
Lamas A, Regal P, Vázquez B, Miranda JM, Cepeda A, Franco CM. Salmonella and Campylobacter biofilm formation: a comparative assessment from farm to fork. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4014-4032. [PMID: 29424050 DOI: 10.1002/jsfa.8945] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/16/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
It takes several steps to bring food from the farm to the fork (dining table), and contamination with food-borne pathogens can occur at any point in the process. Campylobacter spp. and Salmonella spp. are the main microorganisms responsible for foodborne disease in the EU. These two pathogens are able to persist throughout the food supply chain thanks to their ability to form biofilms. Owing to the high prevalence of Salmonella and especially of Campylobacter in the food supply chain and the huge efforts of food authorities to reduce these levels, it is of great importance to fully understand their mechanisms of persistence. Diverse studies have evaluated the biofilm-forming capacity of foodborne pathogens isolated at different steps of food production. Nonetheless, the principal obstacle of these studies is to reproduce the real conditions that microorganisms encounter in the food supply chain. While there are a wide number of Salmonella biofilm studies, information on Campylobacter biofilms is still limited. A comparison between the two microorganisms could help to develop new research in the field of Campylobacter biofilms. Therefore, this review evaluates relevant work in the field of Salmonella and Campylobacter biofilms and the applicability of the data obtained from these studies to real working conditions. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Alexandre Lamas
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Patricia Regal
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Beatriz Vázquez
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - José M Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Alberto Cepeda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Carlos M Franco
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
24
|
Smolinski HS, Wang S, Ren L, Chen Y, Kowalcyk B, Thomas E, Doren JVAN, Ryser ET. Transfer and Redistribution of Salmonella Typhimurium LT2 and Escherichia coli O157:H7 during Pilot-Scale Processing of Baby Spinach, Cilantro, and Romaine Lettuce. J Food Prot 2018; 81:953-962. [PMID: 29745756 DOI: 10.4315/0362-028x.jfp-17-420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Several outbreaks of foodborne illness traced to leafy greens and culinary herbs have been hypothesized to involve cross-contamination during washing and processing. This study aimed to assess the redistribution of Salmonella Typhimurium LT2 during pilot-scale production of baby spinach and cilantro and redistribution of Escherichia coli O157:H7 during pilot-scale production of romaine lettuce. Four inoculated surrogate:uninoculated product weight ratios (10:100, 5:100, 1:100, and 0.5:100) and three inoculation levels (103, 101, and 10-1 CFU/g) were used for the three commodities. For each of three trials per condition, 5-kg batches containing uninoculated product and spot-inoculated surrogate products at each ratio and inoculation level were washed for 90 s in a 3.6-m-long flume tank through which 890 L of sanitizer-free, filtered tap water was circulated. After washing and removing the inoculated surrogate products, washed product (∼23, 225-g samples per trial) was analyzed for presence or absence of Salmonella Typhimurium or E. coli O157:H7 by using the GeneQuence Assay. For baby spinach, cilantro, and romaine lettuce, no significant differences ( P > 0.05) in the percentage of positive samples were observed at the same inoculation level and inoculated:uninoculated weight ratio. For each pathogen product evaluated (triplicate trials), inoculation level had a significant impact on the percentage of positive samples after processing, with the percentage of positive samples decreasing, as the initial surrogate inoculation level decreased. The weight ratio of contaminated:noncontaminated product plays an important role: positive samples ranged from 0% to 11.6% ± 2.05% and from 68.1% ± 33.6% to 100% among the four ratios at inoculation of 10-1 and 101 CFU/g, respectively. To our knowledge, this study is the first to assess the redistribution of low levels of pathogens from incoming product to leafy greens during processing and should provide important data for microbial risk assessments and other types of food safety analyses related to fresh-cut leafy greens.
Collapse
Affiliation(s)
- Haley S Smolinski
- 1 Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Road, East Lansing, Michigan 48824 (ORCID: http://orcid.org/0000-0003-1337-2658 [E.T.R.])
| | - Siyi Wang
- 1 Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Road, East Lansing, Michigan 48824 (ORCID: http://orcid.org/0000-0003-1337-2658 [E.T.R.])
| | - Lin Ren
- 1 Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Road, East Lansing, Michigan 48824 (ORCID: http://orcid.org/0000-0003-1337-2658 [E.T.R.])
| | - Yuhuan Chen
- 2 U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, Maryland 20740
| | - Barbara Kowalcyk
- 3 RTI International, Research Triangle Park, 3040 East Cornwallis Road, Research Triangle Park, North Carolina 27709, USA
| | - Ellen Thomas
- 3 RTI International, Research Triangle Park, 3040 East Cornwallis Road, Research Triangle Park, North Carolina 27709, USA
| | - Jane VAN Doren
- 2 U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, Maryland 20740
| | - Elliot T Ryser
- 1 Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Road, East Lansing, Michigan 48824 (ORCID: http://orcid.org/0000-0003-1337-2658 [E.T.R.])
| |
Collapse
|
25
|
Viable-but-Nonculturable Listeria monocytogenes and Salmonella enterica Serovar Thompson Induced by Chlorine Stress Remain Infectious. mBio 2018; 9:mBio.00540-18. [PMID: 29666286 PMCID: PMC5904417 DOI: 10.1128/mbio.00540-18] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The microbiological safety of fresh produce is monitored almost exclusively by culture-based detection methods. However, bacterial food-borne pathogens are known to enter a viable-but-nonculturable (VBNC) state in response to environmental stresses such as chlorine, which is commonly used for fresh produce decontamination. Here, complete VBNC induction of green fluorescent protein-tagged Listeria monocytogenes and Salmonella enterica serovar Thompson was achieved by exposure to 12 and 3 ppm chlorine, respectively. The pathogens were subjected to chlorine washing following incubation on spinach leaves. Culture data revealed that total viable L. monocytogenes and Salmonella Thompson populations became VBNC by 50 and 100 ppm chlorine, respectively, while enumeration by direct viable counting found that chlorine caused a <1-log reduction in viability. The pathogenicity of chlorine-induced VBNC L. monocytogenes and Salmonella Thompson was assessed by using Caenorhabditis elegans Ingestion of VBNC pathogens by C. elegans resulted in a significant life span reduction (P = 0.0064 and P < 0.0001), and no significant difference between the life span reductions caused by the VBNC and culturable L. monocytogenes treatments was observed. L. monocytogenes was visualized beyond the nematode intestinal lumen, indicating resuscitation and cell invasion. These data emphasize the risk that VBNC food-borne pathogens could pose to public health should they continue to go undetected.IMPORTANCE Many bacteria are known to enter a viable-but-nonculturable (VBNC) state in response to environmental stresses. VBNC cells cannot be detected by standard laboratory culture techniques, presenting a problem for the food industry, which uses these techniques to detect pathogen contaminants. This study found that chlorine, a sanitizer commonly used for fresh produce, induces a VBNC state in the food-borne pathogens Listeria monocytogenes and Salmonella enterica It was also found that chlorine is ineffective at killing total populations of the pathogens. A life span reduction was observed in Caenorhabditis elegans that ingested these VBNC pathogens, with VBNC L. monocytogenes as infectious as its culturable counterpart. These data show that VBNC food-borne pathogens can both be generated and avoid detection by industrial practices while potentially retaining the ability to cause disease.
Collapse
|
26
|
Faour-Klingbeil D, Todd ECD. The inhibitory effect of traditional pomegranate molasses onS. typhimuriumgrowth on parsley leaves and in mixed salad vegetables. J Food Saf 2018. [DOI: 10.1111/jfs.12469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Ewen C. D. Todd
- Department of Nutrition and Food Science; American University of Beirut; Beirut Lebanon
| |
Collapse
|
27
|
Sadekuzzaman M, Mizan MFR, Yang S, Kim HS, Ha SD. Application of bacteriophages for the inactivation of Salmonella spp. in biofilms. FOOD SCI TECHNOL INT 2018; 24:424-433. [DOI: 10.1177/1082013218763424] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Microbial biofilms pose a serious threat to food industry, as they are difficult to inactivate or remove owing to their inherent resistance to traditional physical and antimicrobial treatments. Bacteriophages have been suggested as promising biocontrol agents for eliminating biofilms within the food industry. The efficacy of phages (BP 1369 and BP 1370) was evaluated against Salmonella spp. in biofilms. Biofilms were grown on food (lettuce), food contact surfaces (stainless steel and rubber), and MBEC biofilm devices. The efficacy of these phages in reducing biofilms was examined following phage (108 PFU/mL) treatment for 2 h. Bacteriophage treatment reduced biofilm cells by 3.0, 2.0, and 3.0 log CFU/cm2 on stainless steel, rubber, and an MBEC device, respectively. The adhered viable cells on lettuce were reduced by more than 1.0 log CFU/cm2 with phage treatment.
Collapse
Affiliation(s)
- Mohammad Sadekuzzaman
- School of Food Science and Technology, Chung-Ang University, Anseong, South Korea
- Department of Livestock Services, Dhaka, People's Republic of Bangladesh
| | | | - Sungdae Yang
- School of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Hyung-Suk Kim
- School of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Sang-Do Ha
- School of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| |
Collapse
|
28
|
Salmonella as an endophytic colonizer of plants - A risk for health safety vegetable production. Microb Pathog 2017; 115:199-207. [PMID: 29248516 DOI: 10.1016/j.micpath.2017.12.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 11/20/2022]
Abstract
Contamination of vegetables and fruits is the result of presence of human pathogen bacteria which can contaminate products in any part of production chain. There is an evidence of presence of: Salmonella spp. on the fresh vegetables and Salmonellosis is connected with tomato, sprouts, cantaloupe etc. The goal of this research is transmission of pathogen bacteria from irrigation water to plants and studying/monitoring the ability of the Salmonella spp. to colonize the surface and interior (endophytic colonization) of root at different vegetable species. Transmission of three Salmonella spp. strains from irrigation water to plants, as well as colonization of plants by these bacteria was investigated by using Fluorescence In Situ Hybridization (FISH) in combination with confocal laser scanning microscopy (CLSM). All tested Salmonella spp. strains showed ability to more or less colonize the surface and interior niches of the root, stem and leaf of the investigated plant species. These bacteria also were found in plant cells cytoplasm, although the mechanism of their entrance has not been clarified yet.
Collapse
|
29
|
Fu Y, Deering AJ, Bhunia AK, Yao Y. Biofilm of Escherichia coli O157:H7 on cantaloupe surface is resistant to lauroyl arginate ethyl and sodium hypochlorite. Int J Food Microbiol 2017; 260:11-16. [PMID: 28843119 DOI: 10.1016/j.ijfoodmicro.2017.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/25/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
Abstract
Biofilms formed by Escherichia coli O157:H7 on cantaloupe rind were characterized in this study. Cantaloupe rind pieces inoculated with E. coli O157:H7 B6-914 was sampled after 2, 12, and 24h incubation for imaging with cryo-scanning electron microscopy (Cryo-SEM) or treating with lauroyl arginate ethyl (LAE) or sodium hypochlorite (SHC). Cryo-SEM images showed that E. coli O157:H7 formed a biofilm within 12h on the rind surface. For rind samples treated with LAE or SHC, the residual cell counts were significantly different (p<0.05) between 2 and 12h incubation, and between 2 and 24h of incubation. For the 2h incubation samples, E. coli O157:H7 was undetectable (>5-log reduction) after treatment with 2000μg/mL of LAE or SHC. In contrast, for 12h incubation samples, 2000μg/mL of LAE or SHC could only achieve 1.74 or 1.86-log reduction, respectively. The study showed the low efficacy of LAE and SHC on cantaloupe rind surface to reduce the E. coli biofilm, suggesting the needs for cantaloupe cleaning methods beyond washing with conventional antimicrobial agents.
Collapse
Affiliation(s)
- Yezhi Fu
- Department of Food Science, Purdue University, West Lafayette, IN 47907, United States
| | - Amanda J Deering
- Department of Food Science, Purdue University, West Lafayette, IN 47907, United States
| | - Arun K Bhunia
- Department of Food Science, Purdue University, West Lafayette, IN 47907, United States
| | - Yuan Yao
- Department of Food Science, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
30
|
St Amand JA, Cassis R, King RK, Annett Christianson CB. Prevalence of Salmonella spp. in environmental samples from table egg barns in Alberta. Avian Pathol 2017; 46:594-601. [PMID: 28488474 DOI: 10.1080/03079457.2017.1311989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Some Salmonella spp. are zoonotic, a frequent cause of foodborne illness in Canada, and known to infect humans through contaminated poultry and poultry products. Certain serotypes of Salmonella spp. have been demonstrated to be vertically transmitted from hen to egg. The incidence of Salmonella spp. isolation in the flock has been correlated to its isolation from the environment. Twenty-one producers were enrolled in this study to examine the occurrence of Salmonella spp. in 48 table egg layer flocks housed in 35 barns in Alberta. The purpose of this study was to: (i) identify Salmonella serotypes isolated from the environment of table egg layer facilities in Alberta and (ii) record the prevalence of Salmonella spp. across eight defined environmental sampling points. Salmonella spp. were isolated from the environment of 20/35 barns representing 29/48 flocks. The most common serotypes isolated were S. Heidelberg, S. Kentucky and S. Mbandaka. The order of most to least contaminated sample location was manure belts (54.1%), feeders (47.9%), feed motors (45.8%), egg belts and walls (41.7%), fans (35.0%), cage bottoms (31.3%) and lobbies (27.1%). Salmonella spp. were isolated from 7/7 barns post cleaning and disinfection, demonstrating the persistence of this organism in the environment and the need for effective eradication protocols.
Collapse
Affiliation(s)
- Joan A St Amand
- a Alberta Agriculture and Forestry, Animal Health and Assurance Branch , Alberta , Canada
| | - Rashed Cassis
- b Alberta Agriculture and Forestry, Food Safety Branch , Alberta , Canada
| | - Robin K King
- b Alberta Agriculture and Forestry, Food Safety Branch , Alberta , Canada
| | | |
Collapse
|
31
|
Occurrence of ingression of Salmonella spp. in Betel leaf (Piper betle L.). INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2017. [DOI: 10.1186/s40550-017-0051-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Ng CG, Loke MF, Goh KL, Vadivelu J, Ho B. Biofilm formation enhances Helicobacter pylori survivability in vegetables. Food Microbiol 2016; 62:68-76. [PMID: 27889168 DOI: 10.1016/j.fm.2016.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/12/2016] [Accepted: 10/02/2016] [Indexed: 02/06/2023]
Abstract
To date, the exact route and mode of transmission of Helicobacter pylori remains elusive. The detection of H. pylori in food using molecular approaches has led us to postulate that the gastric pathogen may survive in the extragastric environment for an extended period. In this study, we show that H. pylori prolongs its survival by forming biofilm and micro-colonies on vegetables. The biofilm forming capability of H. pylori is both strain and vegetable dependent. H. pylori strains were classified into high and low biofilm formers based on their highest relative biofilm units (BU). High biofilm formers survived longer on vegetables compared to low biofilm formers. The bacteria survived better on cabbage compared to other vegetables tested. In addition, images captured on scanning electron and confocal laser scanning microscopes revealed that the bacteria were able to form biofilm and reside as micro-colonies on vegetable surfaces, strengthening the notion of possible survival of H. pylori on vegetables for an extended period of time. Taken together, the ability of H. pylori to form biofilm on vegetables (a common food source for human) potentially plays an important role in its survival, serving as a mode of transmission of H. pylori in the extragastric environment.
Collapse
Affiliation(s)
- Chow Goon Ng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Mun Fai Loke
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Khean Lee Goh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Bow Ho
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Singapore Precision Medicine Centre Pte Ltd, Singapore 608783, Singapore.
| |
Collapse
|
33
|
Faour-Klingbeil D, Kuri V, Todd EC. The influence of pre-wash chopping and storage conditions of parsley on the efficacy of disinfection against S. Typhimurium. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2022]
|
34
|
Korir RC, Parveen S, Hashem F, Bowers J. Microbiological quality of fresh produce obtained from retail stores on the Eastern Shore of Maryland, United States of America. Food Microbiol 2016; 56:29-34. [PMID: 26919815 DOI: 10.1016/j.fm.2015.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 11/23/2022]
Abstract
The aim of this study was to investigate the microbiological quality of six types of fresh produce obtained from three retail stores located on the Eastern Shore of Maryland, USA. A total of 414 samples representing basil, cilantro, lettuce, scallion, spinach, and parsley were analyzed for total aerobic bacteria (APC), total coliforms, Escherichia coli, and three pathogenic bacteria (E. coli O157:H7, Listeria monocytogenes, and Salmonella), using standard methods. Presumptive pathogenic isolates were confirmed using BAX Polymerase Chain Reaction. Total aerobic populations varied widely between samples, while 38.41% were positive for total coliforms and only 10.15% for E. coli. Median abundance (log CFU/g) of total coliforms and E. coli were less than the limit of detection and that of APC ranged from 5.78 to 6.61 over the six produce types. There was a statistically significant difference in prevalence of total coliforms among the retail stores, but not for abundance of APC or prevalence of E. coli. E. coli O157:H7 and L. monocytogenes were detected in one spinach sample each, while one parsley and one cilantro sample were positive for Salmonella. There were no statistically significant differences in microbiological quality among produce types. Although the results of this study provided some indices of sanitary and/or spoilage level, no relationship was observed among the total aerobic bacteria, total coliforms, E. coli, and the presence of pathogenic bacteria in the samples tested.
Collapse
Affiliation(s)
- Robert Cheruiyot Korir
- Food Science and Technology Ph.D. Program, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Salina Parveen
- Food Science and Technology Ph.D. Program, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA.
| | - Fawzy Hashem
- Food Science and Technology Ph.D. Program, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - John Bowers
- U. S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD 20740, USA
| |
Collapse
|
35
|
Wu S, Liu G, Jin W, Xiu P, Sun C. Antibiofilm and Anti-Infection of a Marine Bacterial Exopolysaccharide Against Pseudomonas aeruginosa. Front Microbiol 2016; 7:102. [PMID: 26903981 PMCID: PMC4744842 DOI: 10.3389/fmicb.2016.00102] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/19/2016] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas aeruginosa is a well-known pathogenic bacterium that forms biofilms and produces virulence factors, thus leading to major problems in many fields, such as clinical infection, food contamination, and marine biofouling. In this study, we report the purification and characterization of an exopolysaccharide EPS273 from the culture supernatant of marine bacterium P. stutzeri 273. The exopolysaccharide EPS273 not only effectively inhibits biofilm formation but also disperses preformed biofilm of P. aeruginosa PAO1. High performance liquid chromatography traces of the hydrolyzed polysaccharides shows that EPS273 primarily consists of glucosamine, rhamnose, glucose and mannose. Further investigation demonstrates that EPS273 reduces the production of the virulence factors pyocyanin, exoprotease, and rhamnolipid, and the virulence of P. aeruginosa PAO1 to human lung cells A549 and zebrafish embryos is also obviously attenuated by EPS273. In addition, EPS273 also greatly reduces the production of hydrogen peroxide (H2O2) and extracellular DNA (eDNA), which are important factors for biofilm formation. Furthermore, EPS273 exhibits strong antioxidant potential by quenching hydroxyl and superoxide anion radicals. Notably, the antibiofouling activity of EPS273 is observed in the marine environment up to 2 weeks according to the amounts of bacteria and diatoms in the glass slides submerged in the ocean. Taken together, the properties of EPS273 indicate that it has a promising prospect in combating bacterial biofilm-associated infection, food-processing contamination and marine biofouling.
Collapse
Affiliation(s)
- Shimei Wu
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao, China
| | - Ge Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of SciencesQingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China; University of Chinese Academy of SciencesBeijing, China
| | - Weihua Jin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of SciencesQingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| | - Pengyuan Xiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of SciencesQingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China; University of Chinese Academy of SciencesBeijing, China
| | - Chaomin Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of SciencesQingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| |
Collapse
|
36
|
Diguanylate Cyclases AdrA and STM1987 Regulate Salmonella enterica Exopolysaccharide Production during Plant Colonization in an Environment-Dependent Manner. Appl Environ Microbiol 2015; 82:1237-1248. [PMID: 26655751 DOI: 10.1128/aem.03475-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/03/2015] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence indicates that despite exposure to harsh environmental stresses, Salmonella enterica successfully persists on plants, utilizing fresh produce as a vector to animal hosts. Among the important S. enterica plant colonization factors are those involved in biofilm formation. S. enterica biofilm formation is controlled by the signaling molecule cyclic di-GMP and represents a sessile lifestyle on surfaces that protects the bacterium from environmental factors. Thus, the transition from a motile, planktonic lifestyle to a sessile lifestyle may represent a vital step in bacterial success. This study examined the mechanisms of S. enterica plant colonization, including the role of diguanylate cyclases (DGCs) and phosphodiesterases (PDEs), the enzymes involved in cyclic di-GMP metabolism. We found that two biofilm components, cellulose and curli, are differentially required at distinct stages in root colonization and that the DGC STM1987 regulates cellulose production in this environment independent of AdrA, the DGC that controls the majority of in vitro cellulose production. In addition, we identified a new function for AdrA in the transcriptional regulation of colanic acid and demonstrated that adrA and colanic acid biosynthesis are associated with S. enterica desiccation tolerance on the leaf surface. Finally, two PDEs with known roles in motility, STM1344 and STM1697, had competitive defects in the phyllosphere, suggesting that regulation of motility is crucial for S. enterica survival in this niche. Our results indicate that specific conditions influence the contribution of individual DGCs and PDEs to bacterial success, perhaps reflective of differential responses to environmental stimuli.
Collapse
|
37
|
Simm R, Ahmad I, Rhen M, Le Guyon S, Römling U. Regulation of biofilm formation in Salmonella enterica serovar Typhimurium. Future Microbiol 2015; 9:1261-82. [PMID: 25437188 DOI: 10.2217/fmb.14.88] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In animals, plants and the environment, Salmonella enterica serovar Typhimurium forms the red dry and rough (rdar) biofilm characterized by extracellular matrix components curli and cellulose. With complex expression control by at least ten transcription factors, the bistably expressed orphan response regulator CsgD directs rdar morphotype development. CsgD expression is an integral part of the Hfq regulon and the complex cyclic diguanosine monophosphate signaling network partially controlled by the global RNA-binding protein CsrA. Cell wall turnover and the periplasmic redox status regulate csgD expression on a post-transcriptional level by unknown mechanisms. Furthermore, phosphorylation of CsgD is a potential inactivation and degradation signal in biofilm dissolution. Including complex incoherent feed-forward loops, regulation of biofilm formation versus motility and virulence is of recognized complexity.
Collapse
Affiliation(s)
- Roger Simm
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, Oslo, Norway
| | | | | | | | | |
Collapse
|
38
|
Balbontín R, Vlamakis H, Kolter R. Mutualistic interaction between Salmonella enterica and Aspergillus niger and its effects on Zea mays colonization. Microb Biotechnol 2015; 7:589-600. [PMID: 25351041 PMCID: PMC4265077 DOI: 10.1111/1751-7915.12182] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 01/09/2023] Open
Abstract
Salmonella Typhimurium inhabits a variety of environments and is able to infect a broad range of hosts. Throughout its life cycle, some hosts can act as intermediates in the path to the infection of others. Aspergillus niger is a ubiquitous fungus that can often be found in soil or associated to plants and microbial consortia. Recently, S. Typhimurium was shown to establish biofilms on the hyphae of A. niger. In this work, we have found that this interaction is stable for weeks without a noticeable negative effect on either organism. Indeed, bacterial growth is promoted upon the establishment of the interaction. Moreover, bacterial biofilms protect the fungus from external insults such as the effects of the anti-fungal agent cycloheximide. Thus, the Salmonella-Aspergillus interaction can be defined as mutualistic. A tripartite gnotobiotic system involving the bacterium, the fungus and a plant revealed that co-colonization has a greater negative effect on plant growth than colonization by either organism in dividually. Strikingly, co-colonization also causes a reduction in plant invasion by S. Typhimurium. This work demonstrates that S. Typhimurium and A. niger establish a mutualistic interaction that alters bacterial colonization of plants and affects plant physiology.
Collapse
Affiliation(s)
- Roberto Balbontín
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, HIM building, Room #1042, Boston, MA, 02115, USA
| | | | | |
Collapse
|
39
|
|
40
|
Manohar CM, Prabhawathi V, Sivakumar PM, Doble M. Design of a papain immobilized antimicrobial food package with curcumin as a crosslinker. PLoS One 2015; 10:e0121665. [PMID: 25906061 PMCID: PMC4408049 DOI: 10.1371/journal.pone.0121665] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/03/2015] [Indexed: 11/19/2022] Open
Abstract
Contamination of food products by spoilage and pathogenic microorganisms during post process handling is one of the major causes for food spoilage and food borne illnesses. The present green sustainable approach describes the covalent immobilization of papain to LDPE (low density polyethylene), HDPE (high density polyethylene), LLDPE (linear low density polyethylene) and PCL (polycaprolactam) with curcumin as the photocrosslinker. About 50% of curcumin and 82-92% of papain were successfully immobilized on these polymers. After 30 days, the free enzyme retained 87% of its original activity, while the immobilized enzyme retained more than 90% of its activity on these polymers. Papain crosslinked to LLDPE exhibited the best antibiofilm properties against Acinetobacter sp. KC119137.1 and Staphylococcus aureus NCIM 5021 when compared to the other three polymers, because of the highest amount of enzyme immobilized on this surface. Papain acts by damaging the cell membrane. The enzyme is able to reduce the amount of carbohydrate and protein contents in the biofilms formed by these organisms. Meat wrapped with the modified LDPE and stored at 4°C showed 9 log reduction of these organisms at the end of the seventh day when compared to samples wrapped with the bare polymer. This method of crosslinking can be used on polymers with or without functional groups and can be adopted to bind any type of antimicrobial agent.
Collapse
Affiliation(s)
- Cynthya Maria Manohar
- Department of Biotechnology, Bhupat & Jyoti Mehta School of BioSciences, IIT Madras, Chennai, 600036, India
| | - Veluchamy Prabhawathi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of BioSciences, IIT Madras, Chennai, 600036, India
| | | | - Mukesh Doble
- Department of Biotechnology, Bhupat & Jyoti Mehta School of BioSciences, IIT Madras, Chennai, 600036, India
- * E-mail:
| |
Collapse
|
41
|
Aya Castañeda MDR, Sarnacki SH, Noto Llana M, López Guerra AG, Giacomodonato MN, Cerquetti MC. Dam methylation is required for efficient biofilm production in Salmonella enterica serovar Enteritidis. Int J Food Microbiol 2015; 193:15-22. [DOI: 10.1016/j.ijfoodmicro.2014.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/04/2014] [Accepted: 10/04/2014] [Indexed: 10/24/2022]
|
42
|
Chai Z, Wang J, Tao S, Mou H. Application of bacteriophage-borne enzyme combined with chlorine dioxide on controlling bacterial biofilm. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.06.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Islam MT, Oishi A, Machida C, Ogura A, Kin S, Honjoh KI, Miyamoto T. Combined effects of selected food additives on adhesion of various foodborne pathogens onto microtiter plate and cabbage leaves. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.05.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
São José JFBD, Andrade NJD, Ramos AM, Vanetti MCD, Stringheta PC, Chaves JBP. Decontamination by ultrasound application in fresh fruits and vegetables. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.04.015] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Yaron S, Römling U. Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microb Biotechnol 2014; 7:496-516. [PMID: 25351039 PMCID: PMC4265070 DOI: 10.1111/1751-7915.12186] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 09/16/2014] [Indexed: 12/28/2022] Open
Abstract
The significant increase in foodborne outbreaks caused by contaminated fresh produce, such as alfalfa sprouts, lettuce, melons, tomatoes and spinach, during the last 30 years stimulated investigation of the mechanisms of persistence of human pathogens on plants. Emerging evidence suggests that Salmonella enterica and Escherichia coli, which cause the vast majority of fresh produce outbreaks, are able to adhere to and to form biofilms on plants leading to persistence and resistance to disinfection treatments, which subsequently can cause human infections and major outbreaks. In this review, we present the current knowledge about host, bacterial and environmental factors that affect the attachment to plant tissue and the process of biofilm formation by S. enterica and E. coli, and discuss how biofilm formation assists in persistence of pathogens on the plants. Mechanisms used by S. enterica and E. coli to adhere and persist on abiotic surfaces and mammalian cells are partially similar and also used by plant pathogens and symbionts. For example, amyloid curli fimbriae, part of the extracellular matrix of biofilms, frequently contribute to adherence and are upregulated upon adherence and colonization of plant material. Also the major exopolysaccharide of the biofilm matrix, cellulose, is an adherence factor not only of S. enterica and E. coli, but also of plant symbionts and pathogens. Plants, on the other hand, respond to colonization by enteric pathogens with a variety of defence mechanisms, some of which can effectively inhibit biofilm formation. Consequently, plant compounds might be investigated for promising novel antibiofilm strategies.
Collapse
Affiliation(s)
- Sima Yaron
- Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of TechnologyHaifa, 32000, Israel
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska InstitutetStockholm, Sweden
| |
Collapse
|
46
|
Bae YM, Zheng L, Hyun JE, Jung KS, Heu S, Lee SY. Growth Characteristics and Biofilm Formation of Various Spoilage Bacteria Isolated from Fresh Produce. J Food Sci 2014; 79:M2072-80. [DOI: 10.1111/1750-3841.12644] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/08/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Young-Min Bae
- Dept. of Food Science and Technology; Chung-Ang Univ; 72-1 Nae-ri, Daedeok-myeon, Anseong-si, Gyeonggi-do 456-756 South Korea
| | - Ling Zheng
- Dept. of Food Science and Technology; Chung-Ang Univ; 72-1 Nae-ri, Daedeok-myeon, Anseong-si, Gyeonggi-do 456-756 South Korea
| | - Jeong-Eun Hyun
- Dept. of Food Science and Technology; Chung-Ang Univ; 72-1 Nae-ri, Daedeok-myeon, Anseong-si, Gyeonggi-do 456-756 South Korea
| | - Kyu-Seok Jung
- Microbial Safety Div; Dept. of Agro-food Safety; Natl. Academy of Agricultural Science Rural Development Administration; Suwon 441-857 Republic of Korea
| | - Sunggi Heu
- Microbial Safety Div; Dept. of Agro-food Safety; Natl. Academy of Agricultural Science Rural Development Administration; Suwon 441-857 Republic of Korea
| | - Sun-Young Lee
- Dept. of Food Science and Technology; Chung-Ang Univ; 72-1 Nae-ri, Daedeok-myeon, Anseong-si, Gyeonggi-do 456-756 South Korea
| |
Collapse
|
47
|
Srey S, Park SY, Jahid IK, Ha SD. Reduction effect of the selected chemical and physical treatments to reduce L. monocytogenes biofilms formed on lettuce and cabbage. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.03.067] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
De Oliveira DCV, Fernandes Júnior A, Kaneno R, Silva MG, Araújo Júnior JP, Silva NCC, Rall VLM. Ability of Salmonella spp. to Produce Biofilm Is Dependent on Temperature and Surface Material. Foodborne Pathog Dis 2014; 11:478-83. [DOI: 10.1089/fpd.2013.1710] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Débora Cristina Vidal De Oliveira
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, UNESP—Universidade Estadual Paulista, Botucatu, Sao Paulo, Brazil
| | - Ary Fernandes Júnior
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, UNESP—Universidade Estadual Paulista, Botucatu, Sao Paulo, Brazil
| | - Ramon Kaneno
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, UNESP—Universidade Estadual Paulista, Botucatu, Sao Paulo, Brazil
| | - Márcia Guimarães Silva
- Department of Pathology, School of Medicine of Botucatu, UNESP—Universidade Estadual Paulista, Botucatu, Sao Paulo, Brazil
| | - João Pessoa Araújo Júnior
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, UNESP—Universidade Estadual Paulista, Botucatu, Sao Paulo, Brazil
| | - Nathalia Cristina Cirone Silva
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, UNESP—Universidade Estadual Paulista, Botucatu, Sao Paulo, Brazil
| | - Vera Lúcia Mores Rall
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, UNESP—Universidade Estadual Paulista, Botucatu, Sao Paulo, Brazil
| |
Collapse
|
49
|
Lim JA, Lee DH, Heu S. The interaction of human enteric pathogens with plants. THE PLANT PATHOLOGY JOURNAL 2014; 30:109-16. [PMID: 25288993 PMCID: PMC4174842 DOI: 10.5423/ppj.rw.04.2014.0036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/10/2014] [Accepted: 05/10/2014] [Indexed: 05/16/2023]
Abstract
There are an increasing number of outbreaks of human pathogens related to fresh produce. Thus, the growth of human pathogens on plants should be explored. Human pathogens can survive under the harsh environments in plants, and can adhere and actively invade plants. Plant-associated microbiota or insects contribute to the survival and transmission of enteric pathogens in plants. Human enteric pathogens also trigger plant innate immunity, but some pathogens-such as Salmonella-can overcome this defense mechanism.
Collapse
Affiliation(s)
- Jeong-A Lim
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| | - Dong Hwan Lee
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| | - Sunggi Heu
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| |
Collapse
|
50
|
Robijns SCA, Roberfroid S, Van Puyvelde S, De Pauw B, Uceda Santamaría E, De Weerdt A, De Coster D, Hermans K, De Keersmaecker SCJ, Vanderleyden J, Steenackers HPL. A GFP promoter fusion library for the study of Salmonella biofilm formation and the mode of action of biofilm inhibitors. BIOFOULING 2014; 30:605-625. [PMID: 24735176 DOI: 10.1080/08927014.2014.907401] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Salmonella, an important foodborne pathogen, forms biofilms in many different environments. The composition of these biofilms differs depending on the growth conditions, and their development is highly coordinated in time. To develop efficient treatments, it is therefore essential that biofilm formation and its inhibition be understood in different environments and in a time-dependent manner. Many currently used techniques, such as transcriptomics or proteomics, are still expensive and thus limited in their application. Therefore, a GFP-promoter fusion library with 79 important Salmonella biofilm genes was developed (covering among other things matrix production, fimbriae and flagella synthesis, and c-di-GMP regulation). This library is a fast, inexpensive, and easy-to-use tool, and can therefore be conducted in different experimental setups in a time-dependent manner. In this paper, four possible applications are highlighted to illustrate and validate the use of this reporter fusion library.
Collapse
Affiliation(s)
- S C A Robijns
- a Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics , KU Leuven , Leuven , Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|