1
|
Koposova ON, Kazantseva OA, Shadrin AM. Diversity of Endolysin Domain Architectures in Bacteriophages Infecting Bacilli. Biomolecules 2024; 14:1586. [PMID: 39766293 PMCID: PMC11674121 DOI: 10.3390/biom14121586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The increasing number of antibiotic-resistant bacterial pathogens is a serious problem in medicine. Endolysins are bacteriolytic enzymes of bacteriophages, and a promising group of enzymes with antibacterial properties. Endolysins of bacteriophages infecting Gram-positive bacteria have a modular domain organization. This feature can be used to design enzymes with new or improved properties by modifying or shuffling individual domains. This work is a detailed analysis 1of the diversity of endolysin domains found in bacteriophages infecting bacilli. During the course of the work, a database of endolysins of such bacteriophages was created, and their domain structures were analyzed using the NCBI database, RASTtk, BLASTp, HHpred, and InterPro programs. A phylogenetic analysis of endolysins was performed using MEGA X. In 438 phage genomes, 454 genes of endolysins were found. In the endolysin sequences found, eight different types of catalytic domains and seven types of cell wall binding domains were identified. The analysis showed that many types of endolysin domains have not yet been characterized experimentally. Studies of the properties of such domains will help to reveal the potential of endolysins for the creation of new antibacterial agents.
Collapse
Affiliation(s)
| | | | - Andrey M. Shadrin
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia; (O.N.K.); (O.A.K.)
| |
Collapse
|
2
|
Tan S, Chen H, Huang S, Zhu B, Wu J, Chen M, Zhang J, Wang J, Ding Y, Wu Q, Yang M. Characterization of the novel phage vB_BceP_LY3 and its potential role in controlling Bacillus cereus in milk and rice. Int J Food Microbiol 2024; 421:110778. [PMID: 38861847 DOI: 10.1016/j.ijfoodmicro.2024.110778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Bacillus cereus is a foodborne pathogen that induces vomiting and diarrhea in affected individuals. It exhibits resistance to traditional sterilization methods and has a high contamination rate in dairy products and rice. Therefore, the development of a new food safety controlling strategy is necessary. In this research, we isolated and identified a novel phage named vB_BceP_LY3, which belongs to a new genus of the subfamily Northropvirinae. This phage demonstrates a short latency period and remains stable over a wide range of temperatures (4-60 °C) and pH levels (4-11). The 28,124 bp genome of LY3 does not contain any antibiotic-resistance genes or virulence factors. With regards to its antibacterial properties, LY3 not only effectively inhibits the growth of B. cereus in TSB (tryptic soy broth), but also demonstrates significant inhibitory effects in various food matrices. Specifically, LY3 treatment at 4 °C with a high MOI (MOI = 10,000) can maintain B. cereus levels below the detection limit for up to 24 h in milk. LY3 represents a safe and promising biocontrol agent against B. cereus, possessing long-term antibacterial capabilities and stability.
Collapse
Affiliation(s)
- Shilin Tan
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Hanfang Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Shixuan Huang
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Bin Zhu
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Junquan Wu
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Moutong Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Jumei Zhang
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Yu Ding
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China.
| | - Meiyan Yang
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China.
| |
Collapse
|
3
|
Li Y, Luo L, Wang W, Hong B, Ma Y, Wang J. Characterization of a cell wall hydrolase with high activity against vegetative cells, spores and biofilm of Bacillus cereus. Int J Food Microbiol 2024; 414:110617. [PMID: 38335884 DOI: 10.1016/j.ijfoodmicro.2024.110617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/17/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Bacillus cereus is a prevalent foodborne pathogen that induces food poisoning symptoms such as vomiting and diarrhea. Its capacity to form spores and biofilm enables it to withstand disinfectants and antimicrobials, leading to persistent contamination during food processing. Consequently, it is necessary to develop novel and efficient antimicrobial agents to control B. cereus, its spores, and biofilms. Peptidoglycan hydrolases have emerged as a promising and eco-friendly alternative owing to their specific lytic activity against pathogenic bacteria. Here, we identified and characterized a Lysozyme-like cell wall hydrolase Lys14579, from the genome of B. cereus ATCC 14579. Recombinant Lys14579 specifically lysed B. cereus without affecting other bacteria. Lys14579 exhibited strong lytic activity against B. cereus, effectively lysing B. cereus cell within 20 min at low concentration (10 μg/mL). It also inhibited the germination of B. cereus spores and prevented biofilm formation at 12.5 μg/mL. Moreover, Lys14579 displayed good antimicrobial stability with negligible hemolysis in mouse red blood cells and no cytotoxicity against RAW264.7 cells. Notably, Lys14579 effectively inhibited B. cereus in boiled rice and minced meat in a dose-dependent manner. Furthermore, bioinformatics analysis and point mutagenesis experiments revealed that Glu-47 was the catalytic site, and Asp-57, Gln-60, Ser-61 and Glu-63 were active-site residues related with the cell wall lytic activity. Taken together, Lys14579 could be a promising biocontrol agent against vegetative cells, spores, and biofilm of B. cereus in food industry.
Collapse
Affiliation(s)
- Yanmei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Lun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wenhai Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Bin Hong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
4
|
Liu P, Dong X, Cao X, Xie Q, Huang X, Jiang J, Dai H, Tang Z, Lin Y, Feng S, Luo K. Identification of Three Campylobacter Lysins and Enhancement of Their Anti-Escherichia coli Efficacy Using Colicin-Based Translocation and Receptor-Binding Domain Fusion. Microbiol Spectr 2023; 11:e0451522. [PMID: 36749047 PMCID: PMC10100823 DOI: 10.1128/spectrum.04515-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
The emergence of multidrug-resistant Escherichia coli, which poses a major threat to public health, has motivated the development of numerous alternative antimicrobials. Lysins are bacteriophage- and bacterium-derived peptidoglycan hydrolases that represent a new antibiotic treatment targeting bacterial cell walls. However, the bactericidal effect of native lysins on Gram-negative bacteria is restricted by the presence of an outer membrane. Here, we first evaluated the antibacterial activity of three Campylobacter-derived lysins (Clysins) against E. coli. To improve their transmembrane ability and antibacterial activities, six engineered Clysins were constructed by fusing with the translocation and receptor-binding (TRB) domains from two types of colicins (colicin A [TRBA] and colicin K [TRBK]), and their biological activities were determined. Notably, engineered lysin TRBK-Cly02 exhibited the highest bactericidal activity against the E. coli BL21 strain, with a reduction of 6.22 ± 0.34 log units of cells at a concentration of 60.1 μg/mL, and formed an observable inhibition zone even at a dose of 6.01 μg. Moreover, TRBK-Cly02 killed E. coli dose dependently and exhibited the strongest bactericidal activity at pH 6. It also exhibited potential bioactivity against multidrug-resistant E. coli clinical isolates. In summary, this study identified three lysins from Campylobacter strains against E. coli, and the enhancement of their antibacterial activities by TRB domains fusion may allow them to be developed as potential alternatives to antibiotics. IMPORTANCE Three lysins from Campylobacter, namely, Clysins, were investigated, and their antibacterial activities against E. coli were determined for the first time. To overcome the restriction of the outer membrane of Gram-negative bacteria, we combined the TRB domains of colicins with these Clysins. Moreover, we discovered that the Clysins fused with TRB domains from colicin K (TRBK) killed E. coli more effectively, and this provides a new foundation for the development of novel bioengineered lysins by employing TRBK constructs that target outer membrane receptor/transport systems. One of the designed lysins, TRBK-Cly02, exhibited potent bactericidal efficacy against E. coli strains and may be used for control of multidrug-resistant clinical isolates. The results suggest that TRBK-Cly02 can be considered a potential antibacterial agent against pathogenic E. coli.
Collapse
Affiliation(s)
- Peiqi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinying Dong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xuewei Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qianmei Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiuqin Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinfei Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huilin Dai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zheng Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yizhen Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kaijian Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Wan X, Geng P, Sun J, Yuan Z, Hu X. Characterization of two newly isolated bacteriophages PW2 and PW4 and derived endolysins with lysis activity against Bacillus cereus group strains. Virus Res 2021; 302:198489. [PMID: 34146612 DOI: 10.1016/j.virusres.2021.198489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 01/31/2023]
Abstract
This study characterized two novel Siphoviridae phages, PW2 and PW4, that can infect 52% and 44% of the tested Bacillus cereus group isolates and display relatively high activity against four cereulide-producing isolates belonging to B. weihenstephanensis and B. paranthracis. The genome sequences of PW2 and PW4 are similar to six known phages infecting B. cereus group isolates, which can be classified into two conserved groups, with the PW2 genome harboring conserved coding sequences (CDSs) from both groups. Two phage-derived endolysins, LysPW2 and LysPW4, which are predicted to encode N-acetylmuramoyl-L-alanine amidase, and their enzymatically active domains (EADs), LysPW2-EAD and LysPW4-EAD, were heterologously expressed. Both LysPW2 and LysPW4, especially the former, show a much wider host range than the phages, albeit still limited to the B. cereus group for the tested bacteria. The optimal temperature and pH for LysPW2 ability is 37 °C and pH 8.0 and for LysPW4 is 50 °C and pH 9.0. Neither LysPW2-EAD nor LysPW4-EAD show any lytic activity against vegetative cells of the tested B. cereus group isolates but can inhibit germination in 66.3% and 65.7% of spores, respectively. In addition, both LysPW2-EAD and LysPW4-EAD exhibit spore-binding capabilities.
Collapse
Affiliation(s)
- Xiaofu Wan
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430070, China; University of the Chinese Academy of Sciences, Beijing 100039, China; College of Life Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Peiling Geng
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Jiahui Sun
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430070, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430070, China.
| | - Xiaomin Hu
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
6
|
Mitchell SJ, Verma D, Griswold KE, Bailey-Kellogg C. Building blocks and blueprints for bacterial autolysins. PLoS Comput Biol 2021; 17:e1008889. [PMID: 33793553 PMCID: PMC8051824 DOI: 10.1371/journal.pcbi.1008889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/16/2021] [Accepted: 03/17/2021] [Indexed: 01/31/2023] Open
Abstract
Bacteria utilize a wide variety of endogenous cell wall hydrolases, or autolysins, to remodel their cell walls during processes including cell division, biofilm formation, and programmed death. We here systematically investigate the composition of these enzymes in order to gain insights into their associated biological processes, potential ways to disrupt them via chemotherapeutics, and strategies by which they might be leveraged as recombinant antibacterial biotherapies. To do so, we developed LEDGOs (lytic enzyme domains grouped by organism), a pipeline to create and analyze databases of autolytic enzyme sequences, constituent domain annotations, and architectural patterns of multi-domain enzymes that integrate peptidoglycan binding and degrading functions. We applied LEDGOs to eight pathogenic bacteria, gram negatives Acinetobacter baumannii, Klebsiella pneumoniae, Neisseria gonorrhoeae, and Pseudomonas aeruginosa; and gram positives Clostridioides difficile, Enterococcus faecium, Staphylococcus aureus, and Streptococcus pneumoniae. Our analysis of the autolytic enzyme repertoires of these pathogens reveals commonalities and differences in their key domain building blocks and architectures, including correlations and preferred orders among domains in multi-domain enzymes, repetitions of homologous binding domains with potentially complementarity recognition modalities, and sequence similarity patterns indicative of potential divergence of functional specificity among related domains. We have further identified a variety of unannotated sequence regions within the lytic enzymes that may themselves contain new domains with important functions.
Collapse
Affiliation(s)
- Spencer J. Mitchell
- Department of Computer Science, Dartmouth, Hanover, New Hampshire, United States of America
| | - Deeptak Verma
- Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Karl E. Griswold
- Thayer School of Engineering, Dartmouth, Hanover, New Hampshire, United States of America
- Lyticon LLC, Lebanon, New Hampshire, United States of America
| | - Chris Bailey-Kellogg
- Department of Computer Science, Dartmouth, Hanover, New Hampshire, United States of America
- Lyticon LLC, Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
7
|
Opportunities for broadening the application of cell wall lytic enzymes. Appl Microbiol Biotechnol 2020; 104:9019-9040. [DOI: 10.1007/s00253-020-10862-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 01/21/2023]
|
8
|
Ding Y, Zhang Y, Huang C, Wang J, Wang X. An Endolysin LysSE24 by Bacteriophage LPSE1 Confers Specific Bactericidal Activity against Multidrug-Resistant Salmonella Strains. Microorganisms 2020; 8:E737. [PMID: 32429030 PMCID: PMC7284969 DOI: 10.3390/microorganisms8050737] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
Salmonella is responsible for a wide range of infections and is a constant threat to public health, particularly in light of emerging antibiotic resistance. The use of bacteriophages and phage endolysins as specific antibacterial agents is a promising strategy to control this bacterial infection. Endolysins are important proteins during the process of bacteria lysis by bacteriophages. In this study, we identify a novel endolysin, named LysSE24. LysSE24 was predicted to possess N-acetylmuramidases activity, with a molecular mass of ca. 17.4 kDa and pI 9.44. His-tagged LysSE24 was heterologously expressed and purified by Ni-NTA chromatography. LysSE24 exhibited optimal bactericidal activity against Salmonella Enteritidis ATCC 13076 at a concentration of 0.1 μM. Salmonella population (measured by OD600 nm) decreased significantly (p < 0.05) after 10 min of incubation in combination with the outer membrane permeabilizer in vitro. It also showed antibacterial activity against a panel of 23 tested multidrug-resistant Salmonella strains. Bactericidal activity of LysSE24 was evaluated in terms of pH, temperature, and ionic strength. It was very stable with different pH (4.0 to 10.0) at different temperatures (20 to 60 °C). Both K+ and Na+ at concentrations between 0.1 to 100 mM showed no effects on its bactericidal activity, while a high concentration of Ca2+ and Mg2+ showed efficacy. Transmission electron microscopy revealed that exposure to 0.1 μM LysSE24 for up to 5 min caused a remarkable modification of the cell shape of Salmonella Enteritidis ATCC 13076. These results indicate that recombinant LysSE24 represents a promising antimicrobial activity against Salmonella, especially several multidrug-resistant Salmonella strains. Further studies can be developed to improve its bactericidal activity without the need for pretreatment with outer membrane-destabilizing agents by synthetic biology methods.
Collapse
Affiliation(s)
- Yifeng Ding
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; (Y.D.); (J.W.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (C.H.)
| | - Yu Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (C.H.)
| | - Chenxi Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (C.H.)
| | - Jia Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; (Y.D.); (J.W.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (C.H.)
| | - Xiaohong Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; (Y.D.); (J.W.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (C.H.)
| |
Collapse
|
9
|
Liu A, Wang Y, Cai X, Jiang S, Cai X, Shen L, Liu Y, Han G, Chen S, Wang J, Wu W, Li C, Liu S, Wang X. Characterization of endolysins from bacteriophage LPST10 and evaluation of their potential for controlling Salmonella Typhimurium on lettuce. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Characterization of LysBC17, a Lytic Endopeptidase from Bacillus cereus. Antibiotics (Basel) 2019; 8:antibiotics8030155. [PMID: 31546935 PMCID: PMC6784087 DOI: 10.3390/antibiotics8030155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/26/2022] Open
Abstract
Bacillus cereus, a Gram-positive bacterium, is an agent of food poisoning. B. cereus is closely related to Bacillus anthracis, a deadly pathogen for humans, and Bacillus thuringenesis, an insect pathogen. Due to the growing prevalence of antibiotic resistance in bacteria, alternative antimicrobials are needed. One such alternative is peptidoglycan hydrolase enzymes, which can lyse Gram-positive bacteria when exposed externally. A bioinformatic search for bacteriolytic enzymes led to the discovery of a gene encoding an endolysin-like endopeptidase, LysBC17, which was then cloned from the genome of B. cereus strain Bc17. This gene is also present in the B. cereus ATCC 14579 genome. The gene for LysBC17 encodes a protein of 281 amino acids. Recombinant LysBC17 was expressed and purified from E. coli. Optimal lytic activity against B. cereus occurred between pH 7.0 and 8.0, and in the absence of NaCl. The LysBC17 enzyme had lytic activity against strains of B. cereus, B. anthracis, and other Bacillus species.
Collapse
|
11
|
Rossi GAM, Aguilar CEG, Silva HO, Vidal AMC. Bacillus cereus group: genetic aspects related to food safety and dairy processing. ARQUIVOS DO INSTITUTO BIOLÓGICO 2018. [DOI: 10.1590/1808-1657000232017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
ABSTRACT: Bacillus cereus group includes not pathogenic and high pathogenic species. They are considered as a risk to public health due to foodborne diseases and as an important cause of economic losses to industries due to production of spoilage enzymes. Some researches have been performed in order to assess the possible factors that contribute to put public health into risk because of consumption of food contaminated with viable cells or toxins which have complex mechanisms of production. The control of these bacteria in food is difficult because they are resistant to several processes used in industries. Thus, in this way, this review focused on highlighting the risk due to toxins production by bacteria from B. cereus group in food and the consequences for food safety and dairy industries.
Collapse
|
12
|
Peng Q, Yuan Y. Characterization of a novel phage infecting the pathogenic multidrug-resistant Bacillus cereus and functional analysis of its endolysin. Appl Microbiol Biotechnol 2018; 102:7901-7912. [PMID: 30008020 DOI: 10.1007/s00253-018-9219-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/24/2018] [Accepted: 07/03/2018] [Indexed: 01/01/2023]
Abstract
Bacillus cereus is widely distributed food-borne pathogenic bacterium. Due to the harmness to human hearth and the generation of multidrug-resistant B. cereus, it is urgent to develop novel antimicrobial agents. Phage and phage endolysin were taken as novel antimicrobial substance for their specific lytic activity against pathogenic bacteria. In this study, a Myoviridae family phage, designated as vB_BceM-HSE3, infecting the pathogenic multidrug-resistant B. cereus strain was isolated and characterized along with its endolysin. Phage vB_BceM-HSE3 can specially infect the B. cereus group strains, including B. cereus, B. anthracis, and B. thuringiensis, and exhibits high temperature and pH tolerance, which endow it with high potential for been used in controlling pathogenic B. cereus group strains. Genomic analysis reveals that vB_BceM-HSE3 is a novel phage and only shows extremely low genome similarity with available phage genome. Functional analysis of endolysin PlyHSE3 encoding by vB_BceM-HSE3 shows that PlyHSE3 exhibits broader lytic spectrum than the phage and can lyse all the tested B. cereus group strains as well as the tested pathogenic strain of P. aeruginosa. PlyHSE3 also shows broad temperature and pH tolerance, and can efficiently lyse B. cereus strain at temperature at 4 °C and higher than 45 °C, which indicating that PlyHSE3 might can be used in controlling food-borne B. cereus during both the cold storage of food and the stage after the heat treatment of food. The findings of this study enrich our understanding of phage diversity as well as providing resources for developing phage therapy.
Collapse
Affiliation(s)
- Qin Peng
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, People's Republic of China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| |
Collapse
|
13
|
Geng P, Tian S, Yuan Z, Hu X. Identification and genomic comparison of temperate bacteriophages derived from emetic Bacillus cereus. PLoS One 2017; 12:e0184572. [PMID: 28886124 PMCID: PMC5590980 DOI: 10.1371/journal.pone.0184572] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/25/2017] [Indexed: 01/21/2023] Open
Abstract
Cereulide-producing Bacillus cereus isolates can cause serious emetic (vomiting) syndrome and even acute lethality. As mobile genetic elements, the exploration of prophages derived from emetic B. cereus isolates will help in our understanding of the genetic diversity and evolution of these pathogens. In this study, five temperate phages derived from cereulide-producing B. cereus strains were induced, with four of them undergoing genomic sequencing. Sequencing revealed that they all belong to the Siphoviridae family, but presented in different forms in their hosts. PfNC7401 and PfIS075 have typical icosahedral heads, probably existing alone as phagemids in the host with self-replicating capability in the lysogenic state. PfEFR-4, PfEFR-5, and PfATCC7953 have elongated heads, with the genomes of the former two identified as linear dsDNA, which could be integrated into the host genome during the lysogenic state. Genomic comparison of the four phages with others also derived from emetic B. cereus isolates showed similar genome structures and core genes, thus displaying host spectrum specificity. In addition, phylogenic analysis based on the complete genome and conserved tail fiber proteins of 36 Bacillus species-derived phages confirmed that the phages derived from emetic B. cereus strains were highly similar. Furthermore, one endolysin LysPfEFR-4 was cloned and showed lytic activity against all tested emetic B. cereus strains and cross-lytic activity against some other pathogenic bacteria, implying a potential to control bacterial contamination in the food supply.
Collapse
Affiliation(s)
- Peiling Geng
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Shen Tian
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (XH); (ZY)
| | - Xiaomin Hu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (XH); (ZY)
| |
Collapse
|