1
|
Griffiths SD, King HM, Wilkinson J, Kelly FJ, Entwistle JA, Deary ME. Evaluating public exposure to airborne particulates from major incident fires: A back trajectory plume modelling approach. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137455. [PMID: 40022916 DOI: 10.1016/j.jhazmat.2025.137455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 03/04/2025]
Abstract
Major incident fires at industrial facilities, particularly waste sites, pose a significant risk to public health because of the large amounts of hazardous airborne pollutants released into the ambient environment. Monitoring carried out during these fires is limited in spatial resolution, meaning that the full extent of population exposure is difficult to estimate. In this study, we overcome these limitations by using a novel back-trajectory plume modelling approach, applied to PM10 emission data from a significant tyre fire that occurred in the UK in 2010. This approach allows the calculation of an hourly emission rate that is then used in the forward modelling mode to predict hourly plume concentrations. An analysis of the modelled plume indicated that, as a reasonable worst case, up to 8000 residents in areas adjacent to the fire may have been exposed to PM10 concentrations that are deemed hazardous. Moreover, a vulnerability analysis showed that the exposed population had disproportionately poorer health than the national average, thus raising concerns about environmental justice. This work highlights the need to improve regulatory controls for waste sites located near urban areas and for further research on population exposure and the health impacts of major incident fires.
Collapse
Affiliation(s)
- Simon D Griffiths
- Faculty of Engineering and Environment, Department of Geography and Environmental Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK
| | - Helen M King
- Faculty of Engineering and Environment, Department of Geography and Environmental Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK
| | - Justine Wilkinson
- Faculty of Engineering and Environment, Department of Geography and Environmental Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK
| | - Frank J Kelly
- Environmental Research Group, School of Public Health, Imperial College London, UK
| | - Jane A Entwistle
- Faculty of Engineering and Environment, Department of Geography and Environmental Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK
| | - Michael E Deary
- Faculty of Engineering and Environment, Department of Geography and Environmental Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK.
| |
Collapse
|
2
|
Boniardi L, Solazzo G, Favero C, Campo L, Ferrari L, Fustinoni S. Short-term personal exposure to multiple air pollutants affects nasal microbiota in school-age children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 981:179588. [PMID: 40334460 DOI: 10.1016/j.scitotenv.2025.179588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/20/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025]
Abstract
Air pollution has significant harmful effects on human health, particularly on children living in urban environments. Disruption of upper respiratory microbiota can represent a key factor in the development of diseases and symptoms. This panel study analyze how personal exposure to air pollutants on the nasal microbiota of school-age children in Milan, Italy, across two seasons. We monitored short-term (~16 h) personal exposure to Volatile Organic Compounds (VOC) and equivalent Black Carbon (eBC) in 95 children during winter and 74 during spring, with 68 children monitored both seasons. Our analysis of nasal microbiota reveals that both types of pollutants influenced microbiota diversity, and the relative abundance of key genera, such as Corynebacterium, Moraxella, and Streptococcus. Notably, seasonality played a significant role in modulating the relationship between exposure and microbiota, with distinct effects observed in winter compared to spring. Our findings show that air pollution, particularly short-term exposure, alters the nasal microbiota in children. However, further research is needed to determine whether and how these changes influence respiratory health.
Collapse
Affiliation(s)
- L Boniardi
- EPIGET Lab, Department of Clinical Science and Community Health, Dipartimento di Eccellenza 2023-2027, Università degli Studi di Milano, Italy.
| | - G Solazzo
- EPIGET Lab, Department of Clinical Science and Community Health, Dipartimento di Eccellenza 2023-2027, Università degli Studi di Milano, Italy
| | - C Favero
- EPIGET Lab, Department of Clinical Science and Community Health, Dipartimento di Eccellenza 2023-2027, Università degli Studi di Milano, Italy
| | - L Campo
- EPIGET Lab, Department of Clinical Science and Community Health, Dipartimento di Eccellenza 2023-2027, Università degli Studi di Milano, Italy; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - L Ferrari
- EPIGET Lab, Department of Clinical Science and Community Health, Dipartimento di Eccellenza 2023-2027, Università degli Studi di Milano, Italy; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - S Fustinoni
- EPIGET Lab, Department of Clinical Science and Community Health, Dipartimento di Eccellenza 2023-2027, Università degli Studi di Milano, Italy; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
3
|
Liu Q, Zhang D, Liang F, Liu F, Xiao L, An X, Chen X, Liang X. Air pollution and hypertension in rural versus urban children: Lipidomic insights into PM2.5 impacts. ENVIRONMENTAL RESEARCH 2025; 278:121715. [PMID: 40306456 DOI: 10.1016/j.envres.2025.121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 04/24/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
Fine particulate matter and its impact on blood pressure (BP) in children remain a concern, with the role of lipid metabolism as a potential mediator not fully elucidated. We conducted a cohort study of 2239 urban subjects and 2194 rural subjects at baseline in China from 2014 to 2024 and a nested case-control study with lipidomics analyses. Analysis results showed that higher fine particulate matter smaller than 2.5 μm (PM2.5) exposure associated with high density lipoprotein cholesterol (HDL-C), non-HDL-C, and higher systolic blood pressure (SBP), partially mediated by HDL-C/non-HDL-C changes. Mediation analysis indicated a significant mediating effect of HDL-C on the PM2.5-DBP and PM2.5-MAP (DBP, diastolic blood pressure; MAP, mean arterial pressure) association in urban subjects, while no mediation effect was found in rural subjects. For non-HDL-C, significant mediating effects were observed in both urban and rural subjects. Further analyses revealed distinct urban-rural lipidomic patterns, with specific phosphatidylethanolamine (PEs) mediating PM2.5-related hypertension in rural subjects, while lactosylceramides (LacCer) played this role in urban youth. These patterns extended to other BP indices as well. In the urban area, PG(44:11), LacCer(d45:1), were identified as playing significant mediating roles in the association between PM2.5 exposure and hypertension while for rural subjects, PEs including PE(16:0/16:0) and PE(18:0/18:2) showed significant mediating effects. Our findings underscore the impact of PM2.5 exposure on lipid profiles and BP risk in children, suggesting area-specific mechanisms and the potential for lipidomic-based interventions to mitigate environmental health risks.
Collapse
Affiliation(s)
- Qin Liu
- Department of Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Di Zhang
- Department of Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China; School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Fangchao Liu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Leyuan Xiao
- Department of Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Xizhou An
- Department of Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Xin Chen
- Department of Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Xiaohua Liang
- Department of Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China.
| |
Collapse
|
4
|
Lake EA, Karras J, Marks GB, Cowie CT. The effect of air pollution on morbidity and mortality among children aged under five in sub-Saharan Africa: Systematic review and meta-analysis. PLoS One 2025; 20:e0320048. [PMID: 40209164 PMCID: PMC11984980 DOI: 10.1371/journal.pone.0320048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/12/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Air pollution from indoor and outdoor sources constitutes a substantial health risk to young children in sub-Saharan Africa (SSA). Although some systematic reviews have assessed air pollution and children's respiratory health in SSA, none have considered both ambient and indoor exposures. METHODS This systematic review and meta-analysis assessed the effect of air pollution (ambient and indoor) on respiratory hospitalization and mortality among children under five years in SSA. We retrieved relevant articles from PubMed, Embase, Scopus, African Journals Online (AJOL), Web of Science, and medRxiv. The protocol was registered with Prospero (CRD42023470010). We used guidelines from the preferred reporting items for systematic review and meta-analysis (PRISMA-2020) to guide the systematic review process. Risk of bias was assessed using the Office of Health Assessment and Translation (OHAT) quality appraisal tool. For exposures where there were sufficient studies/data we conducted meta-analyses using random effects models and used Stata version 17 software for analysis. RESULTS For the systematic review we screened 5619 titles and abstracts, reviewed 315 full texts, and included 31 articles involving 2,178,487 participants. Eleven studies examined exposure to solid fuel use in households and its association with all-cause mortality, while four studies explored the impact of passive smoking on mortality among children under five. Only two studies assessed ambient air pollution's effects on all-cause and respiratory-related mortality. Additionally, 13 studies reported varying associations between respiratory hospitalization and household tobacco smoke exposure. Meta-analyses on studies of solid fuel use and mortality and passive smoking and hospitalizations showed that children exposed to indoor solid fuels combustion had higher odds of mortality compared to non-exposed children (OR = 1.31; 95% CI: 1.16-1.47). The meta-analysis of exposure to second-hand smoke found an increased risk of respiratory hospitalization due to pneumonia, although the results were not significant (OR = 1.29; 95% CI: 0.45-3.68), and our certainty of evidence assessment indicated insufficient support to conclusively establish this association. CONCLUSION AND RECOMMENDATION Our review reveals that solid fuel use and ambient PM2.5 exposure were associated with increased mortality risk in children under five years in SSA. The meta-analysis showed evidence of an increased risk of under-five years mortality associated with solid fuel use in households. Associations between secondhand smoke and pneumonia hospitalization were less clear. We conclude that significant research gaps remain in understanding the impact of discrete sources of air pollution on the causation of respiratory illness in young children living in SSA. Prioritizing interventions targeting indoor sources is essential, along with further studies which use standardized and objective exposure and outcome measures to study these associations.
Collapse
Affiliation(s)
- Eyasu Alem Lake
- School of Nursing, College of Health Science and Medicine, Wolaita Sodo University, Sodo, Ethiopia
- South West Sydney Clinical Campus, UNSW Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia
| | - Joshua Karras
- School of Population Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Guy B. Marks
- South West Sydney Clinical Campus, UNSW Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Christine T. Cowie
- South West Sydney Clinical Campus, UNSW Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| |
Collapse
|
5
|
Boniardi L, Nobile F, Stafoggia M, Michelozzi P, Ancona C. Assessing the impact of traffic restriction interventions on school air quality: a citizen science-based modelling study. ENVIRONMENTAL RESEARCH 2025; 277:121562. [PMID: 40203976 DOI: 10.1016/j.envres.2025.121562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/07/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Air pollution poses a significant threat to human health, especially for the vulnerable groups such as children. Given that schools are central to their daily lives, ensuring good air quality in these environments is crucial. This study evaluates the impact of traffic restriction interventions around schools by integrating citizen science monitoring data with advanced modeling techniques. From February 4 to March 4, 2023, within the framework of a citizen science project called "NO2, No Grazie!", NO2 concentrations were measured in Milan and Rome (Italy), Italy's two most populated cities, both affected by high traffic-related pollution, using passive samplers. The spatial distribution of NO2 across entire city territories was estimated using Land Use Random Forest (LURF) models. Four traffic restriction scenarios were developed alongside a business-as-usual one; furthermore, each school was characterized by the social vulnerability of its area. In total, 486 samplers were analyzed in Milan and 407 in Rome, with NO2 levels averaging 47.1 μg/m3 and 42.6 μg/m3, respectively. LURF models explained 64 % and 53 % of the measured variability, with traffic proximity as a major predictor. Among 659 schools in Milan and 1595 in Rome, all traffic restriction scenarios led to significant NO2 reductions. The most effective scenario reduced NO2 by 2.7 μg/m3 in Milan and 1.9 μg/m3 in Rome on average, with maximum observed decreases of 11.1 μg/m3 and 16.1 μg/m3, respectively. Schools in socioeconomically deprived areas had lower NO2 levels and were less impacted by the restrictions. The study underscores the value of traffic policies in improving air quality around schools.
Collapse
Affiliation(s)
- Luca Boniardi
- EPIGET Lab, Department of Clinical Science and Community Health, Dipartimento di Eccellenza 2023-2027, Università degli Studi di Milano, Italy.
| | - Federica Nobile
- Department of Epidemiology, Lazio Regional Health Service/ASL Roma 1, Via C. Colombo 112, 00147, Rome, Italy
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service/ASL Roma 1, Via C. Colombo 112, 00147, Rome, Italy
| | - Paola Michelozzi
- Department of Epidemiology, Lazio Regional Health Service/ASL Roma 1, Via C. Colombo 112, 00147, Rome, Italy
| | - Carla Ancona
- Department of Epidemiology, Lazio Regional Health Service/ASL Roma 1, Via C. Colombo 112, 00147, Rome, Italy
| |
Collapse
|
6
|
Alliott O, van Sluijs E, Dove R, Kalsi H, Mitchell J, Mudway I, Randhawa G, Sartori L, Scales J, Wood HE, Griffiths C, Guell C, Panter J. London's Ultra Low Emission Zone and active travel to school: a qualitative study exploring the experiences of children, families and teachers. BMJ Open 2025; 15:e091929. [PMID: 40032382 PMCID: PMC12010349 DOI: 10.1136/bmjopen-2024-091929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/24/2025] [Indexed: 03/05/2025] Open
Abstract
OBJECTIVE Taking a qualitative approach, we aimed to understand how London's Ultra Low Emission Zone (ULEZ) might work to change behaviour and improve health in the context of the school journey. DESIGN Primary qualitative study embedded within an existing natural experimental study. SETTING A population-level health intervention implemented across London. PARTICIPANTS Purposive sampling was used to recruit children (aged 10-11 years) from ethnically and socioeconomically diverse backgrounds within an existing cohort study, Children's Health in London and Luton. METHODS In-person and online interviews were conducted with 21 families and seven teachers from the children's schools between November 2022 and March 2023. Verbatim transcripts were analysed drawing on Braun and Clarke's reflexive thematic analysis and guided by realist evaluation principles to identify contexts, mechanisms and outcomes using NVivo. RESULTS Common context, mechanism, outcome (CMO) configurations were identified reflecting congruent narratives across children, parents and teachers, for example, current active travellers (context) reported reductions in pollution (mechanism) leading to improvements in health, including alleviated symptoms of asthma (outcome). These CMOs were broadly captured by two themes: (i) how you travelled before the ULEZ matters: the impact of travel mode on experiences of the ULEZ and (ii) your context matters: the role of socioeconomic position in experiences of the ULEZ. Participants highlighted the potential for the ULEZ to positively impact their choice of travel mode to school, experiences of the journey and their health. However, the impact of the ULEZ differed inequitably by journey length, travel mode before implementation and access to reliable and affordable public transport. CONCLUSIONS The capacity for the ULEZ to both narrow and exacerbate inequities across different travel contexts suggests when developing such schemes, more emphasis needs to be placed on providing accessible and affordable alternatives to driving.
Collapse
Affiliation(s)
- Olivia Alliott
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - Rosamund Dove
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
- Asthma UK Centre for Applied Research, Edinburgh, UK
| | - Harpal Kalsi
- Asthma UK Centre for Applied Research, Edinburgh, UK
- Institute for Health and Primary Care, Queen Mary University of London Wolfson Institute of Population Health, London, UK
| | - Jessica Mitchell
- Asthma UK Centre for Applied Research, Edinburgh, UK
- Queen Mary University of London, London, UK
| | - Ian Mudway
- MRC Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
- NIHR Health Protection Research Units in Environmental Exposures and Health, and Chemical and Radiation Threats and Hazards, Imperial College London, London, UK
| | - Gurch Randhawa
- Asthma UK Centre for Applied Research, Edinburgh, UK
- Institute for Health Research, University of Bedfordshire Faculty of Health and Social Sciences, Luton, UK
| | - Luke Sartori
- Asthma UK Centre for Applied Research, Edinburgh, UK
- Institute for Health and Primary Care, Queen Mary University of London Wolfson Institute of Population Health, London, UK
| | - James Scales
- Asthma UK Centre for Applied Research, Edinburgh, UK
- Institute for Health and Primary Care, Queen Mary University of London Wolfson Institute of Population Health, London, UK
| | - Helen E Wood
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
- Asthma UK Centre for Applied Research, Edinburgh, UK
| | - Chris Griffiths
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
- Asthma UK Centre for Applied Research, Edinburgh, UK
| | - Cornelia Guell
- European Centre for Environment and Human Health, University of Exeter Medical School, Exeter, UK
- Wellcome Centre for Cultures and Environments of Health, University of Exeter, Exeter, UK
| | - Jenna Panter
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Liang T, Ai Z, Zhong H, Xiao M, Xie M, Liang X, Li L. The impact of temperature changes on the health vulnerability of migrant workers: an empirical study based on the China family panel studies. Front Public Health 2025; 13:1519982. [PMID: 40078768 PMCID: PMC11897529 DOI: 10.3389/fpubh.2025.1519982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/24/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction Migrant workers constitute a significant portion of China's workforce, and their health directly affects labor supply and economic stability. Health vulnerability plays a crucial role in shaping the well-being of migrant workers, yet its determinants, particularly the impact of temperature change, remain underexplored. This study, based on the socio-ecological model, investigates how temperature variations influence the health vulnerability of migrant workers in China. Methods Using data from 2020, this study quantifies health vulnerability and examines the impact of temperature fluctuations across different seasons. Robustness checks, including dependent variable substitutions and model modifications, ensure the reliability of the findings. Furthermore, a mechanism analysis is conducted to explore the underlying pathways through which temperature change affects health vulnerability. Results The findings reveal that rising temperatures in spring, summer, and winter significantly exacerbate the health vulnerability of migrant workers, while increasing autumn temperatures mitigate it. Mechanism analysis identifies heightened psychological burden as a key channel through which temperature change worsens health vulnerability. Additionally, generational differences emerge: older migrant workers are more adversely affected by elevated spring temperatures, whereas younger workers exhibit greater sensitivity to rising summer temperatures. Discussion These results underscore the necessity of targeted health interventions and adaptive labor protection policies. By highlighting the seasonal and generational disparities in the effects of temperature change, this study offers theoretical and empirical support for enhancing the resilience of migrant workers to climate variations. The findings provide valuable insights for policymakers in designing strategies to safeguard the health and stability of the migrant workforce.
Collapse
Affiliation(s)
- Ting Liang
- School of Chinese Medicine, Hunan Brain Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, Hunan, China
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation & Medicated Diet and Dietotherapy, Changsha, Hunan, China
| | - Zilin Ai
- Department of Political Science and Public Administration, Guangxi Normal University, Guilin, Guangxi, China
| | - Hui Zhong
- School of Dental Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Mengyan Xiao
- School of Chinese Medicine, Hunan Brain Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, Hunan, China
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation & Medicated Diet and Dietotherapy, Changsha, Hunan, China
| | - Mengzhou Xie
- School of Chinese Medicine, Hunan Brain Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, Hunan, China
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation & Medicated Diet and Dietotherapy, Changsha, Hunan, China
| | - Xiaoli Liang
- School of Chinese Medicine, Hunan Brain Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liang Li
- School of Chinese Medicine, Hunan Brain Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, Hunan, China
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation & Medicated Diet and Dietotherapy, Changsha, Hunan, China
| |
Collapse
|
8
|
Zhang JD, Cheng XF, He YT, Kong LS, Chen D, Zhang YL, Li B. Environmental pollution, trade openness and the health of middle-aged and elderly people: an analysis of threshold effect based on data from 111 prefecture-level cities in China. Arch Public Health 2024; 82:202. [PMID: 39501307 PMCID: PMC11536925 DOI: 10.1186/s13690-024-01429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/20/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Environmental pollution seriously endangers people's physical and mental health, especially the health of middle-aged and elderly people. Environmental pollution, trade openness, and population health are interconnected. Environmental pollution may have a nonlinear impact on health, and the impact of trade openness on the health effects of environmental pollution may not be a simple strengthening or weakening effect. However, few studies have used threshold effects model to explore the nonlinear mechanisms of environmental pollution's impact on health in China. As a result, this study incorporates trade openness into the research framework on the health effects of environmental pollution, aiming to study the mechanism of environmental pollution on health. METHODS Using the China Health and Retirement Longitudinal Study (CHARLS) data from 2013 to 2020 and the data of 111 prefecture-level cities in China, we combine two-way fixed-effects models and threshold models to explore the effects of environmental pollution on the health of middle-aged and elderly people and the role of trade openness in the path of environmental pollution affecting health. RESULTS Environmental pollution impairs the health of middle-aged and elderly people, and there is a single threshold effect and regional heterogeneity in this negative impact. Trade openness has the effect of first weakening and then strengthening in the inhibitory effect of environmental pollution on health. CONCLUSION The negative impact of environmental pollution on health has regional heterogeneity, and there is a nonlinear relationship between environmental pollution and the health of middle-aged and elderly people. The health effect of environmental pollution is mainly long-term effect, and trade openness has a threshold effect on the impact of environmental pollution on health. Therefore, instead of adopting a one-size-fits-all policy, environmental and economic policies should be customized according to the degree of environmental pollution, trade openness, and regional variations, so as to safeguard the health of middle-aged and elderly individuals through effective environmental governance.
Collapse
Affiliation(s)
- Jin-Dan Zhang
- School of Health Management, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Fen Cheng
- School of Health Management, Southern Medical University, Guangzhou, 510515, China
| | - Yan-Ting He
- School of Health Management, Southern Medical University, Guangzhou, 510515, China
| | - Lu-Shi Kong
- School of Health Management, Southern Medical University, Guangzhou, 510515, China
| | - Duo Chen
- School of Health Management, Southern Medical University, Guangzhou, 510515, China
| | - Yi-Li Zhang
- School of Health Management, Southern Medical University, Guangzhou, 510515, China.
| | - Bei Li
- School of Health Management, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Alonso-Blanco E, Gómez-Moreno FJ, Díaz-Ramiro E, Barreiro M, Fernández J, Figuero I, Rubio-Juan A, Santamaría JM, Artíñano B. Indoor Air Quality at an Urban Primary School in Madrid (Spain): Influence of Surrounding Environment and Occupancy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1263. [PMID: 39457237 PMCID: PMC11506914 DOI: 10.3390/ijerph21101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/07/2024] [Accepted: 09/14/2024] [Indexed: 10/28/2024]
Abstract
Monitoring indoor air quality (IAQ) in schools is critical because children spend most of their daytime inside. One of the main air pollutant sources in urban areas is road traffic, which greatly influences air quality. Thus, this study addresses, in depth, the linkages of meteorology, ambient air pollution, and indoor activities with IAQ in a traffic-influenced school situated south of Madrid. The measurement period was from 22 November to 21 December 2017. Simultaneous measurements of indoor and outdoor PM1, PM2.5, and PM10 mass concentrations, ultrafine particle number concentration (PNC) and equivalent black carbon (eBC) were analyzed under different meteorological conditions. PNC and eBC outdoor concentrations and their temporal trend were similar among the sampling points, with all sites being influenced in the same way by traffic emissions. Strong correlations were found between indoor and outdoor concentrations, indicating that indoor pollution levels were significantly affected by outdoor sources. Especially, PNC and eBC had the same indoor/outdoor (I/O) trend, but indoor concentrations were lower. The time delay in indoor vs. outdoor concentrations varied between 0.5 and 2 h, depending on wind speed. Significant differences were found between different meteorological conditions (ANOVA p-values < 2.14 × 10-6). Atmospheric stability periods led to an increase in indoor and outdoor pollutant levels. However, the highest I/O ratios were found during atmospheric instability, especially for eBC (an average of 1.2). This might be related to rapid changes in the outdoor air concentrations induced by meteorology. Significant variations were observed in indoor PM10 concentrations during classroom occupancy (up to 230 µg m-3) vs. non-occupancy (up to 19 µg m-3) days, finding levels higher than outdoor ones. This was attributed to the scholarly activities in the classroom. Conversely, PNC and eBC concentrations only increased when the windows of the classroom were open. These findings have helped to establish practical recommendations and measures for improving the IAQ in this school and those of similar characteristics.
Collapse
Affiliation(s)
- Elisabeth Alonso-Blanco
- Center for Energy, Environmental and Technological Research (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain; (F.J.G.-M.); (E.D.-R.); (J.F.); (B.A.)
| | - Francisco Javier Gómez-Moreno
- Center for Energy, Environmental and Technological Research (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain; (F.J.G.-M.); (E.D.-R.); (J.F.); (B.A.)
| | - Elías Díaz-Ramiro
- Center for Energy, Environmental and Technological Research (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain; (F.J.G.-M.); (E.D.-R.); (J.F.); (B.A.)
| | - Marcos Barreiro
- Center for Energy, Environmental and Technological Research (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain; (F.J.G.-M.); (E.D.-R.); (J.F.); (B.A.)
| | - Javier Fernández
- Center for Energy, Environmental and Technological Research (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain; (F.J.G.-M.); (E.D.-R.); (J.F.); (B.A.)
| | - Ibai Figuero
- Center for Energy, Environmental and Technological Research (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain; (F.J.G.-M.); (E.D.-R.); (J.F.); (B.A.)
| | - Alejandro Rubio-Juan
- Regional Center for Animal Selection and Reproduction (CERSYRA), Ministry of Agriculture and Environment of Castilla-La Mancha, Avenida del Vino, 2, 13300 Valdepeñas, Spain
| | - Jesús Miguel Santamaría
- Biodiversity and Environment Institute (BIOMA), Universidad de Navarra, Irunlarrea No. 1, 31008 Pamplona, Spain;
| | - Begoña Artíñano
- Center for Energy, Environmental and Technological Research (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain; (F.J.G.-M.); (E.D.-R.); (J.F.); (B.A.)
| |
Collapse
|
10
|
Al-Shaarani AAQA, Pecoraro L. A review of pathogenic airborne fungi and bacteria: unveiling occurrence, sources, and profound human health implication. Front Microbiol 2024; 15:1428415. [PMID: 39364169 PMCID: PMC11446796 DOI: 10.3389/fmicb.2024.1428415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Airborne fungi and bacteria have been extensively studied by researchers due to their significant effects on human health. We provided an overview of the distribution and sources of airborne pathogenic microbes, and a detailed description of the detrimental effects that these microorganisms cause to human health in both outdoor and indoor environments. By analyzing the large body of literature published in this field, we offered valuable insights into how airborne microbes influence our well-being. The findings highlight the harmful consequences associated with the exposure to airborne fungi and bacteria in a variety of natural and human-mediated environments. Certain demographic groups, including children and the elderly, immunocompromised individuals, and various categories of workers are particularly exposed and vulnerable to the detrimental effect on health of air microbial pollution. A number of studies performed up to date consistently identified Alternaria, Cladosporium, Penicillium, Aspergillus, and Fusarium as the predominant fungal genera in various indoor and outdoor environments. Among bacteria, Bacillus, Streptococcus, Micrococcus, Enterococcus, and Pseudomonas emerged as the dominant genera in air samples collected from numerous environments. All these findings contributed to expanding our knowledge on airborne microbe distribution, emphasizing the crucial need for further research and increased public awareness. Collectively, these efforts may play a vital role in safeguarding human health in the face of risks posed by airborne microbial contaminants.
Collapse
Affiliation(s)
- Amran A. Q. A. Al-Shaarani
- College of Pharmaceutical Science & Moganshan Research Institute at Deqing County, Zhejiang University of Technology, Hangzhou, China
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lorenzo Pecoraro
- College of Pharmaceutical Science & Moganshan Research Institute at Deqing County, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
11
|
Li Y, Zhou C, Liu J, Mao D, Wang Z, Li Q, Wu Y, Zhang J, Zhang Q. Maternal Exposure to Ozone and the Risk of Birth Defects: A Time-Stratified Case-Crossover Study in Southwestern China. TOXICS 2024; 12:519. [PMID: 39058171 PMCID: PMC11281228 DOI: 10.3390/toxics12070519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/06/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
A few studies have explored the relationship between air pollution exposure and the risk of birth defects; however, the ozone-related (O3) effects on preconception and first-trimester exposures are still unknown. In this time-stratified case-crossover study, conditional logistic regressions were applied to explore the associations between O3 exposure and the risk of birth defects in Chongqing, China, and stratified analyses were constructed to evaluate the modifiable factors. A total of 6601 cases of birth defects were diagnosed, of which 56.16% were male. O3 exposure was associated with an increased risk of birth defects, and the most significant estimates were observed in the first month before pregnancy: a 10 ug/m3 increase of O3 was related to an elevation of 4.2% [95% confidence interval (CI), 3.4-5.1%]. The associations between O3 exposure and congenital malformations and deformations of the musculoskeletal system were statistically significant during almost all exposure periods. Pregnant women with lower education and income, and from rural areas, were more susceptible to O3 exposure, with the strongest odds ratios (ORs) of 1.066 (95%CI, 1.046-1.087), 1.086 (95%CI, 1.034-1.140), and 1.053 (95%CI, 1.034-1.072), respectively. Our findings highlight the health risks of air pollution exposure and raise awareness of pregnant women's vulnerability and the susceptibility window period.
Collapse
Affiliation(s)
- Yi Li
- Chongqing Center for Disease Control and Prevention, Chongqing 400700, China; (Y.L.); (C.Z.); (D.M.); (Z.W.); (Q.L.); (Y.W.)
| | - Chunbei Zhou
- Chongqing Center for Disease Control and Prevention, Chongqing 400700, China; (Y.L.); (C.Z.); (D.M.); (Z.W.); (Q.L.); (Y.W.)
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jun Liu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 400020, China;
| | - Deqiang Mao
- Chongqing Center for Disease Control and Prevention, Chongqing 400700, China; (Y.L.); (C.Z.); (D.M.); (Z.W.); (Q.L.); (Y.W.)
| | - Zihao Wang
- Chongqing Center for Disease Control and Prevention, Chongqing 400700, China; (Y.L.); (C.Z.); (D.M.); (Z.W.); (Q.L.); (Y.W.)
| | - Qunying Li
- Chongqing Center for Disease Control and Prevention, Chongqing 400700, China; (Y.L.); (C.Z.); (D.M.); (Z.W.); (Q.L.); (Y.W.)
| | - Yunyun Wu
- Chongqing Center for Disease Control and Prevention, Chongqing 400700, China; (Y.L.); (C.Z.); (D.M.); (Z.W.); (Q.L.); (Y.W.)
| | - Jie Zhang
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 400020, China;
| | - Qi Zhang
- Chongqing Center for Disease Control and Prevention, Chongqing 400700, China; (Y.L.); (C.Z.); (D.M.); (Z.W.); (Q.L.); (Y.W.)
| |
Collapse
|
12
|
Quispe-Haro C, Szabó D, Kordas K, Capkova N, Pikhart H, Bobak M. The mediating role of air pollutants in the association between education and lung function among the elderly, the HAPIEE study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174556. [PMID: 38972408 DOI: 10.1016/j.scitotenv.2024.174556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Chronic exposure to air pollutants harms human health, and at a geographical level, concentrations of air pollutants are often associated with socioeconomic disadvantage. OBJECTIVES The aim of this study was to investigate the effects of educational attainment and air pollution on lung function in older adults, and whether air pollution may mediate the effect of education. METHODS The study included 6381 individuals (mean age 58.24 ± 7.14 years) who participated in the Czech HAPPIE (Health, Alcohol, and Psychosocial Factors in Eastern Europe) study. Participants' residential addresses were linked to air pollution data, including mean exposures to PM10 (particulate matter of aerodynamic diameter below 10 μm) and NO2 (nitrogen dioxide). We used path analysis to link educational attainment and air pollutants to a standardized measure of the Forced Expiratory Volume in the first second (FEV1). RESULTS Higher levels of participants' education were associated with lower exposures to PM10 and NO2. Individuals with tertiary education had higher standardized FEV1 than individuals with primary education (88 % vs 95 %). Path analysis revealed a direct positive effect of education on FEV1, while about 12 % of the relationship between education and lung function was mediated by PM10 and NO2. CONCLUSIONS: Education (typically completed at young ages) appeared to have a protective effect on lung function later in life, and a small part of this effect was mediated by air pollution.
Collapse
Affiliation(s)
- Consuelo Quispe-Haro
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Daniel Szabó
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, USA
| | | | - Hynek Pikhart
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Research Department of Epidemiology and Public Health, University College London, London, UK.
| | - Martin Bobak
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Research Department of Epidemiology and Public Health, University College London, London, UK
| |
Collapse
|
13
|
Khraishah H, Chen Z, Rajagopalan S. Understanding the Cardiovascular and Metabolic Health Effects of Air Pollution in the Context of Cumulative Exposomic Impacts. Circ Res 2024; 134:1083-1097. [PMID: 38662860 PMCID: PMC11253082 DOI: 10.1161/circresaha.124.323673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poor air quality accounts for more than 9 million deaths a year globally according to recent estimates. A large portion of these deaths are attributable to cardiovascular causes, with evidence indicating that air pollution may also play an important role in the genesis of key cardiometabolic risk factors. Air pollution is not experienced in isolation but is part of a complex system, influenced by a host of other external environmental exposures, and interacting with intrinsic biologic factors and susceptibility to ultimately determine cardiovascular and metabolic outcomes. Given that the same fossil fuel emission sources that cause climate change also result in air pollution, there is a need for robust approaches that can not only limit climate change but also eliminate air pollution health effects, with an emphasis of protecting the most susceptible but also targeting interventions at the most vulnerable populations. In this review, we summarize the current state of epidemiologic and mechanistic evidence underpinning the association of air pollution with cardiometabolic disease and how complex interactions with other exposures and individual characteristics may modify these associations. We identify gaps in the current literature and suggest emerging approaches for policy makers to holistically approach cardiometabolic health risk and impact assessment.
Collapse
Affiliation(s)
- Haitham Khraishah
- Division of Cardiovascular Medicine, University of Maryland Medical Center, Baltimore (H.K.)
| | - Zhuo Chen
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH (Z.C., S.R.)
- Case Western Reserve University School of Medicine, Cleveland, OH (Z.C., S.R.)
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH (Z.C., S.R.)
- Case Western Reserve University School of Medicine, Cleveland, OH (Z.C., S.R.)
| |
Collapse
|
14
|
Le HHTC, Ngo HKT, Hieu LS, Sly PD, Phung D, Le An P, Vinh NN, Dang TN, Thuong DTH, Thanh HN, Thai PK. Indoor air pollution is associated with respiratory symptoms in children in urban Vietnam. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170556. [PMID: 38296088 DOI: 10.1016/j.scitotenv.2024.170556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/07/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Exposure to indoor air pollution (IAP) is a leading environmental risk for respiratory diseases. We investigated the relationship between respiratory symptoms and polluting indoor activities such as smoking, cooking and contact with pets among children in Ho Chi Minh City (HCMC), Vietnam. A cross-sectional survey applied a multistage sampling method in 24 randomly selected secondary schools across the city. Approximately 15,000 students completed self-administrated questionnaires on risk factors and respiratory health outcomes within the preceding 12 months. Data were analyzed using a multivariable logistic regression model with robust standard errors. Wheeze was the most common respiratory symptom (39.5 %) reported, followed by sneezing and runny nose (28.3 %). A small percentage of students self-reported asthma (8.6 %). Approximately 56 % of participants lived with family members who smoked. A positive association between exposure to indoor secondhand smoke and respiratory symptoms was observed, with adjusted odds ratios (aOR) of 1.41 (95 % CI: 1.25-1.60, p < 0.001) for wheezing and 1.64 (95 % CI: 1.43-1.87, p < 0.001) for sneezing and runny nose, respectively. Using an open stove fuelled by coal, wood, or kerosene for cooking was associated with wheeze (aOR: 1.36, CI 95 %: 1.10-1.68, p = 0.01) and sneezing and runny nose (aOR: 1.36, CI 95 %: 1.09-1.69, p = 0.01). In the present study, IAP was associated with adverse health outcomes, as evidenced by an increase in respiratory symptoms reported within the previous 12 months.
Collapse
Affiliation(s)
- Hong H T C Le
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, Australia
| | - Hieu K T Ngo
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh, Viet Nam
| | - Le Sy Hieu
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh, Viet Nam
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, Australia
| | - Dung Phung
- School of Public Health, The University of Queensland, Australia
| | - Pham Le An
- Centre for the Training of Family Medicine, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam; Science and Technology Department, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam.
| | - Nguyen Nhu Vinh
- Centre for the Training of Family Medicine, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam
| | - Tran Ngoc Dang
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh, Viet Nam
| | - Do Thi Hoai Thuong
- Science and Technology Department, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam
| | - Huynh Ngoc Thanh
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh, Viet Nam
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia
| |
Collapse
|
15
|
Vallée A, Ceccaldi PF, Carbonnel M, Feki A, Ayoubi JM. Pollution and endometriosis: A deep dive into the environmental impacts on women's health. BJOG 2024; 131:401-414. [PMID: 37814514 DOI: 10.1111/1471-0528.17687] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND The interaction between pollution and endometriosis is a pressing issue that demands immediate attention. The impact of pollution, particularly air and water pollution, or occupational hazards, on hormonal disruption and the initiation of endometriosis remains a major issue. OBJECTIVES This narrative review aims to delve into the intricate connection between pollution and endometriosis, shedding light on how environmental factors contribute to the onset and severity of this disease and, thus, the possible public health policy implications. DISCUSSION Endocrine-disrupting chemicals (EDCs) in pollutants dysregulate the hormonal balance, contributing to the progression of this major gynaecological disorder. Air pollution, specifically PM2.5 and PAHs, has been associated with an increased risk of endometriosis by enhancing chronic inflammation, oxidative stress, and hormonal imbalances. Chemical contaminants in water and work exposures, including heavy metals, dioxins, and PCBs, disrupt the hormonal regulation and potentially contribute to endometriosis. Mitigating the environmental impact of pollution is required to safeguard women's reproductive health. This requires a comprehensive approach involving stringent environmental regulations, sustainable practices, responsible waste management, research and innovation, public awareness, and collaboration among stakeholders. CONCLUSION Public health policies have a major role in addressing the interaction between pollution and endometriosis in a long-term commitment.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Epidemiology and Public Health, Foch Hospital, Suresnes, France
| | - Pierre-François Ceccaldi
- Department of Obstetrics, Gynaecology and Reproductive Medicine, Foch Hospital, Suresnes, France
- Medical School, University of Versailles, Saint-Quentin-en-Yvelines (UVSQ), Versailles, France
| | - Marie Carbonnel
- Department of Obstetrics, Gynaecology and Reproductive Medicine, Foch Hospital, Suresnes, France
- Medical School, University of Versailles, Saint-Quentin-en-Yvelines (UVSQ), Versailles, France
| | - Anis Feki
- Department of Gynaecology and Obstetrics, University Hospital of Fribourg, Fribourg, Switzerland
| | - Jean-Marc Ayoubi
- Department of Obstetrics, Gynaecology and Reproductive Medicine, Foch Hospital, Suresnes, France
- Medical School, University of Versailles, Saint-Quentin-en-Yvelines (UVSQ), Versailles, France
| |
Collapse
|
16
|
Zulfiqar U, Khokhar A, Maqsood MF, Shahbaz M, Naz N, Sara M, Maqsood S, Sahar S, Hussain S, Ahmad M. Genetic biofortification: advancing crop nutrition to tackle hidden hunger. Funct Integr Genomics 2024; 24:34. [PMID: 38365972 DOI: 10.1007/s10142-024-01308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/18/2024]
Abstract
Malnutrition, often termed "hidden hunger," represents a pervasive global issue carrying significant implications for health, development, and socioeconomic conditions. Addressing the challenge of inadequate essential nutrients, despite sufficient caloric intake, is crucial. Biofortification emerges as a promising solution by enhance the presence of vital nutrients like iron, zinc, iodine, and vitamin A in edible parts of different crop plants. Crop biofortification can be attained through either agronomic methods or genetic breeding techniques. Agronomic strategies for biofortification encompass the application of mineral fertilizers through foliar or soil methods, as well as leveraging microbe-mediated mechanisms to enhance nutrient uptake. On the other hand, genetic biofortification involves the strategic crossing of plants to achieve a desired combination of genes, promoting balanced nutrient uptake and bioavailability. Additionally, genetic biofortification encompasses innovative methods such as speed breeding, transgenic approaches, genome editing techniques, and integrated omics approaches. These diverse strategies collectively contribute to enhancing the nutritional profile of crops. This review highlights the above-said genetic biofortification strategies and it also covers the aspect of reduction in antinutritional components in food through genetic biofortification.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Amman Khokhar
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Muhammad Shahbaz
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Nargis Naz
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Maheen Sara
- Department of Nutritional Sciences, Government College Women University, Faisalabad, Pakistan
| | - Sana Maqsood
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sajila Sahar
- Department of Plant Breeding & Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
17
|
Shantsila E, Choi EK, Lane DA, Joung B, Lip GY. Atrial fibrillation: comorbidities, lifestyle, and patient factors. THE LANCET REGIONAL HEALTH. EUROPE 2024; 37:100784. [PMID: 38362547 PMCID: PMC10866737 DOI: 10.1016/j.lanepe.2023.100784] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/25/2023] [Accepted: 11/02/2023] [Indexed: 02/17/2024]
Abstract
Modern anticoagulation therapy has dramatically reduced the risk of stroke and systemic thromboembolism in people with atrial fibrillation (AF). However, AF still impairs quality of life, increases the risk of stroke and heart failure, and is linked to cognitive impairment. There is also a recognition of the residual risk of thromboembolic complications despite anticoagulation. Hence, AF management is evolving towards a more comprehensive understanding of risk factors predisposing to the development of this arrhythmia, its' complications and interventions to mitigate the risk. This review summarises the recent advances in understanding of risk factors for incident AF and managing these risk factors. It includes a discussion of lifestyle, somatic, psychological, and socioeconomic risk factors. The available data call for a practice shift towards a more individualised approach considering an increasingly broader range of health and patient factors contributing to AF-related health burden. The review highlights the needs of people living with co-morbidities (especially with multimorbidity), polypharmacy and the role of the changing population demographics affecting the European region and globally.
Collapse
Affiliation(s)
- Eduard Shantsila
- Department of Primary Care and Mental Health, University of Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
- Brownlow Group GP Practice, Liverpool, United Kingdom
| | - Eue-Keun Choi
- Division of Cardiology, Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
| | - Deirdre A. Lane
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, University of Liverpool, United Kingdom
- Department of Clinical Medicine, Aalborg University, Denmark
| | - Boyoung Joung
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gregory Y.H. Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, University of Liverpool, United Kingdom
- Department of Clinical Medicine, Aalborg University, Denmark
| |
Collapse
|
18
|
Demoury C, Aerts R, Berete F, Lefebvre W, Pauwels A, Vanpoucke C, Van der Heyden J, De Clercq EM. Impact of short-term exposure to air pollution on natural mortality and vulnerable populations: a multi-city case-crossover analysis in Belgium. Environ Health 2024; 23:11. [PMID: 38267996 PMCID: PMC10809644 DOI: 10.1186/s12940-024-01050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/07/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND The adverse effect of air pollution on mortality is well documented worldwide but the identification of more vulnerable populations at higher risk of death is still limited. The aim of this study was to evaluate the association between natural mortality (overall and cause-specific) and short-term exposure to five air pollutants (PM2.5, PM10, NO2, O3 and black carbon) and identify potential vulnerable populations in Belgium. METHODS We used a time-stratified case-crossover design with conditional logistic regressions to assess the relationship between mortality and air pollution in the nine largest Belgian agglomerations. Then, we performed a random-effect meta-analysis of the pooled results and described the global air pollution-mortality association. We carried out stratified analyses by individual characteristics (sex, age, employment, hospitalization days and chronic preexisting health conditions), living environment (levels of population density, built-up areas) and season of death to identify effect modifiers of the association. RESULTS The study included 304,754 natural deaths registered between 2010 and 2015. We found percentage increases for overall natural mortality associated with 10 μg/m3 increases of air pollution levels of 0.6% (95% CI: 0.2%, 1.0%) for PM2.5, 0.4% (0.1%, 0.8%) for PM10, 0.5% (-0.2%, 1.1%) for O3, 1.0% (0.3%, 1.7%) for NO2 and 7.1% (-0.1%, 14.8%) for black carbon. There was also evidence for increases of cardiovascular and respiratory mortality. We did not find effect modification by individual characteristics (sex, age, employment, hospitalization days). However, this study suggested differences in risk of death for people with preexisting conditions (thrombosis, cardiovascular diseases, asthma, diabetes and thyroid affections), season of death (May-September vs October-April) and levels of built-up area in the neighborhood (for NO2). CONCLUSIONS This work provided evidence for the adverse health effects of air pollution and contributed to the identification of specific population groups. These findings can help to better define public-health interventions and prevention strategies.
Collapse
Affiliation(s)
- Claire Demoury
- Risk and Health Impact Assessment, Sciensano, Brussels, Belgium.
| | - Raf Aerts
- Risk and Health Impact Assessment, Sciensano, Brussels, Belgium
- Division Ecology, Evolution and Biodiversity Conservation, KU Leuven, Louvain, Belgium
- Center for Environmental Sciences, University of Hasselt, Hasselt, Belgium
| | | | - Wouter Lefebvre
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Arno Pauwels
- Risk and Health Impact Assessment, Sciensano, Brussels, Belgium
- Health Information, Sciensano, Brussels, Belgium
| | | | | | - Eva M De Clercq
- Risk and Health Impact Assessment, Sciensano, Brussels, Belgium
| |
Collapse
|
19
|
Sheikh HA, Maher BA, Woods AW, Tung PY, Harrison RJ. Efficacy of green infrastructure in reducing exposure to local, traffic-related sources of airborne particulate matter (PM). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166598. [PMID: 37634712 DOI: 10.1016/j.scitotenv.2023.166598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
One aim of roadside green infrastructure (GI) is to mitigate exposure to local, traffic-generated pollutants. Here, we determine the efficacy of roadside GI in improving local air quality through the deposition and/or dispersion of airborne particulate matter (PM). PM was collected on both pumped air filters and on the leaves of a recently installed 'tredge' (trees managed as a head-high hedge) at an open road environment next to a primary school in Manchester, U.K. The magnetic properties of PM deposited on leaves and filters (size fractions PM10 and PM2.5) were deduced from hysteresis loops, first-order reversal curves (FORCs), and low-temperature remanence measurements. These were complemented with electron microscopy to identify changes in magnetic PM concentration downwind of the tredge/GI. We show that the tredge is permeable to airflow using a simple CO2 tracer experiment; hence, it allows interception and subsequent deposition of PM on its leaves. Magnetic loadings per m3 of air from filters (PM10 saturation magnetisation, Ms, at 5 K) were reduced by 40 % behind the tredge and a further 63 % in the playground; a total reduction of 78 % compared to roadside air. For the PM2.5 fraction, the reduction in magnetic loading behind the tredge was remarkable (82 %), reflecting efficient diffusional capture of sub-5 nm Fe-oxide particles by the tredge. Some direct mixing of roadside and playground air occurs at the back of the playground, caused by air flow over, and/or through gaps in, the slowly-permeable tredge. The magnetic loading on tredge leaves increased over successive days, capturing ~23 % of local, traffic-derived PM10. Using a heuristic two-dimensional turbulent mixing model, we assess the limited dispersion of PM < 22.5 μm induced by eddies in the tredge wake. This study demonstrates that PM deposition on leaves reduces exposure significantly in this school playground setting; hence, providing a cost-effective mitigation strategy.
Collapse
Affiliation(s)
- H A Sheikh
- Department of Earth Sciences, University of Cambridge, Downing Site, CB2 3EQ, UK.
| | - B A Maher
- Center for Environmental Magnetism and Palaeomagnetism, University of Lancaster, LA1 4YQ, UK
| | - A W Woods
- Department of Earth Sciences, University of Cambridge, Downing Site, CB2 3EQ, UK
| | - P Y Tung
- Department of Earth Sciences, University of Cambridge, Downing Site, CB2 3EQ, UK; Department of Materials Science and Metallurgy, University of Cambridge, CB3 0FS, UK
| | - R J Harrison
- Department of Earth Sciences, University of Cambridge, Downing Site, CB2 3EQ, UK
| |
Collapse
|
20
|
Boonpeng C, Sangiamdee D, Noikrad S, Boonpragob K. Lichen biomonitoring of seasonal outdoor air quality at schools in an industrial city in Thailand. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59909-59924. [PMID: 37016263 DOI: 10.1007/s11356-023-26685-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/23/2023] [Indexed: 05/10/2023]
Abstract
Poor air quality in school environments causes adverse health effects in children and decreases their academic performance. The main objective of this study was to use lichens as a biomonitoring tool for assessing outdoor air quality at schools in the industrial area of Laem Chabang municipality in Thailand. Thalli of the lichen Parmotrema tinctorum were transplanted from an unpolluted area to nine schools in the industrial area and to a control site. The lichens were exposed for four periods in the dry, hot, early rainy, and late rainy seasons, for 90 days each. The concentrations of 14 elements, including As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Ti, V, and Zn, were determined using inductively coupled plasma‒mass spectrometry (ICP‒MS), and 8 physiological parameters were measured. The concentrations of all 14 investigated elements were clearly higher at the schools than at the control site. The contamination factors (CFs) suggested that 9 out of the 14 elements, including As, Cd, Co, Cr, Cu, Mo, Pb, Sb, and Ti, heavily contaminated the school environments, especially Pb, the concentration of which was 3 to 11 times higher than at the control site. The most polluted time was the hot season as evidenced by the investigated elements, and the least polluted time was the late rainy season. The pollution load indices (PLIs) demonstrated that schools in the inner and middle zones clearly had higher pollution loads than the schools in the outer zone during the rainy seasons, while the hot and dry seasons showed similar pollution levels in all zones. The vitality indices (VIs) showed that the lower lichen vitalities at most schools were observed during the dry season and at the schools in the inner and middle zones. Accordingly, the air performance indices (APIs) revealed that poorer air quality at most schools was found during the dry season and at the schools in the inner and middle zones. This study clearly showed that the transplanted lichen P. tinctorum was an effective bioindicator of air quality in school environments. The results illustrated that all studied schools were contaminated by air pollutants; therefore, improving air quality at the schools is crucial and should be an urgent issue for maintaining good health and may benefit children's academic achievements and careers in the long run.
Collapse
Affiliation(s)
- Chaiwat Boonpeng
- Department of Biology, Faculty of Science, Ramkhamhaeng University, Hua Mark, Bang Kapi, Bangkok, 10240, Thailand.
- Lichen Research Unit, Department of Biology, Faculty of Science, Ramkhamhaeng University, Hua Mark, Bang Kapi, Bangkok, 10240, Thailand.
| | - Duangkamon Sangiamdee
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Hua Mark, Bang Kapi, Bangkok, 10240, Thailand
| | - Sutatip Noikrad
- Lichen Research Unit, Department of Biology, Faculty of Science, Ramkhamhaeng University, Hua Mark, Bang Kapi, Bangkok, 10240, Thailand
| | - Kansri Boonpragob
- Lichen Research Unit, Department of Biology, Faculty of Science, Ramkhamhaeng University, Hua Mark, Bang Kapi, Bangkok, 10240, Thailand
| |
Collapse
|
21
|
Suriano D, Prato M. An Investigation on the Possible Application Areas of Low-Cost PM Sensors for Air Quality Monitoring. SENSORS (BASEL, SWITZERLAND) 2023; 23:3976. [PMID: 37112317 PMCID: PMC10143454 DOI: 10.3390/s23083976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
In recent years, the availability on the market of low-cost sensors (LCSs) and low-cost monitors (LCMs) for air quality monitoring has attracted the interest of scientists, communities, and professionals. Although the scientific community has raised concerns about their data quality, they are still considered a possible alternative to regulatory monitoring stations due to their cheapness, compactness, and lack of maintenance costs. Several studies have performed independent evaluations to investigate their performance, but a comparison of the results is difficult due to the different test conditions and metrics adopted. The U.S. Environmental Protection Agency (EPA) tried to provide a tool for assessing the possible uses of LCSs or LCMs by publishing guidelines to assign suitable application areas for each of them on the basis of the mean normalized bias (MNB) and coefficient of variance (CV) indicators. Until today, very few studies have analyzed LCS performance by referring to the EPA guidelines. This research aimed to understand the performance and the possible application areas of two PM sensor models (PMS5003 and SPS30) on the basis of the EPA guidelines. We computed the R2, RMSE, MAE, MNB, CV, and other performance indicators and found that the coefficient of determination (R2) ranged from 0.55 to 0.61, while the root mean squared error (RMSE) ranged from 11.02 µg/m3 to 12.09 µg/m3. Moreover, the application of a correction factor to include the humidity effect produced an improvement in the performance of the PMS5003 sensor models. We also found that, based on the MNB and CV values, the EPA guidelines assigned the SPS30 sensors to the "informal information about the presence of the pollutant" application area (Tier I), while PMS5003 sensors were assigned to the "supplemental monitoring of regulatory networks" area (Tier III). Although the usefulness of the EPA guidelines is acknowledged, it appears that improvements are necessary to increase their effectiveness.
Collapse
|
22
|
Leirião L, de Oliveira M, Martins T, Miraglia S. A Multi-Pollutant and Meteorological Analysis of Cardiorespiratory Mortality among the Elderly in São Paulo, Brazil-An Artificial Neural Networks Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085458. [PMID: 37107740 PMCID: PMC10138542 DOI: 10.3390/ijerph20085458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 05/11/2023]
Abstract
Traditionally, studies that associate air pollution with health effects relate individual pollutants to outcomes such as mortality or hospital admissions. However, models capable of analyzing the effects resulting from the atmosphere mixture are demanded. In this study, multilayer perceptron neural networks were evaluated to associate PM10, NO2, and SO2 concentrations, temperature, wind speed, and relative air humidity with cardiorespiratory mortality among the elderly in São Paulo, Brazil. Daily data from 2007 to 2019 were considered and different numbers of neurons on the hidden layer, algorithms, and a combination of activation functions were tested. The best-fitted artificial neural network (ANN) resulted in a MAPE equal to 13.46%. When individual season data were analyzed, the MAPE decreased to 11%. The most influential variables in cardiorespiratory mortality among the elderly were PM10 and NO2 concentrations. The relative humidity variable is more important during the dry season, and temperature is more important during the rainy season. The models were not subjected to the multicollinearity issue as with classical regression models. The use of ANNs to relate air quality to health outcomes is still very incipient, and this work highlights that it is a powerful tool that should be further explored.
Collapse
|
23
|
Zong J, Wang L, Lu C, Du Y, Wang Q. Mapping health vulnerability to short-term summer heat exposure based on a directional interaction network: Hotspots and coping strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163401. [PMID: 37044341 DOI: 10.1016/j.scitotenv.2023.163401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
Health risk resulting from non-optimal temperature exposure, referred to as "systematic risk", has been a sustainable-development challenge in the context of global warming. Previous studies have recognized interactions between and among system components while assessing the vulnerability to climate change, but have left open the question of indicator directional interactions. The question is important, not least because indicator directional association analysis provides guidance to address climate risks by revealing the key nodes and pathways. The purpose of this work was to assess health vulnerability to short-term summer heat exposure based on a directional interaction network. Bayesian network model and network analysis were used to conduct a directional interaction network. Using indicator directional associations as weights, a weighted technique for the order of preference by similarity to ideal solution method was then proposed to assess heat-related health vulnerability. Finally, hotspots and coping strategies were explored based on the directional interaction network and health vulnerability assessments. The results showed that (1) indicator directional interactions were revealed in the health vulnerability framework, and the interactions differed between northern and southern China; (2) there was a dramatic spatial imbalance of health vulnerability in China, with the Beijing-Tianjin-Hebei Region and the Yangtze River Basin identified as hotspots; (3) particulate matter and ozone were recognized as priority indicators in the most vulnerable cities of northern China, while summer heat exposure level and variation were priority indicators in southern China; and (4) adaptive capacity could alter the extent of risk; thus, mitigation and adaptation should be implemented in an integrated way. Our study has important implications for strengthening the theoretical basis for the vulnerability assessment framework by providing indicator directional associations and for guiding policy design in dealing with heat-related health vulnerability in China.
Collapse
Affiliation(s)
- Jingru Zong
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Institute of Health Data Science of China, Shandong University, Jinan, Shandong 250012, China
| | - Lingli Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Institute of Health Data Science of China, Shandong University, Jinan, Shandong 250012, China
| | - Chunyu Lu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Institute of Health Data Science of China, Shandong University, Jinan, Shandong 250012, China
| | - Yajie Du
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Institute of Health Data Science of China, Shandong University, Jinan, Shandong 250012, China
| | - Qing Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Institute of Health Data Science of China, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
24
|
Motairek I, Sharara J, Makhlouf MHE, Dobre M, Rahman M, Rajagopalan S, Al-Kindi S. Association Between Particulate Matter Pollution and CKD Mortality by Social Deprivation. Am J Kidney Dis 2023; 81:497-499. [PMID: 36396086 PMCID: PMC10311471 DOI: 10.1053/j.ajkd.2022.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Issam Motairek
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Jana Sharara
- Lebanese American University School of Medicine, Beirut, Lebanon
| | - Mohamed H E Makhlouf
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Mirela Dobre
- Division of Nephrology and Hypertension, University Hospitals Cleveland Medical Center, Cleveland, Ohio; School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Mahboob Rahman
- Division of Nephrology and Hypertension, University Hospitals Cleveland Medical Center, Cleveland, Ohio; School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio; School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Sadeer Al-Kindi
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio; School of Medicine, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
25
|
Thilakaratne R, Hoshiko S, Rosenberg A, Hayashi T, Buckman JR, Rappold AG. Wildfires and the Changing Landscape of Air Pollution-related Health Burden in California. Am J Respir Crit Care Med 2023; 207:887-898. [PMID: 36520960 PMCID: PMC11972552 DOI: 10.1164/rccm.202207-1324oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Rationale: Wildfires are a growing source of pollution including particulate matter ⩽2.5 μm in aerodynamic diameter (PM2.5), but associated trends in health burden are not well characterized. Objectives: We investigated trends and disparities in PM2.5-related cardiorespiratory health burden (asthma, chronic obstructive pulmonary disease, and all-cause respiratory and cardiovascular emergency department [ED] visits and hospital admissions) for all days and wildfire smoke-affected days across California from 2008 to 2016. Methods: Using residential Zone Improvement Plan code and daily PM2.5 exposures, we estimated overall and subgroup-specific (age, gender, race and ethnicity) associations with cardiorespiratory outcomes. Health burden trends and disparities were evaluated on the basis of relative risk, attributable number, and attributable fraction by demographic and geographic factors and over time. Measurements and Main Results: PM2.5-attributed burden steadily decreased, whereas the fraction attributed to wildfire smoke varied by fire season intensity, constituting up to 15% of the annual PM2.5-burden. The highest relative risk and PM2.5-attributed burden (92 per 100,000 people) was observed for respiratory ED visits, accounting for 2.2% of the respiratory annual burden. Disparities in overall morbidity in the oldest age, Black, and "other" race groups were also reflected in PM2.5-attributed burden, whereas Asian populations had the highest risk rate in respiratory outcomes and thus the largest fraction of the total burden attributed to the exposure. In contrast, high wildfire PM2.5-attributed burden rates in rural, central, and northern California populations occurred because of differential exposure. Conclusions: In California, wildfires' impact on air quality offset the public health gains achieved through reductions in nonsmoke PM2.5. Disproportionate effects could be attributed to differences in subpopulation susceptibility, relative risk, and differential exposure.
Collapse
Affiliation(s)
- Ruwan Thilakaratne
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, California, USA
- California Department of Public Health/Cal EIS Program, Richmond, California, USA
| | - Sumi Hoshiko
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, California, USA
| | - Andrew Rosenberg
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, California, USA
| | | | - Joseph Ryan Buckman
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, California, USA
- California Department of Public Health/Cal EIS Program, Richmond, California, USA
| | - Ana G. Rappold
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Durham, North Carolina, USA
| |
Collapse
|
26
|
Shah S, Kim E, Kim KN, Ha E. Can individual protective measures safeguard cardiopulmonary health from air pollution? A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2023; 229:115708. [PMID: 36940818 DOI: 10.1016/j.envres.2023.115708] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 05/09/2023]
Abstract
Evidence supporting the effect of individual protective measures (IPMs) on air pollution is relatively scarce. In this study, we performed a systematic review and meta-analysis to investigate the effects of air purifiers, air-purifying respirators, and cookstove changes on cardiopulmonary health outcomes. We searched PubMed, Scopus, and Web of Science until December 31, 2022, 90 articles and 39,760 participants were included. Two authors independently searched and selected the studies, extracted information, and assessed each study's quality and risk of bias. We performed meta-analyses when three or more studies were available for each IPMs, with comparable intervention and health outcome. Systematic review showed that IPMs were beneficial in children and elderly with asthma along with healthy individuals. Meta-analysis results showed a reduction in cardiopulmonary inflammation using air purifiers than in control groups (with sham/no filter) with a decrease in interleukin 6 by -0.247 μg/mL (95% confidence intervals [CI] = -0.413, -0.082). A sub-group analysis for air purifier as an IPMs in developing counties reduced fractional exhaled nitric oxide by -0.208 ppb (95% confidence intervals [CI] = -0.394, -0.022). However, evidence describing the effects of air purifying respirator and cook stove changes on cardiopulmonary outcomes remained insufficient. Therefore, air purifiers can serve as efficient IPMs against air pollution. The beneficial effect of air purifiers is likely to have a greater effect in developing countries than in developed countries.
Collapse
Affiliation(s)
- Surabhi Shah
- Department of Environmental Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Eunji Kim
- Department of Environmental Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea; Graduate Program in System Health Science and Engineering, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Kyoung-Nam Kim
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea.
| | - Eunhee Ha
- Department of Environmental Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea; Graduate Program in System Health Science and Engineering, College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Institute of Ewha-SCL for Environmental Health (IESEH), Ewha Womans University College of Medicine, Seoul, Republic of Korea; Department of Medical Science, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Yitshak Sade M, Shi L, Colicino E, Amini H, Schwartz JD, Di Q, Wright RO. Long-term air pollution exposure and diabetes risk in American older adults: A national secondary data-based cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121056. [PMID: 36634862 PMCID: PMC9905312 DOI: 10.1016/j.envpol.2023.121056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 12/16/2022] [Accepted: 01/08/2023] [Indexed: 05/18/2023]
Abstract
Type 2 diabetes is a major public health concern. Several studies have found an increased diabetes risk associated with long-term air pollution exposure. However, most current studies are limited in their generalizability, exposure assessment, or the ability to differentiate incidence and prevalence cases. We assessed the association between air pollution and first documented diabetes occurrence in a national U.S. cohort of older adults to estimate diabetes risk. We included all Medicare enrollees 65 years and older in the fee-for-service program, part A and part B, in the contiguous United States (2000-2016). Participants were followed annually until the first recorded diabetes diagnosis, end of enrollment, or death (264, 869, 458 person-years). We obtained annual estimates of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and warm-months ozone (O3) exposures from highly spatiotemporally resolved prediction models. We assessed the simultaneous effects of the pollutants on diabetes risk using survival analyses. We repeated the models in cohorts restricted to ZIP codes with air pollution levels not exceeding the national ambient air quality standards (NAAQS) during the study period. We identified 10, 024, 879 diabetes cases of 41, 780, 637 people (3.8% of person-years). The hazard ratio (HR) for first diabetes occurrence was 1.074 (95% CI 1.058; 1.089) for 5 μg/m3 increase in PM2.5, 1.055 (95% CI 1.050; 1.060) for 5 ppb increase in NO2, and 0.999 (95% CI 0.993; 1.004) for 5 ppb increase in O3. Both for NO2 and PM2.5 there was evidence of non-linear exposure-response curves with stronger associations at lower levels (NO2 ≤ 36 ppb, PM2.5 ≤ 8.2 μg/m3). Furthermore, associations remained in the restricted low-level cohorts. The O3-diabetes exposure-response relationship differed greatly between models and require further investigation. In conclusion, exposures to PM2.5 and NO2 are associated with increased diabetes risk, even when restricting the exposure to levels below the NAAQS set by the U.S. EPA.
Collapse
Affiliation(s)
- Maayan Yitshak Sade
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA.
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elena Colicino
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| | - Heresh Amini
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Joel D Schwartz
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Robert O Wright
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| |
Collapse
|
28
|
Yitshak Sade M, Shi L, Colicino E, Amini H, Schwartz JD, Di Q, Wright RO. Long-term air pollution exposure and diabetes risk in American older adults: A national secondary data-based cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121056. [PMID: 36634862 DOI: 10.1101/2021.09.09.21263282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 12/16/2022] [Accepted: 01/08/2023] [Indexed: 05/27/2023]
Abstract
Type 2 diabetes is a major public health concern. Several studies have found an increased diabetes risk associated with long-term air pollution exposure. However, most current studies are limited in their generalizability, exposure assessment, or the ability to differentiate incidence and prevalence cases. We assessed the association between air pollution and first documented diabetes occurrence in a national U.S. cohort of older adults to estimate diabetes risk. We included all Medicare enrollees 65 years and older in the fee-for-service program, part A and part B, in the contiguous United States (2000-2016). Participants were followed annually until the first recorded diabetes diagnosis, end of enrollment, or death (264, 869, 458 person-years). We obtained annual estimates of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and warm-months ozone (O3) exposures from highly spatiotemporally resolved prediction models. We assessed the simultaneous effects of the pollutants on diabetes risk using survival analyses. We repeated the models in cohorts restricted to ZIP codes with air pollution levels not exceeding the national ambient air quality standards (NAAQS) during the study period. We identified 10, 024, 879 diabetes cases of 41, 780, 637 people (3.8% of person-years). The hazard ratio (HR) for first diabetes occurrence was 1.074 (95% CI 1.058; 1.089) for 5 μg/m3 increase in PM2.5, 1.055 (95% CI 1.050; 1.060) for 5 ppb increase in NO2, and 0.999 (95% CI 0.993; 1.004) for 5 ppb increase in O3. Both for NO2 and PM2.5 there was evidence of non-linear exposure-response curves with stronger associations at lower levels (NO2 ≤ 36 ppb, PM2.5 ≤ 8.2 μg/m3). Furthermore, associations remained in the restricted low-level cohorts. The O3-diabetes exposure-response relationship differed greatly between models and require further investigation. In conclusion, exposures to PM2.5 and NO2 are associated with increased diabetes risk, even when restricting the exposure to levels below the NAAQS set by the U.S. EPA.
Collapse
Affiliation(s)
- Maayan Yitshak Sade
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA.
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elena Colicino
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| | - Heresh Amini
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Joel D Schwartz
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Robert O Wright
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| |
Collapse
|
29
|
da Silva KLS, López-Gonzales JL, Turpo-Chaparro JE, Tocto-Cano E, Rodrigues PC. Spatio-temporal visualization and forecasting of [Formula: see text] in the Brazilian state of Minas Gerais. Sci Rep 2023; 13:3269. [PMID: 36841859 PMCID: PMC9968292 DOI: 10.1038/s41598-023-30365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Air pollution due to air contamination by gases, liquids, and solid particles in suspension, is a great environmental and public health concern nowadays. An important type of air pollution is particulate matter with a diameter of 10 microns or less ([Formula: see text]) because one of the determining factors that affect human health is the size of particles in the atmosphere due to the degree of permanence and penetration they have in the respiratory system. Therefore, it is extremely interesting to monitor and understand the behavior of [Formula: see text] concentrations so that they do not exceed the established critical levels. In this work, we will study the [Formula: see text] concentrations in all available monitoring stations in the Brazilian state of Minas Gerais. To better understand its behavior, we will provide a spatio-temporal visualization of the [Formula: see text] concentrations. Besides the descriptive and visualization analysis, we consider six standard and advanced time series models that will be used to fit and forecast [Formula: see text] concentrations, with application to three locations, one in Belo Horizonte, the Minas Gerais state capital, and the monitoring stations with the lowest and highest average [Formula: see text] concentration levels.
Collapse
Affiliation(s)
| | - Javier Linkolk López-Gonzales
- UPG Ingeniería y Arquitectura, Escuela de Posgrado, Universidad Peruana Unión, Lima, Peru
- Facultad de Ingeniería y Arquitectura, Universidad Peruana Unión, Lima, Peru
| | | | - Esteban Tocto-Cano
- Facultad de Ingeniería y Arquitectura, Universidad Peruana Unión, Lima, Peru
| | | |
Collapse
|
30
|
Yuan X, Liang F, Zhu J, Huang K, Dai L, Li X, Wang Y, Li Q, Lu X, Huang J, Liao L, Liu Y, Gu D, Liu H, Liu F. Maternal Exposure to PM 2.5 and the Risk of Congenital Heart Defects in 1.4 Million Births: A Nationwide Surveillance-Based Study. Circulation 2023; 147:565-574. [PMID: 36780386 PMCID: PMC9988362 DOI: 10.1161/circulationaha.122.061245] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 12/05/2022] [Indexed: 02/15/2023]
Abstract
BACKGROUND Evidence remains limited about the association of maternal exposure to ambient fine particulate matter (airborne particles with an aerodynamic diameter ≤2.5 µm [PM2.5]) with fetal congenital heart defects (CHDs) in highly polluted regions, and few studies have focused on preconception exposure. METHODS Using a nationwide surveillance-based case-control design in China, we examined the association between maternal exposure to PM2.5 during periconception (defined as 3 months before conception until 3 months into pregnancy) and risk of CHD in offspring. The study included 1 434 998 births involving 7335 CHDs from 2014 through 2017 on the basis of the National Population-Based Birth Defects Surveillance System, covering 30 provinces, municipalities, or municipal districts in China. We assigned maternal PM2.5 exposure during the periconception period to each participant using satellite-based PM2.5 concentrations at 1-km spatial resolution. Multilevel logistic regression models were used to calculate the multivariable-adjusted odds ratio and 95% CI for CHDs in offspring associated with maternal PM2.5 exposure, and the exposure-response association was investigated using restricted cubic spline analysis. Subgroup or sensitivity analyses were conducted to identify factors that may modify the association. RESULTS The average maternal exposure to PM2.5 levels across all participants was 56.51 μg/m3 (range, 10.95 to 182.13 μg/m3). For each 10 μg/m³ increase in maternal PM2.5 exposure, the risk of CHDs in offspring was increased by 2% (odds ratio, 1.02 [95% CI, 1.00 to 1.05]), and septal defect was the most influenced subtype (odds ratio, 1.04 [95% CI, 1.01 to 1.08]). The effect of PM2.5 on CHD risk was more pronounced during the preconception period. Mothers <35 years of age, those living in northern China, and those living in low-income areas were more susceptible to PM2.5 exposure than their counterparts (all P<0.05). PM2.5 exposure showed a linear association with total CHDs or specific CHD types. CONCLUSIONS High maternal PM2.5 exposure, especially during the preconception period, increases risk of certain types of CHD in offspring. These findings are useful for CHD prevention and highlight the public health benefits of improving air quality in China and other highly polluted regions.
Collapse
Affiliation(s)
- Xuelian Yuan
- National Office for Maternal and Child Health Surveillance
of China, West China Second University Hospital, Sichuan University, Chengdu,
Sichuan 610041, China
- Key Laboratory of Birth Defects and Related Diseases of
Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan
610041, China
| | - Fengchao Liang
- Shenzhen Key Laboratory of Cardiovascular Health and
Precision Medicine, Southern University of Science and Technology, Shenzhen 518055,
China
- School of Public Health and Emergency Management, Southern
University of Science and Technology, Shenzhen 518055, China
| | - Jun Zhu
- National Office for Maternal and Child Health Surveillance
of China, West China Second University Hospital, Sichuan University, Chengdu,
Sichuan 610041, China
- Key Laboratory of Birth Defects and Related Diseases of
Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan
610041, China
| | - Keyong Huang
- Department of Epidemiology, Fuwai Hospital, National Center
for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese
Academy of Medical Sciences, Beijing 100037, China
| | - Li Dai
- National Office for Maternal and Child Health Surveillance
of China, West China Second University Hospital, Sichuan University, Chengdu,
Sichuan 610041, China
- Key Laboratory of Birth Defects and Related Diseases of
Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan
610041, China
| | - Xiaohong Li
- National Office for Maternal and Child Health Surveillance
of China, West China Second University Hospital, Sichuan University, Chengdu,
Sichuan 610041, China
- Key Laboratory of Birth Defects and Related Diseases of
Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan
610041, China
| | - Yanping Wang
- National Office for Maternal and Child Health Surveillance
of China, West China Second University Hospital, Sichuan University, Chengdu,
Sichuan 610041, China
- Key Laboratory of Birth Defects and Related Diseases of
Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan
610041, China
| | - Qi Li
- National Center for Birth Defects Monitoring of China, West
China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041,
China
| | - Xiangfeng Lu
- Department of Epidemiology, Fuwai Hospital, National Center
for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese
Academy of Medical Sciences, Beijing 100037, China
| | - Jianfeng Huang
- Department of Epidemiology, Fuwai Hospital, National Center
for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese
Academy of Medical Sciences, Beijing 100037, China
| | - Lihui Liao
- Department of Pediatric Neurology Nursing, West China
Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins
School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Dongfeng Gu
- Shenzhen Key Laboratory of Cardiovascular Health and
Precision Medicine, Southern University of Science and Technology, Shenzhen 518055,
China
- School of Public Health and Emergency Management, Southern
University of Science and Technology, Shenzhen 518055, China
- Department of Epidemiology, Fuwai Hospital, National Center
for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese
Academy of Medical Sciences, Beijing 100037, China
- School of Medicine, Southern University of Science and
Technology, Shenzhen 510085, China
| | - Hanmin Liu
- Key Laboratory of Birth Defects and Related Diseases of
Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan
610041, China
- Department of Pediatrics, West China Second University
Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Birth Defects Clinical Research Center, West China
Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- National Health Commission Key Laboratory of
Chronobiology, Sichuan University, Chengdu, China
| | - Fangchao Liu
- Department of Epidemiology, Fuwai Hospital, National Center
for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese
Academy of Medical Sciences, Beijing 100037, China
| |
Collapse
|
31
|
Rawat N, Kumar P. Interventions for improving indoor and outdoor air quality in and around schools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159813. [PMID: 36411671 DOI: 10.1016/j.scitotenv.2022.159813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Students spend nearly one third of their typical day in the school environment, where they may be exposed to harmful air pollutants. A consolidated knowledge base of interventions to reduce this exposure is required for making informed decisions on their implementation and wider uptake. We attempt to fill this knowledge gap by synthesising the existing scientific literature on different school-based air pollution exposure interventions, their efficiency, suitability, and limitations. We assessed technological (air purifiers, HVAC - Heating Ventilation and Air Conditioning etc.), behavioural, physical barriers, structural, school-commute and policy and regulatory interventions. Studies suggest that the removal efficiency of air purifiers for PM2.5, PM10, PM1 and BC can be up to 57 %, 34 %, 70 % and 58 %, respectively, depending on the air purification technology compared with control levels in classroom. The HVAC system combined with high efficiency filters has BC, PM10 and PM2.5 removal efficiency up to 97 %, 34 % and 30 %, respectively. Citizen science campaigns are effective in reducing the indoor air pollutants' exposure up to 94 %. The concentration of PM10, NO2, O3, BC and PNC can be reduced by up to 60 %, 59 %, 16 %, 63 % and 77 %, respectively as compared to control conditions, by installing green infrastructure (GI) as a physical barrier. School commute interventions can reduce NO2 concentration by up to 23 %. The in-cabin concentration reduction of up to 77 % for PM2.5, 43 % for PNC, 89 % for BC, 74 % for PM10 and 75 % for NO2, along with 94 % reduction in tailpipe emission of total particles, can be achieved using clean fuels and retrofits. No stand-alone method is found as the absolute solution for controlling pollutants exposure, their combined application can be effective in most of the scenarios. More research is needed on assessing combined interventions, and their operational synchronisation for getting the optimum results.
Collapse
Affiliation(s)
- Nidhi Rawat
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom.
| |
Collapse
|
32
|
Northeim K, Oppong JR. Mapping Health Fragility and Vulnerability in Air Pollution-Monitoring Networks in Dallas-Fort Worth. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1807. [PMID: 36767174 PMCID: PMC9914925 DOI: 10.3390/ijerph20031807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Environmental air pollution remains a major contributor to negative health outcomes and mortality, but the relationship between socially vulnerable populations and air pollution is not well understood. Although air pollution potentially affects everyone, the combination of underlying health, socioeconomic, and demographic factors exacerbate the impact for socially vulnerable population groups, and the United States Clean Air Act (CAA) describes an obligation to protect these populations. This paper seeks to understand how air pollution monitor placement strategies and policy may neglect social vulnerabilities and therefore potentially underestimate exposure burdens in vulnerable populations. Multivariate logistic regression models were used to assess the association between being in an ozone-monitored area or not on 15 vulnerability indicators. It was found that the odds of not being in an ozone-monitored area (not covered, outside) increased for the predictor mobile homes (OR = 4.831, 95% CI [2.500-9.338] and OR = 8.066, 95% CI [4.390-14.820] for the 10 and 20 km spatial units, respectively) and decreased for the predictor multiunit structures (OR = 0.281, 95% CI [0.281-0.548] and OR = 0.130, 95% CI [0.037, 0.457] for the 10 and 20 km spatial units, respectively) and the predictor speaks English "less than well" (OR = 0.521, 95% CI [0.292-0.931] for 10 km). These results indicate that existing pollution sensor coverage may neglect areas with concentrations of highly vulnerable populations in mobile homes, and future monitoring placement policy decisions must work to address this imbalance.
Collapse
Affiliation(s)
- Kari Northeim
- Department of Biostatistics and Epidemiology, School of Public Health, University of North Texas Health Sciences Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76104, USA
| | - Joseph R. Oppong
- Department of Geography and the Environment, University of North Texas, 1704 W. Mulberry, Denton, TX 76203, USA
| |
Collapse
|
33
|
Chen XX, Xu YM, Lau ATY. Metabolic effects of long-term cadmium exposure: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89874-89888. [PMID: 36367641 DOI: 10.1007/s11356-022-23620-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
Cadmium (Cd) is a toxic non-essential heavy metal. Chronic low Cd exposure (CLCE) has been associated with distinct pathologies in many organ systems, including liver and kidney damage, osteoporosis, carcinogenicity, or reproductive toxicity. Currently, about 10% of the global population is at risk of CLCE. It is urgent to find robust and effective biomarkers for early diagnosis of Cd exposure and treatment. Metabolomics is a high-throughput method based on mass spectrometry to study the dynamic changes in a series of endogenous small molecular metabolites (typically < 1000 Da) of tissues, cells, or biofluids. It can reflect the rich and complex biochemical changes in the body after exposure to heavy metals, which may be useful in screening biomarkers to monitor exposure to environmental pollutants and/or predict disease risk. Therefore, this review focuses on the changes in metabolic profiles of humans and rodents under long-term Cd exposure from the perspective of metabolomics. Furthermore, the relationship between the disturbance of metabolic pathways and the toxic mechanism of Cd is discussed. All these information will facilitate the development of reliable metabolic biomarkers for early detection and diagnosis of Cd-related diseases.
Collapse
Affiliation(s)
- Xiao-Xia Chen
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| |
Collapse
|
34
|
Jainonthee C, Wang YL, Chen CWK, Jainontee K. Air Pollution-Related Respiratory Diseases and Associated Environmental Factors in Chiang Mai, Thailand, in 2011-2020. Trop Med Infect Dis 2022; 7:341. [PMID: 36355883 PMCID: PMC9696662 DOI: 10.3390/tropicalmed7110341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 03/28/2025] Open
Abstract
The unfavorable effects of global climate change, which are mostly the result of human activities, have had a particularly negative effect on human health and the planet's ecosystems. This study attempted to determine the seasonality and association of air pollution, in addition to climate conditions, with two respiratory infections, influenza and pneumonia, in Chiang Mai, Thailand, which has been considered the most polluted city on Earth during the hot season. We used a seasonal-trend decomposition procedure based on loess regression (STL) and a seasonal cycle subseries (SCS) plot to determine the seasonality of the two diseases. In addition, multivariable negative binomial regression (NBR) models were used to assess the association between the diseases and environmental variables (temperature, precipitation, relative humidity, PM2.5, and PM10). The data revealed that influenza had a clear seasonal pattern during the cold months of January and February, whereas the incidence of pneumonia showed a weak seasonal pattern. In terms of forecasting, the preceding month's PM2.5 and temperature (lag1) had a significant association with influenza incidence, while the previous month's temperature and relative humidity influenced pneumonia. Using air pollutants as an indication of respiratory disease, our models indicated that PM2.5 lag1 was correlated with the incidence of influenza, but not pneumonia. However, there was a linear association between PM10 and both diseases. This research will help in allocating clinical and public health resources in response to potential environmental changes and forecasting the future dynamics of influenza and pneumonia in the region due to air pollution.
Collapse
Affiliation(s)
- Chalita Jainonthee
- Veterinary Public Health and Food Safety Centre for Asia Pacific (VPHCAP), Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Center of Excellence in Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Ying-Lin Wang
- School of Public Health, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Colin W. K. Chen
- Southeast Bangkok College, Bangkok 10260, Thailand
- Sustainable Management Association, Bangkok 10230, Thailand
| | - Karuna Jainontee
- Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna, Chiang Rai 57120, Thailand
| |
Collapse
|
35
|
Willis MD, Schrank D, Xu C, Harris L, Ritz BR, Hill EL, Hystad P. A population-based cohort study of traffic congestion and infant growth using connected vehicle data. SCIENCE ADVANCES 2022; 8:eabp8281. [PMID: 36306359 PMCID: PMC9616495 DOI: 10.1126/sciadv.abp8281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
More than 11 million Americans reside within 150 meters of a highway, an area of high air pollution exposure. Traffic congestion further contributes to environmental pollution (e.g., air and noise), but its unique importance for population health is unclear. We hypothesized that degraded environmental quality specifically from traffic congestion has harmful impacts on fetal growth. Using a population-based cohort of births in Texas (2015-2016), we leveraged connected vehicle data to calculate traffic congestion metrics around each maternal address at delivery. Among 579,122 births, we found consistent adverse associations between traffic congestion and reduced term birth weight (8.9 grams), even after accounting for sociodemographic characteristics, typical traffic volume, and diverse environmental coexposures. We estimated that up to 1.2 million pregnancies annually may be exposed to traffic congestion (27% of births in the United States), with ~256,000 in the highest congestion zones. Therefore, improvements to traffic congestion may yield positive cobenefits for infant health.
Collapse
Affiliation(s)
- Mary D. Willis
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | | | - Chunxue Xu
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Lena Harris
- Department of Economics, School of Arts and Sciences, University of Rochester, Rochester, NY, USA
| | - Beate R. Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elaine L. Hill
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
- Department of Economics, School of Arts and Sciences, University of Rochester, Rochester, NY, USA
- Department of Public Health Sciences, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
- Department of Obstetrics and Gynecology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
- National Bureau of Economic Research, Cambridge, MA, USA
| | - Perry Hystad
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
36
|
Levasseur P, Erdlenbruch K, Gramaglia C. The health and socioeconomic costs of exposure to soil pollution: evidence from three polluted mining and industrial sites in Europe. J Public Health (Oxf) 2022. [DOI: 10.1007/s10389-021-01533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
37
|
Horton A, Jones SJ, Brunt H. Air pollution and public health vulnerabilities, susceptibilities and inequalities in Wales, UK. J Public Health (Oxf) 2022:6672910. [PMID: 35993370 DOI: 10.1093/pubmed/fdac083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Outdoor air pollution is the largest environmental risk to health. Air pollution, deprivation and poor health status are inextricably linked; highlighting issues of environmental injustice, social and health inequalities. METHODS Air pollution (nitrogen dioxide, NO2 and fine particulate matter, PM2.5), population and deprivation data were identified at Lower Super Output Area level in Wales, UK, for 2012-18. Air pollution data were categorized according to different air pollution concentrations. Population and deprivation data were considered simultaneously to describe population vulnerabilities, susceptibilities and inequalities. Simple statistical analyses were performed using a difference in proportions method with 95% confidence intervals. RESULTS Over time, the majority of Welsh people transitioned to living in areas of lower NO2 and PM2.5 pollution. Areas of worse air pollution comprised more young people than people aged 65+; both populations are known to be susceptible to air pollution exposure. By 2018, significant socioeconomic inequality gaps were found where 'most deprived' population groups for both pollutants experienced greater disadvantage. CONCLUSION Air quality in Wales is improving. However, local-level variations in exposure risk still exist. System-wide action must ensure that air quality improvement-related benefits are equitable and acknowledge current evidence about the harms that even low levels of air pollution can have on health.
Collapse
Affiliation(s)
- Amber Horton
- Environmental Public Health, Health Protection, Public Health Wales, Tyndall Street, Cardiff CF10 4BZ, UK
| | - Sarah J Jones
- Environmental Public Health, Health Protection, Public Health Wales, Tyndall Street, Cardiff CF10 4BZ, UK
| | - Huw Brunt
- Environmental Public Health, Health Protection, Public Health Wales, Tyndall Street, Cardiff CF10 4BZ, UK
| |
Collapse
|
38
|
Daily Mortality in Different Age Groups Associated with Exposure to Particles, Nitrogen Dioxide and Ozone in Two Northern European Capitals: Stockholm and Tallinn. ENVIRONMENTS 2022. [DOI: 10.3390/environments9070083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although the association between air pollution and mortality is well established, less is known about the effects in different age groups. This study analyzes the short-term associations between mortality in different age groups (0–14 years of age, 15–64 years of age, and 65+ years of age) and a number of air pollutants in two relatively clean northern European capitals: Stockholm and Tallinn. The concentrations in PM10 (particles with an aerodynamic diameter smaller than or equal to 10 µm), PM2.5–10 (coarse particles), PM2.5 (particles with an aerodynamic diameter smaller than or equal to 2.5 µm), BC (black carbon), PNC4 (particle number count of particles larger than or equal to 4 nm), NO2 (nitrogen dioxide), and O3 (ozone) were measured during the period of 2000–2016 in Stockholm and 2001–2018 in Tallinn (except for BC and PNC4 which were only measured in Stockholm). The excess risks in daily mortality associated with an interquartile range (IQR) increase in the measured air pollutants were calculated in both single- and multi-pollutant models for lag01 and lag02 (average concentration during the same and the previous day, and the same and the previous two days, respectively) using a quasi-Poisson regression model with a logistic link function. In general, the calculated excess risks per IQR increase were highest in the age group 0–14 years of age in both Stockholm and Tallinn. However, in Stockholm, a statistically significant effect was shown for PM2.5–10, and in Tallinn for O3. In the oldest age group (65+), statistically significant effects were shown for both PM2.5–10, PM10, and O3 in Stockholm, and for O3 in Tallinn.
Collapse
|
39
|
de Bont J, Jaganathan S, Dahlquist M, Persson Å, Stafoggia M, Ljungman P. Ambient air pollution and cardiovascular diseases: An umbrella review of systematic reviews and meta-analyses. J Intern Med 2022; 291:779-800. [PMID: 35138681 PMCID: PMC9310863 DOI: 10.1111/joim.13467] [Citation(s) in RCA: 246] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The available evidence on the effects of ambient air pollution on cardiovascular diseases (CVDs) has increased substantially. In this umbrella review, we summarized the current epidemiological evidence from systematic reviews and meta-analyses linking ambient air pollution and CVDs, with a focus on geographical differences and vulnerable subpopulations. We performed a search strategy through multiple databases including articles between 2010 and 31 January 2021. We performed a quality assessment and evaluated the strength of evidence. Of the 56 included reviews, the most studied outcomes were stroke (22 reviews), all-cause CVD mortality, and morbidity (19). The strongest evidence was found between higher short- and long-term ambient air pollution exposure and all-cause CVD mortality and morbidity, stroke, blood pressure, and ischemic heart diseases (IHD). Short-term exposures to particulate matter <2.5 μm (PM2.5 ), <10 μm (PM10 ), and nitrogen oxides (NOx ) were consistently associated with increased risks of hypertension and triggering of myocardial infarction (MI), and stroke (fatal and nonfatal). Long-term exposures of PM2.5 were largely associated with increased risk of atherosclerosis, incident MI, hypertension, and incident stroke and stroke mortality. Few reviews evaluated other CVD outcomes including arrhythmias, atrial fibrillation, or heart failure but they generally reported positive statistical associations. Stronger associations were found in Asian countries and vulnerable subpopulations, especially among the elderly, cardiac patients, and people with higher weight status. Consistent with experimental data, this comprehensive umbrella review found strong evidence that higher levels of ambient air pollution increase the risk of CVDs, especially all-cause CVD mortality, stroke, and IHD. These results emphasize the importance of reducing the alarming levels of air pollution across the globe, especially in Asia, and among vulnerable subpopulations.
Collapse
Affiliation(s)
- Jeroen de Bont
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Suganthi Jaganathan
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
- Centre for Environmental HealthPublic Health Foundation of IndiaDelhi‐NCRIndia
- Centre for Chronic Disease ControlNew DelhiIndia
| | - Marcus Dahlquist
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Åsa Persson
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Massimo Stafoggia
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
- Department of EpidemiologyLazio Region Health ServiceRomeItaly
| | - Petter Ljungman
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
- Department of CardiologyDanderyd University HospitalDanderydSweden
| |
Collapse
|
40
|
Nedelescu M, Stan M, Ciobanu AM, Bălălău C, Filippini T, Baconi D. Attention deficit among preschool and school-aged children living near former metal-processing plants in Romania. ENVIRONMENTAL RESEARCH 2022; 208:112689. [PMID: 34999026 DOI: 10.1016/j.envres.2022.112689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/14/2021] [Accepted: 01/04/2022] [Indexed: 05/06/2023]
Abstract
Industrial areas affected by high and long-term heavy metal pollution have a great impact on health of the resident population. Children represent a group at high-risk with an increased susceptibility to chronic heavy metal intoxication. Our work included the assessment of attention particularities through a case-control study in pre-school and school-aged children (4-6 years and 8-11 years) from two study areas, Copşa Mică and Zlatna, compared to a non-polluted locality with no history of heavy metal pollution. Copşa Mică and Zlatna are two of the most polluted heavy metals regions in Romania due to non-ferrous metallurgy for a long period of time. Recruitment of participants was made by a random selection of an entire class for each age within the schools and kindergartens from the study areas (Copşa Mică and Zlatna) and from the non-polluted region. Interpretation of data was performed using statistical analysis (ANOVA and Student's t-test). Preschool children (4-6 years) were tested using Wechsler Preschool and Primary Scale of Intelligence (WPPSI) tests, Animal House and labyrinth samples. The results of the attention tests applied to pre-school children were lower in the study areas compared to the control group, but no statistical differences were found. The results of the attention tests applied to children aged between 8 and 11 years (Toulouse-Pieron test and Traffic light test) indicate lower average scores within the study groups from polluted areas, compared to the control group. Differences with statistically significance were registered for the 8 years age group (p = 0.037). In these areas efficient strategies and precise intervention measures are needed in order to limit or remove the heavy metal exposure and protect the human health, especially the groups exposed to a high level of risk.
Collapse
Affiliation(s)
- Mirela Nedelescu
- (")Carol Davila" University of Medicine and Pharmacy, Faculty of Medicine, 8 Eroii Sanitari Blvd, Bucharest, Romania; National Institute of Public Health, Department of Food Hygiene and Nutrition, 1-3 Dr. Leonte Street, Bucharest, Romania
| | - Miriana Stan
- "Carol Davila" University of Medicine and Pharmacy "Carol Davila", Faculty of Pharmacy, 6 Traian Vuia Street, Bucharest, Romania.
| | - Anne-Marie Ciobanu
- "Carol Davila" University of Medicine and Pharmacy "Carol Davila", Faculty of Pharmacy, 6 Traian Vuia Street, Bucharest, Romania
| | - Cristian Bălălău
- (")Carol Davila" University of Medicine and Pharmacy, Faculty of Medicine, 8 Eroii Sanitari Blvd, Bucharest, Romania
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, Modena, Italy
| | - Daniela Baconi
- "Carol Davila" University of Medicine and Pharmacy "Carol Davila", Faculty of Pharmacy, 6 Traian Vuia Street, Bucharest, Romania
| |
Collapse
|
41
|
Kang Y, Aye L, Ngo TD, Zhou J. Performance evaluation of low-cost air quality sensors: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151769. [PMID: 34801495 DOI: 10.1016/j.scitotenv.2021.151769] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/27/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
The monitoring of air quality compliance requires the use of Federal Reference Methods (FRM)/Federal Equivalent Methods (FEM); nevertheless, the validity and reliability of low-cost sensors deserve attention due to their affordability and accessibility. This review examines the methodologies of previous studies to characterise the performance of low-cost air quality sensors and to identify the influential factors in sensor evaluation experiments. The data on four statistical measures (Correlation of Determination, r2; Root Mean Square Error, RMSE; Mean Normalised Bias, MNB; and Coefficient of Variation, CV) and details about five methodological factors in experimental design (environmental setting, reference instrument, regression model, pollutant attribute, and sensor original equipment manufacturer (OEM) specification) were extracted from a total of 112 primary articles for a detailed analysis. The results of the analysis suggested that low-cost air quality sensors exhibited improved r2 and RMSE in the experiments with stable environmental settings, in the comparison against non-designated reference instruments, or in the analysis where advanced regression models were used to adjust the sensor readings. However, the pollutant attribute and sensor OEM specification had inconclusive effects on r2 and RMSE due to contradictory results and lack of sufficient data. MNB and CV, two measures that US EPA recommends to determine the suitable application tier of air quality sensors, varied significantly among published experiments due to the discrepancy in experimental design. The outcomes of this work could provide direction to researchers regarding sensor evaluation experiments and guide practitioners to effectively select and deploy low-cost sensors for air quality monitoring.
Collapse
Affiliation(s)
- Ye Kang
- Department of Civil Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Lu Aye
- Department of Infrastructure Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tuan Duc Ngo
- Department of Infrastructure Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jin Zhou
- Department of Civil Engineering, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
42
|
Damokhi A, Yousefinejad S, Fakherpour A, Jahangiri M. Improvement of performance and function in respiratory protection equipment using nanomaterials. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2022; 24:76. [PMID: 35368829 PMCID: PMC8959790 DOI: 10.1007/s11051-022-05460-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/17/2022] [Indexed: 05/25/2023]
Abstract
Nanotechnology has become one of key areas for the current development and research. Nanotechnology focuses on matter at the nanoscale and is capable of using different approaches to produce nanomaterials, structures, devices, and systems. One of the concerns that have to be addressed is the adverse effects of exposure to pathogens and pollutants in different workplaces and environments. Respiratory protective equipment (RPE) is one of the personal protective equipment (PPE) utilized to reduce the risk of exposure to environmental or occupational respiratory hazards. Thus, various studies have been conducted for improving the functional properties of sorbents or filters in different kinds of RPE. Different categories of nanomaterials have been reported as effective agents for achieving this goal. The application of these nanomaterials in mask layers or respirators' cartridge could significantly increase the filtration efficiency, breathing comfort, and antibacterial/antiviral properties of the masks and respirators. The present study aimed to comprehensively review the nanomaterials used in different types of face RPE with emphasis on various properties of the utilized nanomaterials. The study also aimed to show an applied perspective for future research on this important subject. Graphical abstract
Collapse
Affiliation(s)
- Arezoo Damokhi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Center for Health Sciences, Institute of Health, Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Yousefinejad
- Research Center for Health Sciences, Institute of Health, Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahita Fakherpour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Jahangiri
- Research Center for Health Sciences, Institute of Health, Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
43
|
Brain Drain out of the Blue: Pollution-Induced Migration in Vietnam. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063645. [PMID: 35329332 PMCID: PMC8955657 DOI: 10.3390/ijerph19063645] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023]
Abstract
Air pollution is a major problem that severely affects the health of inhabitants in developing countries’ urban areas. To deal with the problem, they may consider migration to another place as an option, which can result in the loss of skillful and talented workforces. This situation is called the brain drain phenomenon. The current study employed the Bayesian mindsponge framework (BMF) on the responses of 475 urban inhabitants in Hanoi, Vietnam—one of the most polluted capital cities in the world—to examine the risk of losing talented workforces due to air pollution. Our results show that people with higher educational levels are more likely to have intentions to migrate both domestically and internationally due to air pollution. Regarding the domestic migration intention, younger people and males have a higher probability of migrating than their counterparts. Age and gender also moderate the association between educational level and international migration intention, but their reliability needs further justification. Based on these findings, we suggest that environmental stressors caused by air pollution can influence citizen displacement intention on a large scale through the personal psychological mechanism of cost-benefit judgment. Due to the risk of air pollution on human resources, building an eco-surplus culture is crucial for enhancing environmental and socio-economic resilience.
Collapse
|
44
|
Motesaddi Zarandi S, Hadei M, Hashemi SS, Shahhosseini E, Hopke PK, Namvar Z, Shahsavani A. Effects of ambient air pollutants on hospital admissions and deaths for cardiovascular diseases: a time series analysis in Tehran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17997-18009. [PMID: 34677770 DOI: 10.1007/s11356-021-17051-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Short-term exposures to air pollution have been associated with various adverse health effects. In this study, we investigated the associations between ambient air pollutants with the number of hospital admissions and mortality from cardiovascular diseases (CVDs). This time series study was conducted in Tehran for the years 2014-2017 (1220 day). We collected the ambient air pollutant concentration data from the regulatory monitoring stations. The health data were obtained from the Ministry of Health and Medical Education. A distributed lag non-linear model (DLNM) was used for the analyses. Total CVDs and ischemic heart disease (IHD) admissions were associated with CO for each 1 mg/m3 increase at lags of 6 and 7 days. Also, there was a positive association between total CVDs (RR 1.01; 1.001 to 1.03), IHD (RR 1.04; 1.006 to 1.07), and cerebrovascular diseases (RR 1.03; 1.005 to 1.07) mortality with SO2 at a lag of 4 days. PM2.5 and PM10 were associated with cerebrovascular disease admissions in females aged 16-65 years and 16 years and younger for each 10 µg/m3 increase, respectively. Short-term exposure to SO2, NO2, and CO was associated with hospital admissions and mortality for CVDs, IHD, cerebrovascular diseases, and other cardiovascular diseases at different lags. Moreover, females were more affected by ambient air pollutants than males in terms of their burden of CVDs. Therefore, identifying the likely harmful effects of pollutants given their current concentrations requires the planning and implementation of strategies to reduce air pollution.
Collapse
Affiliation(s)
- Saeed Motesaddi Zarandi
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Hadei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Saeed Hashemi
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Shahhosseini
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA
| | - Zahra Namvar
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Shahsavani
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Requia WJ, Kill E, Amini H. Proximity of schools to roads and students' academic performance: A cross-sectional study in the Federal District, Brazil. ENVIRONMENTAL RESEARCH 2021; 202:111770. [PMID: 34331926 DOI: 10.1016/j.envres.2021.111770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Investigations of the educational implications of children's exposure to air pollutants at school are crucial to enhance our understanding of the hazards for children. Most of the existing literature is based on studies performed in North America and Europe. Further investigation is required in low- and middle-income countries, where there are important challenges related to public health, transportation, environment, and education sector. In response, in this present study, we studied the association between proximity of schools to roads and the academic achievement of the students in the Federal District, Brazil. We accessed academic achievement data at the student level. The data consist of 256 schools (all the public schools in the FD) and a total of 344,175 students (all the students enrolled in the public schools in the FD in 2017-2020). We analyzed the association between the length of all roads within buffers around schools and student-level academic performance using mixed-effects regression models. After adjustments for several covariates, the results of the primary analysis indicate that the presence of roads surrounding schools is negatively associated with student-level academic performance in the FD. This association varies significantly depending on the buffer size surrounding schools. We found that the highest effects occur in the first buffer, with 250 m. While in the first buffer we estimated that an increase of 1 km of length of roads around schools was associated with a statistically significant decrease of 0.011 (95%CI: 0.008; 0.013) points in students' grades (students' academic performance varies from 0 to 10), in the buffer of 1 km we found a decrease of 0.002 (95%CI: 0.002; 0.002) points in the student-level academic performance. Findings from our investigation provide support for the creation of effective health, educational and urban planning policies for local intervention in the FD. This is essential to improve the environmental quality surrounding schools to protect children from exposure to environmental hazards.
Collapse
Affiliation(s)
- Weeberb J Requia
- School of Public Policy and Government, Fundação Getúlio Vargas, Distrito Federal, Brasília, Brazil.
| | - Erick Kill
- Faculty of Medicine, Department of Pathology, University of Sao Paulo, Sao Paulo, Brazil
| | - Heresh Amini
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Chen CHS, Kuo TC, Kuo HC, Tseng YJ, Kuo CH, Yuan TH, Chan CC. Lipidomics of children and adolescents exposed to multiple industrial pollutants. ENVIRONMENTAL RESEARCH 2021; 201:111448. [PMID: 34119529 DOI: 10.1016/j.envres.2021.111448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND There are limited studies on the lipidomics of children and adolescents exposed to multiple industrial pollutants. OBJECTIVES In this study, we aimed to investigate lipid profile perturbations in 99 children and adolescents (aged 9-15) who lived in a polluted area surrounding the largest petrochemical complex in Taiwan. Previous studies have reported increased risks of acute and chronic diseases including liver dysfunctions and chronic kidney disease (CKD) in residents living in this area. METHODS We measured urinary concentrations of 11 metals and metalloids and polycyclic aromatic hydrocarbons (PAHs) metabolite 1-hydroxypyrene (1-OHP) as exposure biomarkers, and urinary oxidative stress biomarkers and serum acylcarnitines as early health effect biomarkers. The association between individual exposure biomarkers and early health effect biomarkers were analyzed using linear regression, while association of combined exposure biomarkers with four oxidative stress biomarkers and acylcarnitines were analyzed using weighted quantile sum (WQS) regression. Lipid profiles were analyzed using an untargeted liquid chromatography mass spectrometry-based technique. "Meet-in-the-middle" approach was applied to identify potential lipid features that linked multiple industrial pollutants exposure with early health effects. RESULTS We identified 15 potential lipid features that linked elevated multiple industrial pollutants exposure with three increased oxidative stress biomarkers and eight deregulated serum acylcarnitines, including one lysophosphatidylcholines (LPCs), four phosphatidylcholines (PCs), and two sphingomyelins (SMs) that were up-regulated in high exposure group compared to low exposure group, and two LPCs, four PCs, and two phosphatidylinositols (PIs) down-regulated in high exposure group compared to low exposure group. CONCLUSION Our findings could provide information for understanding the health effects, including early indicators and biological mechanism identification, of children and adolescents exposed to multiple industrial pollutants during critical stages of development.
Collapse
Affiliation(s)
- Chi-Hsin S Chen
- Master of Public Health Program, College of Public Health, National Taiwan University. No. 17, Xu-Zhou Road, Taipei, 10055, Taiwan
| | - Tien-Chueh Kuo
- The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Han-Chun Kuo
- The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yufeng J Tseng
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan; Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University. No. 33, Linsen S. Road, Taipei, 10055, Taiwan
| | - Tzu-Hsuen Yuan
- Department of Health and Welfare, College of City Management, University of Taipei, Taipei, Taiwan. No.101, Sec. 2, Zhongcheng Rd., Shilin Dist., Taipei City, 11153, Taiwan
| | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University. No. 17, Xu-Zhou Road, Taipei, 10055, Taiwan.
| |
Collapse
|
47
|
Jung J, Park JY, Kim YC, Lee H, Kim E, Kim YS, Lee JP, Kim H. Effects of air pollution on mortality of patients with chronic kidney disease: A large observational cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147471. [PMID: 33971609 DOI: 10.1016/j.scitotenv.2021.147471] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/08/2021] [Accepted: 04/28/2021] [Indexed: 05/24/2023]
Abstract
Due to industrialization, the burden of diseases associated with air pollution is increasing. Although the risk associated with air pollution in the general population has been actively investigated, few studies have been conducted on the effects of exposure to air pollution in patients with chronic kidney disease (CKD) in East Asia. A total of 29,602 patients with CKD in Seoul participated in a retrospective cohort at three medical centers. We assessed the association of individualized exposure to five types of air pollutants (PM2.5, PM10, NO2, SO2, and CO) using inverse distance weighting (IDW) on mortality in CKD patients in the Cox proportional hazard model that was adjusted for sex, age, eGFR, hemoglobin, hypertension, diabetes, and area-level characteristics. During the 6.14 ± 3.96 years, 3863 deaths (13%) were observed. We confirmed the significant effects of PM2.5 (hazard ratio [HR] 1.17, 95% confidence interval [CI] 1.07-0.29) and CO (HR 1.17, 95% CI 1.00-1.38) on mortality in CKD patients. Different associations were found when stratified by age, body mass index, smoking, and drinking status. Long-term exposure to air pollutants had negative effects on mortality in patients with CKD. These effects were prominent in patients aged over 65 years, patients with a lean body, and those who did not drink alcohol.
Collapse
Affiliation(s)
- Jiyun Jung
- Data Management and Statistics Institute, Dongguk University Ilsan Hospital, South Korea
| | - Jae Yoon Park
- Department of Internal Medicine, Dongguk University Ilsan Hospital, South Korea; Department of Internal Medicine, Dongguk University College of Medicine, South Korea
| | - Yong Chul Kim
- Department of Internal Medicine, Seoul National University College of Medicine, South Korea
| | - Hyewon Lee
- Department of Health Administration and Management, College of Medical Sciences, Soonchunhyang University, South Korea; Department of Software Convergence, Soonchunhyang University Graduate School, Asan, South Korea
| | - Ejin Kim
- Institute of Health and Environment, Seoul National University, South Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University College of Medicine, South Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University College of Medicine, South Korea; Department of Internal Medicine, Seoul National University Boramae Medical Center, South Korea.
| | - Ho Kim
- Institute of Health and Environment, Seoul National University, South Korea; Department of Public Health Science, School of Public Health, Seoul National University, South Korea.
| |
Collapse
|
48
|
Boniardi L, Dons E, Longhi F, Scuffi C, Campo L, Van Poppel M, Int Panis L, Fustinoni S. Personal exposure to equivalent black carbon in children in Milan, Italy: Time-activity patterns and predictors by season. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116530. [PMID: 33516956 DOI: 10.1016/j.envpol.2021.116530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Air pollution is a global threat to public health, especially when considering susceptible populations, such as children. A better understanding of determinants of exposure could help epidemiologists in refining exposure assessment methods, and policy makers in identifying effective mitigation interventions. Through a participatory approach, 73 and 89 schoolchildren were involved in a two-season personal exposure monitoring campaign of equivalent black carbon (EBC) in Milan, Italy. GPS devices, time-activity diaries and a questionnaire were used to collect personal information. Exposure to EBC was 1.3 ± 1.5 μg/m3 and 3.9 ± 3.3 μg/m3 (mean ± sd) during the warm and the cold season, respectively. The highest peaks of exposure were detected during the home-to-school commute. Children received most of their daily dose at school and home (82%), but the highest dose/time intensity was related to transportation and outdoor environments. Linear mixed-effect models showed that meteorological variables were the most influencing predictors of personal exposure and inhaled dose, especially in the cold season. The total time spent in a car, duration of the home-to-school commute, and smoking habits of parents were important predictors as well. Our findings suggest that seasonality, time-activity and mobility patterns play an important role in explaining exposure patterns. Furthermore, by highlighting the contribution of traffic rush hours, transport-related microenvironments and traffic-related predictors, our study suggests that acting on a local scale could be an effective way of lowering personal exposure to EBC and inhaled dose of children in the city of Milan.
Collapse
Affiliation(s)
- Luca Boniardi
- EPIGET - Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Environmental and Industrial Toxicology Unit, Milan, Italy
| | - Evi Dons
- Flemish Institute for Technological Research (VITO), Mol, Belgium; Hasselt University, Centre for Environmental Sciences (CMK), Hasselt, Belgium
| | - Francesca Longhi
- EPIGET - Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, Italy
| | - Chiara Scuffi
- EPIGET - Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, Italy
| | - Laura Campo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Environmental and Industrial Toxicology Unit, Milan, Italy
| | | | - Luc Int Panis
- Flemish Institute for Technological Research (VITO), Mol, Belgium; Hasselt University, Centre for Environmental Sciences (CMK), Hasselt, Belgium
| | - Silvia Fustinoni
- EPIGET - Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Environmental and Industrial Toxicology Unit, Milan, Italy.
| |
Collapse
|
49
|
Verheyen VJ, Remy S, Lambrechts N, Govarts E, Colles A, Poelmans L, Verachtert E, Lefebvre W, Monsieurs P, Vanpoucke C, Nielsen F, Van den Eeden L, Jacquemyn Y, Schoeters G. Residential exposure to air pollution and access to neighborhood greenspace in relation to hair cortisol concentrations during the second and third trimester of pregnancy. Environ Health 2021; 20:11. [PMID: 33573648 PMCID: PMC7879652 DOI: 10.1186/s12940-021-00697-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/01/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Exposure to air pollution during pregnancy has been associated with adverse pregnancy outcomes in studies worldwide, other studies have described beneficial effects of residential greenspace on pregnancy outcomes. The biological mechanisms that underlie these associations are incompletely understood. A biological stress response, which implies release of cortisol, may underlie associations of air pollution exposure and access to neighborhood greenspaces with health. METHODS We explored residential exposure to air pollution and residential access to neighborhood greenspaces in relation to hair cortisol concentrations of participants in a prospective pregnancy cohort study in Flanders, Belgium. Hair samples were collected at the end of the second pregnancy trimester (n = 133) and shortly after delivery (n = 81). Cortisol concentrations were measured in 3-cm scalp-near hair sections, to reflect second and third pregnancy trimester cortisol secretion. We estimated long-term (3 months before sampling) residential exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2) and black carbon (BC), assessed residential distance to major roads and residential access to neighborhood greenspaces (NHGS). Associations between residential exposures and hair cortisol concentrations were studied using linear regression models while adjusting for season of sampling. RESULTS Three-month mean residential NO2 and BC concentrations were positively associated with third pregnancy trimester hair cortisol concentrations (p = 0.008 and p = 0.017). Access to a large NHGS (10 ha or more within 800 m from residence) was negatively associated with third trimester hair cortisol concentrations (p = 0.019). Access to a large NHGS significantly moderated the association between residential proximity to major roads and second trimester hair cortisol concentrations (p = 0.021). Residential distance to major roads was negatively associated with second trimester hair cortisol concentrations of participants without access to a large NHGS (p = 0.003). The association was not significant for participants with access to a large NHGS. The moderation tended towards significance in the third pregnancy trimester (p < 0.10). CONCLUSIONS Our findings suggest a positive association between long-term residential exposure to air pollution and biological stress during pregnancy, residential access to neighborhood greenspaces may moderate the association. Further research is needed to confirm our results. TRIAL REGISTRATION The IPANEMA study is registered under number NCT02592005 at clinicaltrials.gov .
Collapse
Affiliation(s)
- Veerle Josefa Verheyen
- Flemish Institute for Technological Research (VITO), Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sylvie Remy
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Eva Govarts
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Ann Colles
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Lien Poelmans
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Els Verachtert
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Wouter Lefebvre
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Pieter Monsieurs
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Flemming Nielsen
- The Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Lena Van den Eeden
- Department of Obstetrics and Gynecology, Antwerp University Hospital, Antwerp, Belgium
- People and Health, Thomas More University College, Lier, Belgium
| | - Yves Jacquemyn
- Department of Obstetrics and Gynecology, Antwerp University Hospital, Antwerp, Belgium
- Global Health Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
- Antwerp Surgical Training, Anatomy and Research Centre, University of Antwerp, Antwerp, Belgium
| | - Greet Schoeters
- Flemish Institute for Technological Research (VITO), Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- The Department of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
50
|
Dastoorpoor M, Khanjani N, Moradgholi A, Sarizadeh R, Cheraghi M, Estebsari F. Prenatal exposure to ambient air pollution and adverse pregnancy outcomes in Ahvaz, Iran: a generalized additive model. Int Arch Occup Environ Health 2021; 94:309-324. [PMID: 32936369 DOI: 10.1007/s00420-020-01577-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 09/01/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE There is some evidence about the short-term effects of air pollutants on adverse pregnancy outcomes. The aim of this study was to determine the association between air pollutants and spontaneous abortion, stillbirth, gestational hypertension, preeclampsia, gestational diabetes and macrosomia in Ahvaz, which is one of the most polluted cities in the Middle East. METHODS Data on adverse pregnancy outcomes and air pollutants including ozone (O3), nitric oxide (NO), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), particles with a diameter of less than 10 µm (PM10) and particles with a diameter less than 2.5 µm (PM2.5) were inquired from the Health Department of Ahvaz Jundishapur University of Medical Sciences and the Environmental Protection Agency of Khuzestan Province for the years 2008-2018. A time series analysis using the generalized additive model (GAM) with up to 6-day lags was used. RESULTS The results showed that the SO2 pollutant on 0, 1, 3, 4, and 6-day lags and PM10 on lag 0 had direct and significant associations with spontaneous abortion. NO, NO2 and CO on 0-6-day lags, and O3 on 6-day lags showed direct and significant associations with preeclampsia. NO and NO2 pollutants showed significant and direct associations with gestational diabetes, during 0- and 6-day lags. NO on 0-, 3- and 4-day lags, CO in all 0-6-day lags and PM2.5 on 1-, 3-, 5-, and 6-day lags showed direct and significant associations with macrosomia. None of the pollutants showed significant associations with stillbirth or gestational hypertension. CONCLUSIONS The results of this study suggest that some air pollutants are associated with spontaneous abortion, preeclampsia, gestational diabetes and macrosomia. This study further emphasizes the need to control ambient air pollution.
Collapse
Affiliation(s)
- Maryam Dastoorpoor
- Department of Biostatistics and Epidemiology, Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narges Khanjani
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Asghar Moradgholi
- Department of Biostatistics and Epidemiology, Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reihaneh Sarizadeh
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maria Cheraghi
- Social Determinants of Health Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Estebsari
- Department of Community Health Nursing, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Vali Asr Ave., Niayesh Cross Road, Niayesh Complex, Tehran, 1985717443, Iran.
| |
Collapse
|