1
|
Kammoun A, Ouazzani N, El Fels AEA, Hejjaj A, Mandi L. Enhancing pollutant removal efficiency in urban domestic wastewater treatment through the hybrid multi-soil-layering (MSL) system: A case study in Morocco. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2685-2702. [PMID: 38822608 DOI: 10.2166/wst.2024.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/26/2024] [Indexed: 06/03/2024]
Abstract
This paper evaluates the performance and potential of a full-scale hybrid multi-soil-layering (MSL) system for the treatment of domestic wastewater for landscape irrigation reuse. The system integrates a solar septic tank and sequential vertical flow MSL and horizontal flow MSL components with alternating layers of gravel and soil-based material. It operates at a hydraulic loading rate of 250 L/m2/day. Results show significant removal of pollutants and pathogens, including total suspended solids (TSS) (97%), chemical oxygen demand (COD) (88.57%), total phosphorus (TP) (79.93%), and total nitrogen (TN) (88.49%), along with significant reductions in fecal bacteria indicators (4.21 log for fecal coliforms and 3.90 log for fecal streptococci) and the pathogen Staphylococcus sp. (2.43 log). The principal component analysis confirms the effectiveness of the system in reducing the concentrations of NH4, COD, TP, PO4, fecal coliforms, fecal streptococci, and fecal staphylococci, thus supporting the reliability of the study. This work highlights the promising potential of the hybrid MSL technology for the treatment of domestic wastewater, especially in arid regions such as North Africa and the Middle East, to support efforts to protect the environment and facilitate the reuse of wastewater for landscape irrigation and agriculture.
Collapse
Affiliation(s)
- Aya Kammoun
- National National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, P.O.Box 511, Marrakech 40000, Morocco; Laboratory of Water, Biodiversity and Climate Change (EauBiodiCc), Faculty of Sciences Semlalia, University Cadi Ayyad, P.O.Box 2390, Marrakech 40000, Morocco
| | - Naaila Ouazzani
- National National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, P.O.Box 511, Marrakech 40000, Morocco; Laboratory of Water, Biodiversity and Climate Change (EauBiodiCc), Faculty of Sciences Semlalia, University Cadi Ayyad, P.O.Box 2390, Marrakech 40000, Morocco
| | - Abdelhafid El Alaoui El Fels
- National National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, P.O.Box 511, Marrakech 40000, Morocco; Geology and Sustainable Mining Institute, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Abdessamad Hejjaj
- National National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, P.O.Box 511, Marrakech 40000, Morocco
| | - Laila Mandi
- National National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, P.O.Box 511, Marrakech 40000, Morocco; Laboratory of Water, Biodiversity and Climate Change (EauBiodiCc), Faculty of Sciences Semlalia, University Cadi Ayyad, P.O.Box 2390, Marrakech 40000, Morocco E-mail:
| |
Collapse
|
2
|
Zidan K, Sbahi S, Hejjaj A, Ouazzani N, Assabbane A, Mandi L. Removal of bacterial indicators in on-site two-stage multi-soil-layering plant under arid climate (Morocco): prediction of total coliform content using K-nearest neighbor algorithm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75716-75729. [PMID: 35661304 DOI: 10.1007/s11356-022-21194-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
This study aims to evaluate and monitor the efficacy of a full-scale two-stage multi-soil-layering (TS-MSL) plant in removing fecal contamination from domestic wastewater. The TS-MSL plant under investigation consisted of two units in series, one with a vertical flow regime (VF-MSL) and the other with a horizontal flow regime (HF-MSL). Furthermore, this study attempts to see whether linear model (LM) and K-nearest neighbor (KNN) model can be used to predict total coliform (TC) removal in the TS-MSL system. For 24 months, the TS-MSL system was monitored, with bimonthly measurements recorded at the inlet and outlet of each compartment. Obtained results show removal of 85% of COD, 67% of TP, 27% of TN, and 3 log units of coliforms with good system stability. Thus, the effluent meets the Moroccan water quality code for reuse in the irrigation of green spaces. In addition, as compared to LM, the KNN model (R2 = 0.988) may be considered as an effective method for predicting TC removal in the TS-MSL system. Finally, sensitivity analysis has shown that TC and dissolved oxygen level in the influent were the most influential parameters for predicting TC removal in the TS-MSL system.
Collapse
Affiliation(s)
- Khadija Zidan
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, Marrakech, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
- Laboratory of Physical Chemistry (Photocatalysis and Environment), Faculty of Sciences Agadir, University Ibn Zohr, Agadir, Morocco
| | - Sofyan Sbahi
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, Marrakech, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Abdessamed Hejjaj
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, Marrakech, Morocco
| | - Naaila Ouazzani
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, Marrakech, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Ali Assabbane
- Laboratory of Physical Chemistry (Photocatalysis and Environment), Faculty of Sciences Agadir, University Ibn Zohr, Agadir, Morocco
| | - Laila Mandi
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, Marrakech, Morocco.
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco.
| |
Collapse
|
3
|
Xu Y, Li H, Li Y, Zheng X, Zhang C, Gao Y, Chen P, Li Q, Tan L. Systematically assess the advancing and limiting factors of using the multi-soil-layering system for treating rural sewage in China: From the economic, social, and environmental perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114912. [PMID: 35306420 DOI: 10.1016/j.jenvman.2022.114912] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Solving the problem of rural sewage is considered an essential task in China's rural revitalization strategy. Based on the yearbook data of sewage treatment in rural areas between 2014 and 2019, although the rate of sewage treatment in rural areas of China showed an upward trend, it was still below 35%, mainly due to the lack of suitable sewage treatment technologies. Here, we discuss the multi-soil-layering (MSL) system, which is an emerging technology suitable for rural sewage treatment. It was deemed to overcome the shortcomings of current biological and ecological treatment technologies, such as complex operation, large area, and high operating costs. We used system dynamics to evaluate the advancing and limiting factors of MSL application for rural sewage treatment from the social, environmental, and economic dimensions. The results illustrated a complete causal loop diagram in which essential variables and relationships were concentrated in the technology, operation and maintenance, and satisfaction of farmers. The efficiency of MSL is the key variable affecting the final decision of the MSL application. Overall, using MSL to treat rural sewage could be an option to improve the rural environment in China. However, the scientific technological model for MSL should be further explored. This review provides guidance on how to promote MSL systems in rural areas.
Collapse
Affiliation(s)
- Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Ye Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Chunxue Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yi Gao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Peizhen Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Qian Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
4
|
Multi-Soil-Layering Technology: A New Approach to Remove Microcystis aeruginosa and Microcystins from Water. WATER 2022. [DOI: 10.3390/w14050686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Eutrophication of surface waters caused by toxic cyanobacteria such as Microcystis aeruginosa leads to the release of secondary metabolites called Microcystins (MCs), which are heptapeptides with adverse effects on soil microbiota, plants, animals, and human health. Therefore, to avoid succumbing to the negative effects of these cyanotoxins, various remediation approaches have been considered. These techniques involve expensive physico-chemical processes because of the specialized equipment and facilities required. Thus, implementing eco-technologies capable of handling this problem has become necessary. Indeed, multi-soil-layering (MSL) technology can essentially meet this requirement. This system requires little space, needs simple maintenance, and has energy-free operation and high durability (20 years). The performance of the system is such that it can remove 1.16 to 4.47 log10 units of fecal contamination from the water, 98% of suspended solids (SS), 92% of biological oxygen demand (BOD), 98% of chemical oxygen demand (COD), 92% of total nitrogen (TN), and 100% of total phosphorus (TP). The only reported use of the system to remove cyanotoxins has shown a 99% removal rate of MC-LR. However, the mechanisms involved in removing this toxin from the water are not fully understood. This paper proposes reviewing the principal methods employed in conventional water treatment and other technologies to eliminate MCs from the water. We also describe the principles of operation of MSL systems and compare the performance of this technology with others, highlighting some advantages of this technology in removing MCs. Overall, the combination of multiple processes (physico-chemical and biological) makes MSL technology a good choice of cyanobacterial contamination treatment system that is applicable in real-life conditions, especially in rural areas.
Collapse
|
5
|
Chen YC, Pat HW. Comparing natural red soil and irons for removal of phosphorus from wastewater using the multi-soil-layering system and its economic analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113252. [PMID: 34261035 DOI: 10.1016/j.jenvman.2021.113252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/21/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The study uses an emerging soil treatment technology, the Multi-Soil Layering System (MSL), which is composed of the zeolite permeability layers (PL) and the soil mixture block layers (SMB). The experimental results show that the SMBs with iron particle (SMB-I) removed more than 83% of the total phosphorus (P) pollution in the water, and the outflow sewage concentration is 9.6 mg/L. In contrast, the SMBs with red clay (SMB-R) has 23% removal rate, and the outflow sewage concentration is 46.45 mg/L. Only 0.013 mg/L Fe concentration was detected in the SMB-R system and release of Fe from red soil is hardly achieved under neutral water environment. The SMB-R and SMB-I systems reduced 108.89 mg/g and 20.93 mg/g respectively and the SMB-R had higher removal efficiency of P per gram released Fe. The chromaticity problem of the effluent water in the SMB-I is up to 225 platinum cobalt, and that of the SMB-R is 172 platinum cobalt. Adding 10 g oyster shell (slice-only) and/or 0.65 g polyglutamic acid have effectively removed up to 99% 25-mg/L Fe in the effluent water; the chromaticity problem caused by Fe effluent was successfully solved. Furthermore, the iron particle has the highest unit cost among the materials in the SMBs (US$1.47/kg in lab and US$0.12/kg in field). Removal of 1 mg/L TP in the MSL system costs US$0.036 (by lab) in terms of removal TP rate in the laboratory was 83% and is economically feasible in field development.
Collapse
Affiliation(s)
- Ying-Chu Chen
- Department of Civil Engineering, National Taipei University of Technology, Taipei City, 106, Taiwan, ROC.
| | - Hoi-Wing Pat
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City, 106, Taiwan, ROC
| |
Collapse
|
6
|
Integrated Water Resource Management: Rethinking the Contribution of Rainwater Harvesting. SUSTAINABILITY 2021. [DOI: 10.3390/su13158338] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rainwater harvesting (RWH) is generally perceived as a promising cost-effective alternative water resource for potable and non-potable uses (water augmentation) and for reducing flood risks. The performance of RWH systems has been evaluated for various purposes over the past few decades. These systems certainly provide economic, environmental, and technological benefits of water uses. However, regarding RWH just as an effective alternative water supply to deal with the water scarcity is a mistake. The present communication advocates for a systematic RWH and partial infiltration wherever and whenever rain falls. By doing so, the detrimental effects of flooding are reduced, groundwater is recharged, water for agriculture and livestock is stored, and conventional water sources are saved. In other words, RWH should be at the heart of water management worldwide. The realization of this goal is easy even under low-resource situations, as infiltration pits and small dams can be constructed with local skills and materials.
Collapse
|
7
|
Hube S, Wu B. Mitigation of emerging pollutants and pathogens in decentralized wastewater treatment processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146545. [PMID: 33752021 DOI: 10.1016/j.scitotenv.2021.146545] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Emerging pollutants (such as micropollutants, microplastics) and pathogens present in wastewater are of rising concern because their release can affect the natural environment and drinking water resources. In this decade, with increasing numbers of small-scale decentralized wastewater systems globally, the status of emerging pollutant and pathogen mitigation in the decentralized wastewater treatment processes has received more attention. This state-of-the-art review aims to discuss the mitigation efficiencies and mechanisms of micropollutants, microplastics, and pathogens in single-stage and hybrid decentralized wastewater treatment processes. The reviewed results revealed that hybrid wastewater treatment facilities could display better performance compared to stand-alone facilities. This is because the multiple treatment steps could offer various microenvironments, allowing incorporating several mitigation mechanisms (such as sorption, degradation, filtration, etc.) to remove complicated emerging pollutants and pathogens. The factors (such as system operation conditions, environmental conditions, wastewater matrix) influencing the removals of emerging pollutants from wastewater in these systems have been further identified. Nevertheless, it was found that very limited research work focused on synergised or conflicted effects of operation conditions on various emerging pollutants naturally present in the wastewater. Meanwhile, effective, reliable, and rapid analysis of the emerging pollutants and pathogens in the complicated wastewater matrix is still a major challenge.
Collapse
Affiliation(s)
- Selina Hube
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland
| | - Bing Wu
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland.
| |
Collapse
|
8
|
First Report on Cyanotoxin (MC-LR) Removal from Surface Water by Multi-Soil-Layering (MSL) Eco-Technology: Preliminary Results. WATER 2021. [DOI: 10.3390/w13101403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cyanobacteria blooms occur frequently in freshwaters around the world. Some can produce and release toxic compounds called cyanotoxins, which represent a danger to both the environment and human health. Microcystin-LR (MC-LR) is the most toxic variant reported all over the world. Conventional water treatment methods are expensive and require specialized personnel and equipment. Recently, a multi-soil-layering (MSL) system, a natural and low-cost technology, has been introduced as an attractive cost-effective, and environmentally friendly technology that is likely to be an alternative to conventional wastewater treatment methods. This study aims to evaluate, for the first time, the efficiency of MSL eco-technology to remove MC-LR on a laboratory scale using local materials. To this end, an MSL pilot plant was designed to treat distilled water contaminated with MC-LR. The pilot was composed of an alternation of permeable layers (pozzolan) and soil mixture layers (local sandy soil, sawdust, charcoal, and metallic iron on a dry weight ratio of 70, 10, 10, and 10%, respectively) arranged in a brick-layer-like pattern. MSL pilot was continuously fed with synthetic water containing distilled water contaminated with increasing concentrations of MC-LR (0.18–10 µg/L) at a hydraulic loading rate (HLR) of 200 L m−2 day−1. The early results showed MC-LR removal of above 99%. Based on these preliminary results, the multi-soil-layering eco-technology could be considered as a promising solution to treat water contaminated by MC-LR in order to produce quality water for irrigation or recreational activities.
Collapse
|
9
|
Schwaminger S, Rottmueller ME, Fischl R, Kalali B, Berensmeier S. Detection of targeted bacteria species on filtration membranes. Analyst 2021; 146:3549-3556. [PMID: 33899848 DOI: 10.1039/d1an00117e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The detection of pathogens in aquatic environments issues a time-consuming challenge, but it is an essential task to prevent the spread of diseases. We have developed a new point-of-care (POC) method for the fast and efficient detection of Legionella pneumophila in water. The method consists first of the generation of immunocomplexes of bacteria species with its corresponding targeted fluorescence-labelled serogroup-specific antibodies, and second a concentration step of pathogens with a membrane filter. Third, on the filtration membrane, our method can detect the fluorescence intensity corresponding to the pathogen concentration. Thus selective and efficient evidence for the presence of bacteria can be evaluated. We tested our system on fluorescent Escherichia coli bacteria and were able to reach an accurate determination of 1000 cells. The technique was furthermore tested on Legionella pneumophila cells, which were labelled with fluorescence-labelled antibodies as a proof of principle. Furthermore, we were able to verify this method in the presence of other bacteria species. We were able to detect bacteria cells within half an hour, a substantial advancement compared to the prevailling state of the art detection method based on the cultivation of Legionella pneumophila. Hence, this system represents the basis for future developments in analysis of pathogens.
Collapse
Affiliation(s)
- Sebastian Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748 Garching, Germany.
| | - Marina E Rottmueller
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748 Garching, Germany.
| | - Ramona Fischl
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748 Garching, Germany.
| | - Behnam Kalali
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
10
|
Sbahi S, Ouazzani N, Hejjaj A, Mandi L. Neural network and cubist algorithms to predict fecal coliform content in treated wastewater by multi-soil-layering system for potential reuse. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:144-157. [PMID: 33205829 DOI: 10.1002/jeq2.20176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/10/2020] [Indexed: 05/27/2023]
Abstract
This study aims to find the most accurate machine learning algorithms as compared to linear regression for prediction of fecal coliform (FC) concentration in the effluent of a multi-soil-layering (MSL) system and to identify the input variables affecting FC removal from domestic wastewater. The effluent quality of two different designs of the MSL system was evaluated and compared for several parameters for potential reuse in agriculture. The first system consisted of a single-stage MSL (MSL-SS), and the second system consisted of a two-stage MSL (MSL-TS). The concentration of FC in the effluent of the MSL-TS system was estimated by three machine learning algorithms: artificial neural network (ANN), Cubist, and multiple linear regression (MLR). The accuracy of the models was measured by comparing the real and predicted values. Significant (p < .001) improvements were noted for the removal of pollutants by the MSL-TS system compared with the MSL-SS system. Overall, the water quality parameters investigated complied with FAO irrigation standards. The predictive performance of the models has been compared and evaluated using several metrics. The results revealed that the ANN model yielded a superior predictive performance (R2 = .953), followed by the Cubist model (R2 = .946) and the MLR technique (R2 = .481). Based on the accurate model (ANN), the degree of influence of each predictor was investigated, and the results show that total suspended solids and pH have proved to be more useful for predicting FC concentrations.
Collapse
Affiliation(s)
- Sofyan Sbahi
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad Univ., P.O. Box 511, Marrakech, Morocco
- Lab. of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad Univ., P.O. Box 2930, Marrakech, Morocco
| | - Naaila Ouazzani
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad Univ., P.O. Box 511, Marrakech, Morocco
- Lab. of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad Univ., P.O. Box 2930, Marrakech, Morocco
| | - Abdessamed Hejjaj
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad Univ., P.O. Box 511, Marrakech, Morocco
| | - Laila Mandi
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad Univ., P.O. Box 511, Marrakech, Morocco
- Lab. of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad Univ., P.O. Box 2930, Marrakech, Morocco
| |
Collapse
|
11
|
Sbahi S, Ouazzani N, Latrach L, Hejjaj A, Mandi L. Predicting the concentration of total coliforms in treated rural domestic wastewater by multi-soil-layering (MSL) technology using artificial neural networks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111118. [PMID: 32795704 DOI: 10.1016/j.ecoenv.2020.111118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Many indicators are involved in monitoring water quality. For instance, the fecal indicator bacteria are extremely important to detect the water quality. For this purpose, to better predict the total coliforms at the outlet of a Multi-Soil-Layering (MSL) system designed to treat domestic wastewater in rural areas, a neural network model has been developed and compared with linear regression model. The data was collected from the raw and treated wastewater of a three MSL systems during a one-year period in rural village, in Al-Haouz Province, Morocco. Fifteen physicochemical and bacteriological variables have undergone feature selection to select the best ones for predicting the total coliforms concentration in the effluent of MSL system. Furthermore, 80% of the available dataset were used to train and optimize the neural model using repeated cross validation technique. The remaining part (20%) was used to test the developed model. The neural network indicated excellent results compared to the linear regression. The optimal model was a neural network with one hidden layer and 11 neurons, where the R2 was about 97%. The importance analysis of each predictor was established, and it was found that pH and total suspended solids had the greatest influence on the total coliforms removal.
Collapse
Affiliation(s)
- Sofyan Sbahi
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, Marrakech, Morocco; Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Naaila Ouazzani
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, Marrakech, Morocco; Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Lahbib Latrach
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, Marrakech, Morocco
| | - Abdessamed Hejjaj
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, Marrakech, Morocco
| | - Laila Mandi
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, Marrakech, Morocco; Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco.
| |
Collapse
|
12
|
Tracing the Scientific History of Fe0-Based Environmental Remediation Prior to the Advent of Permeable Reactive Barriers. Processes (Basel) 2020. [DOI: 10.3390/pr8080977] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The technology of using metallic iron (Fe0) for in situ generation of iron oxides for water treatment is a very old one. The Fe0 remediation technology has been re-discovered in the framework of groundwater remediation using permeable reactive barriers (PRBs). Despite its simplicity, the improvement of Fe0 PRBs is fraught with difficulties regarding their operating modes. The literature dealing with Fe0 remediation contains ambiguities regarding its invention and its development. The present paper examines the sequence of contributions prior to the advent of Fe0 PRBs in order to clarify the seemingly complex picture. To achieve this, the current paper addresses the following questions: (i) What were the motivations of various authors in developing their respective innovations over the years?, (ii) what are the ancient achievements which can accelerate progress in knowledge for the development of Fe0 PRBs?, and (iii) was Fe0 really used for the removal of organic species for the first time in the 1970s? A careful examination of ancient works reveals that: (i) The wrong questions were asked during the past three decades, as Fe0 was premised as a reducing agent, (ii) credit for using Fe0 for water treatment belongs to no individual scientist, and (iii) credit for the use of Fe0 in filtration systems for safe drinking water provision belongs to scientists from the 1850s, while credit for the use of Fe0 for the removal of aqueous organic species does not belong to the pioneers of the Fe0 PRB technology. However, it was these pioneers who exploited Fe0 for groundwater remediation, thereby extending its potential. Complementing recent achievements with the chemistry of the Fe0/H2O system would facilitate the design of more sustainable Fe0-remediation systems.
Collapse
|
13
|
Metallic Iron for Environmental Remediation: Starting an Overdue Progress in Knowledge. WATER 2020. [DOI: 10.3390/w12030641] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A critical survey of the abundant literature on environmental remediation and water treatment using metallic iron (Fe0) as reactive agent raises two major concerns: (i) the peculiar properties of the used materials are not properly considered and characterized, and, (ii) the literature review in individual publications is very selective, thereby excluding some fundamental principles. Fe0 specimens for water treatment are typically small in size. Before the advent of this technology and its application for environmental remediation, such small Fe0 particles have never been allowed to freely corrode for the long-term spanning several years. As concerning the selective literature review, the root cause is that Fe0 was considered as a (strong) reducing agent under environmental conditions. Subsequent interpretation of research results was mainly directed at supporting this mistaken view. The net result is that, within three decades, the Fe0 research community has developed itself to a sort of modern knowledge system. This communication is a further attempt to bring Fe0 research back to the highway of mainstream corrosion science, where the fundamentals of Fe0 technology are rooted. The inherent errors of selected approaches, currently considered as countermeasures to address the inherent limitations of the Fe0 technology are demonstrated. The misuse of the terms “reactivity”, and “efficiency”, and adsorption kinetics and isotherm models for Fe0 systems is also elucidated. The immense importance of Fe0/H2O systems in solving the long-lasting issue of universal safe drinking water provision and wastewater treatment calls for a science-based system design.
Collapse
|
14
|
Song P, Huang G, Hong Y, An C, Xin X, Zhang P. A biophysiological perspective on enhanced nitrate removal from decentralized domestic sewage using gravitational-flow multi-soil-layering systems. CHEMOSPHERE 2020; 240:124868. [PMID: 31542583 DOI: 10.1016/j.chemosphere.2019.124868] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Multi-soil-layering (MSL) system with brick-wall pattern structure and gravitational flow can be used for decentralized rural domestic sewage treatment. The capability of soil for contaminant removal is maximized within soil mixture blocks (SMBs). However, the performance of removing nitrate was still not ideal during operation. To improve its performance in MSL system, the relationship between biophysiological characteristics of denitrifying species and operating conditions was studied. Microbial species diversity of activated sludge and soil samples were analyzed. The significant effects of independent factors and their interactions on microbial species diversity and denitrifying species abundance were revealed on the basis of factorial analysis. The results indicated activated sludge in SMBs played a key role in increasing the richness of denitrifying species in MSL system. Slow-release poly (butylene succinate) (PBS) had the most dominant positive effect on increasing denitrifying species abundance. Submersion had significantly positive effect on species richness in SMBs. These three factors, including activated sludge, PBS in SMBs, and submersion condition had different significant effects on microbial responses. They were favorable for denitrification and ensuring a better removal efficiency of nitrate and total nitrogen. The porous zeolites were served as the habitats for most of aerobic bacteria to form biofilms, which could promote the oxygen consumption in both sewage and system to improve denitrification in SMBs. The results could help on the enhancement of denitrification in MSL system from biophysiological insights. It can provide a sound strategy for using MSL system with great performance on contaminant removal.
Collapse
Affiliation(s)
- Pei Song
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Guohe Huang
- Center for Energy, Environment and Ecology Research, UR-BNU, Beijing Normal University, Beijing, 100875, China.
| | - Yongyuan Hong
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Xiaying Xin
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Peng Zhang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| |
Collapse
|
15
|
Ghimire U, Nandimandalam H, Martinez-Guerra E, Gude VG. Wetlands for wastewater treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1378-1389. [PMID: 31529659 DOI: 10.1002/wer.1232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/06/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
This article presents an update on the research and practical demonstration of wetland treatment technologies for wastewater treatment. Applications of wetlands in wastewater treatment (as an advanced treatment unit or a decentralized system) and stormwater management or treatment for nutrient and pollutant removal (metals, industrial and emerging pollutants including pharmaceutical compounds and pathogens) are highlighted. A summary of studies involving the effects of vegetation, wetland design and operation, and configurations for efficient treatment of various municipal and industrial wastewaters is also included. PRACTITIONER POINTS: Provides an update on current research and development of wetland technologies for wastewater treatment. Effects of vegetation, pathogens removal, heavy metals and emerging pollutants removal are included. Wetland design and operation is a key factor to improve water quality of wetland effluent.
Collapse
Affiliation(s)
- Umesh Ghimire
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, Mississippi
| | - Hariteja Nandimandalam
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, Mississippi
| | - Edith Martinez-Guerra
- Engineer Research and Development Center, U.S. Army Corps of Engineers, Vicksburg, Mississippi
| | - Veera Gnaneswar Gude
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, Mississippi
| |
Collapse
|
16
|
Sheehan NP, Plante L, Murray K, Bier P, Martinez E, Ouellette C, Quell K. Distributed treatment systems. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1205-1209. [PMID: 31517427 DOI: 10.1002/wer.1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/26/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
This section presents a review of the scientific literature published in 2018 on topics relating to distributed treatment systems. This review is divided into the following sections: constituent removal, treatment technologies, planning and treatment management, and other topics.
Collapse
Affiliation(s)
- Nathaniel P Sheehan
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York
| | - Luke Plante
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York
| | - Kyle Murray
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York
| | - Peter Bier
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York
| | - Erick Martinez
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York
| | - Charles Ouellette
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York
| | - Kimberly Quell
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York
| |
Collapse
|
17
|
Song P, Huang G, An C, Zhang P, Chen X, Ren S. Performance analysis and life cycle greenhouse gas emission assessment of an integrated gravitational-flow wastewater treatment system for rural areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25883-25897. [PMID: 31273662 DOI: 10.1007/s11356-019-05746-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Due to the lack of appropriate wastewater treatment facility in rural areas, the discharging of wastewater without sufficient treatment results in many environmental issues and negative impact on the local economy. In this study, a novel integrated gravitational-flow wastewater treatment system (IGWTS) for treating domestic wastewater in rural areas was developed and evaluated. As the core module of IGWTS, the multi-soil-layering (MSL) system showed good performances for removing organic matters and nutrients in lab-scale experiments. Aeration was found to be the dominant positive factor for contaminant removal in factorial analysis, while bottom submersion had the most negative effect. Based on the critical operational factors obtained from lab-scale tests, the full-scale IGWTS consisting of multifunctional anaerobic tank (MFAT), MSL, and subsurface flow constructed wetland (SFCW) was designed, constructed, and operated successfully in the field application. The final effluent concentrations of COD, BOD5, TP, NH3-N, and TN reached 22.0, 8.0, 0.3, 4.0, and 11.0 mg/L, with removal rates of 92, 93, 92, 86, and 76%, respectively. The feasibility of IGWTS was also quantitatively evaluated from the perspectives of resource consumption, economic costs, water environment impact, and life cycle greenhouse gas (GHG) emissions. IGWTS has been proved to be a sound approach to mitigate GHG emissions compared with centralized wastewater treatment plant. It can also be featured as an eco-friendly technology to improve rural water environment, and an economic scenario with low construction and operation costs. Graphical abstract.
Collapse
Affiliation(s)
- Pei Song
- MOE Key Laboratory of Resourcces and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Guohe Huang
- Center for Energy, Environment and Ecology Research, UR-BNU, Beijing Normal University, Beijing, 100875, China.
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Peng Zhang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Xiujuan Chen
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Shan Ren
- MOE Key Laboratory of Resourcces and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
18
|
Hong Y, Huang G, An C, Song P, Xin X, Chen X, Zhang P, Zhao Y, Zheng R. Enhanced nitrogen removal in the treatment of rural domestic sewage using vertical-flow multi-soil-layering systems: Experimental and modeling insights. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 240:273-284. [PMID: 30952048 DOI: 10.1016/j.jenvman.2019.03.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Domestic sewage in rural areas is often poorly treated and discharged into waters, resulting in negative impacts on regional environment, natural resources and human health. A cost-efficient decentralized sewage treatment technology is sustainably necessary for rural areas. In this study, a modified multi-soil-layering (MSL) system was developed to specifically treat low C/N ratio domestic sewage in rural areas. The results proved the good performance of MSLs in sewage treatment under complex conditions. The highest degradation rates of COD, TP, NH4+-N, NO3--N, TN among all the devices could reach 98.29%, 100%, 76.60%, 96.15% and 69.86%, respectively. During the operation, MSL5 and MSL6 showed the best overall performance of contaminant removal. The effects of single factors and their interactions on the performance of MSL systems were further revealed through factorial analyses. In order to simulate and predict nitrogen removal of MSL system, a statistical relationship between TN removal rate and operation parameters was also successfully developed based on stepwise cluster analysis. Such modeling of nitrogen removal model can help develop an optimal strategy for the operation of MSL in treating low C/N ratio sewage from rural areas.
Collapse
Affiliation(s)
- Yongyuan Hong
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Guohe Huang
- Center for Energy, Environment and Ecology Research, UR-BNU, Beijing Normal University, Beijing, 100875, China.
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Pei Song
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Xiaying Xin
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Xiujuan Chen
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Peng Zhang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Yanyun Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Rubing Zheng
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
19
|
Nguyen XC, Chang SW, Tran TCP, Nguyen TTN, Hoang TQ, Banu JR, Al-Muhtaseb AH, La DD, Guo W, Ngo HH, Nguyen DD. Comparative study about the performance of three types of modified natural treatment systems for rice noodle wastewater. BIORESOURCE TECHNOLOGY 2019; 282:163-170. [PMID: 30861445 DOI: 10.1016/j.biortech.2019.02.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
In this study, three semi-pilot scale systems (vertical flow constructed wetland, multi-soil layering, and integrated hybrid systems) for treating real rice noodle wastewater were operated parallelly for the first time in a tropical climate at a loading rate of 50 L/(m2·d) for more than 7 months to determine the optimal conditions and to compare their treatment performance. The results demonstrated that these systems were appropriate for the removal of organics, suspended solids, and total coliform (Tcol). The highest reductions in chemical oxygen demand (CODCr, 73.2%), phosphorus (PO4-P, 54%), and Tcol (4.78 log MPN/100 mL inactivation) were obtained by the integrated hybrid system, while the highest removal efficiencies of ammonium (NH4-N, 60.64%) and suspended solids (80.49%) were achieved in the vertical-flow-constructed wetland and multi-soil layering systems respectively.
Collapse
Affiliation(s)
- Xuan Cuong Nguyen
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam
| | - Soon Woong Chang
- Department of Environmental & Energy Engineering, Kyonggi University, Republic of Korea
| | - Thi Cuc Phuong Tran
- Faculty of Environmental Engineering Technology, Hue University - Quang Tri Campus, Vietnam
| | - Thi Thao Nguyen Nguyen
- Faculty of Environmental Engineering Technology, Hue University - Quang Tri Campus, Vietnam
| | - Thi Quyen Hoang
- Faculty of Environmental Engineering Technology, Hue University - Quang Tri Campus, Vietnam
| | - J Rajesh Banu
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamilnadu, India
| | - Ala'a H Al-Muhtaseb
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - D Duc La
- Institute of Chemistry and Materials, Hoang Sam, Cau Giay, Hanoi, Vietnam
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dinh Duc Nguyen
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
20
|
Wastewater conservation and reuse in quality vegetable cultivation: Overview, challenges and future prospects. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Egea-Corbacho A, Gutiérrez S, Quiroga JM. Removal of emerging contaminants from wastewater through pilot plants using intermittent sand/coke filters for its subsequent reuse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:1232-1240. [PMID: 30235609 DOI: 10.1016/j.scitotenv.2018.07.399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/10/2018] [Accepted: 07/28/2018] [Indexed: 05/27/2023]
Abstract
Effluents from wastewater treatment plants (WWTPs) are widely recognized as the main source of emerging contaminants (stimulants and antibiotics). In this study, intermittent sand and/or coke filters were installed as a tertiary treatment at the outlet of a secondary settling tank at the WWTP in Medina Sidonia, Spain. Regular sampling followed by solid-phase extraction (SPE) and analysis by liquid chromatography-mass spectrometry (UPLC-MS) showed the complete removal of the concentrations of the emerging contaminants (caffeine, theobromine, theophylline, amoxicillin and penicillin G). Moreover, optimal filtration conditions for the reuse of treated water were presented.
Collapse
Affiliation(s)
- Agata Egea-Corbacho
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cádiz, Spain.
| | | | - José María Quiroga
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
22
|
Song P, Huang G, An C, Shen J, Zhang P, Chen X, Shen J, Yao Y, Zheng R, Sun C. Treatment of rural domestic wastewater using multi-soil-layering systems: Performance evaluation, factorial analysis and numerical modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:536-546. [PMID: 29990903 DOI: 10.1016/j.scitotenv.2018.06.331] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/23/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
The discharge of wastewater in rural areas without effective treatment may result in contamination of surrounding surface water and groundwater resources. This study explored the wastewater treatment performance of multi-soil-layering (MSL) systems through interactive factorial analysis. MSL systems showed good performances under various operating conditions. The COD and BOD5 removal rates in MSL systems could reach 98.53 and 93.66%, respectively. The performances of MSL systems in TP removal stayed at high levels ranged from 97.97 to 100% throughout the experiments. The NH4+ - N removal rates of the well performed MSL systems reached highest levels ranging from 89.96 to 100%. The TN removal rates of aerated MSL systems ranged from 51.11 to 64.44% after 72 days of operation. The independent effects of bottom submersion, microbial amendment and aeration, as well as most interactions were significant. The performance of MSL systems was mainly affected by bottom submersion and aeration as well as their interactions. Aeration was the most positive factor for the removal of organic matter, TP and NH4+ - N. However, oxygenated environment was unfavorable for NO3- - N removal. In the submerged area with limited oxygen, the microbial transformation of NO3- - N still occurred. A stepwise-cluster inference model was developed for tackling the multivariate nonlinear relationships in contaminant removal processes. The results can help obtain a better understanding of the complicated processes among contaminant removal in MSL systems.
Collapse
Affiliation(s)
- Pei Song
- MOE Key Laboratory of Resourcces and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Guohe Huang
- MOE Key Laboratory of Resourcces and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada.
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Ju Shen
- MOE Key Laboratory of Resourcces and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Peng Zhang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Xiujuan Chen
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Jian Shen
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Yao Yao
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Rubing Zheng
- MOE Key Laboratory of Resourcces and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Chaoxing Sun
- MOE Key Laboratory of Resourcces and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|