1
|
Huang Q, Xu C, Deng F, He J, Li J, Qin P, Tan L. Association of maternal urinary pesticide metabolites with neonatal birth outcomes and the moderating effects of iodine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118261. [PMID: 40315750 DOI: 10.1016/j.ecoenv.2025.118261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/16/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Previous studies have demonstrated the effects of prenatal pesticide exposure on birth outcomes. How to mitigate the harmful effects of pesticide exposure is of great practical significance. The micronutrient iodine is a cornerstone for the growth and development of newborns and throughout their lifespan. In this study, we investigated the association of urinary pesticide metabolite and urinary iodine concentrations with neonatal birth weight, birth length, and ponderal index in 781 mother-newborn pairs. The indirect role of urinary iodine in the associations between urinary pesticide metabolites and neonatal birth indicators was assessed by moderation analysis. The geometric mean concentration of total pesticide metabolites was 10.32 μg/L and the median urinary iodine concentration was 192.63 μg/L among the pregnant women. The mean birth length and birth weight of the newborns were 49.82 cm and 3186.94 g, respectively. Restricted cubic spline analysis revealed significant non-linear associations of 2,4-dichlorophenoxyacetic acid and Trans-dichlorovinyl-dimethylcyclopropane carboxylic acid with birth weight. The Bayesian kernel-machine regression analysis did not show a significant overall effect of mixed pesticide exposure on neonatal birth outcomes, suggesting that the effects of individual metabolites may be more critical than overall pesticide exposure. The moderation analysis results showed that the impact of pesticide metabolites on the ponderal index varied from a significant negative to a non-significant or significant positive correlation as urinary iodine concentrations increased. The results demonstrated that ensuring adequate iodine levels may help mitigate the adverse effects of pesticide exposure on birth outcomes.
Collapse
Affiliation(s)
- Qinxin Huang
- School of Public Health, Southern Medical University, Guangzhou 510515, China; Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Conghui Xu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Fenfang Deng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Jia He
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Juntao Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Pengzhe Qin
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Lei Tan
- School of Public Health, Southern Medical University, Guangzhou 510515, China; Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| |
Collapse
|
2
|
Deng F, He J, Dai Y, Peng R, Pan X, Yuan J, Tan L. Biomonitoring urinary pesticide metabolites in preschool children by supported liquid extraction and ultra-high performance liquid chromatography-tandem mass spectrometry and their association with oxidative stress. J Chromatogr A 2024; 1725:464944. [PMID: 38703459 DOI: 10.1016/j.chroma.2024.464944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Investigating pesticide exposure and oxidative stress in preschool children is essential for elucidating the determinants of environmental health in early life, with human biomonitoring of urinary pesticide metabolites serving as a critical strategy for achieving this objective. This study demonstrated biomonitoring of 2 phenoxyacetic acid herbicides, 2 organophosphorus pesticide metabolites, and 4 pyrethroid pesticide metabolites in 159 preschool children and evaluated their association with oxidative stress biomarker 8-hydroxydeoxyguanosine. An enzymatic deconjugation process was used to release urinary pesticide metabolites, which were then extracted and enriched by supported liquid extraction, and quantified by ultra-high performance liquid chromatography-tandem mass spectrometry with internal standard calibration. Dichloromethane: methyl tert‑butyl ether (1:1, v/v) was optimized as the solvent for supported liquid extraction, and we validated the method for linear range, recovery, matrix effect and method detection limit. Method detection limit of the pesticide metabolites ranged from 0.01 μg/L to 0.04 μg/L, with satisfactory recoveries ranging from 70.5 % to 95.5 %. 2,4,5-Trichlorophenoxyacetic acid was not detected, whereas the other seven pesticide metabolites were detected with frequencies ranging from 10.1 % to 100 %. The concentration of urinary pesticide metabolites did not significantly differ between boys and girls, with the median concentrations being 9.39 μg/L for boys and 4.90 μg/L for girls, respectively. Spearman correlation analysis indicated that significant positive correlations among urinary metabolites. Bayesian kernel machine regression revealed a significant positive association between urinary pesticide metabolites and 8-hydroxydeoxyguanosine. Para-nitrophenol was the pesticide metabolite that contributed significantly to the elevated level of oxidative stress.
Collapse
Affiliation(s)
- Fenfang Deng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Jia He
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Yingyi Dai
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongfei Peng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Jun Yuan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
3
|
Ye P, Bai S, Tang W, Feng H, Qiao X, Tu S, He H. Joint modeling approaches for censored predictors due to detection limits with applications to metabolites data. Stat Med 2024; 43:674-688. [PMID: 38043523 DOI: 10.1002/sim.9978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/05/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Measures of substance concentration in urine, serum or other biological matrices often have an assay limit of detection. When concentration levels fall below the limit, exact measures cannot be obtained, and thus are left censored. The problem becomes more challenging when the censored data come from heterogeneous populations consisting of exposed and non-exposed subjects. If the censored data come from non-exposed subjects, their measures are always zero and hence censored, forming a latent class governed by a distinct censoring mechanism compared with the exposed subjects. The exposed group's censored measurements are always greater than zero, but less than the detection limit. It is very often that the exposed and non-exposed subjects may have different disease traits or different relationships with outcomes of interest, so we need to disentangle the two different populations for valid inference. In this article, we aim to fill the methodological gaps in the literature by developing a novel joint modeling approach to not only address the censoring issue in predictors, but also untangle different relationships of exposed and non-exposed subjects with the outcome. Simulation studies are performed to assess the numerical performance of our proposed approach when the sample size is small to moderate. The joint modeling approach is also applied to examine associations between plasma metabolites and blood pressure in Bogalusa Heart Study, and identify new metabolites that are highly associated with blood pressure.
Collapse
Affiliation(s)
- Peng Ye
- School of Statistics, University of International Business and Economics, Beijing, China
| | - Shuo Bai
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Wan Tang
- Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Han Feng
- Tulane Research and Innovation for Arrhythmia Discovery- TRIAD Center, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Xinhua Qiao
- School of Statistics, University of International Business and Economics, Beijing, China
| | - Shengjia Tu
- Division of Biostatistics and Bioinformatics Herbert Wertheim School of Public Health and Human Longevity Science, La Jolla, California, USA
| | - Hua He
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
- Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
4
|
Bossou YM, Côté J, Morin É, Dumais É, Bianchi C, Bouchard M. Assessing the impact of coexposure on the measurement of biomarkers of exposure to the pyrethroid lambda-cyhalothrin in agricultural workers. Int J Hyg Environ Health 2023; 251:114194. [PMID: 37290330 DOI: 10.1016/j.ijheh.2023.114194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/26/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023]
Abstract
There are few published data on the impact of combined exposure to multiple pesticides (coexposure) on levels of biomarkers of exposure in workers, which may alter their toxicokinetics and thus the interpretation of biomonitoring data. This study aimed to assess the impact of coexposure to two pesticides with shared metabolism pathways on levels of biomarkers of exposure to pyrethroid pesticides in agricultural workers. The pyrethroid lambda-cyhalothrin (LCT) and the fungicide captan were used as sentinel pesticides, since they are widely sprayed concomitantly in agricultural crops. Eighty-seven (87) workers assigned to different tasks (application, weeding, picking) were recruited. The recruited workers provided two-consecutive 24-h urine collections following an episode of lambda-cyhalothrin application alone or in combination with captan or following tasks in the treated fields, as well as a control collection. Concentrations of lambda-cyhalothrin metabolites - 3-(2-chloro-3,3,3-trifluoroprop-1-en-1-yl)-2,2-dimethyl-cyclopropanecarboxylic acid (CFMP) and 3-phenoxybenzoic acid (3-PBA) - were measured in the samples. Potential determinants of exposure established in a previous study, including the task performed and personal factors were documented by questionnaire. Multivariate analyses showed that coexposure did not have a statistically significant effect on the observed urinary levels of 3-PBA (Exp(β) (95% confidence interval (95% CI)): 0.94 (0.78-1.13)) and CFMP (1.10 (0.93-1.30). The repeated biological measurements ("time variable") - defined as the within-subjects variable - was a significant predictor of observed biological levels of 3-PBA and CFMP; the within-subjects variance (Exp(β) (95% (95% CI)) for 3-PBA and CFMP was 1.11 (1.09-3.49) and 1.25 (1.20-1.31). Only the main occupational task was associated with urinary levels of 3-PBA and CFMP. Compared to the weeding or picking task, the pesticide application task was associated with higher urinary 3-PBA and CFMP concentrations. In sum, coexposure to agricultural pesticides in the strawberry fields did not increase pyrethroid biomarker concentrations at the exposure levels observed in the studied workers. The study also confirmed previous data suggesting that applicators were more exposed than workers assigned to field tasks such as weeding and picking.
Collapse
Affiliation(s)
- Yélian Marc Bossou
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, P.O. Box 6128, Main Station, Montreal, Quebec, H3C 3J7, Canada
| | - Jonathan Côté
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, P.O. Box 6128, Main Station, Montreal, Quebec, H3C 3J7, Canada
| | - Éloïse Morin
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, P.O. Box 6128, Main Station, Montreal, Quebec, H3C 3J7, Canada
| | - Étienne Dumais
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, P.O. Box 6128, Main Station, Montreal, Quebec, H3C 3J7, Canada
| | - Clara Bianchi
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, P.O. Box 6128, Main Station, Montreal, Quebec, H3C 3J7, Canada
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, P.O. Box 6128, Main Station, Montreal, Quebec, H3C 3J7, Canada.
| |
Collapse
|
5
|
Proctor SP, Nguyen VT, Hebert AA, Taylor KM, McClung HL, Heaton KJ, Ospina M, Calafat AM. Individual-level permethrin exposure biomarkers in U.S. army soldiers: comparison of two treatment formulations for military uniforms. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:132-139. [PMID: 35999257 PMCID: PMC10140735 DOI: 10.1038/s41370-022-00466-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Evidence suggests that wearing permethrin-treated military uniforms is not associated with current adverse health conditions. However, exposure through this route results in permethrin biomarker concentrations considerably higher than those in the U.S. POPULATION The U.S. Army is exploring different methods of uniform treatment that reduce exposure while maintaining effective protection from insect vector-borne diseases. OBJECTIVE To compare permethrin exposure when wearing two types of permethrin-treated military uniforms. METHODS Eight male soldiers participated in a 32-day crossover design study to compare permethrin exposure when wearing the current Army uniform (CurrU) and a uniform with a new applied fabric treatment (NewU). Each soldier wore the uniforms for designated 8 h/day time periods over 3 consecutive days separated by a 'wash-out' week of no exposure. Permethrin exposure was assessed from the urinary concentrations of 3-phenoxybenzoic acid (3-PBA) and of the sum of cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (∑DCCA). Estimated dose was determined based on ∑DCCA concentrations. RESULTS Permethrin exposure biomarkers were 21% (3-PBA, p = 0.025) and 35% (∑DCCA, p < 0.001) lower when wearing the NewU compared to the CurrU; the dose was 33% lower (p = 0.05). SIGNIFICANCE Findings suggest the new treatment reduces human permethrin exposure biomarkers resulting from wearing-treated military uniforms.
Collapse
Affiliation(s)
- Susan P Proctor
- Military Performance Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Natick, MA, USA.
- VA Boston Healthcare System, Research Service, 180 South Huntington Avenue, Boston, MA, USA.
| | - V T Nguyen
- Military Performance Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Natick, MA, USA
| | - Ashley A Hebert
- Military Performance Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Natick, MA, USA
| | - Kathryn M Taylor
- Military Performance Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Natick, MA, USA
| | - Holly L McClung
- Military Performance Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Natick, MA, USA
| | - Kristin J Heaton
- Military Performance Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Natick, MA, USA
| | - Maria Ospina
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, 4770 Buford Hwy, Atlanta, GA, USA
| | - Antonia M Calafat
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, 4770 Buford Hwy, Atlanta, GA, USA
| |
Collapse
|
6
|
Tarazona JV, Cattaneo I, Niemann L, Pedraza-Diaz S, González-Caballero MC, de Alba-Gonzalez M, Cañas A, Dominguez-Morueco N, Esteban-López M, Castaño A, Borges T, Katsonouri A, Makris KC, Ottenbros I, Mol H, De Decker A, Morrens B, Berman T, Barnett-Itzhaki Z, Probst-Hensch N, Fuhrimann S, Tratnik JS, Horvat M, Rambaud L, Riou M, Schoeters G, Govarts E, Kolossa-Gehring M, Weber T, Apel P, Namorado S, Santonen T. A Tiered Approach for Assessing Individual and Combined Risk of Pyrethroids Using Human Biomonitoring Data. TOXICS 2022; 10:451. [PMID: 36006130 PMCID: PMC9416723 DOI: 10.3390/toxics10080451] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022]
Abstract
Pyrethroids are a major insecticide class, suitable for biomonitoring in humans. Due to similarities in structure and metabolic pathways, urinary metabolites are common to various active substances. A tiered approach is proposed for risk assessment. Tier I was a conservative screening for overall pyrethroid exposure, based on phenoxybenzoic acid metabolites. Subsequently, probabilistic approaches and more specific metabolites were used for refining the risk estimates. Exposure was based on 95th percentiles from HBM4EU aligned studies (2014-2021) covering children in Belgium, Cyprus, France, Israel, Slovenia, and The Netherlands and adults in France, Germany, Israel, and Switzerland. In all children populations, the 95th percentiles for 3-phenoxybenzoic acid (3-PBA) exceeded the screening value. The probabilistic refinement quantified the risk level of the most exposed population (Belgium) at 2% or between 1-0.1% depending on the assumptions. In the substance specific assessments, the 95th percentiles of urinary concentrations in the aligned studies were well below the respective human biomonitoring guidance values (HBM-GVs). Both information sets were combined for refining the combined risk. Overall, the HBM data suggest a low health concern, at population level, related to pyrethroid exposure for the populations covered by the studies, even though a potential risk for highly exposed children cannot be completely excluded. The proposed tiered approach, including a screening step and several refinement options, seems to be a promising tool of scientific and regulatory value in future.
Collapse
Affiliation(s)
- Jose V. Tarazona
- European Food Safety Authority (EFSA), 43126 Parma, Italy
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Irene Cattaneo
- European Food Safety Authority (EFSA), 43126 Parma, Italy
| | - Lars Niemann
- Department of Safety of Pesticides, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Susana Pedraza-Diaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | | | | | - Ana Cañas
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | | | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Teresa Borges
- General-Directorate of Health, Ministry of Health, 1049-005 Lisbon, Portugal
| | | | - Konstantinos C. Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Ilse Ottenbros
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 Bilthoven, The Netherlands
| | - Hans Mol
- Wageningen Food Safety Research (WFSR), 6700 Wageningen, The Netherlands
| | | | - Bert Morrens
- Department of Sociology, University of Antwerp, 2020 Antwerpen, Belgium
| | | | - Zohar Barnett-Itzhaki
- Ruppin Research Group in Environmental and Social Sustainability, Ruppin Academic Center, Emek Hefer 4025000, Israel
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Samuel Fuhrimann
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Janja Snoj Tratnik
- Jozef Stefan Institute, Department of Environmental Sciences, 1000 Jubljana, Slovenia
| | - Milena Horvat
- Jozef Stefan Institute, Department of Environmental Sciences, 1000 Jubljana, Slovenia
| | - Loic Rambaud
- Department of Environmental and Occupational Health, Santé Publique France, 12 rue du Val d’Osne, Saint-Maurice, CEDEX, 94415 Paris, France
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé Publique France, 12 rue du Val d’Osne, Saint-Maurice, CEDEX, 94415 Paris, France
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), 2020 Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2020 Mol, Belgium
| | | | - Till Weber
- German Environment Agency (UBA), 14195 Berlin, Germany
| | - Petra Apel
- German Environment Agency (UBA), 14195 Berlin, Germany
| | - Sonia Namorado
- Department of Epidemiology, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Tiina Santonen
- Finnish Institute of Occupational Health, Työterveyslaitos, P.O. Box 40, 00032 Helsinki, Finland
| |
Collapse
|
7
|
Bossou YM, Côté J, Mahrouche L, Mantha M, El Majidi N, Furtos A, Bouchard M. Excretion time courses of lambda-cyhalothrin metabolites in the urine of strawberry farmworkers and effect of coexposure with captan. Arch Toxicol 2022; 96:2465-2486. [PMID: 35567602 DOI: 10.1007/s00204-022-03310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Abstract
There are limited literature data on the impact of coexposure on the toxicokinetics of pesticides in agricultural workers. Using the largely employed pyrethroid lambda-cyhalothrin (LCT) and fungicide captan as sentinel pesticides, we compared individual temporal profiles of biomarkers of exposure to LCT in strawberry field workers following an application episode of LCT alone or in coexposure with captan. Participants provided all urine voided over a 3-day period after an application of a pesticide formulation containing LCT alone (E1) or LCT mixed with captan (E2), and in some cases following re-entry in treated field (E3). Pyrethroid metabolites were measured in all urine samples, in particular 3-(2-chloro-3,3,3-trifluoroprop-1-en-1-yl)-2,2-dimethyl-cyclopropanecarboxylic acid (CFMP), 3-phenoxybenzoic acid (3-PBA), and 4-hydroxy-3-phenoxybenzoic acid (4-OH3PBA). There were no obvious differences in individual concentration-time profiles and cumulative excretion of metabolites (CFMP, 3-PBA, 4-OH3BPA) after exposure to LCT alone or in combination with captan. For most workers and exposure scenarios, CFMP was the main metabolite excreted, but time courses of CFMP in urine did not always follow that of 3-PBA and 4-OH3BPA. Given that the latter metabolites are common to other pyrethroids, this suggests that some workers were coexposed to pyrethroids other than LCT. For several workers and exposure scenarios E1 and E2, values of CFMP increased in the hours following spraying. However, for many pesticide operators, other peaks of CFMP were observed at later times, indicating that tasks other than spraying of LCT-containing formulations contributed to this increased exposure. These tasks were mainly handling/cleaning of equipment used for spraying (tractor or sprayer) or work/inspection in LCT-treated field according to questionnaire responses. Overall, this study provided novel excretion time course data for LCT metabolites valuable for interpretation of biomonitoring data in workers, but also showed that coexposure was not a major determinant of variability in exposure biomarker levels. Our analysis also pointed out the importance of measuring specific metabolites.
Collapse
Affiliation(s)
- Yélian Marc Bossou
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, Main Station, P.O. Box 6128, Montreal, QC, U436H3C 3J7, Canada
| | - Jonathan Côté
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, Main Station, P.O. Box 6128, Montreal, QC, U436H3C 3J7, Canada
| | - Louiza Mahrouche
- Department of Chemistry, University of Montreal, MIL Building, Main Station, P.O. Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Marc Mantha
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, Main Station, P.O. Box 6128, Montreal, QC, U436H3C 3J7, Canada
| | - Naïma El Majidi
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, Main Station, P.O. Box 6128, Montreal, QC, U436H3C 3J7, Canada
| | - Alexandra Furtos
- Department of Chemistry, University of Montreal, MIL Building, Main Station, P.O. Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, Main Station, P.O. Box 6128, Montreal, QC, U436H3C 3J7, Canada.
| |
Collapse
|
8
|
Richards SL, Driver J, Dyer MC, Mather TN, Funkhouser S, Mitchell C, Anne Balanay J, White A, Meshnick S. Assessing Durability and Safety of Permethrin Impregnated Uniforms Used by Outdoor Workers to Prevent Tick Bites after One Year of Use. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:615-622. [PMID: 34958094 PMCID: PMC9272190 DOI: 10.1093/jme/tjab216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 06/14/2023]
Abstract
Long lasting permethrin-impregnated (LLPI) clothing can retain permethrin and repel ticks for up to three months and without exceeding EPA-approved safe levels; however, little is known about longer term effects of wearing LLPI clothing. Here, permethrin content was measured in new forester pants soon after initial impregnation (Insect Shield) and again one year later after being repeatedly worn by foresters in the field. Urine samples were collected from foresters for biomonitoring of permethrin metabolites at multiple time intervals (pre-use, one-month, three-to-four-months, and one-year post-use). Lethality against nymphal Ixodes scapularis Say was measured in clothing after one year of wear by foresters. Furthermore, to test potential variability in permethrin impregnation of different batches of clothing, separate sets of clothing were anonymously sent to Insect Shield for permethrin treatment over a period of three months and permethrin was quantified. Results demonstrated 33% of participants' pants had no measurable permethrin after one year of wear and permethrin content and tick mortality varied significantly between clothing. Only two of the participants' clothing resulted in ≥ 30% tick mortality after one year of wear. Significant differences were observed in 3-PBA and trans-DCCA, but not cis-DCCA metabolites in participants over the four measured time points and were higher than general United States population levels. This study provides practical information on the safety (measured by urinary metabolites) over time of LLPI clothing. It also provides snapshots (pre-washing and after one year of wear) of effectiveness of LLPI clothing as personal protective equipment against ticks for outdoor workers.
Collapse
Affiliation(s)
- Stephanie L Richards
- Environmental Health Sciences Program, Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, 300 Curry Court, Greenville, NC 27858, USA
| | - Jeffrey Driver
- risksciences LLC, 5285 Gulf of Mexico Dr., Longboat Key, FL 34228, and University of South Florida, College of Public Health, 13201 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Megan C Dyer
- Center for Vector-Borne Disease, University of Rhode Island, 45 Upper College Rd, Kingston, RI 02881, USA
| | - Thomas N Mather
- Center for Vector-Borne Disease, University of Rhode Island, 45 Upper College Rd, Kingston, RI 02881, USA
| | - Sheana Funkhouser
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, 135 Dauer Dr, Chapel Hill, NC 27599, USA
| | - Cedar Mitchell
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, 135 Dauer Dr, Chapel Hill, NC 27599, USA
| | - Jo Anne Balanay
- Environmental Health Sciences Program, Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, 300 Curry Court, Greenville, NC 27858, USA
| | - Avian White
- Environmental Health Sciences Program, Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, 300 Curry Court, Greenville, NC 27858, USA
| | - Steven Meshnick
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, 135 Dauer Dr, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
He J, Chen X, Shi S, Tang F, Huo N, Gu S. Multivalent nanobody as capture antibody-based enzyme linked immunosorbent assay for detection of 3-phenoxybenzoic acid in urine. Anal Biochem 2021; 632:114390. [PMID: 34560055 DOI: 10.1016/j.ab.2021.114390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/31/2021] [Accepted: 09/20/2021] [Indexed: 11/19/2022]
Abstract
Nanobodies (Nbs) as capture antibodies in enzyme-linked immunosorbent assays (ELISAs) is greatly hampered by their poor performance after attaching onto polystyrene microplates. Reasons behind those phenomena remain unknown. One of possible explanation is that Nbs with a single domain might lose their accessibility of paratope when adsorbed on the plates. Increasing their binding sites might improve performance in capture Nbs-based ELISA. In this study, anti-3-phenoxybenzoic acid (3-PBA) Nbs was assembled to trivalent form (Nb3) in tandem with flexible linkers (G4S)3. Direct competitive ELISA on the basis of Nb3 and 3-PBA-horseradish peroxidase was developed for detection of 3-PBA in livestock urine. The ELISA had a half-maximum (IC50) inhibition concentration of 0.51 ng/mL, with a limit of detection of 0.02 ng/mL, which was more sensitive than that of the parental Nb with a IC50 of 2.39 ng/mL. The average recoveries of 3-PBA spiked in swine, sheep and dairy cow urine samples by the assay ranged from 89.52% to 114.25% and agreed well with those of liquid chromatography mass spectrometry (LC-MS). The above results indicated that multivalent Nbs could be treated as the capture antibody in ELISA for routine screening analysis of 3-PBA residues in urine.
Collapse
Affiliation(s)
- Jinxin He
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Xiaorong Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Shengrui Shi
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Fang Tang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Nairui Huo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Shaopeng Gu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China.
| |
Collapse
|
10
|
Buchholz BA, Ahn KC, Huang H, Gee SJ, Stewart BJ, Ognibene TJ, Hammock BD. Pharmacokinetics, Metabolite Measurement, and Biomarker Identification of Dermal Exposure to Permethrin Using Accelerator Mass Spectrometry. Toxicol Sci 2021; 183:49-59. [PMID: 34460930 PMCID: PMC8404990 DOI: 10.1093/toxsci/kfab082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Impregnating military uniforms and outdoor clothing with the insecticide permethrin is an approach to reduce exposure to insect borne diseases and to repel pests and disease vectors such as mosquitos and sandflies, but the practice exposes wearers to prolonged dermal exposure to the pesticide. Key metabolite(s) from a low dose dermal exposure of permethrin were identified using accelerator mass spectrometry. Metabolite standards were synthesized and a high performance liquide chromatography (HPLC) elution protocol to separate individual metabolites in urine was developed. Six human subjects were exposed dermally on the forearm to 25 mg of permethrin containing 1.0 µCi of 14C for 8 h. Blood, saliva and urine samples were taken for 7d. Absorption/elimination rates and metabolite concentrations varied by individual. Average absorption was 0.2% of the dose. Serum concentrations rose until 12-24 h postdermal application then rapidly declined reaching predose levels by 72 h. Maximum saliva excretion occurred 6 h postdosing. The maximum urinary excretion rate occurred during 12-24 h; average elimination half-life was 56 h. 3-Phenoxybenzyl alcohol glucuronide was the most abundant metabolite identified when analyzing elution fractions, but most of the radioactivity was in still more polar fractions suggesting extensive degradative metabolism and for which there were no standards. Analyses of archived urine samples with the ultra performance liquid chromatography-accelerator mass spectrometry-mass spectrometry (UPLC-AMS-MS) system isolated a distinct polar metabolite but it was much diminished from the previous analyses a decade earlier.
Collapse
Affiliation(s)
- Bruce A Buchholz
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National laboratory, Livermore, California 94550, USA
| | - Ki Chang Ahn
- Department of Entomology, University of California, Davis, California, USA
| | - Huazhang Huang
- Department of Entomology, University of California, Davis, California, USA
| | - Shirley J Gee
- Department of Entomology, University of California, Davis, California, USA
| | - Benjamin J Stewart
- Bioscience and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Ted J Ognibene
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National laboratory, Livermore, California 94550, USA
| | - Bruce D Hammock
- Department of Entomology, University of California, Davis, California, USA
| |
Collapse
|
11
|
Abstract
Human and animal welfare primarily depends on the availability of food and surrounding environment. Over a century and half, the quest to identify agents that can enhance food production and protection from vector borne diseases resulted in the identification and use of a variety of pesticides, of which the pyrethroid based ones emerged as the best choice. Pesticides while improved the quality of life, on the other hand caused enormous health risks. Because of their percolation into drinking water and food chain and usage in domestic settings, humans unintentionally get exposed to the pesticides on a daily basis. The health hazards of almost all known pesticides at a variety of doses and exposure times are reported. This review provides a comprehensive summation on the historical, epidemiological, chemical and biological (physiological, biochemical and molecular) aspects of pyrethroid based insecticides. An overview of the available knowledge suggests that the synthetic pyrethroids vary in their chemical and toxic nature and pose health hazards that range from simple nausea to cancers. Despite large number of reports, studies that focused on identifying the health hazards using doses that are equivalent or relevant to human exposure are lacking. It is high time such studies are conducted to provide concrete evidence on the hazards of consuming pesticide contaminated food. Policy decisions to decrease the residual levels of pesticides in agricultural products and also to encourage organic farming is suggested.
Collapse
Affiliation(s)
| | - Suresh Yenugu
- Department of Animal Biology, University of Hyderabad, Hyderabad, India
| |
Collapse
|
12
|
Maule AL, Heaton KJ, Cadarette B, Taylor KM, Guerriere KI, Haven CC, Scarpaci MM, Kenefick RW, Ospina M, Calafat AM, Proctor SP. Effect of Environmental Temperature and Humidity on Permethrin Biomarkers of Exposure in U.S. Soldiers Wearing Permethrin-Treated Uniforms. Am J Trop Med Hyg 2020; 102:1455-1462. [PMID: 32228790 DOI: 10.4269/ajtmh.19-0543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Environmental factors, including high temperature and humidity, can influence dermal absorption of chemicals. Soldiers can be dermally exposed to permethrin while wearing permethrin-treated uniforms. This study aimed at examining the effects of high temperature and a combined high temperature and humid environment on permethrin absorption compared with ambient conditions when wearing a permethrin-treated uniform. Twenty-seven male enlisted soldiers wore study-issued permethrin-treated army uniforms for 33 consecutive hours in three different environments: 1) simulated high temperature (35°C, 40% relative humidity [rh]) (n = 10), 2) simulated high temperature and humidity (30°C, 70% rh) (n = 10), and 3) ambient conditions (13°C, 60% rh) (n = 7). Spot urine samples, collected at 21 scheduled time points before, during, and after wearing the study uniforms, were analyzed for permethrin exposure biomarkers (3-phenoxybenzoic acid, cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid) and creatinine. Biomarker concentrations were 60-90% higher in the heat and combined heat/humidity groups (P < 0.001-0.022) than the ambient group. Also, the average daily permethrin dose, calculated 12 hours after removing the treated uniforms, was significantly higher in the heat (P = 0.01) and the heat/humidity (P = 0.03) groups than the ambient group. There were no significant differences in biomarker concentrations or computed average daily dose between the heat and the heat/humidity groups. Both hot and combined hot and humid environmental conditions significantly increased permethrin absorption in soldiers wearing permethrin-treated uniforms.
Collapse
Affiliation(s)
- Alexis L Maule
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland.,United States Army Research Institute of Environmental Medicine, Military Performance Division, Natick, Massashusetts
| | - Kristin J Heaton
- Boston University School of Public Health, Department of Environmental Health, Boston, Massachusetts.,United States Army Research Institute of Environmental Medicine, Military Performance Division, Natick, Massashusetts
| | - Bruce Cadarette
- United States Army Research Institute of Environmental Medicine, Thermal and Mountain Medicine Division, Natick, Massachusetts
| | - Kathryn M Taylor
- United States Army Research Institute of Environmental Medicine, Military Performance Division, Natick, Massashusetts
| | - Katelyn I Guerriere
- United States Army Research Institute of Environmental Medicine, Military Performance Division, Natick, Massashusetts
| | - Caitlin C Haven
- United States Army Research Institute of Environmental Medicine, Military Performance Division, Natick, Massashusetts
| | - Matthew M Scarpaci
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland.,United States Army Research Institute of Environmental Medicine, Military Performance Division, Natick, Massashusetts
| | - Robert W Kenefick
- United States Army Research Institute of Environmental Medicine, Thermal and Mountain Medicine Division, Natick, Massachusetts
| | - Maria Ospina
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia
| | - Antonia M Calafat
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia
| | - Susan P Proctor
- United States Army Research Institute of Environmental Medicine, Military Performance Division, Natick, Massashusetts.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland.,VA Boston Healthcare System, Research Service, Boston, Massachusetts
| |
Collapse
|
13
|
Unuofin JO. Garbage in garbage out: the contribution of our industrial advancement to wastewater degeneration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22319-22335. [PMID: 32347482 DOI: 10.1007/s11356-020-08944-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Natural water sources are habitually marred by insidious anthropogenic practices and municipal wastewater discharges that contain either of xenobiotic pollutants and their sometimes more toxic degradation products, or both. Although wastewater is considered as both a resource and a problem, as explained in this review, it is however daunting that, while the global village is still struggling to decipher the mode of proper handling, subsequent discharge and regulation of already established aromatic contaminants in wastewater, there emanates some more aggressive, stealth and sinister groups of compounds. It is quite ironic that majority of these compounds are the 'go through' consumables in our present society and have been suspected to pose several health risks to the aquatic ecosystem, eliciting unfavourable clinical manifestations in aquatic animals and humans, which has heightened the uncertainties conferred on freshwater use and consumption of some aquatic foods. This review therefore serves to give a brief account on the metamorphosis of approach in detection of aromatic pollutants and ultimately their implications along the trophic chains in the community.
Collapse
Affiliation(s)
- John O Unuofin
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa.
- Department of Environmental, Earth and Water Sciences, Tshwane University of Technology, Private bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
14
|
The Effect of Body Composition and Energy Expenditure on Permethrin Biomarker Concentrations Among US Army National Guard Members. J Occup Environ Med 2020; 62:210-216. [PMID: 31895734 DOI: 10.1097/jom.0000000000001801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To examine relationships between percent body fat (%BF) and total energy expenditure (TEE) on permethrin exposure among Army National Guard (ARNG) Soldiers wearing permethrin-treated uniforms. METHODS ARNG members (n = 47) participated in a 9-day study. Repeated body composition (height, weight, %BF) measurements and daily urine samples, analyzed for permethrin and N,N-diethyl-meta-toluamide (DEET) metabolites, were collected. TEE was determined via doubly labeled water protocol. Linear mixed and regression models were used for analyses. RESULTS Neither %BF nor TEE were significantly associated with permethrin or DEET biomarkers. However, a significant interaction effect (F = 10.76; P = 0.0027) between laundering history and %BF was observed; 10% higher %BF was significantly associated with 25% higher permethrin biomarker concentrations among those wearing uniforms washed less than or equal to 25 (compared with more than 25) times. CONCLUSIONS Uniform laundering history significantly affects the association between %BF and permethrin-treated uniform exposure.
Collapse
|