1
|
Shin MW, Kim SH. Hidden link between endocrine-disrupting chemicals and pediatric obesity. Clin Exp Pediatr 2025; 68:199-222. [PMID: 39608365 PMCID: PMC11884955 DOI: 10.3345/cep.2024.00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024] Open
Abstract
The increasing prevalence of pediatric obesity has emerged as a significant public health concern. Among various contributing factors, exposure to endocrine-disrupting chemicals (EDCs) has gained recognition for its potential role. EDCs, including bisphenols, phthalates, per- and polyfluoroalkyl substances, polycyclic aromatic hydrocarbons, and organochlorines, disrupt hormonal regulation and metabolic processes, contributing to alterations in fat storage, appetite regulation, and insulin sensitivity. This study offers a comprehensive review of the current research linking EDC exposure to pediatric obesity by integrating the findings from experimental and epidemiological studies. It also addresses the complexities of interpreting this evidence in the context of public health, highlighting the urgent need for further research.
Collapse
Affiliation(s)
- Min Won Shin
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Shin-Hye Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| |
Collapse
|
2
|
Jia X, Liu W, Ling X, Li J, Ji J, Wang B, Zhao M. Sex and obesity influence the relationship between perfluoroalkyl substances and lean body mass: NHANES 2011-2018. Heliyon 2024; 10:e35888. [PMID: 39319151 PMCID: PMC11419868 DOI: 10.1016/j.heliyon.2024.e35888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/27/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
Objective Polyfluoroalkyl substances (PFAS) are known endocrine disruptors, that have been the subject of limited research regarding their impact on human lean body mass. The aim of this study was to investigate the effects of PFAS exposure on lean body mass. Methods We performed a cross-sectional data analysis involving 1022 adolescents and 3274 adults from the National Health and Nutrition Examination Survey (NHANES) 2011-2018, whose lean body mass was measured by dual-energy X-ray absorptiometry. The lean mass index (LMI) was calculated as lean body mass dividing by the square of height. The association between PFAS and LMI was examined through a multivariate-adjusted weighted generalized linear model. Moreover, weighted quantile sum (WQS) regression models were employed to futher examine the relationship between the mixture of PFAS and LMI. Results Regression analyses revealed an inverse correlation between PFAS exposure and LMI after adjusting for potential covariates. Adults with higher serum PFAS concentrations manifested a reduction in whole LMI ( β = -0.193, 95 % confidence interval (CI): -0.325 to -0.06). Notably, this correlation was particularly significant in adult females and individuals with obesity, and it was observed across diverse anatomical regions, including lower limbs, right arm, trunk, and whole lean body mass. In adult females, the association between PFAS and whole LMI was statistically significant ( β = -0.294, 95 % CI: -0.495 to -0.094), and a similar trend was found in obese individuals ( β = -0.512, 95 % CI: -0.762 to -0.261). WQS regression analyses supported the results obtained from weighted linear regression analyses. Conclusions Our study suggests that exposure to PFAS, whether individually or in combination, is associated with decreased lean body mass in specific body areas, with sex and obesity serving as major influencing factors.
Collapse
Affiliation(s)
- Xue Jia
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Wenhui Liu
- Department of Informat and Data Anal Lab, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xiaomeng Ling
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Juan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jing Ji
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Baozhen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Min Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| |
Collapse
|
3
|
Kuiper JR, Liu SH, Lanphear BP, Calafat AM, Cecil KM, Xu Y, Yolton K, Kalkwarf HJ, Chen A, Braun JM, Buckley JP. Estimating effects of longitudinal and cumulative exposure to PFAS mixtures on early adolescent body composition. Am J Epidemiol 2024; 193:917-925. [PMID: 38400650 PMCID: PMC11466853 DOI: 10.1093/aje/kwae014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024] Open
Abstract
Few methods have been used to characterize repeatedly measured biomarkers of chemical mixtures. We applied latent profile analysis (LPA) to serum concentrations of 4 perfluoroalkyl and polyfluoroalkyl substances (PFAS) measured at 4 time points from gestation to age 12 years. We evaluated the relationships between profiles and z scores of height, body mass index, fat mass index, and lean body mass index at age 12 years (n = 218). We compared LPA findings with an alternative approach for cumulative PFAS mixtures using g-computation to estimate the effect of simultaneously increasing the area under the receiver operating characteristic curve (AUC) for all PFAS. We identified 2 profiles: a higher PFAS profile (35% of sample) and a lower PFAS profile (relative to each other), based on their average PFAS concentrations at all time points. The higher PFAS profile had generally lower z scores for all outcomes, with somewhat larger effects for males, though all 95% CIs crossed the null. For example, the higher PFAS profile was associated with a 0.50-unit lower (β = -0.50; 95% CI, -1.07 to 0.08) BMI z score among males but not among females (β = 0.04; 95% CI, -0.45 to 0.54). We observed similar patterns with AUCs. We found that a higher childhood PFAS profile and higher cumulative PFAS mixtures may be associated with altered growth in early adolescence. This article is part of a Special Collection on Environmental Epidemiology.
Collapse
Affiliation(s)
- Jordan R Kuiper
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20037, United States
| | - Shelley H Liu
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States
| | - Kim M Cecil
- Department of Radiology, College of Medicine, and Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Yingying Xu
- Department of Pediatrics, College of Medicine, and Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Kimberly Yolton
- Department of Pediatrics, College of Medicine, and Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45267, United States
- Department of Environmental and Public Health Sciences, College of Medicine, and Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Heidi J Kalkwarf
- Department of Pediatrics, College of Medicine, and Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Joseph M Braun
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02903, United States
| | - Jessie P Buckley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
4
|
Frangione B, Birk S, Benzouak T, Rodriguez-Villamizar LA, Karim F, Dugandzic R, Villeneuve PJ. Exposure to perfluoroalkyl and polyfluoroalkyl substances and pediatric obesity: a systematic review and meta-analysis. Int J Obes (Lond) 2024; 48:131-146. [PMID: 37907715 PMCID: PMC10824662 DOI: 10.1038/s41366-023-01401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are potentially obesogenic for children. We undertook a systematic review to synthesize this literature and explore sources of heterogeneity in previously published epidemiological studies. METHODS Studies that collected individual-level PFAS and anthropometric data from children up to 12 years of age were identified by searching six databases. We excluded studies that only evaluated obesity measures at the time of birth. A full-text review and quality assessment of the studies was performed using the Office of Health Assessment and Translation (OHAT) criteria. Forest plots were created to summarize measures of association and assess heterogeneity across studies by chemical type and exposure timing. Funnel plots were used to assess small-study effects. RESULTS We identified 24 studies, of which 19 used a cohort design. There were 13 studies included in the meta-analysis examining various chemicals and outcomes. Overall prenatal exposures to four different types of PFAS were not statistically associated with changes in body mass index (BMI) or waist circumference. In contrast, for three chemicals, postnatal exposures were inversely related to changes in BMI (i.e., per log10 increase in PFOS: BMI z-score of -0.16 (95% CI: -0.22, -0.10)). There was no substantial heterogeneity in the reported measures of association within prenatal and postnatal subgroups. We observed modest small-study effects, but correction for these effects using the Trim and Fill method did not change our summary estimate(s). CONCLUSION Our review found no evidence of a positive association between prenatal PFAS exposure and pediatric obesity, whereas an inverse association was found for postnatal exposure. These findings should be interpreted cautiously due to the small number of studies. Future research that can inform on the effects of exposure mixtures, the timing of the exposure, outcome measures, and the shape of the exposure-response curve is needed.
Collapse
Affiliation(s)
- Brianna Frangione
- Department of Neuroscience, Carleton University, K1S 5B6, Ottawa, Canada
| | - Sapriya Birk
- Department of Neuroscience, Carleton University, K1S 5B6, Ottawa, Canada
| | - Tarek Benzouak
- Faculty of Medicine, McGill University, H3A 0G4, Montreal, Canada
| | - Laura A Rodriguez-Villamizar
- Department of Neuroscience, Carleton University, K1S 5B6, Ottawa, Canada
- Faculty of Health, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia
| | - Fatima Karim
- Department of Neuroscience, Carleton University, K1S 5B6, Ottawa, Canada
| | | | - Paul J Villeneuve
- Department of Neuroscience, Carleton University, K1S 5B6, Ottawa, Canada.
- CHAIM Research Centre, Carleton University, K1S 5B6, Ottawa, Canada.
| |
Collapse
|
5
|
Kim CE, Binder AM, Corvalan C, Pereira A, Shepherd J, Calafat AM, Botelho JC, Hampton JM, Trentham-Dietz A, Michels KB. Time-specific impact of mono-benzyl phthalate (MBzP) and perfluorooctanoic acid (PFOA) on breast density of a Chilean adolescent Cohort. ENVIRONMENT INTERNATIONAL 2023; 181:108241. [PMID: 37857187 DOI: 10.1016/j.envint.2023.108241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
INTRODUCTION High mammographic density is among the strongest and most established predictors for breast cancer risk. Puberty, the period during which breasts undergo exponential mammary growth, is considered one of the critical stages of breast development for environmental exposures. Benzylbutyl phthalate (BBP) and perfluorooctanoic acid (PFOA) are pervasive endocrine disrupting chemicals that may increase hormone-sensitive cancers. Evaluating the potential impact of BBP and PFOA exposure on pubertal breast density is important to our understanding of early-life environmental influences on breast cancer etiology. OBJECTIVE To prospectively assess the effect of biomarker concentrations of monobenzyl phthalate (MBzP) and PFOA at specific pubertal window of susceptibility (WOS) on adolescent breast density. METHOD This study included 376 Chilean girls from the Growth and Obesity Cohort Study with data collection at four timepoints: Tanner breast stages 1 (B1) and 4 (B4), 1- year post- menarche (1YPM) and 2-years post-menarche (2YPM). Dual-energy X-ray absorptiometry was used to assess the absolute fibroglandular volume (FGV) and percent breast density (%FGV) at 2YPM. We used concentrations of PFOA in serum and MBzP in urine as an index of exposure to PFOA and BBP, respectively. Parametric G-formula was used to estimate the time-specific effects of MBzP and PFOA on breast density. The models included body fat percentage as a time-varying confounder and age, birthweight, age at menarche, and maternal education as fixed covariates. RESULTS A doubling of serum PFOA concentration at B4 resulted in a non-significant increase in absolute FGV (β:11.25, 95% confidence interval (CI): -0.28, 23.49)), while a doubling of PFOA concentration at 1YPM resulted in a decrease in % FGV (β:-4.61, 95% CI: -7.45, -1.78). We observed no associations between urine MBzP and breast density measures. CONCLUSION In this cohort of Latina girls, PFOA serum concentrations corresponded to a decrease in % FGV. No effect was observed between MBzP and breast density measures across pubertal WOS.
Collapse
Affiliation(s)
- Claire E Kim
- Department of Epidemiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Alexandra M Binder
- Department of Epidemiology, University of California Los Angeles, Los Angeles, CA, USA; Population Sciences in the Pacific Program, University of Hawaii Cancer, Honolulu, HI, USA
| | - Camila Corvalan
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Ana Pereira
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - John Shepherd
- Population Sciences in the Pacific Program, University of Hawaii Cancer, Honolulu, HI, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne C Botelho
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John M Hampton
- Department of Population Health Sciences and Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, USA
| | - Amy Trentham-Dietz
- Department of Population Health Sciences and Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, USA
| | - Karin B Michels
- Department of Epidemiology, University of California Los Angeles, Los Angeles, CA, USA; Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
6
|
Wang YF, Zhang XR, Zou YX. Serum perfluoroalkyl substances and growth and development in US adolescents: a nationally representative cross-sectional study. Eur J Pediatr 2023; 182:4673-4681. [PMID: 37561199 DOI: 10.1007/s00431-023-05136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), synthetic organic chemicals, have been discovered in the blood of both humans and animals throughout the world. This has raised widespread concerns about its toxicity, especially for growing children and adolescents. Most research on growth and development to date has concentrated on children at birth and during the first two years, while few studies have analyzed weight, height, and Body Mass Index (BMI) changes in children later in life. The present study aims to assess the association between serum PFAS levels and growth and development in adolescents. Through multiple linear regression, we explored the relationship between serum PFAS levels and weight, height, and BMI in adolescents (aged 12 to 19 years) participating in the 2015-2018 National Health and Nutrition Examination Survey (NHANES). After covariate adjustment, serum perfluorooctane sulfonic acid (PFOS) was associated with decreased weight-for-age z-score in females (tertile 2 of PFOS: β = - 0.22, 95% CI: -0.68, 0.23; tertile 3 of PFOS: β = - 0.78, 95% CI: -1.20, - 0.36; P for trend = 0.009), while serum perfluorononanoic acid (PFNA) was associated with decreased weight-for-age z-score in males (tertile 2 of PFNA: β = 0.09, 95% CI: -0.40, 0.58; tertile 3 of PFNA: β = - 0.44, 95% CI: -0.86, - 0.03; P for trend = 0.018).In addition, serum PFOS was associated with decreased BMI z-score in all participants (tertile 2 of PFOS: β = - 0.15, 95% CI: -0.46, 0.16; tertile 3 of PFOS: β = - 0.63, 95% CI: -1.06, - 0.20; P for trend = 0.013). CONCLUSION Our findings indicate a negative association between serum PFAS levels and weight, and BMI among adolescents, and we observed that the negative association was sex-specific in weight. WHAT IS KNOWN • Wide exposure to PFAS has led to concerns about its adverse effects, especially for children during their growth and development. • So far, much research has evaluated the effects of prenatal PFAS exposures on children, and the current results are mixed, with some research showing that there are sex differences. WHAT IS NEW • This study investigated the relationship between serum PFAS levels and height and weight in adolescents and is a good addition to current research. • Our study found that exposure to PFAS negatively affects adolescent growth and development and that this effect is sex-specific.
Collapse
Affiliation(s)
- Yi-Fan Wang
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
- Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Machang Compus, 225 Machang Road, Hexi District, Tianjin, 300074, China
| | - Xu-Ran Zhang
- Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Machang Compus, 225 Machang Road, Hexi District, Tianjin, 300074, China
| | - Ying-Xue Zou
- Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Machang Compus, 225 Machang Road, Hexi District, Tianjin, 300074, China.
| |
Collapse
|
7
|
Kinkade CW, Rivera-Núñez Z, Thurston SW, Kannan K, Miller RK, Brunner J, Wong E, Groth S, O'Connor TG, Barrett ES. Per- and polyfluoroalkyl substances, gestational weight gain, postpartum weight retention and body composition in the UPSIDE cohort. Environ Health 2023; 22:61. [PMID: 37658449 PMCID: PMC10474772 DOI: 10.1186/s12940-023-01009-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals found in drinking water and consumer products, resulting in ubiquitous human exposure. PFAS have been linked to endocrine disruption and altered weight gain across the lifespan. A limited and inconsistent body of research suggests PFAS may impact gestational weight gain (GWG) and postpartum body mass index (BMI), which are important predictors of overall infant and maternal health, respectively. METHODS In the Understanding Pregnancy Signals and Infant Development (UPSIDE/UPSIDE-MOMs) study (n = 243; Rochester, NY), we examined second trimester serum PFAS (PFOS: perfluorooctanesulfonic acid, PFOA: perfluorooctanoic acid, PFNA: perfluorononanoic acid, PFHxS: perfluorohexanesulfonic acid, PFDA: perfluorodecanoic acid) in relation to GWG (kg, and weekly rate of gain) and in the postpartum, weight retention (PPWR (kg) and total body fat percentage (measured by bioelectrical impedance)). We fit multivariable linear regression models examining these outcomes in relation to log-transformed PFAS in the whole cohort as well as stratified by maternal pre-pregnancy BMI (< 25 vs. = > 25 kg/m2), adjusting for demographics and lifestyle factors. We used weighted quantile sum regression to find the combined influence of the 5 PFAS on GWG, PPWR, and body fat percentage. RESULTS PFOA and PFHxS were inversely associated with total GWG (PFOA: ß = -1.54 kg, 95%CI: -2.79, -0.30; rate ß = -0.05 kg/week, 95%CI: -0.09, -0.01; PFHxS: ß = -1.59 kg, 95%CI: -3.39, 0.21; rate ß = -0.05 kg/week, 95%CI: -0.11, 0.01) and PPWR at 6 and 12 months (PFOA 6 months: ß = -2.39 kg, 95%CI: -4.17, -0.61; 12 months: ß = -4.02 kg, 95%CI: -6.58, -1.46; PFHxS 6 months: ß = -2.94 kg, 95%CI: -5.52, -0.35; 12 months: ß = -5.13 kg, 95%CI: -8.34, -1.93). PFOA was additionally associated with lower body fat percentage at 6 and 12 months (ß = -1.75, 95%CI: -3.17, -0.32; ß = -1.64, 95%CI: -3.43, 0.16, respectively) with stronger associations observed in participants with higher pre-pregnancy BMI. The PFAS mixture was inversely associated with weight retention at 12 months (ß = -2.030, 95%CI: -3.486, -0.573) amongst all participants. CONCLUSION PFAS, in particular PFOA and PFHxS, in pregnancy are associated with altered patterns of GWG and postpartum adiposity with potential implications for fetal development and long-term maternal cardiometabolic health.
Collapse
Affiliation(s)
- Carolyn W Kinkade
- Environmental and Occupational Sciences Institute, Rutgers University, Piscataway, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Sciences Institute, Rutgers University, Piscataway, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Sally W Thurston
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Kurunthachalam Kannan
- Department of Environmental Medicine, Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Richard K Miller
- Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jessica Brunner
- Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Psychiatry, University of Rochester, Rochester, NY, USA
| | - Eunyoung Wong
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Susan Groth
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Thomas G O'Connor
- Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Psychiatry, University of Rochester, Rochester, NY, USA
| | - Emily S Barrett
- Environmental and Occupational Sciences Institute, Rutgers University, Piscataway, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
- Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
8
|
Pinney SM, Fassler CS, Windham GC, Herrick RL, Xie C, Kushi LH, Biro FM. Exposure to Perfluoroalkyl Substances and Associations with Pubertal Onset and Serum Reproductive Hormones in a Longitudinal Study of Young Girls in Greater Cincinnati and the San Francisco Bay Area. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:97009. [PMID: 37751325 PMCID: PMC10521915 DOI: 10.1289/ehp11811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS), endocrine disrupting chemicals with worldwide exposure, cause changes in mammary gland development in rodents. A few human studies report delay in pubertal events with increasing perfluorooctanoic acid (PFOA) exposure, but to our knowledge none have examined reproductive hormone levels at thelarche. METHODS In a cohort of Greater Cincinnati (GC) and San Francisco Bay Area (SFBA) girls recruited at 6-8 years of age, clinical examinations were conducted annually or semiannually with sequential Tanner staging. PFAS concentrations were measured in the first serum sample of 704 girls. In 304 GC girls, estradiol (E 2 ), estrone (E 1 ), testosterone (T), and dihydroepiandrosterone sulfate (DHEAS) were measured in serum at four time points around puberty. Relationships between PFAS and age at thelarche, pubarche, and menarche were analyzed using survival and structural equation models. The association between PFAS and reproductive hormones was assessed using linear regression models. RESULTS Median PFOA serum concentrations in GC (N = 353 , 7.3 ng / mL ) and the SFBA (N = 351 , 5.8 ng / mL ) were higher than in the U.S. POPULATION In multivariable Cox proportional hazard models [adjusted for race, body mass index (BMI)], increasing serum log-transformed PFOA was associated with a delay in pubarche [hazard ratio ( HR ) = 0.83 ; 95% CI: 0.70, 0.99] and menarche (HR = 0.04 ; 95% CI: 0.01, 0.25). Structural equation models indicated a triangular relationship between PFOA, BMI percentile, and the age at the pubertal milestone. Increased PFOA had a statistically significant direct effect of delay on all three milestones, as did BMI. Perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDeA), and 2-(N -methyl-perfluorooctane sulfonamido) acetic acid (Me-PFOSA-AcOH) also were associated with later thelarche, and Me-PFOSA-AcOH also with later pubarche. PFOA was inversely associated with DHEAS (p < 0.01 ), E 1 (p = 0.04 ), and T (p = 0.03 ) concentrations at 6 months prior to puberty. CONCLUSIONS PFAS may delay pubertal onset through the intervening effects on BMI and reproductive hormones. The decreases in DHEAS and E 1 associated with PFOA represent biological biomarkers of effect consistent with the delay in onset of puberty. https://doi.org/10.1289/EHP11811.
Collapse
Affiliation(s)
- Susan M. Pinney
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Cecily S. Fassler
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Gayle C. Windham
- California Department of Public Health, Richmond, California, USA
| | - Robert L. Herrick
- Health Division, Sutter County Human Services, Yuba City, California, USA
| | - Changchun Xie
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Frank M. Biro
- Division of Adolescent Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Frigerio G, Ferrari CM, Fustinoni S. Prenatal and childhood exposure to per-/polyfluoroalkyl substances (PFASs) and its associations with childhood overweight and/or obesity: a systematic review with meta-analyses. Environ Health 2023; 22:56. [PMID: 37580798 PMCID: PMC10424367 DOI: 10.1186/s12940-023-01006-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 07/23/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Per-/polyfluoroalkyl substances (PFASs) are persistent organic pollutants and suspected endocrine disruptors. OBJECTIVE The aim of this work was to conduct a systematic review with meta-analysis to summarise the associations between prenatal or childhood exposure to PFASs and childhood overweight/obesity. METHODS The search was performed on the bibliographic databases PubMed and Embase with text strings containing terms related to prenatal, breastfeeding, childhood, overweight, obesity, and PFASs. Only papers describing a biomonitoring study in pregnant women or in children up to 18 years that assessed body mass index (BMI), waist circumference (WC), or fat mass in children were included. When the estimates of the association between a PFAS and an outcome were reported from at least 3 studies, a meta-analysis was conducted; moreover, to correctly compare the studies, we developed a method to convert the different effect estimates and made them comparable each other. Meta-analyses were performed also stratifying by sex and age, and sensitivity analyses were also performed. RESULTS In total, 484 and 779 articles were retrieved from PubMed and Embase, respectively, resulting in a total of 826 articles after merging duplicates. The papers included in this systematic review were 49: 26 evaluating prenatal exposure to PFASs, 17 childhood exposure, and 6 both. Considering a qualitative evaluation, results were conflicting, with positive, negative, and null associations. 30 papers were included in meta-analyses (19 prenatal, 7 children, and 4 both). Positive associations were evidenced between prenatal PFNA and BMI, between PFOA and BMI in children who were more than 3 years, and between prenatal PFNA and WC. Negative associations were found between prenatal PFOS and BMI in children who were 3 or less years, and between PFHxS and risk of overweight. Relatively more consistent negative associations were evidenced between childhood exposure to three PFASs (PFOA, PFOS, and PFNA) and BMI, in particular PFOS in boys. However, heterogeneity among studies was high. CONCLUSION Even though heterogeneous across studies, the pooled evidence suggests possible associations, mostly positive, between prenatal exposure to some PFASs and childhood BMI/WC; and relatively stronger evidence for negative associations between childhood exposure to PFASs and childhood BMI.
Collapse
Affiliation(s)
- Gianfranco Frigerio
- Environmental Cheminformatics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval | House of Biomedicine II, 6 Avenue du Swing, L-4367, Belvaux, Luxembourg.
- Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy.
- Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Chiara Matilde Ferrari
- Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
- Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
10
|
Rickard BP, Rizvi I, Fenton SE. Per- and poly-fluoroalkyl substances (PFAS) and female reproductive outcomes: PFAS elimination, endocrine-mediated effects, and disease. Toxicology 2022; 465:153031. [PMID: 34774661 PMCID: PMC8743032 DOI: 10.1016/j.tox.2021.153031] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/29/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are widespread environmental contaminants frequently detected in drinking water supplies worldwide that have been linked to a variety of adverse reproductive health outcomes in women. Compared to men, reproductive health effects in women are generally understudied while global trends in female reproduction rates are declining. Many factors may contribute to the observed decline in female reproduction, one of which is environmental contaminant exposure. PFAS have been used in home, food storage, personal care and industrial products for decades. Despite the phase-out of some legacy PFAS due to their environmental persistence and adverse health effects, alternative, short-chain and legacy PFAS mixtures will continue to pollute water and air and adversely influence women's health. Studies have shown that both long- and short-chain PFAS disrupt normal reproductive function in women through altering hormone secretion, menstrual cyclicity, and fertility. Here, we summarize the role of a variety of PFAS and PFAS mixtures in female reproductive tract dysfunction and disease. Since these chemicals may affect reproductive tissues directly or indirectly through endocrine disruption, the role of PFAS in breast, thyroid, and hypothalamic-pituitary-gonadal axis function are also discussed as the interplay between these tissues may be critical in understanding the long-term reproductive health effects of PFAS in women. A major research gap is the need for mechanism of action data - the targets for PFAS in the female reproductive and endocrine systems are not evident, but the effects are many. Given the global decline in female fecundity and the ability of PFAS to negatively impact female reproductive health, further studies are needed to examine effects on endocrine target tissues involved in the onset of reproductive disorders of women.
Collapse
Affiliation(s)
- Brittany P Rickard
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, North Carolina State University, Raleigh, NC 27599, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, North Carolina State University, Raleigh, NC 27599, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Suzanne E Fenton
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 111 TW Alexander Dr., Rm E121A, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
11
|
Canova C, Di Nisio A, Barbieri G, Russo F, Fletcher T, Batzella E, Dalla Zuanna T, Pitter G. PFAS Concentrations and Cardiometabolic Traits in Highly Exposed Children and Adolescents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182412881. [PMID: 34948492 PMCID: PMC8701234 DOI: 10.3390/ijerph182412881] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
Background: Residents of a large area of north-eastern Italy were exposed for decades to high concentrations of perfluoroalkyl and polyfluoroalkyl substances (PFAS) via drinking water. Despite the large amount of evidence in adults of a positive association between serum PFAS and metabolic outcomes, studies focusing on children and adolescents are limited. We evaluated the associations between serum PFAS concentrations that were quantifiable in at least 40% of samples and lipid profile, blood pressure (BP) and body mass index (BMI) in highly exposed adolescents and children. Methods: A cross-sectional analysis was conducted in 6669 adolescents (14–19 years) and 2693 children (8–11 years) enrolled in the health surveillance program of the Veneto Region. Non-fasting blood samples were obtained and analyzed for perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorohexanesulfonic acid (PFHxS), perfluorononanoic acid (PFNA), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and triglycerides. Low-density lipoprotein cholesterol (LDL-C) was calculated. Systolic and diastolic BP were measured, and BMI z-score accounting for age and sex was estimated. The associations between ln-transformed PFAS (and categorized into quartiles) and continuous outcomes were assessed using generalized additive models. The weighted quantile sum regression approach was used to assess PFAS-mixture effects for each outcome. Analyses were stratified by gender and adjusted for potential confounders. Results: Among adolescents, significant associations were detected between all investigated PFAS and TC, LDL-C, and to a lesser extent HDL-C. Among children, PFOS and PFNA had significant associations with TC, LDL-C and HDL-C, while PFOA and PFHxS had significant associations with HDL-C only. Higher serum concentrations of PFAS, particularly PFOS, were associated with lower BMI z-score. No statistically significant associations were observed between PFAS concentrations and BP. These results were confirmed by the multi-pollutant analysis. Conclusions: Our study supports a consistent association between PFAS concentration and serum lipids, stronger for PFOS and PFNA and with a greater magnitude among children compared to adolescents, and a negative association of PFAS with BMI.
Collapse
Affiliation(s)
- Cristina Canova
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, 35131 Padova, Italy; (G.B.); (E.B.); (T.D.Z.)
- Correspondence:
| | - Andrea Di Nisio
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, 35131 Padova, Italy;
| | - Giulia Barbieri
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, 35131 Padova, Italy; (G.B.); (E.B.); (T.D.Z.)
- Eurac Research, Institute for Biomedicine, 39100 Bolzano, Italy
| | - Francesca Russo
- Directorate of Prevention, Food Safety, and Veterinary Public Health-Veneto Region, 30123 Venice, Italy;
| | - Tony Fletcher
- Public Health, Environments and Society Department, London School of Hygiene and Tropical Medicine, London WC1H 9SH, UK;
| | - Erich Batzella
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, 35131 Padova, Italy; (G.B.); (E.B.); (T.D.Z.)
| | - Teresa Dalla Zuanna
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, 35131 Padova, Italy; (G.B.); (E.B.); (T.D.Z.)
| | - Gisella Pitter
- Screening and Health Impact Assessment Unit, Azienda Zero-Veneto Region, 35131 Padua, Italy;
| |
Collapse
|
12
|
Thomsen ML, Henriksen LS, Tinggaard J, Nielsen F, Jensen TK, Main KM. Associations between exposure to perfluoroalkyl substances and body fat evaluated by DXA and MRI in 109 adolescent boys. Environ Health 2021; 20:73. [PMID: 34187491 PMCID: PMC8244201 DOI: 10.1186/s12940-021-00758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 06/14/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Exposure to perfluoroalkyl substances (PFASs) has been associated with changes in body mass index and adiposity, but evidence is inconsistent as study design, population age, follow-up periods and exposure levels vary between studies. We investigated associations between PFAS exposure and body fat in a cross-sectional study of healthy boys. METHODS In 109 boys (10-14 years old), magnetic resonance imaging and dual-energy X-ray absorptiometry were performed to evaluate abdominal, visceral fat, total body, android, gynoid, android/gynoid ratio, and total fat percentage standard deviation score. Serum was analysed for perfluorooctanoic acid, perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid, perfluorononanoic acid, and perfluorodecanoic acid using liquid chromatography and triple quadrupole mass spectrometry. Data were analysed by multivariate linear regression. RESULTS Serum concentrations of PFASs were low. Generally, no clear associations between PFAS exposure and body fat measures were found; however, PFOS was negatively associated with abdominal fat (β = -0.18, P = 0.046), android fat (β = -0.34, P = 0.022), android/gynoid ratio (β = -0.21, P = 0.004), as well as total body fat (β = -0.21, P = 0.079) when adjusting for Tanner stage. CONCLUSIONS Overall, we found no consistent associations between PFAS exposure and body fat. This could be due to our cross-sectional study design. Furthermore, we assessed PFAS exposure in adolescence and not in utero, which is considered a more vulnerable time window of exposure.
Collapse
Affiliation(s)
- Mathilde Lolk Thomsen
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Louise Scheutz Henriksen
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jeanette Tinggaard
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Nielsen
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Tina Kold Jensen
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Katharina M. Main
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Romano ME, Gallagher LG, Eliot MN, Calafat AM, Chen A, Yolton K, Lanphear B, Braun JM. Per- and polyfluoroalkyl substance mixtures and gestational weight gain among mothers in the Health Outcomes and Measures of the Environment study. Int J Hyg Environ Health 2021; 231:113660. [PMID: 33181449 PMCID: PMC7799649 DOI: 10.1016/j.ijheh.2020.113660] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are environmentally persistent chemicals commonly used in the production of household and consumer goods. While exposure to PFAS has been associated with greater adiposity in children and adults, less is known about associations with gestational weight gain (GWG). METHODS We quantified using mass spectrometry perfluorooctanoate (PFOA), perfluorooctanesulfonate (PFOS), perfluorohexanesulfanoate (PFHxS) and perfluorononanoate (PFNA) in maternal serum from 18 ± 5 weeks' gestation (mean ± standard deviation (std)) in a prospective pregnancy and birth cohort (2003-2006, Cincinnati, Ohio) (n = 277). After abstracting weight data from medical records, we calculated GWG from 16 ± 2 weeks' gestation (mean ± std) to the measured weight at the last visit or at delivery, rate of weight gain in the 2nd and 3rd trimesters (GWR), and total weight gain z-scores standardized for gestational age at delivery and pre-pregnancy BMI. We investigated covariate-adjusted associations between individual PFAS using multivariable linear regression; we assessed potential effect measure modification (EMM) by overweight/obese status (pre-pregnancy BMI<25 kg/m2 v. ≥25 kg/m2). Using weighted quantile sum regression, we assessed the combined influence of these four PFAS on GWG and GWR. RESULTS Each doubling in serum concentrations of PFOA, PFOS, and PFNA was associated with a small increase in GWG (range 0.5-0.8 lbs) and GWR (range 0.03-0.05 lbs/week) among all women. The association of PFNA with GWG was stronger among women with BMI≥25 kg/m2 (β = 2.6 lbs; 95% CI:-0.8, 6.0) than those with BMI<25 kg/m2 (β = -1.0 lbs; 95% CI:-3.8, 1.8; p-EMM = 0.10). We observed associations close to the null between PFAS and z-scores and between the PFAS exposure index (a combined summary measure) and the outcomes. CONCLUSION Although there were consistent small increases in gestational weight gain with increasing PFOA, PFOS, and PFNA serum concentrations in this cohort, the associations were imprecise. Additional investigation of the association of PFAS with GWG in other cohorts would be informative and could consider pre-pregnancy BMI as a potential modifier.
Collapse
Affiliation(s)
- Megan E Romano
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.
| | - Lisa G Gallagher
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Melissa N Eliot
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bruce Lanphear
- Child and Family Research Institute, BC Children's and Women's Hospital, Vancouver, BC, Canada; Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| |
Collapse
|
14
|
Scinicariello F, Buser MC, Abadin HG, Attanasio R. Perfluoroalkyl substances and anthropomorphic measures in children (ages 3-11 years), NHANES 2013-2014. ENVIRONMENTAL RESEARCH 2020; 186:109518. [PMID: 32315828 PMCID: PMC8132309 DOI: 10.1016/j.envres.2020.109518] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Perfluoroalkyl acids (PFAAs) are man-made compounds that are persistent in the environment and highly bioaccumulative in the body. Humans are exposed to a mixture of these substances, and the effects of these mixtures may be different than the effects noted for individual compounds. Prenatal exposure to PFAAs has been associated with decreased birth weight. The objective of the present study is to evaluate concurrent serum PFAA levels, as single compounds and as mixtures, in relation to anthropomorphic measures in children. METHODS Using multivariate linear regression, we evaluated the association between single or PFAA mixtures and with height-for-age (HAZ), weight-for-age (WAZ), and BMI (BMIZ) z-scores in children (ages 3-11 years) participants of the National Health and Nutrition Examination Survey (NHANES) 2013-2014. Analyses were also stratified by sex. The PFAA mixture was based on relative potency factors express in terms of PFOA equivalency (CmixRPFi) or as molar sum of the PFAA congeners (∑molPFAA). RESULTS There was a statistically significant association of PFHxS and PFOS with decreased HAZ in boys. The significantly decreased HAZ in boys was also found when the PFAAs were analyzed as mixtures: CmixRPFi (β = -0.33; 95%CI: 0.63, -0.04) or ΣmolPFAAs (β = -0.30; 95%CI: 0.56, -0.04). In boys, PFHxS was also associated with decreased WAZ and BMIZ. The only statistically significant association found in girls was between decreased HAZ and PFHxS. CONCLUSIONS We found sex differences in the association between concurrent serum PFAA levels and anthropomorphic measures in children 3-11 years old. PFAA levels, as single congeners or as mixture concentrations were associated with decreased height-for-age z-score in boys.
Collapse
Affiliation(s)
- Franco Scinicariello
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, 30341, USA.
| | - Melanie C Buser
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, 30341, USA
| | - Henry G Abadin
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, 30341, USA
| | | |
Collapse
|