1
|
Shin S, Kim Y, Choe Y, Kim SH, Cho J, Kim C, Kim KN. Exposure to polycyclic aromatic hydrocarbons, heavy metals, and per- and polyfluoroalkyl substances and their associations with serum lipid profiles in the general Korean adult population. Environ Health 2025; 24:30. [PMID: 40350418 PMCID: PMC12067673 DOI: 10.1186/s12940-025-01185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Previous studies on associations between polycyclic aromatic hydrocarbons (PAHs) and lipid profiles are limited. We investigated the associations between urinary PAH metabolites and serum lipid profiles using a representative sample of Korean adults. METHODS This study utilized data from the Korean National Environmental Health Survey (2018-2020) (n = 2,516). The associations of PAH metabolites, heavy metals, and per- and polyfluoroalkyl substances (PFASs), which are ubiquitous pollutants, with lipid indicators and dyslipidemia types were evaluated using linear and logistic regression models, respectively. We examined the associations between a mixture of PAH metabolites, heavy metals, and PFASs and lipid profiles using quantile g-computation analyses. RESULTS A doubling of 1-hydroxypyrene (1-OHP) concentrations was associated with higher total cholesterol (TC) [β = 2.50 mg/dL, 95% confidence interval (CI): 1.09, 3.91], low-density lipoprotein cholesterol (LDL-C) (β = 2.39 mg/dL, 95% CI: 1.14, 3.63), and non-high-density lipoprotein cholesterol (non-HDL-C) concentrations (β = 2.13 mg/dL, 95% CI: 0.77, 3.49). A doubling of 1-OHP concentrations was also linked to higher odds of high TC [odds ratio (OR) = 1.15, 95% CI: 1.02, 1.30]. Additionally, 2-naphthol concentrations were associated with higher odds of high TC (OR = 1.14, 95% CI: 1.00, 1.29) and high LDL-C (OR = 1.27, 95% CI: 1.06, 1.51). Lead concentrations were associated with higher levels of TC, LDL-C, non-HDL-C, and high-density lipoprotein cholesterol (HDL-C), as well as with higher odds of high TC, high LDL-C, and high non-HDL-C. Mercury concentrations were associated with higher levels of TC, LDL-C, and non-HDL-C, and with higher odds of high TC. Several PFASs, such as perfluorooctanoic acid, perfluorononanoic acid, and perfluorodecanoic acid, were also associated with lipid profiles. A mixture of PAH metabolites, heavy metals, and PFASs was associated with higher TC, LDL-C, non-HDL-C, and HDL-C concentrations. This mixture was also linked to higher odds of high TC and high LDL-C. CONCLUSION Concentrations of PAH metabolites, heavy metals, and PFASs were associated with unfavorable lipid profiles in the general adult population.
Collapse
Affiliation(s)
- Sanghee Shin
- Department of Preventive Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Youlim Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yunsoo Choe
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Su Hwan Kim
- Department of Information Statistics, Gyeongsang National University, Jinju, Republic of Korea
| | - Jaelim Cho
- Department of Preventive Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Human Complexity and Systems Science, Yonsei University, Incheon, Republic of Korea
| | - Changsoo Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Human Complexity and Systems Science, Yonsei University, Incheon, Republic of Korea
| | - Kyoung-Nam Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
2
|
Karthikeyan S, Pollock T, Walker M, Khoury C, St-Amand A. Analysis of chemical exposures in racial populations in Canada: An investigation based on the Canadian health measures survey. Int J Hyg Environ Health 2024; 260:114406. [PMID: 38852336 DOI: 10.1016/j.ijheh.2024.114406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/15/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Despite demonstrated disparities in environmental chemical exposures by racial identity, no Canadian study has systematically assessed the feasibility of using a nationally representative dataset to examine differences in chemical concentrations by race. We assessed the feasibility and constraints of analysing chemical exposures in racial populations, including visible minorities and populations of Indigenous identity, using biomonitoring data collected through the Canadian Health Measures Survey (CHMS). Our primary objectives were to assess the ability to 1) generate geometric means and percentiles of chemical concentrations for racial populations by age or sex, 2) statistically compare concentrations among racial populations, and 3) calculate time trends of concentrations by race. We conducted these analyses for several priority chemicals: lead, cadmium, benzene, bisphenol A (BPA), and di(2-ethylhexyl) phthalate (DEHP). Survey participants self-identified as one of the following: White, Black, East and Southeast Asian, South Asian, Middle Eastern, Latin American, First Nations, Metis, and Inuit. Analyses were conducted for individual and combined cycles of the CHMS. Using data from the latest CHMS cycle in which each chemical was measured, we observed that sample sizes were sufficient to report geometric mean concentrations for all races except Inuit. Due to privacy considerations associated with small sample sizes, the 5th and 95th percentile concentrations could not be consistently reported for all racial populations in this analysis. While we were able to statistically compare concentrations among racial populations, the analysis was constrained by the limited number of statistical degrees of freedom available in a single CHMS cycle. Both of these constraints were alleviated by combining multiple cycles of data. The analysis of time trends was less subject to privacy and statistical limitations; we were able to calculate time trends of chemical concentrations for all racial populations. Our findings provide an important baseline for follow-up investigations of descriptive and etiological analyses of environmental chemical exposures and race in the CHMS.
Collapse
Affiliation(s)
- Subramanian Karthikeyan
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| | - Tyler Pollock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Mike Walker
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Cheryl Khoury
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Annie St-Amand
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| |
Collapse
|
3
|
MacDonald AM, Gabos S, Braakman S, Cheperdak L, Lee B, Hrudey SE, Le XC, Li XF, Mandal R, Martin JW, Schopflocher D, Lyon ME, Cheung PY, Ackah F, Graydon JA, Reichert M, Lyon AW, Jarrell J, Benadé G, Charlton C, Huang D, Bennett MJ, Kinniburgh DW. Maternal and child biomonitoring strategies and levels of exposure in western Canada during the past seventeen years: The Alberta Biomonitoring Program: 2005-2021. Int J Hyg Environ Health 2022; 244:113990. [PMID: 35714548 DOI: 10.1016/j.ijheh.2022.113990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/13/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
The Alberta Biomonitoring Program (ABP) was created in 2005 with the initial goal of establishing baseline levels of exposure to environmental chemicals in specific populations in the province of Alberta, Canada, and was later expanded to include multiple phases. The first two phases focused on evaluating exposure in pregnant women (Phase One, 2005) and children (Phase Two, 2004-2006) by analyzing residual serum specimens. Phase Three (2013-2016) employed active recruitment techniques to evaluate environmental exposures using a revised list of chemicals in paired serum pools from pregnant women and umbilical cord blood. These three phases of the program monitored a total of 226 chemicals in 285 pooled serum samples representing 31,529 individuals. Phase Four (2017-2020) of the ABP has taken a more targeted approach, focusing on the impact of the federal legalization of cannabis on the exposure of pregnant women in Alberta to cannabis, as well as tobacco and alcohol using residual prenatal screening serum specimens. Chemicals monitored in the first three phases include herbicides, neutral pesticides, metals, metalloids, and micronutrients, methylmercury, organochlorine pesticides, organophosphate pesticides, parabens, phthalate metabolites, perfluoroalkyl substances (PFAS), phenols, phytoestrogens, polybrominated compounds, polychlorinated biphenyls (PCBs), dioxins and furans, polycyclic aromatic hydrocarbons (PAHs), and tobacco biomarkers. Phase Four monitored six biomarkers of tobacco, alcohol, and cannabis. All serum samples were pooled. Mean concentrations and 95% confidence intervals (CIs) were calculated for the chemicals detected in ≥25% of the sample pools. cross the first three phases, the data from the ABP has provided baseline exposure levels for the chemicals in pregnant women, children, and newborns across the province. Comparison within and among the phases has highlighted differences in exposure levels with age, geography, seasonality, sample type, and time. The strategies employed throughout the program phases have been demonstrated to provide effective models for population biomonitoring.
Collapse
Affiliation(s)
- Amy M MacDonald
- Alberta Centre for Toxicology, Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Stephan Gabos
- Alberta Centre for Toxicology, Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | - Bonita Lee
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Steve E Hrudey
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Rupasri Mandal
- The Metabolomics Innovation Centre, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Sciences, Stockholm University, Sweden
| | - Don Schopflocher
- Faculty of Nursing, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Martha E Lyon
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Po-Yin Cheung
- Division of Neonatal-Perinatal Care (NICU), Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Fred Ackah
- Alberta Government, Strategic Data & Analytic Branch, Edmonton, Alberta, Canada
| | | | - Megan Reichert
- Alberta Health, Health Protection Branch, Edmonton, Alberta, Canada
| | - Andrew W Lyon
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John Jarrell
- Department of Obstetrics & Gynaecology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gerhard Benadé
- Emergency, Public Health & Preventive Medicine, Alberta Health Services, Edmonton, Alberta, Canada
| | - Carmen Charlton
- Alberta Precision Laboratory - Public Health Laboratory, University of Alberta Hospitals, Edmonton, Alberta, Canada
| | - Dorothy Huang
- Alberta Centre for Toxicology, Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Melissa J Bennett
- Alberta Centre for Toxicology, Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Pollock T, Karthikeyan S, Walker M, Werry K, St-Amand A. Trends in environmental chemical concentrations in the Canadian population: Biomonitoring data from the Canadian Health Measures Survey 2007-2017. ENVIRONMENT INTERNATIONAL 2021; 155:106678. [PMID: 34118655 DOI: 10.1016/j.envint.2021.106678] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Ten years of nationally representative biomonitoring data collected between 2007 and 2017 are available from the Canadian Health Measures Survey (CHMS). These data establish baseline environmental chemical concentrations in the general population. Here we sought to evaluate temporal trends in environmental chemical exposures in the Canadian population by quantifying changes in biomarker concentrations measured in the first five two-year cycles of the CHMS. We identified 39 chemicals that were measured in blood or urine in at least three cycles and had detection rates over 50% in the Canadian population. We calculated geometric mean concentrations for each cycle using the survey weights provided. We then conducted analyses of variance to test for linear trends over all cycles. We also calculated the percent difference in geometric means between the first and most recent cycle measured. Of the 39 chemicals examined, we found statistically significant trends across cycles for 21 chemicals. Trends were decreasing for 19 chemicals from diverse chemical groups, including metals and trace elements, phenols and parabens, organophosphate pesticides, per- and polyfluoroalkyl substances, and plasticizers. Significant reductions in chemical concentrations included di-2-ethylhexyl phthalate (DEHP; 75% decrease), perfluorooctane sulfate (PFOS; 61% decrease), perfluorooctanoic acid (PFOA; 58% decrease), dimethylphosphate (DMP; 40% decrease), lead (33% decrease), and bisphenol A (BPA; 32% decrease). Trends were increasing for two pyrethroid pesticide metabolites, including a 110% increase between 2007 and 2017 for 3-phenoxybenzoic acid (3-PBA). No significant trends were observed for the remaining 18 chemicals that included arsenic, mercury, fluoride, acrylamide, volatile organic compounds, and polycyclic aromatic hydrocarbons. National biomonitoring data indicate that concentrations, and therefore exposures, have decreased for many priority chemicals in the Canadian population. Concentrations for other chemical groups have not changed or have increased, although average concentrations remain below thresholds of concern derived from human exposure guidance values. Continued collection of national biomonitoring data is necessary to monitor trends in exposures over time.
Collapse
Affiliation(s)
- Tyler Pollock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| | | | - Mike Walker
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Kate Werry
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Annie St-Amand
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Riddell JK, Malin AJ, McCague H, Flora DB, Till C. Urinary Fluoride Levels among Canadians with and without Community Water Fluoridation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6203. [PMID: 34201160 PMCID: PMC8226595 DOI: 10.3390/ijerph18126203] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 11/17/2022]
Abstract
Drinking water is a major source of dietary fluoride intake in communities with water fluoridation. We examined the association between urinary fluoride adjusted for specific gravity (UFSG) and tap water fluoride levels, by age and sex, among individuals living in Canada. Participants included 1629 individuals aged 3 to 79 years from Cycle 3 (2012-2013) of the Canadian Health Measures Survey. We used multiple linear regression to estimate unique associations of tap water fluoride levels, age, sex, ethnicity, body mass index (BMI), use of fluoride-containing dental products, smoking in the home, and tea consumption with UFSG. UFSG concentration was significantly higher among participants who received fluoridated drinking water (mean = 1.06 mg/L, standard deviation = 0.83) than among those who did not (M = 0.58 mg/L, SD = 0.47), p < 0.01. UFSG increased over adulthood (ages 19 to 79). Higher UFSG concentration was associated with being female, tea drinking, and smoking in the home. In conclusion, community water fluoridation is a major source of contemporary fluoride exposure for Canadians. Lifestyle factors including tea consumption, as well as demographic variables such as age and sex, also predict urinary fluoride level, and are therefore important factors when interpreting population-based fluoride biomonitoring data.
Collapse
Affiliation(s)
- Julia K. Riddell
- Department of Clinical Health Psychology, University of Manitoba, Winnipeg, MB N3E 3N4, Canada
| | - Ashley J. Malin
- Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA 90032, USA;
| | - Hugh McCague
- Institute for Social Research, York University, Toronto, ON M3J 1P3, Canada; (H.M.); (D.B.F.)
| | - David B. Flora
- Institute for Social Research, York University, Toronto, ON M3J 1P3, Canada; (H.M.); (D.B.F.)
- Faculty of Health, York University, Toronto, ON M3J 1P3, Canada;
| | - Christine Till
- Faculty of Health, York University, Toronto, ON M3J 1P3, Canada;
| |
Collapse
|
6
|
Ratelle M, Packull-McCormick S, Bouchard M, Majowicz S, Laird B. Human biomonitoring of metals in sub-Arctic Dene communities of the Northwest Territories, Canada. ENVIRONMENTAL RESEARCH 2020; 190:110008. [PMID: 32763278 DOI: 10.1016/j.envres.2020.110008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
A human biomonitoring project investigating environmental exposures to metals from hair, blood and urine samples was implemented in the Northwest Territories, Canada, between January 2016 and March 2018. This study reports the metal biomarker levels from nine Dene communities located in the Dehcho and Sahtú regions to identify contaminants of interest. Levels of metals in the urine (n = 198), blood (n = 276) and hair (n = 443) samples were generally similar to those seen in other biomonitoring studies in Canada, but lead levels in blood (GM = 16 μg/L; 95th percentile = 71 μg/L) and urine (GM = 0.59 μg/L, 0.69 μg/g of creatinine; 95th percentile = 4.2 μg/L, 4.0 μg/g of creatinine) were higher than those observed in the Canadian Health Measure Survey (CHMS, cycles 2 and 5). Hair mercury (but not blood mercury) appeared higher than observed in participants from the CHMS cycle 5. The vast majority of participants had biomarker levels below the biomonitoring guidance values established for mercury and lead. Based on a comparative analysis of biomarker statistics relative to a nationally-representative survey, metals and essential trace elements of particular interest for follow-up research include: lead, manganese, mercury, and selenium. This project provided baseline biomarker levels in participating regions, which is essential to track changes in the future, and identify the contaminants to prioritize for further investigation of exposure determinants.
Collapse
Affiliation(s)
- Mylene Ratelle
- School of Public Health and Health Systems, University of Waterloo, 200 University Avenue West, Waterloo, N2L 3G1, ON, Canada.
| | - Sara Packull-McCormick
- School of Public Health and Health Systems, University of Waterloo, 200 University Avenue West, Waterloo, N2L 3G1, ON, Canada.
| | - Michele Bouchard
- Department of Environmental and Occupational Health, School of Public Health, Chair in Toxicological Risk Assessment and Management, Université de Montréal, Roger-Gaudry Building, Room U424, P.O. Box 6128, Main Station, Montreal, H3T 1J4, Canada.
| | - Shannon Majowicz
- School of Public Health and Health Systems, University of Waterloo, 200 University Avenue West, Waterloo, N2L 3G1, ON, Canada.
| | - Brian Laird
- School of Public Health and Health Systems, University of Waterloo, 200 University Avenue West, Waterloo, N2L 3G1, ON, Canada.
| |
Collapse
|
7
|
Bossou YM, Côté J, Mantha M, Haddad S, Achard S, Bouchard M. Impact of pesticide coexposure: an experimental study with binary mixtures of lambda-cyhalothrin (LCT) and captan and its impact on the toxicokinetics of LCT biomarkers of exposure. Arch Toxicol 2020; 94:3045-3058. [PMID: 32577784 DOI: 10.1007/s00204-020-02810-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/15/2020] [Indexed: 11/29/2022]
Abstract
This study aimed at gaining more insights into the impact of pesticide coexposure on the toxicokinetics of biomarkers of exposure. This was done by conducting an in vivo experimental case-study with binary mixtures of lambda-cyhalothrin (LCT) and captan and by assessing its impact on the kinetic profiles of LCT biomarkers of exposure. Groups of male Sprague-Dawley rats were exposed orally by gavage to LCT alone (2.5 or 12.5 mg/kg bw) or to a binary mixture of LCT and captan (2.5/2.5 or 2.5/12.5 or 12.5/12.5 mg/kg bw). In order to establish the temporal profiles of the main metabolites of LCT, serial blood samples were taken, and excreta (urine and feces) were collected at predetermined intervals up to 48 h post-dosing. Major LCT metabolites were quantified in these matrices: 3-(2-chloro-3,3,3-trifluoroprop-1-enyl)-2,2-dimethyl-cyclopropane carboxylic (CFMP), 3-phenoxybenzoic acid (3-PBA), 4-hydroxy-3-phenoxybenzoic acid (4-OH3PBA). There was no clear effect of coexposure at the low LCT dose on the kinetics of CFMP and 3-PBA metabolites, based on the combined assessment of temporal profiles of these metabolites in plasma, urine and feces; however, plasma levels of 3-PBA were diminished in the coexposed high-dose groups. A significant effect of coexposure on the urinary excretion of 4-OH3PBA was also observed while fecal excretion was not affected. The temporal profiles of metabolites in plasma and in excreta were further influenced by the LCT dose. In addition, the study revealed kinetic differences between metabolites with a faster elimination of 3-PBA and 4-OH3BPA compared to CFMP. These results suggest that the pyrethroid metabolites CFMP and 3-PBA, mostly measured in biomonitoring studies, remain useful as biomarkers of exposure in mixtures, when pesticide exposure levels are below the reference values. However, the trend of coexposure effect observed in the benzyl metabolite pathway (in particular 4-OH3BPA) prompts further investigation.
Collapse
Affiliation(s)
- Yélian Marc Bossou
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry BuildingMain Station, P.O. Box 6128, Montreal, QC, U424H3C 3J7, Canada
| | - Jonathan Côté
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry BuildingMain Station, P.O. Box 6128, Montreal, QC, U424H3C 3J7, Canada
| | - Marc Mantha
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry BuildingMain Station, P.O. Box 6128, Montreal, QC, U424H3C 3J7, Canada
| | - Sami Haddad
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry BuildingMain Station, P.O. Box 6128, Montreal, QC, U424H3C 3J7, Canada
| | - Sophie Achard
- Faculty of Health - Pharmacy, HERA Team (Health Environment Risk Assessment), INSERM UMR1153-CRESS (Research Center in Epidemiology and StatisticS), University of Paris, 4 Avenue de l Observatoire, 75006, Paris, France
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry BuildingMain Station, P.O. Box 6128, Montreal, QC, U424H3C 3J7, Canada.
| |
Collapse
|