1
|
Wang X, Zhou G, Lin J, Zhang Z, Qin T, Guo L, Wang H, Huang Z, Ding G. Effects of 4.9 GHz Radiofrequency Field Exposure on Brain Metabolomic and Proteomic Characterization in Mice. BIOLOGY 2024; 13:806. [PMID: 39452115 PMCID: PMC11505847 DOI: 10.3390/biology13100806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Electromagnetic exposure has become increasingly widespread, and its biological effects have received extensive attention. The purpose of this study was to explore changes in the metabolism profile of the brain and serum and to identify differentially expressed proteins in the brain after exposure to the 4.9 GHz radiofrequency (RF) field. C57BL/6 mice were randomly divided into a Sham group and an RF group, which were sham-exposed and continuously exposed to a 4.9 RF field for 35 d, 1 h/d, at an average power density (PD) of 50 W/m2. After exposure, untargeted metabolomics and Tandem Mass Tags (TMT) quantitative proteomics were performed. We found 104 and 153 up- and down-regulated differentially expressed metabolites (DEMs) in the RF_Brain group and RF_Serum group, and the DEMs were significantly enriched in glycerophospholipid metabolism. Moreover, 10 up-regulated and 51 down-regulated differentially expressed proteins (DEPs) were discovered in the RF group. Functional correlation analysis showed that most DEMs and DEPs showed a significant correlation. These results suggested that 4.9 GHz exposure induced disturbance of metabolism in the brain and serum, and caused deregulation of proteins in the brain.
Collapse
Affiliation(s)
- Xing Wang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an 710032, China; (X.W.); (G.Z.); (J.L.); (Z.Z.); (T.Q.); (L.G.); (H.W.); (Z.H.)
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an 710032, China
| | - Guiqiang Zhou
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an 710032, China; (X.W.); (G.Z.); (J.L.); (Z.Z.); (T.Q.); (L.G.); (H.W.); (Z.H.)
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an 710032, China
| | - Jiajin Lin
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an 710032, China; (X.W.); (G.Z.); (J.L.); (Z.Z.); (T.Q.); (L.G.); (H.W.); (Z.H.)
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an 710032, China
| | - Zhaowen Zhang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an 710032, China; (X.W.); (G.Z.); (J.L.); (Z.Z.); (T.Q.); (L.G.); (H.W.); (Z.H.)
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an 710032, China
| | - Tongzhou Qin
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an 710032, China; (X.W.); (G.Z.); (J.L.); (Z.Z.); (T.Q.); (L.G.); (H.W.); (Z.H.)
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an 710032, China
| | - Ling Guo
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an 710032, China; (X.W.); (G.Z.); (J.L.); (Z.Z.); (T.Q.); (L.G.); (H.W.); (Z.H.)
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an 710032, China
| | - Haonan Wang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an 710032, China; (X.W.); (G.Z.); (J.L.); (Z.Z.); (T.Q.); (L.G.); (H.W.); (Z.H.)
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an 710032, China
| | - Zhifei Huang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an 710032, China; (X.W.); (G.Z.); (J.L.); (Z.Z.); (T.Q.); (L.G.); (H.W.); (Z.H.)
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an 710032, China
- School of Public Health, Shandong Second Medical University, Weifang 261053, China
| | - Guirong Ding
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an 710032, China; (X.W.); (G.Z.); (J.L.); (Z.Z.); (T.Q.); (L.G.); (H.W.); (Z.H.)
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an 710032, China
| |
Collapse
|
2
|
Eeftens M, Pujol S, Klaiber A, Chopard G, Riss A, Smayra F, Flückiger B, Gehin T, Diallo K, Wiart J, Mazloum T, Mauny F, Röösli M. The association between real-life markers of phone use and cognitive performance, health-related quality of life and sleep. ENVIRONMENTAL RESEARCH 2023; 231:116011. [PMID: 37127107 DOI: 10.1016/j.envres.2023.116011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
INTRODUCTION The real-life short-term implications of electromagnetic fields (RF-EMF) on cognitive performance and health-related quality of life have not been well studied. The SPUTNIC study (Study Panel on Upcoming Technologies to study Non-Ionizing radiation and Cognition) aimed to investigate possible correlations between mobile phone radiation and human health, including cognition, health-related quality of life and sleep. METHODS Adult participants tracked various daily markers of RF-EMF exposures (cordless calls, mobile calls, and mobile screen time 4 h prior to each assessment) as well as three health outcomes over ten study days: 1) cognitive performance, 2) health-related quality of life (HRQoL), and 3) sleep duration and quality. Cognitive performance was measured through six "game-like" tests, assessing verbal and visuo-spatial performance repeatedly. HRQoL was assessed as fatigue, mood and stress on a Likert-scale (1-10). Sleep duration and efficiency was measured using activity trackers. We fitted mixed models with random intercepts per participant on cognitive, HRQoL and sleep scores. Possible time-varying confounders were assessed at daily intervals by questionnaire and used for model adjustment. RESULTS A total of 121 participants ultimately took part in the SPUTNIC study, including 63 from Besancon and 58 from Basel. Self-reported wireless phone use and screen time were sporadically associated with visuo-spatial and verbal cognitive performance, compatible with chance findings. We found a small but robust significant increase in stress 0.03 (0.00-0.06; on a 1-10 Likert-scale) in relation to a 10-min increase in mobile phone screen time. Sleep duration and quality were not associated with either cordless or mobile phone calls, or with screen time. DISCUSSION The study did not find associations between short-term RF-EMF markers and cognitive performance, HRQoL, or sleep duration and quality. The most consistent finding was increased stress in relation to more screen time, but no association with cordless or mobile phone call time.
Collapse
Affiliation(s)
- Marloes Eeftens
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| | - Sophie Pujol
- CHU de Besançon, Unité de Méthodologie en Recherche Clinique, Épidémiologie et Santé Publique, INSERM CIC, 1431, Besançon, France; Laboratoire Chrono-Environnement UMR 6249 CNRS / Université de Franche-Comté, Besançon, France
| | - Aaron Klaiber
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Gilles Chopard
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université Franche-Comté, Besançon, France; Centre Mémoire de Ressources et de Recherche, Service de Neurologie, CHU de Besançon, France
| | - Andrin Riss
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Florian Smayra
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Benjamin Flückiger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Thomas Gehin
- CHU de Besançon, Unité de Méthodologie en Recherche Clinique, Épidémiologie et Santé Publique, INSERM CIC, 1431, Besançon, France; Laboratoire Chrono-Environnement UMR 6249 CNRS / Université de Franche-Comté, Besançon, France
| | - Kadiatou Diallo
- CHU de Besançon, Unité de Méthodologie en Recherche Clinique, Épidémiologie et Santé Publique, INSERM CIC, 1431, Besançon, France; Laboratoire Chrono-Environnement UMR 6249 CNRS / Université de Franche-Comté, Besançon, France
| | - Joe Wiart
- Chair C2M, LTCI Télecom ParisTech, Université Paris Saclay, 46 Rue Barrault, 75013, Paris, France
| | - Taghrid Mazloum
- Centre Mémoire de Ressources et de Recherche, Service de Neurologie, CHU de Besançon, France
| | - Frédéric Mauny
- CHU de Besançon, Unité de Méthodologie en Recherche Clinique, Épidémiologie et Santé Publique, INSERM CIC, 1431, Besançon, France; Laboratoire Chrono-Environnement UMR 6249 CNRS / Université de Franche-Comté, Besançon, France
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Wang H, Song L, Zhao L, Wang H, Xu X, Dong J, Zhang J, Yao B, Zhao X, Peng R. The dose-dependent effect of 1.5-GHz microwave exposure on spatial memory and the NMDAR pathway in Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37427-37439. [PMID: 36574118 PMCID: PMC9792922 DOI: 10.1007/s11356-022-24850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
A certain power of microwave radiation could cause changes in the nervous, cardiovascular, and other systems of the body, and the brain was a sensitive target organ of microwave radiation injury. Studies have shown that microwaves can impair cognitive functions in humans and animals, such as learning and memory, attention, and orientation. The dose-dependent effect of microwave radiation is still unclear. Our study aimed to investigate the effects of 1.5-GHz microwaves with different average power densities on locative learning and memory abilities, hippocampal structure, and related N-methyl D-aspartate receptor (NMDAR) signalling pathway proteins in rats. A total number of 140 male Wistar rats were randomly divided into four groups: S group (sham exposure), L5 group (1.5-GHz microwaves with average power density = 5 mW/cm2), L30 group (1.5-GHz microwaves with average power density = 30 mW/cm2), and L50 group (1.5-GHz microwaves with average power density = 50 mW/cm2). Changes in spatial learning and memory, EEG activity, hippocampal structure, and NMDAR signalling pathway molecules were detected from 6 h to 28 d after microwave exposure. After exposure to 1.5-GHz microwaves, rats in the L30 and L50 groups showed impaired spatial memory, inhibited EEG activity, pyknosis and hyperchromatism of neuron nucleus, and changes in NMDAR subunits and downstream signalling molecules. In conclusion, 1.5-GHz microwaves with an average power density of 5, 30, and 50 mW/cm2 could induce spatial memory dysfunction, hippocampal structure changes, and changes in protein levels in rats, and there was a defined dose-dependent effect.
Collapse
Affiliation(s)
- Hui Wang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Lequan Song
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Li Zhao
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Haoyu Wang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Xinping Xu
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Ji Dong
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Jing Zhang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Binwei Yao
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Xuelong Zhao
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China.
| |
Collapse
|
4
|
Eeftens M, Shen C, Sönksen J, Schmutz C, van Wel L, Liorni I, Vermeulen R, Cardis E, Wiart J, Toledano M, Röösli M. Modelling of daily radiofrequency electromagnetic field dose for a prospective adolescent cohort. ENVIRONMENT INTERNATIONAL 2023; 172:107737. [PMID: 36709672 DOI: 10.1016/j.envint.2023.107737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Radiofrequency electromagnetic fields originate from a variety of wireless communication sources operating near and far from the body, making it challenging to quantify daily absorbed dose. In the framework of the prospective cohort SCAMP (Study of Cognition, Adolescents and Mobile Phones), we aimed to characterize RF-EMF dose over a 2-year period. METHODS The SCAMP cohort included 6605 children from greater London, UK at baseline (age 12.1 years; 2014-2016) and 5194 at follow-up (age 14.2; 2016-2018). We estimated the daily dose of RF-EMF to eight tissues including the whole body and whole brain, using dosimetric algorithms for the specific absorption rate transfer into the body. We considered RF-EMF dose from 12 common usage scenarios such as mobile phone calls or data transmission. We evaluated the association between sociodemographic factors (gender, ethnicity, phone ownership and socio-economic status), and the dose change between baseline and follow-up. RESULTS Whole body dose was estimated at an average of 170 mJ/kg/day at baseline and 178 mJ/kg/day at follow-up. Among the eight tissues considered, the right temporal lobe received the highest daily dose (baseline 1150 mJ/kg/day, follow-up 1520 mJ/kg/day). Estimated daily dose [mJ/kg/day] increased between baseline and follow-up for head and brain related tissues, but remained stable for the whole body and heart. Doses estimated at baseline and follow-up showed low correlation among the 3384 children who completed both assessments. Asian ethnicity (compared to white) and owning a bar phone or no phone (as opposed to a smartphone) were associated with lower estimated whole-body and whole-brain RF-EMF dose, while black ethnicity, a moderate/low socio-economic status (compared to high), and increasing age (at baseline) were associated with higher estimated RF-EMF dose. CONCLUSION This study describes the first longitudinal exposure assessment for children in a critical period of development. Dose estimations will be used in further epidemiological analyses for the SCAMP study.
Collapse
Affiliation(s)
- Marloes Eeftens
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| | - Chen Shen
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom; National Institute for Health Research Health Protection Research Units in Environmental Exposures and Health & Chemical and Radiation Threats and Hazards, in partnership with UK Health Security Agency, Imperial College London, W2 1PG, United Kingdom
| | - Jana Sönksen
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Claudia Schmutz
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Luuk van Wel
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Ilaria Liorni
- Foundation for Research on Information Technologies in Society (IT'IS Foundation), Zurich, Switzerland
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Elisabeth Cardis
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Joe Wiart
- Chair C2M, LTCI Télecom ParisTech, Université Paris Saclay, 46 rue Barrault, 75013 Paris, France
| | - Mireille Toledano
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom; National Institute for Health Research Health Protection Research Units in Environmental Exposures and Health & Chemical and Radiation Threats and Hazards, in partnership with UK Health Security Agency, Imperial College London, W2 1PG, United Kingdom; Mohn Centre for Children's Health and Wellbeing, School of Public Health, Imperial College London, W2 1PG, United Kingdom
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Bodewein L, Dechent D, Graefrath D, Kraus T, Krause T, Driessen S. Systematic review of the physiological and health-related effects of radiofrequency electromagnetic field exposure from wireless communication devices on children and adolescents in experimental and epidemiological human studies. PLoS One 2022; 17:e0268641. [PMID: 35648738 PMCID: PMC9159629 DOI: 10.1371/journal.pone.0268641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/29/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND For more than 20 years, the potential health risks of radiofrequency electromagnetic field (RF EMF) exposure from mobile communication devices on children and adolescents have been examined because they are considered sensitive population groups; however, it remains unclear whether such exposure poses any particular risk to them. OBJECTIVES The aim of this review was to systematically analyze and evaluate the physiological and health-related effects of RF EMF exposures from wireless communication devices (mobile phones, cordless phones, Bluetooth, etc.) on children and adolescents. METHODS This review was prepared according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Methodological limitations in individual studies were assessed using the Office of Health Assessment and Translation (OHAT) Risk-of-Bias Rating Tool for Human and Animal Studies. RESULTS A total of 42 epidemiological and 11 experimental studies were eligible for this review. Most of the studies displayed several methodological weaknesses that limited the internal validity of the results. Due to a lack of consistency regarding the outcomes as well as the lack of scientific rigor in most reviewed studies, the body of evidence for the effects of RF EMF of mobile communication devices on subjective symptoms, cognition, and behavior in children and adolescents was low to inadequate. Evidence from the studies investigating early childhood development, brain activity, cancer, and physiological parameters was considered inadequate for drawing conclusions about possible effects. DISCUSSION Overall, the body of evidence allows no final conclusion on the question whether exposure to RF EMF from mobile communication devices poses a particular risk to children and adolescents. There has been rapid development in technologies generating RF EMF, which are extensively used by children and adolescents. Therefore, we strongly recommend high-quality systematic research on children and adolescents, since they are generally considered as sensitive age groups.
Collapse
Affiliation(s)
- Lambert Bodewein
- Research Center for Bioelectromagnetic Interaction (femu)–Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Dagmar Dechent
- Research Center for Bioelectromagnetic Interaction (femu)–Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - David Graefrath
- Research Center for Bioelectromagnetic Interaction (femu)–Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Thomas Kraus
- Research Center for Bioelectromagnetic Interaction (femu)–Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Tobias Krause
- Research Center for Bioelectromagnetic Interaction (femu)–Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Sarah Driessen
- Research Center for Bioelectromagnetic Interaction (femu)–Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Wang X, Xia C, Lu L, Qi H, Zhang J. Electromagnetic Exposure Dosimetry Study on Two Free Rats at 1.8 GHz via Numerical Simulation. Front Public Health 2021; 9:721166. [PMID: 34660514 PMCID: PMC8514833 DOI: 10.3389/fpubh.2021.721166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
Normally, the impact of electromagnetic exposure on human health is evaluated by animal study. The biological effect caused by electromagnetic exposure on such experimental animals as rats has been proven to be dose-dependent. However, though the dose of radio frequency (RF) electromagnetic exposure described by the specific absorbing rate (SAR) on fixed rats has been relatively well-studied utilizing the numerical simulations, the dosimetry study of exposure on free rat is insufficient, especially in the cases of two or more free rats. Therefore, the present work focuses on the variation of SAR caused by the existence of neighboring free rat in the same cage. Here, infrared thermography was used to record the activity of the two free rats who lived in the same cage that mounted at the far-field region in the microwave darkroom for a duration of 48 h. Then, using image processing techniques, the relative positions and orientations of the two rats are identified, which are defined by three parameters, such as the relative distance (d), relative direction angle (α), and relative orientation angle (β). Using the simulation software XFdtd 7.3, the influence of d, α, and β on the whole-body average SAR (WB-avgSAR) of the rats exposed to 1.8 GHz electromagnetic wave was calculated and analyzed. Then, the average variation of WB-avgSAR of the two rats compared with that of a single rat within 48 h was calculated. The numerical simulation results showed that the relative posture position described by (d, α, and β) of the two rats affects their WB-avgSAR and leads to fluctuations at different positions. However, the variation rate of the 48-h-average WB-avgSAR was only 10.3%, which implied that the over-time average SAR of two or more rats can be roughly described by the WB-avgSAR of a single free rat, except when a real-time precise control of exposure dose is necessary.
Collapse
Affiliation(s)
- Xianghui Wang
- Shanghai Key Laboratory of Magnetic Resonance & Biophysics Lab, School of Physics and Electronic Sciences, East China Normal University, Shanghai, China
| | - Chengjie Xia
- Shanghai Key Laboratory of Magnetic Resonance & Biophysics Lab, School of Physics and Electronic Sciences, East China Normal University, Shanghai, China
| | - Lu Lu
- Shanghai Key Laboratory of Magnetic Resonance & Biophysics Lab, School of Physics and Electronic Sciences, East China Normal University, Shanghai, China
| | - Hongxin Qi
- Shanghai Key Laboratory of Magnetic Resonance & Biophysics Lab, School of Physics and Electronic Sciences, East China Normal University, Shanghai, China
| | - Jie Zhang
- Shanghai Key Laboratory of Magnetic Resonance & Biophysics Lab, School of Physics and Electronic Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
7
|
Birks LE, van Wel L, Liorni I, Pierotti L, Guxens M, Huss A, Foerster M, Capstick M, Eeftens M, El Marroun H, Estarlich M, Gallastegi M, Safont LG, Joseph W, Santa-Marina L, Thielens A, Torrent M, Vrijkotte T, Wiart J, Röösli M, Cardis E, Vermeulen R, Vrijheid M. Radiofrequency electromagnetic fields from mobile communication: Description of modeled dose in brain regions and the body in European children and adolescents. ENVIRONMENTAL RESEARCH 2021; 193:110505. [PMID: 33245886 DOI: 10.1016/j.envres.2020.110505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Little is known about radiofrequency electromagnetic fields (RF) from mobile technology and resulting dose in young people. We describe modeled integrated RF dose in European children and adolescents combining own mobile device use and surrounding sources. METHODS Using an integrated RF model, we estimated the daily RF dose in the brain (whole-brain, cerebellum, frontal lobe, midbrain, occipital lobe, parietal lobe, temporal lobes) and the whole-body in 8358 children (ages 8-12) and adolescents (ages 14-18) from the Netherlands, Spain, and Switzerland during 2012-2016. The integrated model estimated RF dose from near-field sources (digital enhanced communication technology (DECT) phone, mobile phone, tablet, and laptop) and far-field sources (mobile phone base stations via 3D-radiowave modeling or RF measurements). RESULTS Adolescents were more frequent mobile phone users and experienced higher modeled RF doses in the whole-brain (median 330.4 mJ/kg/day) compared to children (median 81.8 mJ/kg/day). Children spent more time using tablets or laptops compared to adolescents, resulting in higher RF doses in the whole-body (median whole-body dose of 81.8 mJ/kg/day) compared to adolescents (41.9 mJ/kg/day). Among brain regions, temporal lobes received the highest RF dose (medians of 274.9 and 1786.5 mJ/kg/day in children and adolescents, respectively) followed by the frontal lobe. In most children and adolescents, calling on 2G networks was the main contributor to RF dose in the whole-brain (medians of 31.1 and 273.7 mJ/kg/day, respectively). CONCLUSION This first large study of RF dose to the brain and body of children and adolescents shows that mobile phone calls on 2G networks are the main determinants of brain dose, especially in temporal and frontal lobes, whereas whole-body doses were mostly determined by tablet and laptop use. The modeling of RF doses provides valuable input to epidemiological research and to potential risk management regarding RF exposure in young people.
Collapse
Affiliation(s)
- Laura Ellen Birks
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Luuk van Wel
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Ilaria Liorni
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | - Livia Pierotti
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Anke Huss
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Milena Foerster
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Myles Capstick
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | - Marloes Eeftens
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Hanan El Marroun
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, the Netherlands; Department of Psychology, Education and Child Studies - Erasmus University Rotterdam, the Netherlands
| | - Marisa Estarlich
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Faculty of Nursing and Chiropody, Universitat de València, Spain
| | - Mara Gallastegi
- BIODONOSTIA Health Research Institute, Dr. Begiristain Pasealekua, San Sebastian, Spain
| | - Llúcia González Safont
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Wout Joseph
- Department of Information Technology, Ghent University/IMEC, Technologiepark 126, Ghent, 9052, Belgium
| | - Loreto Santa-Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; BIODONOSTIA Health Research Institute, Dr. Begiristain Pasealekua, San Sebastian, Spain; Department of Health of the Basque Government, Public Health Division of Gipuzkoa, Donostia-San Sebastián, Spain
| | - Arno Thielens
- Department of Information Technology, Ghent University/IMEC, Technologiepark 126, Ghent, 9052, Belgium
| | - Maties Torrent
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Tanja Vrijkotte
- Department of Public Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Joe Wiart
- Télécom ParisTech, LTCI University Paris Saclay, Chair C2M, Paris, France
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Elisabeth Cardis
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands; School of Public Health, Imperial College London, London, UK
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
8
|
Okechukwu C. Smartphone Use and Child Neurology. Neurol India 2021; 69:1896-1897. [DOI: 10.4103/0028-3886.333470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|