1
|
Salem D, El-Shenawy A, Dahroug H, Zaiton M, Gamal D, Diab M. Assessment of in vitro antimicrobial activities of ceftolozane/tazobactam and ceftazidime/avibactam against carbapenem-resistant Pseudomonas aeruginosa clinical isolates. BMC Infect Dis 2025; 25:622. [PMID: 40295988 PMCID: PMC12039273 DOI: 10.1186/s12879-025-10891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Carbapenem resistant Pseudomonas aeruginosa (P. aeruginosa) is a global health concern that poses a challenge to treat in health care facilities. Ceftazidim/avibactam and ceftolozane/tazobactam have a potential role in treatment of multi-drug resistant phenotypes including carbapenem resistant P. aeruginosa. Therefore, we aimed to assess the in vitro antimicrobial activity of ceftazidime/avibactam and ceftolozane/tazobactam against carbapenem-resistant P. aeruginosa (CRPA) strains with different β-lactamase/carbapenemase genes. METHODS Sixty CRPA isolates identified from clinical samples were examined for antimicrobial susceptibility including ceftazidim/avibactam and ceftolozane/tazobactam by Vitek2 compact system, and carbapenemase production by modified carbapenem inactivation method (mCIM) test and carbapenemase producing genes by polymerase chain reaction (PCR). RESULTS Isolates were resistant to imipenem in 96.7% and meropenem in 88.3%. of isolates. Carbapenemase production by mCIM test was 70% compared to 73.3% by (PCR). Carbapenemase encoding genes blaNDM, blaVIM and blaOXA-48 were detected in 60%, 41.7% and 25% respectively while blaIMP and blaKPC weren't identified in this study. Among CRPA, both ceftazidim/avibactam and ceftolozane/tazobactam; were sensitive in only 11.7% of the isolates. Resistance to ceftazidim/avibactam and ceftolozane/tazobactam in isolates owning blaNDM, blaVIM, blaOXA-48 and those having combined blaNDM, blaVIM and blaOXA-48 carbapenemase resistance genes were 97.2%, 92%, 100% and 100% respectively. CONCLUSION Modified carbapenem inactivation method test gave satisfactory results and could be used as an alternative to expensive genotypic methods. Ceftazidim/avibactam and ceftolozane/tazobactam were unsuccessful against carbapenem resistant P. aeruginosa isolates carrying carbapenemase genes especially metallo-β lactamase genes. Therefore, it is essential to detect susceptibility patterns to newly introduced β-Lactam/β-Lactamase inhibitor combinations due to the emerging resistance to these therapeutics.
Collapse
Affiliation(s)
- Dalia Salem
- Microbiology Department, Theodor Bilharz Research Institute (TBRI), Postal Address: 30 Imbaba, P.O Box 12411, Giza, Egypt.
| | - Ahmed El-Shenawy
- Microbiology Department, Theodor Bilharz Research Institute (TBRI), Postal Address: 30 Imbaba, P.O Box 12411, Giza, Egypt
| | - Heba Dahroug
- Microbiology Department, Theodor Bilharz Research Institute (TBRI), Postal Address: 30 Imbaba, P.O Box 12411, Giza, Egypt
| | - Manar Zaiton
- Microbiology Department, Theodor Bilharz Research Institute (TBRI), Postal Address: 30 Imbaba, P.O Box 12411, Giza, Egypt
| | - Doaa Gamal
- Microbiology Department, Theodor Bilharz Research Institute (TBRI), Postal Address: 30 Imbaba, P.O Box 12411, Giza, Egypt
| | - Manal Diab
- Microbiology Department, Theodor Bilharz Research Institute (TBRI), Postal Address: 30 Imbaba, P.O Box 12411, Giza, Egypt
| |
Collapse
|
2
|
Zomorodi AR, Salimizand H, Mohseni N, Hafiz M, Nikoueian H, Gholamhosseini-Moghaddam T, Aflakian F. Genomic Characterization of NDM-1 Harboring Extensively-Drug Resistance Klebsiella pneumoniae Isolate From ICU-Admitted Patient With COVID-19. J Trop Med 2025; 2025:6616950. [PMID: 40260410 PMCID: PMC12011471 DOI: 10.1155/jotm/6616950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/28/2025] [Indexed: 04/23/2025] Open
Abstract
Currently, carbapenem-resistant Klebsiella pneumoniae (CR-KP) strains, particularly those producing New Delhi metallo-beta-lactamase (NDM), are increasingly recognized as a significant threat to global health. The present study aimed to conduct a genomic analysis of an NDM-1-producing CR-KP strain isolated from patients with coronavirus disease of 2019 (COVID-19) admitted to the intensive care unit (ICU). The K. pneumoniae isolate was obtained from the bronchoalveolar lavage fluid of a 68 year-old male patient hospitalized in the ICU with COVID-19 at Besat Hospital in Sanandaj, Iran. The minimum inhibitory concentrations (MICs) for 15 antibiotics were determined using the VITEK 2 system. Genomic analysis of the isolate was performed using whole genome sequencing. The CRKP-51 strain was identified as an extensively drug-resistant (XDR) strain, exhibiting resistance to all tested antibiotics except tigecycline (MIC = 2 μg/mL). The highest resistance values were recorded against sulfamethoxazole-trimethoprim (SXT), nitrofurantoin (NIT), and piperacillin-tazobactam (TZP), with MICs of ≥ 320, 256 μg/mL, and ≥ 128 μg/mL, respectively. Multilocus sequence typing revealed that CRKP-51 belonged to sequence type 15 (ST15). The IncHI1B replicon type associated with this strain harbored several resistance genes, including bla NDM-1 , armA, msrE, mphE, BRP (MBL), bla OXA-1, aadA2, dfrA12, qnrB1, bla CTX-M-15, and cat1. High-risk K. pneumoniae clones, such as ST15, are increasingly associated with antimicrobial resistance and the emergence of XDR strains in ICUs. Additionally, the global dissemination of the NDM enzyme occurs through various plasmid replicon types. Therefore, monitoring local epidemiology is essential for the effectiveness of antimicrobial stewardship programs.
Collapse
Affiliation(s)
- Abolfazl Rafati Zomorodi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Himen Salimizand
- Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan, Canada
- Department of Vaccinology and Immunotherapeutics, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Niloufar Mohseni
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Hafiz
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Helia Nikoueian
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Fatemeh Aflakian
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Chemical Engineering, Faculty of Advanced Technology, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
3
|
Sabala RF, Fukuda A, Nakajima C, Suzuki Y, Usui M, Elhadidy M. Carbapenem and colistin-resistant hypervirulent Klebsiella pneumoniae: An emerging threat transcending the egyptian food chain. J Infect Public Health 2024; 17:1037-1046. [PMID: 38663100 DOI: 10.1016/j.jiph.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a great public health problem and is associated with many disease outbreaks and high mortality rates. Alarmingly, K. pneumoniae has been isolated from food in several recent studies. This study aimed to investigate the prevalence and characteristics of CRKP in food samples from Egypt. METHODS A total of 311 food samples (including 116 minced meat, 92 chicken meat, 75 diced meat, and 28 mutton) were collected from local markets in Egypt and were screened for CRKP with the determination of their antimicrobial resistance profiles. The whole genome sequence was done for 23 CRKP isolates to clarify the relationship between CRKP from food and human cases in Egypt using the SNP core genome. The conjugation probability of the blaNDM-5 harboring plasmid was identified using oriTfinder RESULTS: CRKP was isolated from 11% (35/311) of the samples, with 45.71% (16/35) of them showing resistance to colistin, one of the last-resort options for treating CRKP-mediated infections. In addition to the carbapenem and colistin resistance, the CRKP isolates frequently exhibited resistance to multiple antimicrobials including β-lactams, fluoroquinolones, aminoglycosides, tetracyclines, and chloramphenicol. In addition, most of the CRKP were potentially hypervirulent K. pneumoniae (HvKP) identified as phylogroup Kp1 and of high-risk groups as detected in STs reported in many human outbreaks globally, such as ST383 and ST147. The core-genome phylogeny showed similarities between the isolates from this study and those previously isolated from clinical human samples in Egypt. In addition, analysis of the plasmid on which blaNDM is encoded revealed that several antimicrobial resistance genes such as blaOXA-9, blaCTX-M-15, aac(6')-Ib, qnrS1, and several virulence genes are encoded on the same plasmid. CONCLUSIONS This study is significant for food safety and public health and is important to further identify the change in the epidemiology of CRKP infections, especially the consumption of contaminated food products.
Collapse
Affiliation(s)
- Rana Fahmi Sabala
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Akira Fukuda
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan; International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan; Division of Research Support, Hokkaido University Institute for Vaccine Research and Development, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan; International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan; Division of Research Support, Hokkaido University Institute for Vaccine Research and Development, Sapporo, Japan
| | - Masaru Usui
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan.
| | - Mohamed Elhadidy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt; Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
4
|
Loconsole D, Sallustio A, Sacco D, Santantonio M, Casulli D, Gatti D, Accogli M, Parisi A, Zagaria R, Colella V, Centrone F, Chironna M. Genomic surveillance of carbapenem-resistant Klebsiella pneumoniae reveals a prolonged outbreak of extensively drug-resistant ST147 NDM-1 during the COVID-19 pandemic in the Apulia region (Southern Italy). J Glob Antimicrob Resist 2024; 36:260-266. [PMID: 38280719 DOI: 10.1016/j.jgar.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Accepted: 01/18/2024] [Indexed: 01/29/2024] Open
Abstract
OBJECTIVES The recent worldwide spread of New Delhi metallo-beta-lactamase-producing Klebsiella pneumoniae (NDM-KP) in health-care settings remains a concern. The aim of the study was to describe an outbreak of extensively drug-resistant ST147 NDM-1-KP in the Apulia region of Southern Italy that occurred between 2020 and 2022 through genomic surveillance of carbapenem-resistant Enterobacterales. METHODS A total of 459 carbapenem-resistant KP isolates collected from patients hospitalised with bloodstream infections were tested using a commercial multiplex real-time polymerase chain reaction to identify carbapenemase genes. A subset of 27 isolates was subjected to whole-genome sequencing. Core-genome multilocus sequence typing was performed by analysing a panel of 4884 genes. RESULTS Molecular testing revealed that 104 (22.6%) isolates carried the carbapenemase NDM gene. Phylogenetic analysis of the 27 isolates subjected to whole-genome sequencing revealed high genetic relatedness among strains. All isolates were resistant to all first-line antibiotics. Virulome analysis identified the ybt locus, the two well-recognised virulence factors iucABCDiutA and rmpA, and the genes encoding the type 3 pilus virulence factor. Plasmids IncFIB(pkPHS1), IncFIB(pNDM-Mar), IncFIB(pQil), IncHI1B(pNDM-MAR), IncR, and Col(pHAD28) were identified in all isolates. Moreover, further analysis identified the IncFIB-type plasmid carrying the NDM-1 genes. CONCLUSION The increasing circulation of extensively drug-resistant NDM-1 ST147 KP strains in Southern Italy in recent years is worrisome, because these clones pose a real risk, particularly in hospital settings. Genomic surveillance is a crucial tool for early identification of emerging threats such as the spread of high-risk pathogens. Rapid infection control measures and antimicrobial stewardship are key to preventing further spread of hypervirulent KP strains.
Collapse
Affiliation(s)
- Daniela Loconsole
- Department of Interdisciplinary Medicine, Hygiene Section, University of Bari, Bari, Italy
| | - Anna Sallustio
- Hygiene Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Davide Sacco
- Department of Interdisciplinary Medicine, Hygiene Section, University of Bari, Bari, Italy
| | - Marilina Santantonio
- Hygiene Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Daniele Casulli
- Hygiene Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Domenico Gatti
- Hygiene Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Marisa Accogli
- Hygiene Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Antonio Parisi
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Foggia, Italy
| | - Riccardo Zagaria
- Department of Interdisciplinary Medicine, Hygiene Section, University of Bari, Bari, Italy
| | - Vito Colella
- Department of Interdisciplinary Medicine, Hygiene Section, University of Bari, Bari, Italy
| | - Francesca Centrone
- Hygiene Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Maria Chironna
- Department of Interdisciplinary Medicine, Hygiene Section, University of Bari, Bari, Italy.
| |
Collapse
|
5
|
Hamed SM, Mohamed HO, Ashour HM, Fahmy LI. Comparative genomic analysis of strong biofilm-forming Klebsiella pneumoniae isolates uncovers novel IS Ecp1-mediated chromosomal integration of a full plasmid-like sequence. Infect Dis (Lond) 2024; 56:91-109. [PMID: 37897710 DOI: 10.1080/23744235.2023.2272624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND The goal of the current study was to elucidate the genomic background of biofilm formation in Klebsiella pneumoniae. METHODS Clinical isolates were screened for biofilm formation using the crystal violet assay. Antimicrobial resistance (AMR) profiles were assessed by disk diffusion and broth microdilution tests. Biofilm formation was correlated to virulence and resistance genes screened by PCR. Draft genomes of three isolates that form strong biofilm were generated by Illumina sequencing. RESULTS Only the siderophore-coding gene iutA was significantly associated with more pronounced biofilm formation. ST1399-KL43-O1/O2v1 and ST11-KL15-O4 were assigned to the multidrug-resistant strain K21 and the extensively drug-resistant strain K237, respectively. ST1999-KL38-O12 was assigned to K57. Correlated with CRISPR/Cas distribution, more plasmid replicons and prophage sequences were identified in K21 and K237 compared to K57. The acquired AMR genes (blaOXA-48, rmtF, aac(6')-Ib and qnrB) and (blaNDM-1, blaCTX-M, aph(3')-VI, qnrS, and aac(6')-Ib-cr) were found in K237 and K21, respectively. The latter showed a novel ISEcp1-mediated chromosomal integration of replicon type IncM1 plasmid-like structure harboring blaCTX-M-14 and aph(3')-VI that uniquely interrupted rcsC. The plasmid-mediated heavy metal resistance genes merACDEPRT and arsABCDR were spotted in K21, which also exclusively carried the acquired virulence genes mrkABCDF and the hypervirulence-associated genes iucABCD-iutA, and rmpA/A2. Pangenome analysis revealed NTUH-K2044 accessory genes most frequently shared with K21. CONCLUSIONS While less virulent to Galleria mellonella than ST1999 (K57), the strong biofilm former, multidrug-resistant, NDM-producer K. pneumoniae K21 (ST1399-KL43-O1/O2v1) carries a novel chromosomally integrated plasmid-like structure and hypervirulence-associated genes and represents a serious threat to countries in the area.
Collapse
Affiliation(s)
- Samira M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Hend O Mohamed
- Department of Biological Control Research, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Hossam M Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, FL, USA
| | - Lamiaa I Fahmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
6
|
Okasha H, Dahroug H, Gouda AE, Shemis MA. A novel antibacterial approach of Cecropin-B peptide loaded on chitosan nanoparticles against MDR Klebsiella pneumoniae isolates. Amino Acids 2023; 55:1965-1980. [PMID: 37966500 PMCID: PMC10724327 DOI: 10.1007/s00726-023-03356-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/28/2023] [Indexed: 11/16/2023]
Abstract
Egypt has witnessed the emergence of multidrug-resistant (MDR) Klebsiella pneumoniae, which has posed a serious healthcare challenge. The proper treatment choice for MDR-KP infections is not well determined which renders the problem more complicated, thus making the control of such infections a serious challenge for healthcare professionals. This study aims to encapsulate the cationic antimicrobial peptide; Cecropin-B (Cec-B), to increase its lifetime, drug targeting, and efficacy and study the antimicrobial effect of free and encapsulated recombinant rCec-B peptide on multidrug-resistant K. pneumoniae (MDR-KP) isolates. Fifty isolates were collected from different clinical departments at Theodore Bilharz Research Institute. Minimal inhibitory concentrations (MICs) of rCec-B against MDR-KP isolates were determined by the broth microdilution test. In addition, encapsulation of rCec-B peptide into chitosan nanoparticles and studying its bactericidal effect against MDR-KP isolates were also performed. The relative expression of efflux pump and porin coding genes (ArcrB, TolC, mtdK, and Ompk35) was detected by quantitative PCR in treated MDR-KP bacterial isolates compared to untreated isolates. Out of 60 clinical MDR isolates, 50 were MDR-KP. 60% of the isolates were XDR while 40% were MDR. rCec-B were bactericidal on 21 isolates, then these isolates were subjected to treatment using free nanocapsule in addition to the encapsulated peptide. Free capsules showed a mild cytotoxic effect on MDR-KP at the highest concentration. MIC of encapsulated rCec-B was higher than the free peptide. The expression level of genes encoding efflux and porin (ArcrB, TolC, mtdK, and Ompk35) was downregulated after treatment with encapsulated rCec-B. These findings indicate that encapsulated rCec-B is a promising candidate with potent antibacterial activities against drug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Hend Okasha
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Heba Dahroug
- Microbiology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Abdullah E Gouda
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohamed Abbas Shemis
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
7
|
Abdelbary ER, Elsaghier AM, Abd El-Baky RM, Waly NGFM, Ramadan M, Abd- Elsamea FS, Ali ME, Alzahrani HA, Salah M. First Emergence of NDM-5 and OqxAB Efflux Pumps Among Multidrug-Resistant Klebsiella pneumoniae Isolated from Pediatric Patients in Assiut, Egypt. Infect Drug Resist 2023; 16:5965-5976. [PMID: 37705515 PMCID: PMC10496925 DOI: 10.2147/idr.s421978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction New Delhi metallo-β-lactamase (NDM)-producing K. pneumoniae poses a high risk, especially among Egyptian pediatric patients who consume carbapenems antibiotics very widely and without adequate diagnostic sources. In addition, presence of efflux pump genes such as OqxAB increases resistance against many groups of antimicrobials which exacerbates the problem faced for human health. This study aimed to determine NDM variants among K. pneumoniae strains isolated from pediatric patients in Egypt, analyze the presence of OqxAB genes, and molecular characterization of blaNDM-5-positive K. pneumoniae. Methods Fifty-six K. pneumoniae isolates were recovered from pediatric patients, and tested for carbapenemase by modified carbapenem inactivation methods (mCIM) test. Minimum inhibitory concentrations of meropenem and colistin were determined by meropenem E-test strips and broth microdilution, respectively. PCR was used for the detection of the resistant genes (ESBL gene (blaCTX-M), carbapenemase genes (blaNDM, blaKPC) colistin resistant (mcr1, mcr2)) and genes for efflux pump (oqxA and oqxB). BlaNDM was sequenced. The effect of efflux pump in NDM-5-producing isolates was assessed by measuring MIC of ciprofloxacin and meropenem before and after exposure to the carbonyl cyanide 3-chlorophenylhydrazone (CCCP). The horizontal gene transfer ability of blaNDM-5 was determined using liquid mating assay and PCR-based replicon typing (PBRT) was done to determine the major plasmid incompatibility group. Results Twenty-nine isolates were positive for blaNDM-1, nine isolates were positive for blaNDM-5, and 15 isolates were positive for blaKPC. There is a significant increase of meropenem MIC of NDM-5-positive isolates compared with NDM-1-positive isolates. In addition, 38 isolates were positive for CTX-M, and 15 isolates were positive for mcr1. Both OqxA and OqxB were detected in 26 isolates and 13 isolates were positive for OqxA while 11 isolates were positive for OqxB only. All NDM-5-producing isolates except one isolate could transfer their plasmids by conjugation to their corresponding transconjugants (E. coli J53). Plasmid replicon typing showed that FII was predominant in NDM-5-producing K. pneumoniae. Similar strains were found between the three isolates and similarity was also detected between the two isolates. Conclusion The highly resistant K. pneumoniae producing blaNDM-5 type was firstly isolated from pediatric patients. The association of efflux pump genes such as OqxAB is involved in resistance to ciprofloxacin. This highlighted the severity risk of blaNDM-5-positive K. pneumonia as it could transfer blaNDM-5 to other bacteria and has more resistance against carbapenems. This underlines the importance of continuous monitoring of infection control guidelines, and the urgent need for a national antimicrobial stewardship plan in Egyptian hospitals.
Collapse
Affiliation(s)
- Eman R Abdelbary
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Assiut, 11651, Egypt
| | - Ashraf M Elsaghier
- Gastroenterology and Hepatology Unit, University Children Hospital, Faculty of Medicine, Assiut University, Assiut, 11651, Egypt
| | - Rehab M Abd El-Baky
- Microbiology and Immunology Department, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Microbiology and Immunology Department, Faculty of Pharmacy, Deraya University, Minia, 11566, Egypt
| | - Nancy G F M Waly
- Microbiology and Immunology Department, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Mohammed Ramadan
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Assiut, 11651, Egypt
| | - Fatma S Abd- Elsamea
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, 11651, Egypt
| | - Mohamed E Ali
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Assiut, 11651, Egypt
| | - Hayat A Alzahrani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, Northern Border University, Arar, 91431, Saudi Arabia
| | - Mohammed Salah
- Microbiology and Immunology Department, Faculty of Pharmacy, Port Said University, Port Said City, 42526, Egypt
| |
Collapse
|
8
|
Jati AP, Sola-Campoy PJ, Bosch T, Schouls LM, Hendrickx APA, Bautista V, Lara N, Raangs E, Aracil B, Rossen JWA, Friedrich AW, Navarro Riaza AM, Cañada-García JE, Ramírez de Arellano E, Oteo-Iglesias J, Pérez-Vázquez M, García-Cobos S. Widespread Detection of Yersiniabactin Gene Cluster and Its Encoding Integrative Conjugative Elements (ICE Kp) among Nonoutbreak OXA-48-Producing Klebsiella pneumoniae Clinical Isolates from Spain and the Netherlands. Microbiol Spectr 2023; 11:e0471622. [PMID: 37310221 PMCID: PMC10434048 DOI: 10.1128/spectrum.04716-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/22/2023] [Indexed: 06/14/2023] Open
Abstract
In this study, we determined the presence of virulence factors in nonoutbreak, high-risk clones and other isolates belonging to less common sequence types associated with the spread of OXA-48-producing Klebsiella pneumoniae clinical isolates from The Netherlands (n = 61) and Spain (n = 53). Most isolates shared a chromosomally encoded core of virulence factors, including the enterobactin gene cluster, fimbrial fim and mrk gene clusters, and urea metabolism genes (ureAD). We observed a high diversity of K-Locus and K/O loci combinations, KL17 and KL24 (both 16%), and the O1/O2v1 locus (51%) being the most prevalent in our study. The most prevalent accessory virulence factor was the yersiniabactin gene cluster (66.7%). We found seven yersiniabactin lineages-ybt 9, ybt 10, ybt 13, ybt 14, ybt 16, ybt 17, and ybt 27-which were chromosomally embedded in seven integrative conjugative elements (ICEKp): ICEKp3, ICEKp4, ICEKp2, ICEKp5, ICEKp12, ICEKp10, and ICEKp22, respectively. Multidrug-resistant lineages-ST11, ST101, and ST405-were associated with ybt 10/ICEKp4, ybt 9/ICEKp3, and ybt 27/ICEKp22, respectively. The fimbrial adhesin kpi operon (kpiABCDEFG) was predominant among ST14, ST15, and ST405 isolates, as well as the ferric uptake system kfuABC, which was also predominant among ST101 isolates. No convergence of hypervirulence and resistance was observed in this collection of OXA-48-producing K. pneumoniae clinical isolates. Nevertheless, two isolates, ST133 and ST792, were positive for the genotoxin colibactin gene cluster (ICEKp10). In this study, the integrative conjugative element, ICEKp, was the major vehicle for yersiniabactin and colibactin gene clusters spreading. IMPORTANCE Convergence of multidrug resistance and hypervirulence in Klebsiella pneumoniae isolates has been reported mostly related to sporadic cases or small outbreaks. Nevertheless, little is known about the real prevalence of carbapenem-resistant hypervirulent K. pneumoniae since these two phenomena are often separately studied. In this study, we gathered information on the virulent content of nonoutbreak, high-risk clones (i.e., ST11, ST15, and ST405) and other less common STs associated with the spread of OXA-48-producing K. pneumoniae clinical isolates. The study of virulence content in nonoutbreak isolates can help us to expand information on the genomic landscape of virulence factors in K. pneumoniae population by identifying virulence markers and their mechanisms of spread. Surveillance should focus not only on antimicrobial resistance but also on virulence characteristics to avoid the spread of multidrug and (hyper)virulent K. pneumoniae that may cause untreatable and more severe infections.
Collapse
Affiliation(s)
- Afif P. Jati
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Indonesian Society of Bioinformatics and Biodiversity, Indonesia
| | - Pedro J. Sola-Campoy
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Thijs Bosch
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Leo M. Schouls
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Antoni P. A. Hendrickx
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Verónica Bautista
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Noelia Lara
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Erwin Raangs
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Belén Aracil
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - John W. A. Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Laboratory of Medical Microbiology and Infectious Diseases, Isala Hospital, Zwolle, The Netherlands
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Alex W. Friedrich
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- University Hospital Münster, Institute of European Prevention Networks in Infection Control, Münster, Germany
| | - Ana M. Navarro Riaza
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Javier E. Cañada-García
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Eva Ramírez de Arellano
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Oteo-Iglesias
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - María Pérez-Vázquez
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia García-Cobos
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - The Dutch and Spanish Collaborative Working Groups on Surveillance on Carbapenemase-Producing Enterobacterales
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Indonesian Society of Bioinformatics and Biodiversity, Indonesia
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Medical Microbiology and Infectious Diseases, Isala Hospital, Zwolle, The Netherlands
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- University Hospital Münster, Institute of European Prevention Networks in Infection Control, Münster, Germany
| |
Collapse
|
9
|
Puljko A, Rozman SD, Barišić I, Maravić A, Jelić M, Babić I, Milaković M, Petrić I, Udiković-Kolić N. Resistance to critically important antibiotics in hospital wastewater from the largest Croatian city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161805. [PMID: 36708818 DOI: 10.1016/j.scitotenv.2023.161805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The emergence of extended-spectrum β-lactamase (ESBL)- and especially carbapenemases in Enterobacterales has led to limited therapeutic options. Therefore, it is critical to fully understand all potential routes of transmission, especially in high-risk sources such as hospital wastewater. This study aimed to quantify four enteric opportunistic pathogens (EOPs), total, ESBL- and carbapenem-resistant coliforms and their corresponding resistance genes (two ESBL and five carbapenemase genes) and to characterize enterobacterial isolates from hospital wastewater from two large hospitals in Zagreb over two seasons. Culturing revealed similar average levels of total and carbapenem-resistant coliforms (3.4 × 104 CFU/mL), and 10-fold lower levels of presumptive ESBL coliforms (3 × 103 CFU/mL). Real-time PCR revealed the highest E. coli levels among EOPs (105 cell equivalents/mL) and the highest levels of the blaKPC gene (up to 10-1 gene copies/16S copies) among all resistance genes examined. Of the 69 ESBL- and 90 carbapenemase-producing Enterobacterales (CPE) isolates from hospital wastewater, all were multidrug-resistant and most were identified as Escherichia coli, Citrobacter, Enterobacter, and Klebsiella. Among ESBL isolates, blaCTX-M-15 was the most prevalent ESBL gene, whereas in CPE isolates, blaKPC-2 and blaNDM-1 were the most frequently detected CP genes, followed by blaOXA-48. Molecular epidemiology using PFGE, MLST and whole-genome sequencing (WGS) revealed that clinically relevant variants such as E. coli ST131 (blaCTX-M-15/blaTEM-116) and ST541 (blaKPC-2), K. pneumoniae ST101 (blaOXA-48/blaNDM-1), and Enterobacter cloacae complex ST277 (blaKPC-2/blaNDM-1) were among the most frequently detected clone types. WGS also revealed a diverse range of resistance genes and plasmids in these and other isolates, as well as transposons and insertion sequences in the flanking regions of the blaCTX-M, blaOXA-48, and blaKPC-2 genes, suggesting the potential for mobilization. We conclude that hospital wastewater is a potential secondary reservoir of clinically important pathogens and resistance genes and therefore requires effective pretreatment before discharge to the municipal sewer system.
Collapse
Affiliation(s)
- Ana Puljko
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Svjetlana Dekić Rozman
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Ivan Barišić
- Molecular Diagnostics, Austrian Institute of Technology, Giefinggasse 4, 1210 Vienna, Austria
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21 000 Split, Croatia
| | - Marko Jelić
- Department of Clinical Microbiology, University Hospital for Infectious Diseases, Mirogojska 8, 10 000 Zagreb, Croatia
| | - Ivana Babić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Milena Milaković
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Ines Petrić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Nikolina Udiković-Kolić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia.
| |
Collapse
|
10
|
Venne DM, Hartley DM, Malchione MD, Koch M, Britto AY, Goodman JL. Review and analysis of the overlapping threats of carbapenem and polymyxin resistant E. coli and Klebsiella in Africa. Antimicrob Resist Infect Control 2023; 12:29. [PMID: 37013626 PMCID: PMC10071777 DOI: 10.1186/s13756-023-01220-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/18/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacterales are among the most serious antimicrobial resistance (AMR) threats. Emerging resistance to polymyxins raises the specter of untreatable infections. These resistant organisms have spread globally but, as indicated in WHO reports, the surveillance needed to identify and track them is insufficient, particularly in less resourced countries. This study employs comprehensive search strategies with data extraction, meta-analysis and mapping to help address gaps in the understanding of the risks of carbapenem and polymyxin resistance in the nations of Africa. METHODS Three comprehensive Boolean searches were constructed and utilized to query scientific and medical databases as well as grey literature sources through the end of 2019. Search results were screened to exclude irrelevant results and remaining studies were examined for relevant information regarding carbapenem and/or polymyxin(s) susceptibility and/or resistance amongst E. coli and Klebsiella isolates from humans. Such data and study characteristics were extracted and coded, and the resulting data was analyzed and geographically mapped. RESULTS Our analysis yielded 1341 reports documenting carbapenem resistance in 40 of 54 nations. Resistance among E. coli was estimated as high (> 5%) in 3, moderate (1-5%) in 8 and low (< 1%) in 14 nations with at least 100 representative isolates from 2010 to 2019, while present in 9 others with insufficient isolates to support estimates. Carbapenem resistance was generally higher among Klebsiella: high in 10 nations, moderate in 6, low in 6, and present in 11 with insufficient isolates for estimates. While much less information was available concerning polymyxins, we found 341 reports from 33 of 54 nations, documenting resistance in 23. Resistance among E. coli was high in 2 nations, moderate in 1 and low in 6, while present in 10 with insufficient isolates for estimates. Among Klebsiella, resistance was low in 8 nations and present in 8 with insufficient isolates for estimates. The most widespread associated genotypes were, for carbapenems, blaOXA-48, blaNDM-1 and blaOXA-181 and, for polymyxins, mcr-1, mgrB, and phoPQ/pmrAB. Overlapping carbapenem and polymyxin resistance was documented in 23 nations. CONCLUSIONS While numerous data gaps remain, these data show that significant carbapenem resistance is widespread in Africa and polymyxin resistance is also widely distributed, indicating the need to support robust AMR surveillance, antimicrobial stewardship and infection control in a manner that also addresses broader animal and environmental health dimensions.
Collapse
Affiliation(s)
- Danielle M Venne
- Center on Medical Product Access, Safety and Stewardship, Georgetown University, 3900 Reservoir Road, Washington, DC, 20057, USA
| | - David M Hartley
- James M. Anderson Center for Health Systems Excellence, Cincinnati Children's Hospital, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Marissa D Malchione
- Center on Medical Product Access, Safety and Stewardship, Georgetown University, 3900 Reservoir Road, Washington, DC, 20057, USA
- Sabin Vaccine Institute, Influenza Vaccine Innovation, 2175 K St NW, Washington, DC, 20037, USA
| | - Michala Koch
- Center on Medical Product Access, Safety and Stewardship, Georgetown University, 3900 Reservoir Road, Washington, DC, 20057, USA
| | - Anjali Y Britto
- Center on Medical Product Access, Safety and Stewardship, Georgetown University, 3900 Reservoir Road, Washington, DC, 20057, USA
| | - Jesse L Goodman
- Center on Medical Product Access, Safety and Stewardship, Georgetown University, 3900 Reservoir Road, Washington, DC, 20057, USA.
| |
Collapse
|
11
|
Research Updates of Plasmid-Mediated Aminoglycoside Resistance 16S rRNA Methyltransferase. Antibiotics (Basel) 2022; 11:antibiotics11070906. [PMID: 35884160 PMCID: PMC9311965 DOI: 10.3390/antibiotics11070906] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/27/2023] Open
Abstract
With the wide spread of multidrug-resistant bacteria, a variety of aminoglycosides have been used in clinical practice as one of the effective options for antimicrobial combinations. However, in recent years, the emergence of high-level resistance against pan-aminoglycosides has worsened the status of antimicrobial resistance, so the production of 16S rRNA methyltransferase (16S-RMTase) should not be ignored as one of the most important resistance mechanisms. What is more, on account of transferable plasmids, the horizontal transfer of resistance genes between pathogens becomes easier and more widespread, which brings challenges to the treatment of infectious diseases and infection control of drug-resistant bacteria. In this review, we will make a presentation on the prevalence and genetic environment of 16S-RMTase encoding genes that lead to high-level resistance to aminoglycosides.
Collapse
|
12
|
Epidemiology of Plasmids in Escherichia coli and Klebsiella pneumoniae with Acquired Extended Spectrum Beta-Lactamase Genes Isolated from Chronic Wounds in Ghana. Antibiotics (Basel) 2022; 11:antibiotics11050689. [PMID: 35625333 PMCID: PMC9138140 DOI: 10.3390/antibiotics11050689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Little information is available on the local epidemiology of mobile genetic elements such as plasmids harboring acquired beta-lactamase genes in Western African Ghana. In the present study, we screened for plasmids in three Escherichia coli and four Klebsiella pneumoniae isolates expressing extended spectrum beta-lactamases (ESBL) mediated by the blaCTX-M-15 gene from chronically infected wounds of Ghanaian patients. Bacterial isolates were subjected to combined short-read and long-read sequencing to obtain the sequences of their respective plasmids. In the blaCTX-M-15-gene-carrying plasmids of the four ESBL-positive K. pneumoniae isolates, IncFIB/IncFII (n = 3) and FIA (n = 1) sequences were detected, while in the blaCTX-M-15-gene-carrying plasmids of the three ESBL-positive E. coli isolates, IncFIA/IncFIB (n = 2) and IncFIB (n = 1) sequences were found. The three IncFIB/IncFII sequence-containing plasmids were almost identical to a K. pneumoniae plasmid reported from France. They belonged to the clonal lineages ST17, ST36 and ST39 of K. pneumoniae, suggesting transversal spread of this obviously evolutionary successful plasmid in Ghana. Other resistance gene-encoding plasmids observed in the assessed Enterobacterales harbored IncFIA/IncR and IncFII sequences. International spread was confirmed by the high genetic similarity to resistance-mediating plasmids published from Asia, Australia, Europe and Northern America, including a blaCTX-M-15-gene-carrying plasmid isolated from a wild bird in Germany. In conclusion, the study contributed to the scarcely available information on the epidemiology of third-generation cephalosporine resistance-mediating plasmids in Ghana. Furthermore, the global spread of resistance-mediating plasmids provided hints on the evolutionary success of individual resistance-harboring plasmids by transversal spread among K. pneumoniae lineages in Ghana.
Collapse
|
13
|
Fournier C, Poirel L, Despont S, Kessler J, Nordmann P. Increasing Trends of Association of 16S rRNA Methylases and Carbapenemases in Enterobacterales Clinical Isolates from Switzerland, 2017–2020. Microorganisms 2022; 10:microorganisms10030615. [PMID: 35336192 PMCID: PMC8951535 DOI: 10.3390/microorganisms10030615] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Aminoglycosides (AGs) in combination with β-lactams play an important role in antimicrobial therapy in severe infections. Pan-resistance to clinically relevant AGs increasingly arises from the production of 16S rRNA methylases (RMTases) that are mostly encoded by plasmids in Gram-negative bacteria. The recent emergence and spread of isolates encoding RMTases is worrisome, considering that they often co-produce extended-spectrum β-lactamases (ESBLs) or carbapenemases. Our study aimed to retrospectively analyze and characterize the association of carbapenem- and aminoglycoside-resistant clinical isolates in Switzerland during a 3.5-year period between January 2017 and June 2020. A total of 103 pan-aminoglycoside- and carbapenem-resistant clinical isolates were recovered at the NARA (Swiss National Reference Center for Emerging Antibiotic Resistance) during the 2017–2020 period. Carbapenemase and RMTase determinants were identified by PCR and sequencing. The characterization of plasmids bearing resistance determinants was performed by a mating-out assay followed by PCR-based replicon typing (PBRT). Clonality of the isolates was investigated by multilocus sequence typing (MLST). Over the 991 Enterobacterales collected at the NARA during this period, 103 (10.4%) of them were resistant to both carbapenems and all aminoglycosides. Among these 103 isolates, 35 isolates produced NDM-like carbapenemases, followed by OXA-48-like (n = 23), KPC-like (n = 21), or no carbapenemase (n = 13), OXA-48-like and NDM-like co-production (n = 7), and VIM-like enzymes (n = 4). The RMTases ArmA, RmtB, RmtC, RmtF, RmtG, and RmtB + RmtF were identified among 51.4%, 13.6%, 4.9%, 24.3%, 1%, and 1%, respectively. Plasmid co-localization of the carbapenemase and the RMTase encoding genes was found among ca. 20% of the isolates. A high diversity was identified in terms of the nature of associations between RMTase and carbapenemase-encoding genes, of incompatibility groups of the corresponding plasmids, and of strain genetic backgrounds, highlighting heterogeneous importations rather than clonal dissemination.
Collapse
Affiliation(s)
- Claudine Fournier
- Medical and Molecular Microbiology Unit, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (C.F.); (S.D.)
| | - Laurent Poirel
- Medical and Molecular Microbiology Unit, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (C.F.); (S.D.)
- INSERM European Unit (IAME, France), University of Fribourg, 1700 Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), 1700 Fribourg, Switzerland;
- Correspondence: (L.P.); (P.N.); Tel.: +41-26-300-9582 (L.P.)
| | - Sarah Despont
- Medical and Molecular Microbiology Unit, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (C.F.); (S.D.)
| | - Julie Kessler
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), 1700 Fribourg, Switzerland;
| | - Patrice Nordmann
- Medical and Molecular Microbiology Unit, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (C.F.); (S.D.)
- INSERM European Unit (IAME, France), University of Fribourg, 1700 Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), 1700 Fribourg, Switzerland;
- Institute for Microbiology, University of Lausanne and University Hospital Centre, 1011 Lausanne, Switzerland
- Correspondence: (L.P.); (P.N.); Tel.: +41-26-300-9582 (L.P.)
| |
Collapse
|
14
|
Antimicrobial Activity Profiles and Potential Antimicrobial Regimens against Carbapenem-Resistant Enterobacterales Isolated from Multi-Centers in Western Thailand. Antibiotics (Basel) 2022; 11:antibiotics11030355. [PMID: 35326818 PMCID: PMC8944502 DOI: 10.3390/antibiotics11030355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The spread of carbapenem-resistant Enterobacterales (CRE) constitutes a global health burden. Antimicrobial susceptibility and types of carbapenemase differ by geographic region. This study aimed to (1) examine the minimum inhibitory concentrations (MICs) and antibiotic resistance genes and (2) investigate antibiotic dosing regimens against CRE using Monte Carlo simulation. Clinical carbapenem-resistant Klebsiella pneumoniae (CRKP), Escherichia coli (CREC), and Enterobacter cloacae (CREclo) isolates were collected from various hospitals in western Thailand. Broth microdilution was performed, and the types of carbapenemase and mcr-1 genes were detected using polymerase chain reaction (PCR). Monte Carlo simulation was used to establish optimal antimicrobial dosing regimens meeting the criterion of a cumulative fraction of response (CFR) >90%. A total of 150 CRE isolates from 12 hospitals were included. The proportion of CRKP (76%) was greater than that of CREC (22%) and CREclo (2%). Regional hospitals reported higher rates of resistance than general hospitals. Most isolates were resistant to aztreonam and ceftazidime/avibactam, whereas they were highly susceptible to aminoglycosides. Most carbapenemases were NDM (47.33%), OXA-48 (43.33%) and NDM plus OXA-48 (6.67%); five OXA-48 positive isolates carried mcr-1 genes. Currently, high-dose tigecycline is the only optimal regimen against CRE isolates. Further extensive research on antibiotic synergism or new antibiotics should be conducted.
Collapse
|
15
|
Savin M, Bierbaum G, Schmithausen RM, Heinemann C, Kreyenschmidt J, Schmoger S, Akbaba I, Käsbohrer A, Hammerl JA. Slaughterhouse wastewater as a reservoir for extended-spectrum β-lactamase (ESBL)-producing, and colistin-resistant Klebsiella spp. and their impact in a "One Health" perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150000. [PMID: 34517324 DOI: 10.1016/j.scitotenv.2021.150000] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 05/28/2023]
Abstract
Klebsiella spp. are ubiquitous bacteria capable of colonizing humans and animals, and sometimes leading to severe infections in both. Due to their high adaptability against environmental/synthetic conditions as well as their potential in aquiring antimicrobial/metal/biocide resistance determinants, Klebsiella spp. are recognized as an emerging threat to public health, worldwide. Currently, scarce information on the impact of livestock for the spread of pathogenic Klebsiella spp. is available. Thus, the phenotypic and genotypic properties of extended-spectrum β-lactamase-producing, and colistin-resistant Klebsiella strains (n = 185) from process- and wastewater of two poultry and pig slaughterhouses as well as their receiving municipal wastewater treatment plants (mWWTPs) were studied to determine the diversity of isolates that might be introduced into the food-production chain or that are released into the environment by surviving the wastewater treatment. Selectively-isolated Klebsiella spp. from slaughterhouses including effluents and receiving waterbodies of mWWTPs were assigned to various lineages, including high-risk clones involved in human outbreaks, and exhibited highly heterogeneous antibiotic-resistance patterns. While isolates originating from poultry slaughterhouses showed the highest rate of colistin resistance (32.4%, 23/71), carbapenem-resistant Klebsiella spp. were only detected in mWWTP samples (n = 76). The highest diversity of resistance genes (n = 77) was detected in Klebsiella spp. from mWWTPs, followed by isolates from pig (n = 56) and poultry slaughterhouses (n = 52). Interestingly, no carbapenemase-encoding genes were detected and mobile colistin resistance genes were only obeserved in isolates from poultry and pig slaughterhouses. Our study provides in-depth information into the clonality of livestock-associated Klebsiella spp. and their determinants involved in antimicrobial resistance and virulence development. On the basis of their pathogenic potential and clinical importance there is a potential risk of colonization and/or infection of wildlife, livestock and humans exposed to contaminated food and/or surface waters.
Collapse
Affiliation(s)
- Mykhailo Savin
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Germany; Institute of Animal Sciences, University of Bonn, Bonn, Germany
| | - Gabriele Bierbaum
- Institute for Medical Microbiology, Immunology and Parasitology, Medical Faculty, University of Bonn, Bonn, Germany
| | | | | | - Judith Kreyenschmidt
- Institute of Animal Sciences, University of Bonn, Bonn, Germany; Hochschule Geisenheim University, Department of Fresh Produce Logistics, Geisenheim, Germany
| | - Silvia Schmoger
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Inna Akbaba
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Annemarie Käsbohrer
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany; Unit for Veterinary Public Health and Epidemiology, University of Veterinary Medicine, AT-1210 Vienna, Austria
| | - Jens Andre Hammerl
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany.
| |
Collapse
|
16
|
Yang Y, Yang Y, Ahmed MAEGES, Qin M, He R, Wu Y, Liang X, Zhong LL, Chen P, Deng B, Hassan RM, Wen W, Xu L, Huang X, Xu L, Tian GB. Carriage of distinct bla KPC-2 and bla OXA-48 plasmids in a single ST11 hypervirulent Klebsiella pneumoniae isolate in Egypt. BMC Genomics 2022; 23:20. [PMID: 34996351 PMCID: PMC8742346 DOI: 10.1186/s12864-021-08214-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/25/2021] [Indexed: 11/28/2022] Open
Abstract
Background Carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) causes serious infections with significant morbidity and mortality. However, the epidemiology and transmission mechanisms of CR-hvKP and the corresponding carbapenem-resistant plasmids require further investigation. Herein, we have characterized an ST11 K. pneumoniae strain EBSI041 from the blood sample encoding both hypervirulence and carbapenem resistance phenotypes from a patient in Egypt. Results K. pneumoniae strain EBSI041 showed multidrug-resistance phenotypes, where it was highly resistant to almost all tested antibiotics including carbapenems. And hypervirulence phenotypes of EBSI041 was confirmed by the model of Galleria mellonella infection. Whole-genome sequencing analysis showed that the hybrid plasmid pEBSI041-1 carried a set of virulence factors rmpA, rmpA2, iucABCD and iutA, and six resistance genes aph(3′)-VI, armA, msr(E), mph(E), qnrS, and sul2. Besides, blaOXA-48 and blaSHV-12 were harboured in a novel conjugative IncL-type plasmid pEBSI041-2. The blaKPC-2-carrying plasmid pEBSI041-3, a non-conjugative plasmid lacking the conjugative transfer genes, could be transferred with the help of pEBSI041-2, and the two plasmids could fuse into a new plasmid during co-transfer. Moreover, the emergence of the p16HN-263_KPC-like plasmids is likely due to the integration of pEBSI041-3 and pEBSI041-4 via IS26-mediated rearrangement. Conclusion To the best of our knowledge, this is the first report on the complete genome sequence of KPC-2- and OXA-48-coproducing hypervirulent K. pneumoniae from Egypt. These results give new insights into the adaptation and evolution of K. pneumoniae during nosocomial infections. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08214-9.
Collapse
Affiliation(s)
- Yanxian Yang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Yongqiang Yang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510006, China
| | - Mohamed Abd El-Gawad El-Sayed Ahmed
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.,Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Cairo, 6th of October City, Egypt
| | - Mingyang Qin
- Department of Pathogen Biology, School of Basic Medical, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ruowen He
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Yiping Wu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Xiaoxue Liang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Lan-Lan Zhong
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ping Chen
- Department of Pathogen Biology, School of Basic Medical, Xinxiang Medical University, Xinxiang, 453003, China
| | - Baoguo Deng
- Department of Pathogen Biology, School of Basic Medical, Xinxiang Medical University, Xinxiang, 453003, China
| | - Reem Mostafa Hassan
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Weihong Wen
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Lingqing Xu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Xubin Huang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Lin Xu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China. .,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China. .,Research Center for Clinical Laboratory Standard, Zhongshan School of Medicine, Sun Yat⁃sen University, Guangzhou, China.
| | - Guo-Bao Tian
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China. .,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China. .,School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China.
| |
Collapse
|
17
|
El-Far A, Samir S, El-Gebaly E, Omar M, Dahroug H, El-Shenawy A, Soliman NS, Gamal D. High Rates of Aminoglycoside Methyltransferases Associated with Metallo-Beta-Lactamases in Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Clinical Isolates from a Tertiary Care Hospital in Egypt. Infect Drug Resist 2021; 14:4849-4858. [PMID: 34848977 PMCID: PMC8613939 DOI: 10.2147/idr.s335582] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Pseudomonas aeruginosa are the leading cause of healthcare-associated infections worldwide. OBJECTIVE The aim was to identify the resistant phenotypes among P. aeruginosa and to characterize different aminoglycosides and carbapenem resistance genes as major mechanisms of resistance in these isolates, in Theodor Bilharz Research Institute (TBRI), a tertiary care hospital in Cairo, Egypt. METHODS During a period of 11 months, 42 P. aeruginosa clinical isolates were collected from the microbiology laboratory by routine culture. Antimicrobial sensitivity testing to the aminoglycosides gentamicin and amikacin, and other classes of antibiotics, was performed by a disk diffusion method. Isolates were tested for aminoglycoside resistance genes, aac(6')-lb, aac-(3)-lla, rmtB, rmtC, armA, rmtD, and rmtF, and carbapenemase resistance genes bla NDM, bla VIM, and bla IMP, using conventional PCR. RESULTS Thirty-three (78.5%) of the clinical P. aeruginosa isolates showed MDR and XDR phenotypes at 42.4% and 57.65%, respectively, and these were included in the study. Aminoglycoside resistance was found in 97%, whereas carbapenem resistance was found in 81% of the isolates phenotypically. Only 59.4% (19/26) of the aminoglycoside-resistant isolates harbored resistance genes; none of the amikacin-susceptible isolates harbored any of the tested aminoglycoside resistance genes. Aminoglycoside resistance genes rmtB, armA, aac(6')-lb, and rmtF were found at rates of 17/33 (51.5%), 3/33 (9%), 2/33 (6%), and 2/33 (6%), respectively, whereas rmtD, acc(3)-II, and rmtC were not detected. Only 40.7% (11/27) of the carbapenem-resistant isolates harbored resistance genes. Carbapenem resistance genes, bla NDM andbla VIM, were found at rates of 7/33 (21.2%) and 6/33 (18.1%), respectively, and bla IMP was not detected. CONCLUSION Rates of MDR and XDR P. aeruginosa and resistance to aminoglycosides and carbapenems in our setting are high. Methyltransferases and metallo-beta-lactamases are the main mechanisms of resistance to aminoglycosides and carbapenems, respectively. The presence of bla NDM and rmtF in the strains confirms their rapid dissemination in the Egyptian environment.
Collapse
Affiliation(s)
- Amira El-Far
- Microbiology Department, Theodor Bilharz Research Institute (TBRI), Cairo, Egypt
| | - Safia Samir
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute (TBRI), Cairo, Egypt
| | - Eman El-Gebaly
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suif University, Beni-Suif, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, October 6 University, Beni-Suef, 12585, Egypt
| | - Maysa Omar
- Microbiology Department, Theodor Bilharz Research Institute (TBRI), Cairo, Egypt
| | - Heba Dahroug
- Microbiology Department, Theodor Bilharz Research Institute (TBRI), Cairo, Egypt
| | - Ahmed El-Shenawy
- Microbiology Department, Theodor Bilharz Research Institute (TBRI), Cairo, Egypt
| | - Noha Salah Soliman
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Doaa Gamal
- Microbiology Department, Theodor Bilharz Research Institute (TBRI), Cairo, Egypt
| |
Collapse
|
18
|
Ragheb SM, Govinden U, Osei Sekyere J. Genetic support of carbapenemases: a One Health systematic review and meta-analysis of current trends in Africa. Ann N Y Acad Sci 2021; 1509:50-73. [PMID: 34753206 DOI: 10.1111/nyas.14703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/06/2021] [Accepted: 09/26/2021] [Indexed: 11/28/2022]
Abstract
Antimicrobial resistance (AMR) is a public health threat globally. Carbapenems are β-lactam antibiotics used as last-resort agents for treating antibiotic-resistant infections. Mobile genetic elements (MGEs) play an important role in the dissemination and expression of antimicrobial resistance genes (ARGs), including the mobilization of ARGs within and between species. The presence of MGEs around carbapenem-hydrolyzing enzymes, called carbapenemases, in bacterial isolates in Africa is concerning. The association between MGEs and carbapenemases is described herein. Specific plasmid replicons, integrons, transposons, and insertion sequences were found flanking specific and different carbapenemases across the same and different clones and species isolated from humans, animals, and the environment. Notably, similar genetic contexts have been reported in non-African countries, supporting the importance of MGEs in driving the intra- and interclonal and species transmission of carbapenemases in Africa and globally. Technical and budgetary limitations remain challenges for epidemiological analysis of carbapenemases in Africa, as studies undertaken with whole-genome sequencing remained relatively few. Characterization of MGEs in antibiotic-resistant infections can deepen our understanding of carbapenemase epidemiology and facilitate the control of AMR in Africa. Investment in genomic epidemiology will facilitate faster clinical interventions and containment of outbreaks.
Collapse
Affiliation(s)
- Suzan Mohammed Ragheb
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Usha Govinden
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - John Osei Sekyere
- Department of Microbiology & Immunology, Indiana University School of Medicine-Northwest, Gary, Indiana.,Department of Dermatology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
19
|
Arca-Suárez J, Rodiño-Janeiro BK, Pérez A, Guijarro-Sánchez P, Vázquez-Ucha JC, Cruz F, Gómez-Garrido J, Alioto TS, Álvarez-Tejado M, Gut M, Gut I, Oviaño M, Beceiro A, Bou G. Emergence of 16S rRNA methyltransferases among carbapenemase-producing Enterobacterales in Spain studied by whole-genome sequencing. Int J Antimicrob Agents 2021; 59:106456. [PMID: 34688835 DOI: 10.1016/j.ijantimicag.2021.106456] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/27/2022]
Abstract
The emergence of 16S rRNA methyltransferases (RMTs) in Gram-negative pathogens bearing other clinically relevant resistance mechanisms, such as carbapenemase-producing Enterobacterales (CPE), is becoming an alarming concern. We investigated the prevalence, antimicrobial susceptibility, resistance mechanisms, molecular epidemiology and genetic support of RMTs in CPE isolates from Spain. This study included a collection of 468 CPE isolates recovered during 2018 from 32 participating Spanish hospitals. MICs were determined using the broth microdilution method, the agar dilution method (fosfomycin) or MIC gradient strips (plazomicin). All isolates were subjected to hybrid whole-genome sequencing (WGS). Sequence types (STs), core genome phylogenetic relatedness, horizontally acquired resistance mechanisms, plasmid analysis and the genetic environment of RMTs were determined in silico from WGS data in all RMT-positive isolates. Among the 468 CPE isolates evaluated, 24 isolates (5.1%) recovered from nine different hospitals spanning five Spanish regions showed resistance to all aminoglycosides and were positive for an RMT (21 RmtF, 2 ArmA and 1 RmtC). All RMT-producers showed high-level resistance to all aminoglycosides, including plazomicin, and in most cases exhibited an extensively drug-resistant susceptibility profile. The RMT-positive isolates showed low genetic diversity and were global clones of Klebsiella pneumoniae (ST147, ST101, ST395) and Enterobacter cloacae (ST93) bearing blaOXA-48, blaNDM-1 or blaVIM-1 carbapenemase genes. RMTs were harboured in five different multidrug resistance plasmids and linked to efficient mobile genetic elements. Our findings highlight that RMTs are emerging among clinical CPE isolates from Spain and their spread should be monitored to preserve the future clinical utility of aminoglycosides and plazomicin.
Collapse
Affiliation(s)
- Jorge Arca-Suárez
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| | - Bruno K Rodiño-Janeiro
- Prof. Martin Polz Laboratory, University of Vienna, Department for Microbiology and Ecosystem Science, Division of Microbial Ecology, Vienna, Austria
| | - Astrid Pérez
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| | - Paula Guijarro-Sánchez
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| | - Juan C Vázquez-Ucha
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Tyler S Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universistat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universistat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universistat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marina Oviaño
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| | - Alejandro Beceiro
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| | - Germán Bou
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain.
| | -
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| |
Collapse
|
20
|
Antimicrobial Resistance and Comparative Genome Analysis of Klebsiella pneumoniae Strains Isolated in Egypt. Microorganisms 2021; 9:microorganisms9091880. [PMID: 34576775 PMCID: PMC8465295 DOI: 10.3390/microorganisms9091880] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Klebsiella pneumoniae is an important human pathogen in both developing and industrialised countries that can causes a variety of human infections, such as pneumonia, urinary tract infections and bacteremia. Like many Gram-negative bacteria, it is becoming resistant to many frontline antibiotics, such as carbapenem and cephalosporin antibiotics. In Egypt, K. pneumoniae is increasingly recognised as an emerging pathogen, with high levels of antibiotic resistance. However, few Egyptian K. pneumoniae strains have been sequenced and characterised. Hence, here, we present the genome sequence of a multidrug resistant K. pneumoniae strain, KPE16, which was isolated from a child in Assiut, Egypt. We report that it carries multiple antimicrobial resistance genes, including a blaNDM-1 carbapenemase and extended spectrum β-lactamase genes (i.e., blaSHV-40, blaTEM-1B, blaOXA-9 and blaCTX-M-15). By comparing this strain with other Egyptian isolates, we identified common plasmids, resistance genes and virulence determinants. Our analysis suggests that some of the resistance plasmids that we have identified are circulating in K. pneumoniae strains in Egypt, and are likely a source of antibiotic resistance throughout the world.
Collapse
|
21
|
Büdel T, Kuenzli E, Campos-Madueno EI, Mohammed AH, Hassan NK, Zinsstag J, Hatz C, Endimiani A. On the island of Zanzibar people in the community are frequently colonized with the same MDR Enterobacterales found in poultry and retailed chicken meat. J Antimicrob Chemother 2021; 75:2432-2441. [PMID: 32562537 DOI: 10.1093/jac/dkaa198] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Intestinal colonization with extended-spectrum cephalosporin-resistant (ESC-R) and colistin-resistant (CST-R) Enterobacterales (Ent) can be driven by contact with colonized animals and/or contamination of the food chain. We studied the ESC-R-Ent and COL-R-Ent colonizing poultry as well as contaminating chicken meat in Zanzibar (Tanzania). Results were compared with recently published data obtained from rectal swabs of people in the community. METHODS During June and July 2018, we collected poultry faecal material (n = 62) and retail chicken meat (n = 37) samples. ESC-R and CST-R strains were isolated implementing selective approaches and characterized with different molecular methods, including WGS coupled with core-genome analyses. RESULTS The prevalence of ESC-R-Ent and CST-R-Ent, respectively, were: 88.7% and 48.4% in poultry; and 43.2% and 18.9% in chicken meat. Overall, the following strains and main resistance mechanisms were found in the two settings: 69 ESC-R Escherichia coli (CTX-M-15 subgroup, 75%), 34 ESC-R Klebsiella pneumoniae (CTX-M-9 group, 54.5%), 24 non-ESC-R but CST-R E. coli (mcr-1, 95.8%) and 17 non-ESC-R but CST-R K. pneumoniae (D150G substitution in PhoQ). Several clones (differing by only 0-13 single nucleotide variants) were concomitantly and frequently found in human and non-human settings: mcr-1-carrying E. coli ST46; CTX-M-15-producing E. coli ST361; CTX-M-14-producing K. pneumoniae ST17; and CTX-M-15-producing K. pneumoniae ST1741. CONCLUSIONS This is one of the few studies that have assessed the occurrence of identical MDR Enterobacterales in human and non-human settings. The frequent human gut colonization observed in the community might be favoured by the spread of ESC-R-Ent and CST-R-Ent in poultry and chicken meat. Further studies with a One Health approach should be carried out to better investigate this phenomenon.
Collapse
Affiliation(s)
- Thomas Büdel
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Esther Kuenzli
- Department of Public Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | | | | | | | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Christoph Hatz
- Department of Public Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Taylor E, Bal AM, Balakrishnan I, Brown NM, Burns P, Clark M, Diggle M, Donaldson H, Eltringham I, Folb J, Gadsby N, Macleod M, Ratnaraja NVDV, Williams C, Wootton M, Sriskandan S, Woodford N, Hopkins KL. A prospective surveillance study to determine the prevalence of 16S rRNA methyltransferase-producing Gram-negative bacteria in the UK. J Antimicrob Chemother 2021; 76:2428-2436. [PMID: 34142130 DOI: 10.1093/jac/dkab186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES To determine the prevalence of 16S rRNA methyltransferase- (16S RMTase-) producing Gram-negative bacteria in patients in the UK and to identify potential risk factors for their acquisition. METHODS A 6 month prospective surveillance study was conducted from 1 May to 31 October 2016, wherein 14 hospital laboratories submitted Acinetobacter baumannii, Enterobacterales and Pseudomonas aeruginosa isolates that displayed high-level amikacin resistance according to their testing methods, e.g. no zone of inhibition with amikacin discs. Isolates were linked to patient travel history, medical care abroad, and previous antibiotic exposure using a surveillance questionnaire. In the reference laboratory, isolates confirmed to grow on Mueller-Hinton agar supplemented with 256 mg/L amikacin were screened by PCR for 16S RMTase genes armA, rmtA-rmtH and npmA, and carbapenemase genes (blaKPC, blaNDM, blaOXA-48-like and blaVIM). STs and total antibiotic resistance gene complement were determined via WGS. Prevalence was determined using denominators for each bacterial species provided by participating hospital laboratories. RESULTS Eighty-four isolates (44.7%), among 188 submitted isolates, exhibited high-level amikacin resistance (MIC >256 mg/L), and 79 (94.0%) of these harboured 16S RMTase genes. armA (54.4%, 43/79) was the most common, followed by rmtB (17.7%, 14/79), rmtF (13.9%, 11/79), rmtC (12.7%, 10/79) and armA + rmtF (1.3%, 1/79). The overall period prevalence of 16S RMTase-producing Gram-negative bacteria was 0.1% (79/71 063). Potential risk factors identified through multivariate statistical analysis included being male and polymyxin use. CONCLUSIONS The UK prevalence of 16S RMTase-producing Gram-negative bacteria is low, but continued surveillance is needed to monitor their spread and inform intervention strategies.
Collapse
Affiliation(s)
- Emma Taylor
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.,Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, NW9 5EQ, UK
| | - Abhijit M Bal
- Microbiology, University Hospital Crosshouse, NHS Ayrshire and Arran, Kilmarnock, KA2 0BE, UK
| | | | - Nicholas M Brown
- Clinical Microbiology and Public Health Laboratory Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QW, UK
| | - Phillipa Burns
- Manchester Medical Microbiology Partnership, Manchester University NHS Foundation Trust, Manchester Royal Infirmary, Oxford Rd, Manchester, M13 9WL, UK
| | - Marilyn Clark
- Department of Medical Microbiology, Ninewells Hospital, Dundee, DD2 1SY, UK
| | - Mathew Diggle
- Nottingham University Hospitals National Health Service Trust, Hucknall Rd, Nottingham, NG5 1PB, UK
| | - Hugo Donaldson
- Imperial College Healthcare NHS Trust, Charing Cross Hospital, Fulham Palace Road, London, W6 8RF, UK
| | - Ian Eltringham
- Microbiology Department, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, UK
| | - Jonathan Folb
- Liverpool University Hospitals NHS Foundation Trust, Prescot St, Liverpool, L7 8XP, UK
| | - Naomi Gadsby
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, 51 Little France Cres, Edinburgh, EH16 4SA, UK
| | - Mairi Macleod
- Clinical Microbiology, Glasgow Royal Infirmary Hospital, Level 4 New Lister Building, 10-16 Alexandra Parade, Glasgow, G31 2ER, UK
| | - Natasha V D V Ratnaraja
- Department of Microbiology, Sandwell and West Birmingham NHS Trust, Dudley Road, Birmingham, B18 7QH, UK
| | - Cheryl Williams
- Microbiology Laboratory, First Floor, Pathology Laboratory, Royal Oldham Hospital, Rochdale Road, Oldham, OL1 2JH, UK
| | - Mandy Wootton
- Public Health Wales Microbiology Cardiff, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Shiranee Sriskandan
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.,MRC Centre for Molecular Bacteriology & Infection, Imperial College London, London, SW7 2DD, UK
| | - Neil Woodford
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.,Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, NW9 5EQ, UK
| | - Katie L Hopkins
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.,Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, NW9 5EQ, UK
| |
Collapse
|
23
|
Ahmed El-Domany R, El-Banna T, Sonbol F, Abu-Sayedahmed SH. Co-existence of NDM-1 and OXA-48 genes in Carbapenem Resistant Klebsiella pneumoniae clinical isolates in Kafrelsheikh, Egypt. Afr Health Sci 2021; 21:489-496. [PMID: 34795700 PMCID: PMC8568246 DOI: 10.4314/ahs.v21i2.2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background The noteworthy spread of carbapenem-resistant K. pneumoniae (CR-KP) isolates represents a significant safety threat. Objective Determination of the carbapenemase genes incidence among CR-KP clinical isolates in Kafrelsheikh, Egypt. Methods A total of 230 K. pneumoniae isolates were recovered from four hospitals in Kafrelsheikh, Egypt. Susceptibility testing was conducted using Kirby-Bauer method and automated-Vitek2 system. CR-KP isolates were tested using modified Hodge test (MHT) and combined disk synergy test. PCR and DNA sequencing were conducted for CR-KP isolates to recognize the included carbapenemase-genes. Results Out of 230 K. pneumoniae isolates, 50 isolates presented resistance to carbapenem (meropenem). All 50 CR-KP isolates were multidrug-resistant (MDR). Genes like blaNDM-1 and blaOXA-48 were the only detected genes among CR-KP with an incidence of 70.0% and 52.0%, respectively. Up to 74.0% of the tested isolates carried at least one of the two recorded genes, among them 48.0% co-harbored both blaNDM-1 and blaOXA-48 genes. The accession-numbers of sequenced blaNDM-1 and blaOXA-48 genes were MG594615 and MG594616, respectively. Conclusion This study reported a high incidence of MDR profile with the emergence of blaNDM-1 and blaOXA-48 genes co-existence in CR-KP isolates in Kafrelsheikh, Egypt. Hence, more restrictions should be applied against the spread of such serious pathogens.
Collapse
Affiliation(s)
- Ramadan Ahmed El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Tarek El-Banna
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Fatma Sonbol
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Samar Hamed Abu-Sayedahmed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
| |
Collapse
|
24
|
Emergence of Hypervirulent Carbapenem-Resistant Klebsiella pneumoniae Coharboring a bla NDM-1-Carrying Virulent Plasmid and a bla KPC-2-Carrying Plasmid in an Egyptian Hospital. mSphere 2021; 6:6/3/e00088-21. [PMID: 34011682 PMCID: PMC8265623 DOI: 10.1128/msphere.00088-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates in Egyptian hospitals has been reported. However, the genetic basis and analysis of the plasmids associated with carbapenem-resistant hypervirulent K. pneumoniae (CR-HvKP) in Egypt have not been presented. Therefore, we attempted to decipher the plasmid sequences that are responsible for transferring the determinants of carbapenem resistance, particularly blaNDM-1 and blaKPC-2. Out of 34 K. pneumoniae isolates collected from two tertiary hospitals in Egypt, 31 were CRKP. Whole-genome sequencing revealed that our isolates were related to 13 different sequence types (STs). The most prevalent ST was ST101, followed by ST383 and ST11. Among the CRKP isolates, one isolate named EBSI036 has been reassessed by Nanopore sequencing. Genetic environment analysis showed that EBSI036 carried 20 antibiotic resistance genes and was identified as a CR-HvKP strain: it harbored four plasmids, namely, pEBSI036-1-NDM-VIR, pEBSI036-2-KPC, pEBSI036-3, and pEBSI036-4. The two carbapenemase genes blaNDM-1 and blaKPC-2 were located on plasmids pEBSI036-1-NDM-VIR and pEBSI036-2-KPC, respectively. The IncFIB:IncHI1B hybrid plasmid pEBSI036-1-NDM-VIR also carried some virulence factors, including the regulator of the mucoid phenotype (rmpA), the regulator of mucoid phenotype 2 (rmpA2), and aerobactin (iucABCD and iutA). Thus, we set out in this study to analyze in depth the genetic basis of the pEBSI036-1-NDM-VIR and pEBSI036-2-KPC plasmids. We report a high-risk clone ST11 KL47 serotype of a CR-HvKP strain isolated from the blood of a 60-year-old hospitalized female patient from the intensive care unit (ICU) in a tertiary care hospital in Egypt, which showed the cohabitation of a novel hybrid plasmid coharboring the blaNDM-1 and virulence genes and a blaKPC-2-carrying plasmid. IMPORTANCE CRKP has been registered in the critical priority tier by the World Health Organization and has become a significant menace to public health. The emergence of CR-HvKP is of great concern in terms of both disease and treatment. In-depth analysis of the carbapenemase-encoding and virulence plasmids may provide insight into ongoing recombination and evolution of virulence and multidrug resistance in K. pneumoniae. Thus, this study serves to alert contagious disease clinicians to the presence of hypervirulence in CRKP isolates in Egyptian hospitals.
Collapse
|
25
|
Detection of a New Resistance-Mediating Plasmid Chimera in a blaOXA-48-Positive Klebsiella pneumoniae Strain at a German University Hospital. Microorganisms 2021; 9:microorganisms9040720. [PMID: 33807212 PMCID: PMC8066831 DOI: 10.3390/microorganisms9040720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
Mobile genetic elements, such as plasmids, facilitate the spread of antibiotic resistance genes in Enterobacterales. In line with this, we investigated the plasmid-resistome of seven blaOXA-48 gene-carrying Klebsiella pneumoniae isolates, which were isolated between 2013 and 2014 at the University Medical Center in Göttingen, Germany. All isolates were subjected to complete genome sequencing including the reconstruction of entire plasmid sequences. In addition, phenotypic resistance testing was conducted. The seven isolates comprised both disease-associated isolates and colonizers isolated from five patients. They fell into two clusters of three sequence type (ST)101 and two ST11 isolates, respectively; and ST15 and ST23 singletons. The seven isolates harbored various plasmids of the incompatibility (Inc) groups IncF, IncL/M, IncN, IncR, and a novel plasmid chimera. All blaOXA-48 genes were encoded on the IncL/M plasmids. Of note, distinct phenotypical resistance patterns associated with different sets of resistance genes encoded by IncL/M and IncR plasmids were observed among isolates of the ST101 cluster in spite of high phylogenetic relatedness of the bacterial chromosomes, suggesting nosocomial transmission. This highlights the importance of plasmid uptake and plasmid recombination events for the fast generation of resistance variability after clonal transmission. In conclusion, this study contributes a piece in the puzzle of molecular epidemiology of resistance gene-carrying plasmids in K. pneumoniae in Germany.
Collapse
|
26
|
Abd El-gawad El-sayed Ahmed M, Yang Y, Yang Y, Yan B, Chen G, Hassan RM, Zhong L, Chen Y, Roberts AP, Wu Y, He R, Liang X, Qin M, Dai M, Zhang L, Li H, Fan Y, Xu L, Tian G. Emergence of a Hypervirulent Carbapenem-Resistant Klebsiella pneumoniae Co-harbouring a blaNDM-1-carrying Virulent Plasmid and a blaKPC-2-carrying Plasmid in an Egyptian Hospital.. [DOI: 10.1101/2021.02.26.433140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
ABSTRACTThe emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates in Egyptian hospitals has been reported. However, the genetic basis and the analysis of the plasmids associated with CR-hypervirulent-KP (CR-HvKP) in Egypt are not presented. Therefore, we attempt to decipher the plasmids sequences, which are responsible for transferring the determinants of carbapenem-resistance, particularly the blaNDM-1 and blaKPC-2. Out of 34 K. pneumoniae isolates collected from two tertiary hospitals in Egypt, 31 were CRKP. Whole-genome sequencing revealed that our isolates were related to 13 different sequence types (STs). The most prevalent ST was ST101, followed by ST383, and ST11. Among the CRKP isolates, one isolate named EBSI036 has been reassessed using Nanopore sequencing. Genetic environment analysis showed that EBSI036 carried 20 antibiotic resistance genes and was identified as CR-HvKP strain, it harboured four plasmids, namely; pEBSI036-1-NDM-VIR, pEBSI036-2-KPC, pEBSI036-3, and pEBSI036-4. The two carbapenemase genes, blaNDM-1 and blaKPC-2, were located on plasmids pEBSI036-1-NDM-VIR and pEBSI036-2-KPC, respectively. The IncFIB:IncHI1B hybrid plasmid pEBSI036-1-NDM-VIR also carried some virulence factors, including regulator of the mucoid phenotype (rmpA), the regulator of mucoid phenotype 2 (rmpA2), and aerobactin (iucABCD, iutA). Thus, we set out this study to analyse in-depth the genetic basis of pEBSI036-1-NDM-VIR and pEBSI036-2-KPC plasmids. We reported for the first time a high-risk clone ST11 KL47 serotype of CR-HvKP strain isolated from the blood of a 60-year-old hospitalised female patient from the ICU in a tertiary-care hospital in Egypt, which showed the cohabitation of a novel hybrid plasmid coharbouring the blaNDM-1 and virulence genes, besides a blaKPC-2-carrying plasmid.IMPORTANCECRKP had been registered in the critical priority tier by the World Health Organization and became a significant menace to public health. Therefore, we set out this study to analyse in-depth the genetic basis of pEBSI036-1-NDM-VIR and pEBSI036-2-KPC plasmids. Herein, we reported for the first time (to the best of our knowledge) a high-risk clone ST11 KL47 serotype of CR-HvKP strain isolated from the blood of a 60-year-old hospitalised female patient in a tertiary-care hospital from the ICU in Egypt, which showed the cohabitation of a novel hybrid plasmid co-harbouring the blaNDM-1 and virulence genes, besides a blaKPC-2-carrying plasmid. Herein, the high rate of CRKP might be due to the continuous usage of carbapenems as empirical therapy, besides the failure to implement an antibiotic stewardship program in Egyptian hospitals. Thus, this study serves to alert the contagious disease clinicians to the presence of hypervirulence in CRKP isolates in Egyptian hospitals.
Collapse
|
27
|
Wachino JI, Doi Y, Arakawa Y. Aminoglycoside Resistance: Updates with a Focus on Acquired 16S Ribosomal RNA Methyltransferases. Infect Dis Clin North Am 2020; 34:887-902. [PMID: 33011054 PMCID: PMC10927307 DOI: 10.1016/j.idc.2020.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The clinical usefulness of aminoglycosides has been revisited as an effective choice against β-lactam-resistant and fluoroquinolone-resistant gram-negative bacterial infections. Plazomicin, a next-generation aminoglycoside, was introduced for the treatment of complicated urinary tract infections and acute pyelonephritis. In contrast, bacteria have resisted aminoglycosides, including plazomicin, by producing 16S ribosomal RNA (rRNA) methyltransferases (MTases) that confer high-level and broad-range aminoglycoside resistance. Aminoglycoside-resistant 16S rRNA MTase-producing gram-negative pathogens are widespread in various settings and are becoming a grave concern. This article provides up-to-date information with a focus on aminoglycoside-resistant 16S rRNA MTases.
Collapse
Affiliation(s)
- Jun-Ichi Wachino
- Department of Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, S829 Scaife Hall, 3350 Terrace Street, Pittsburgh, PA 15261, USA; Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Japan; Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshichika Arakawa
- Department of Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Medical Technology, Shubun University, Japan
| |
Collapse
|
28
|
Gamal D, Egea P, Elías C, Fernández-Martínez M, Causse M, Pérez-Nadales E, Salem D, Fam N, Diab M, Aitta AA, El-Defrawy I, Martínez-Martínez L. High-risk clones and novel sequence type ST4497 of Klebsiella pneumoniae clinical isolates producing different alleles of NDM-type and other carbapenemases from a single tertiary-care centre in Egypt. Int J Antimicrob Agents 2020; 56:106164. [PMID: 32949764 DOI: 10.1016/j.ijantimicag.2020.106164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/22/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022]
Abstract
Enterobacteria producing NDM carbapenemases represent a severe diagnostic and therapeutic challenge in healthcare settings. Infections caused by NDM-positive strains are usually associated with high mortality rates and very limited treatment options. A total number of 33 carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates were included in this study, comprising 30 recovered from clinical diagnostic samples and 3 cultured from screening rectal swabs taken at patient admission. Bacterial identification was performed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS) and antibiotic susceptibility testing was performed by reference broth microdilution and a commercial automated method. Isolates were investigated for carbapenemase production using the β-CARBA test, the modified carbapenem inactivation method (mCIM) and, for the 30 clinical isolates, by MALDI-TOF/MS, using the MBT STARⓇ-Carba IVD Kit. Carbapenem resistance genes were characterised by PCR and sequencing. Seven different blaNDM gene variants were identified in 94% of the isolates, whilst three variants of blaOXA-48-like were detected in 27% of the isolates. Most CRKP corresponded to high-risk clones (ST147, ST11 and ST15). Novel ST4497 is reported for the first time in this study as well as the first emergence of K. pneumoniae ST231 producing OXA-232 in Egypt. These results indicate an ongoing evolution of the blaNDM genes in our area and confirm the need for a maintained surveillance system in order to monitor the spread of these mobile blaNDM genes.
Collapse
Affiliation(s)
- Doaa Gamal
- Microbiology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt; Unit of Microbiology, Reina Sofía University Hospital (HURS), Cordoba, Spain.
| | - Pilar Egea
- Unit of Microbiology, Reina Sofía University Hospital (HURS), Cordoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Cristina Elías
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | | | - Manuel Causse
- Unit of Microbiology, Reina Sofía University Hospital (HURS), Cordoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | | | - Dalia Salem
- Microbiology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Nevine Fam
- Microbiology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Manal Diab
- Microbiology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Aisha Abu Aitta
- Microbiology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Inas El-Defrawy
- Microbiology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Luis Martínez-Martínez
- Unit of Microbiology, Reina Sofía University Hospital (HURS), Cordoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain; Department of Microbiology, University of Cordoba (UCO), Cordoba, Spain
| |
Collapse
|
29
|
Sadek M, Poirel L, Nordmann P, Nariya H, Shimamoto T, Shimamoto T. Genetic characterisation of NDM-1 and NDM-5-producing Enterobacterales from retail chicken meat in Egypt. J Glob Antimicrob Resist 2020; 23:70-71. [PMID: 32889140 DOI: 10.1016/j.jgar.2020.07.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 06/15/2020] [Accepted: 07/01/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Mustafa Sadek
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Department of Food Hygiene and Control, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland.
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland; Institute for Microbiology, University of Lausanne and University Hospital Centre, Lausanne, Switzerland
| | - Hirofumi Nariya
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Toshi Shimamoto
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Tadashi Shimamoto
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.
| |
Collapse
|
30
|
Gondal AJ, Saleem S, Jahan S, Choudhry N, Yasmin N. Novel Carbapenem-Resistant Klebsiella pneumoniae ST147 Coharboring bla NDM-1, bla OXA-48 and Extended-Spectrum β-Lactamases from Pakistan. Infect Drug Resist 2020; 13:2105-2115. [PMID: 32669863 PMCID: PMC7337428 DOI: 10.2147/idr.s251532] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose The emergence of multidrug-resistant Klebsiella pneumoniae (K. pneumoniae) is associated with the acquisition of multiple carbapenemases. Their clonal spread is a worldwide concern due to their critical role in nosocomial infections. Therefore, the identification of high-risk clones with antibiotic resistance genes is very crucial for controlling its global spread. Materials and Methods A total of 227 K. pneumoniae strains collected during April 2018 to November 2019 were confirmed by PCR. Carbapenemases and extended-spectrum β-lactamases (ESBL) were detected phenotypically. Confirmation of carbapenemases was carried out by PCR and Sanger sequencing. The clonal lineages were assigned to selected isolates by multilocus sequence typing (MLST), and the plasmid analysis was done by PCR-based detection of the plasmid replicon typing. Results Of the total K. pneumoniae, 117 (51.5%) were carbapenem resistant (CRKP) and 140 (61.7%) were identified as ESBL producers. Intermediate to high resistance was detected in the tested β-lactam drugs while polymyxin-B and tigecycline were found to be susceptible. Among CRKP, 91 (77.8%) isolates were detected as carbapenemase producing, while 55 (47%) were positive for blaNDM-1 23.9% (n=28), blaOXA-48 22.2% (n=26) and blaVIM 0.85% (n=1) while 12.7% (n=7) carried both blaNDM-1 and blaOXA-48 genes. The CRKP coharboring blaNDM-1 and blaOXA-48 genes (n=7) were positive for blaCTX-MblaSHV (n=3), blaSHV (n=1) and blaCTX-M (n=3). The novel CRKP with the coexistence of blaNDM-1, blaOXA-48, blaCTX-M and blaSHV genes were associated with the high-risk clone ST147 (n=5) and ST11 (n=2). The assigned replicon types were IncL/M, IncFII, IncA/C and IncH1. Conclusion This is the first report of the coexistence of blaNDM-1, blaOXA-48, blaCTX-M and blaSHV genes on a high-risk lineage ST147 from Pakistan. This study highlights the successful dissemination of carbapenemase resistance genes in the high-risk clones that emphasizes the importance of monitoring and controlling the spread of these diverse clones globally.
Collapse
Affiliation(s)
- Aamir Jamal Gondal
- Department of Microbiology, University of Health Sciences, Lahore, Pakistan.,Department of Biomedical Sciences, King Edward Medical University, Lahore, Pakistan
| | - Sidrah Saleem
- Department of Microbiology, University of Health Sciences, Lahore, Pakistan
| | - Shah Jahan
- Department of Immunology, University of Health Sciences, Lahore, Pakistan
| | - Nakhshab Choudhry
- Department of Biochemistry, King Edward Medical University, Lahore, Pakistan
| | - Nighat Yasmin
- Department of Biomedical Sciences, King Edward Medical University, Lahore, Pakistan
| |
Collapse
|
31
|
Fuster B, Salvador C, Tormo N, García-González N, Gimeno C, González-Candelas F. Molecular epidemiology and drug-resistance mechanisms in carbapenem-resistant Klebsiella pneumoniae isolated in patients from a tertiary hospital in Valencia, Spain. J Glob Antimicrob Resist 2020; 22:718-725. [PMID: 32446938 DOI: 10.1016/j.jgar.2020.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/16/2020] [Accepted: 05/06/2020] [Indexed: 10/24/2022] Open
Abstract
OBJECTIVES The aim of this study has been to characterize carbapenem-resistant Klebsiella pneumoniae isolates and to determine the resistance mechanisms involved, the clonal relationship between strains and clinical and demographical data of the infected patients. METHODS Clinical and demographical data from patients were collected and statistically analysed. Antimicrobial susceptibility testing was performed and resistance genes were detected both phenotypically and genotypically. Conjugation assays were performed to show horizontal transferability of resistance genes. Clonal relationship was also studied. Next-generation sequencing (NGS) was performed to obtain information regarding resistance genes, sequence types, virulence factors and plasmid types. RESULTS Statistical significance was shown by the presence of an infection if there had been a previous hospital stay; urinary catheter carriage and chronic renal disease also indicated higher probabilities of being infected. More than 95% of the isolates were non-susceptible to third-generation cephalosporins, and more than 90% were non-susceptible to quinolones. Phenotypic and genotypic methods for resistance detection were concordant and later confirmed by NGS. This is the first detection of OXA-48, NDM-1 and CTX-M-15 co-production in the area. No plasmid-mediated colistin resistance was found. Tetracycline, sulfonamides and aminoglycoside resistance genes were found in almost all the isolates studied. No virulence factors were detected. Multilocus sequence typing showed more than 15 different sequence types, with ST101, ST307 and ST11 being the most prevalent. CONCLUSIONS This study is the first to report such a large group of OXA-48 carbapenemases with clonal dissemination among carbapenem-resistant K. pneumoniae in Valencia. This is also the first detection of OXA-48, NDM-1 and CTX-M-15 co-production in the area.
Collapse
Affiliation(s)
- Begoña Fuster
- Microbiology Department, Valencia General University Hospital, Valencia, Spain.
| | - Carme Salvador
- Microbiology Department, Valencia General University Hospital, Valencia, Spain
| | - Nuria Tormo
- Microbiology Department, Valencia General University Hospital, Valencia, Spain
| | - Neris García-González
- Joint Research Unit (Infection and Public Health), FISABIO, University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain
| | - Concepción Gimeno
- Microbiology Department, Valencia General University Hospital, Valencia, Spain; Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Fernando González-Candelas
- Joint Research Unit (Infection and Public Health), FISABIO, University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain; CIBER Epidemiology and Public Health, Valencia, Spain
| |
Collapse
|
32
|
Xiang T, Chen C, Wen J, Liu Y, Zhang Q, Cheng N, Wu X, Zhang W. Resistance of Klebsiella pneumoniae Strains Carrying bla NDM-1 Gene and the Genetic Environment of bla NDM-1. Front Microbiol 2020; 11:700. [PMID: 32425903 PMCID: PMC7203411 DOI: 10.3389/fmicb.2020.00700] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/25/2020] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Regional dissemination is the major cause of the widespread prevalence of a plasmid-encoding NDM-1 enzyme. We investigated the drug resistance, joint efficiency, and gene environment of a Klebsiella pneumoniae strain carrying bla NDM-1 gene. MATERIALS AND METHODS Carbapenem-non-susceptible strains were analyzed using the VITEK 2 Compact. Strains carrying bla NDM-1 were identified using polymerase chain reaction and sequencing. Antimicrobial susceptibility testing and plasmid conjugation experiments were then conducted. Strains carrying bla NDM-1 were subjected to Southern blot analysis. After the gene mapping of bla NDM-1, library construction, and sequencing, plasmids were subsequently spliced and genotyped using the software Glimmer 3.0, and then analyzed using Mauve software. RESULTS Among 1735 carbapenem-non-susceptible strains, 54 strains of bla NDM-1-positive bacteria were identified, which consisted of 44 strains of K. pneumoniae, 8 strains of Acinetobacter baumannii and 2 strains of Escherichia coli. Strains carrying bla NDM-1 had a resistance rate of more than 50% in most antibiotics. Plasmid conjugation between strains carrying bla NDM-1 and E. coli strain J53 had a success rate of 50%. Southern blot analysis indicated that each strain had multiple plasmids containing bla NDM-1. Among the five plasmids containing bla NDM-1 in K. pneumoniae for sequencing, two plasmids with complete sequences were obtained. The findings were as follows: (i) The p11106 and p12 plasmids were highly similar to pNDM-BTR; (ii) the p11106 and p12 plasmids showed differences in the 20-30 kb region (orf00032-orf00043) from the other six plasmids; and (iii) bla NDM-1 was located at orf00037, while ble was found at orf00038. Two tnpA genes were located in the upstream region, and orf00052 (tnpA) in the 36 kb region was in the downstream sequence. CONCLUSION bla NDM-1-containing bacteria exhibit multidrug resistance, which rapidly spreads and is transferred through efficient plasmid conjugation; the multidrug resistance of these bacteria may be determined by analyzing their drug-resistant plasmids. The presence of ble and tnpA genes suggests a possible hypothesis that bla NDM-1 originates from A. baumannii, which is retained in K. pneumoniae over a long period by transposition of mobile elements.
Collapse
Affiliation(s)
- Tianxin Xiang
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chuanhui Chen
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiangxiong Wen
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yang Liu
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qi Zhang
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Na Cheng
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoping Wu
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Zhang
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
33
|
ARGONAUT II Study of the In Vitro Activity of Plazomicin against Carbapenemase-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2020; 64:AAC.00012-20. [PMID: 32152078 DOI: 10.1128/aac.00012-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
Plazomicin was tested against 697 recently acquired carbapenem-resistant Klebsiella pneumoniae isolates from the Great Lakes region of the United States. Plazomicin MIC50 and MIC90 values were 0.25 and 1 mg/liter, respectively; 680 isolates (97.6%) were susceptible (MICs of ≤2 mg/liter), 9 (1.3%) intermediate (MICs of 4 mg/liter), and 8 (1.1%) resistant (MICs of >32 mg/liter). Resistance was associated with rmtF-, rmtB-, or armA-encoded 16S rRNA methyltransferases in all except 1 isolate.
Collapse
|
34
|
Ramadan Mohamed E, Ali MY, Waly NGFM, Halby HM, Abd El-Baky RM. The Inc FII Plasmid and its Contribution in the Transmission of blaNDM-1 and blaKPC-2 in Klebsiella pneumoniae in Egypt. Antibiotics (Basel) 2019; 8:antibiotics8040266. [PMID: 31847288 PMCID: PMC6963397 DOI: 10.3390/antibiotics8040266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022] Open
Abstract
The emergence of blaKPC-2 and blaNDM-1 producing Klebsiella pneumoniae represents a great problem in many Egyptian hospitals. One hundred and twenty-six K. pneumoniae isolates from patients admitted to Assiut University Hospital were identified by an API20E kit. Carbapenemase-producing K. pneumoniae (CPKP) was detected by the modified carbapenem inactivation method (mCIM), the EDTA-modified carbapenem inactivation method (eCIM), and an E-test. Based on the polymerase chain reaction, all isolates were negative for bla-VIM-1 and bla-IMP-1, fifteen of these isolates were positive for both blaKPC-2 and blaNDM-1, two isolates were positive for blaKPC-2 only, and twenty-eight isolates were positive for bla-NDM-1 only. Although one isolate was positive for the string test, all CPKP isolates were negative for capsular genes. Only 71.1% of CPKP transferred their plasmids to their corresponding transconjugants (E. coli J53). The resistance patterns of the clinical isolates and their transconjugates were similar, except for 12 isolates, which showed differences with their transconjugates in the resistance profile of four antibiotics. Molecular typing of the plasmids based on replicon typing showed that Inc FIIK and FII plasmids predominated in isolates and their transconjugants carrying blaKPC-2 and/or blaNDM-1. Conjugative Inc FII plasmids play an important role in the spread of CPKP, and their recognition is essential to limit their spread.
Collapse
Affiliation(s)
- Eman Ramadan Mohamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assuit 11651, Egypt; (E.R.M.); (M.Y.A.); (H.M.H.)
| | - Mamdouh Yones Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assuit 11651, Egypt; (E.R.M.); (M.Y.A.); (H.M.H.)
| | - Nancy G F M Waly
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | - Hamada Mohamed Halby
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assuit 11651, Egypt; (E.R.M.); (M.Y.A.); (H.M.H.)
| | - Rehab Mahmoud Abd El-Baky
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia 61519, Egypt
- Correspondence: ; Tel.: +20-1092487412
| |
Collapse
|
35
|
Soliman AM, Zarad HO, Nariya H, Shimamoto T, Shimamoto T. Genetic analysis of carbapenemase-producing Gram-negative bacteria isolated from a university teaching hospital in Egypt. INFECTION GENETICS AND EVOLUTION 2019; 77:104065. [PMID: 31634643 DOI: 10.1016/j.meegid.2019.104065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
A total of 65 non-replicate Gram-negative bacterial strains were recovered from clinical specimens between April and September 2014 at a University Hospital in Egypt. This collection was screened by PCR for carbapenemase-encoding genes, 16S rRNA methylases, and colistin resistance genes (mcr-1-mcr-8). Twenty-two strains (22/65, 33.8%) were positive for carbapenemase-encoding genes [13 NDM-1-producers (four Escherichia coli, two Klebsiella pneumoniae, and seven Providencia stuartii), two E. coli co-carrying NDM-5 and OXA-181, and seven Pseudomonas aeruginosa (three VIM-2, four VIM-24) strains]. The 16S rRNA methylase RmtC was detected in 12 NDM-1-producers for the first time in Egypt; no mcr genes were detected. A self-transmissible A/C plasmid was found to carry blaNDM-1 in all NDM-1-producing strains. NDM-5 and OXA-181 were located on an untypeable and IncX3 plasmid, respectively. Additionally, Enterobacterial repetitive intergenic consensus (ERIC)-PCR revealed five clonally related P. stuartii isolates collected over a 1.5-month period. Thirteen carbapenemase-producing strains were isolated from burn patients who are at a high risk of developing infections and require special medical care. To our knowledge, this is the first report of NDM-1-producing-P. stuartii strains in an African burn unit, NDM-1- and RmtC-positive non-lactose fermenting E. coli globally, VIM-24-producing P. aeruginosa in Africa, and 16S RMTase rmtC-NDM-1-producers in Egypt. This work highlights the detection of different carbapenemase-producing bacterial strains within an Egyptian teaching hospital compromising the effectiveness of carbapenems and urgently asking the Egyptian medical authorities for implementation of antimicrobial surveillance plans and infection control policies to early detect and to effectively halt the rapid spread of these superbugs.
Collapse
Affiliation(s)
- Ahmed M Soliman
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Hoda O Zarad
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Hirofumi Nariya
- Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Toshi Shimamoto
- Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Tadashi Shimamoto
- Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.
| |
Collapse
|
36
|
Dong D, Li M, Liu Z, Feng J, Jia N, Zhao H, Zhao B, Zhou T, Zhang X, Tong Y, Zhu Y. Characterization of a NDM-1- Encoding Plasmid pHFK418-NDM From a Clinical Proteus mirabilis Isolate Harboring Two Novel Transposons, Tn 6624 and Tn 6625. Front Microbiol 2019; 10:2030. [PMID: 31551967 PMCID: PMC6737455 DOI: 10.3389/fmicb.2019.02030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 08/19/2019] [Indexed: 11/13/2022] Open
Abstract
Acquisition of the blaNDM–1 gene by Proteus mirabilis is a concern because it already has intrinsic resistance to polymyxin E and tigecycline antibiotics. Here, we describe a P. mirabilis isolate that carries a pPrY2001-like plasmid (pHFK418-NDM) containing a blaNDM–1 gene. The pPrY2001-like plasmid, pHFK418-NDM, was first reported in China. The pHFK418-NDM plasmid was sequenced using a hybrid approach based on Illumina and MinION platforms. The sequence of pHFK418-NDM was compared with those of the six other pPrY2001-like plasmids deposited in GenBank. We found that the multidrug-resistance encoding region of pHFK418-NDM contains ΔTn10 and a novel transposon Tn6625. Tn6625 consists of ΔTn1696, Tn6260, In251, ΔTn125 (carrying blaNDM–1), ΔTn2670, and a novel mph(E)-harboring transposon Tn6624. In251 was first identified in a clinical isolate, suggesting that it has been transferred efficiently from environmental organisms to clinical isolates. Genomic comparisons of all these pPrY2001-like plasmids showed that their relatively conserved backbones could integrate the numerous and various accessory modules carrying multifarious antibiotic resistance genes. Our results provide a greater depth of insight into the horizontal transfer of resistance genes and add interpretive value to the genomic diversity and evolution of pPrY2001-like plasmids.
Collapse
Affiliation(s)
- Dandan Dong
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Laboratory Diagnostics, The Medical Faculty of Qingdao University, Qingdao, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Manli Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Zhenzhen Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Laboratory Diagnostics, The Medical Faculty of Qingdao University, Qingdao, China
| | - Jiantao Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Laboratory Diagnostics, The Medical Faculty of Qingdao University, Qingdao, China
| | - Nan Jia
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Zhao
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Tingting Zhou
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yuanqi Zhu
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Laboratory Diagnostics, The Medical Faculty of Qingdao University, Qingdao, China
| |
Collapse
|
37
|
Kopotsa K, Osei Sekyere J, Mbelle NM. Plasmid evolution in carbapenemase-producing Enterobacteriaceae: a review. Ann N Y Acad Sci 2019; 1457:61-91. [PMID: 31469443 DOI: 10.1111/nyas.14223] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022]
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) have been listed by the WHO as high-priority pathogens owing to their high association with mortalities and morbidities. Resistance to multiple β-lactams complicates effective clinical management of CRE infections. Using plasmid typing methods, a wide distribution of plasmid replicon groups has been reported in CREs around the world, including IncF, N, X, A/C, L/M, R, P, H, I, and W. We performed a literature search for English research papers, published between 2013 and 2018, reporting on plasmid-mediated carbapenem resistance. A rise in both carbapenemase types and associated plasmid replicon groups was seen, with China, Canada, and the United States recording a higher increase than other countries. blaKPC was the most prevalent, except in Angola and the Czech Republic, where OXA-181 (n = 50, 88%) and OXA-48-like (n = 24, 44%) carbapenemases were most prevalent, respectively; blaKPC-2/3 accounted for 70% (n = 956) of all reported carbapenemases. IncF plasmids were found to be responsible for disseminating different antibiotic resistance genes worldwide, accounting for almost 40% (n = 254) of plasmid-borne carbapenemases. blaCTX-M , blaTEM , blaSHV , blaOXA-1/9 , qnr, and aac-(6')-lb were mostly detected concurrently with carbapenemases. Most reported plasmids were conjugative but not present in multiple countries or species, suggesting limited interspecies and interboundary transmission of a common plasmid. A major limitation to effective characterization of plasmid evolution was the use of PCR-based instead of whole-plasmid sequencing-based plasmid typing.
Collapse
Affiliation(s)
- Katlego Kopotsa
- Department of Medical Microbiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Nontombi Marylucy Mbelle
- Department of Medical Microbiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa.,National Health Laboratory Service, Tshwane Division, Department of Medical Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
38
|
Dandachi I, Chaddad A, Hanna J, Matta J, Daoud Z. Understanding the Epidemiology of Multi-Drug Resistant Gram-Negative Bacilli in the Middle East Using a One Health Approach. Front Microbiol 2019; 10:1941. [PMID: 31507558 PMCID: PMC6716069 DOI: 10.3389/fmicb.2019.01941] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022] Open
Abstract
In the last decade, extended-spectrum cephalosporin and carbapenem resistant Gram-negative bacilli (GNB) have been extensively reported in the literature as being disseminated in humans but also in animals and the environment. These resistant organisms often cause treatment challenges due to their wide spectrum of antibiotic resistance. With the emergence of colistin resistance in animals and its subsequent detection in humans, the situation has worsened. Several studies reported the transmission of resistant organisms from animals to humans. Studies from the middle east highlight the spread of resistant organisms in hospitals and to a lesser extent in livestock and the environment. In view of the recent socio-economical conflicts that these countries are facing in addition to the constant population mobilization; we attempt in this review to highlight the gaps of the prevalence of resistance, antibiotic consumption reports, infection control measures and other risk factors contributing in particular to the spread of resistance in these countries. In hospitals, carbapenemases producers appear to be dominant. In contrast, extended spectrum beta lactamases (ESBL) and colistin resistance are becoming a serious problem in animals. This is mainly due to the continuous use of colistin in veterinary medicine even though it is now abandoned in the human sphere. In the environment, despite the small number of reports, ESBL and carbapenemases producers were both detected. This highlights the importance of the latter as a bridge between humans and animals in the transmission chain. In this review, we note that in the majority of the Middle Eastern area, little is known about the level of antibiotic consumption especially in the community and animal farms. Furthermore, some countries are currently facing issues with immigrants, poverty and poor living conditions which has been imposed by the civil war crisis. This all greatly facilitates the dissemination of resistance in all environments. In the one health concept, this work re-emphasizes the need to have global intervention measures to avoid dissemination of antibiotic resistance in humans, animals and the environment in Middle Eastern countries.
Collapse
Affiliation(s)
- Iman Dandachi
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Amer Chaddad
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Jason Hanna
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Jessika Matta
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Ziad Daoud
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
- Division of Clinical Microbiology, Saint George Hospital University Medical Center, Beirut, Lebanon
| |
Collapse
|
39
|
Cooccurrence of NDM-1, ESBL, RmtC, AAC(6')-Ib, and QnrB in Clonally Related Klebsiella pneumoniae Isolates Together with Coexistence of CMY-4 and AAC(6')-Ib in Enterobacter cloacae Isolates from Saudi Arabia. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6736897. [PMID: 31467906 PMCID: PMC6699326 DOI: 10.1155/2019/6736897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/18/2019] [Accepted: 07/09/2019] [Indexed: 01/07/2023]
Abstract
The aim of this study was to investigate the mechanisms responsible for resistance to antimicrobials in a collection of enterobacterial isolates recovered from two hospitals in Saudi Arabia. A total of six strains isolated from different patients showing high resistance to carbapenems was recovered in 2015 from two different hospitals, with four being Klebsiella pneumoniae and two Enterobacter cloacae. All isolates except one K. pneumoniae were resistant to tigecycline, but only one K. pneumoniae was resistant to colistin. All produced a carbapenemase according to the Carba NP test, and all were positive for the EDTA-disk synergy test for detection of MBL. Using PCR followed by sequencing, the four K. pneumoniae isolates produced the carbapenemase NDM-1, while the two E. cloacae isolates produced the carbapenemase VIM-1. Genotyping analysis by Multilocus Sequence Typing (MLST) showed that three out of the four K. pneumoniae isolates were clonally related. They had been recovered from the same hospital and belonged to Sequence Type (ST) ST152. In contrast, the fourth K. pneumoniae isolate belonged to ST572. Noticeably, the NDM-1-producing K. pneumoniae additionally produced an extended-spectrum ß-lactamase (ESBL) of the CTX-M type, together with OXA-1 and TEM-1. Surprisingly, the three clonally related isolates produced different CTX-M variants, namely, CTX-M-3, CTX-M-57, and CTX-M-82, and coproduced QnrB, which confers quinolone resistance, and the 16S rRNA methylase RmtC, which confers high resistance to all aminoglycosides. The AAC(6')-Ib acetyltransferase was detected in both K. pneumoniae and E. cloacae. Mating-out assays using Escherichia coli as recipient were successful for all isolates. The bla NDM-1 gene was always identified on a 70-kb plasmid, whereas the bla VIM-1 gene was located on either a 60-kb or a 150-kb plasmid the two E. cloacae isolates, respectively. To the best of our knowledge, this is the first report of the coexistence of an MBL (NDM-1), an ESBL (CTX-M), a 16S rRNA methylase (RmtC), an acetyltransferase (AAC[6']-Ib), and a quinolone resistance enzyme (QnrB) in K. pneumoniae isolates recovered from different patients during an outbreak in a Saudi Arabian hospital.
Collapse
|
40
|
Kinetic Profile and Molecular Dynamic Studies Show that Y229W Substitution in an NDM-1/L209F Variant Restores the Hydrolytic Activity of the Enzyme toward Penicillins, Cephalosporins, and Carbapenems. Antimicrob Agents Chemother 2019; 63:AAC.02270-18. [PMID: 30917978 DOI: 10.1128/aac.02270-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/23/2019] [Indexed: 01/01/2023] Open
Abstract
The New Delhi metallo-β-lactamase-1 (NDM-1) enzyme is the most common metallo-β-lactamase identified in many Gram-negative bacteria causing severe nosocomial infections. The aim of this study was to focus the attention on non-active-site residues L209 and Y229 of NDM-1 and to investigate their role in the catalytic mechanism. Specifically, the effect of the Y229W substitution in the L209F variant was evaluated by antimicrobial susceptibility testing, kinetic, and molecular dynamic (MD) studies. The Y229W single mutant and L209F-Y229W double mutant were generated by site-directed mutagenesis. The Km , k cat, and k cat/Km kinetic constants, calculated for the two mutants, were compared with those of (wild-type) NDM-1 and the L209F variant. Compared to the L209F single mutant, the L209F-Y229W double mutant showed a remarkable increase in k cat values of 100-, 240-, 250-, and 420-fold for imipenem, meropenem, benzylpenicillin, and cefepime, respectively. In the L209F-Y229W enzyme, we observed a remarkable increase in k cat/Km of 370-, 140-, and 80-fold for cefepime, meropenem, and cefazolin, respectively. The same behavior was noted using the antimicrobial susceptibility test. MD simulations were carried out on both L209F and L209F-Y229W enzymes complexed with benzylpenicillin, focusing attention on the overall mechanical features and on the differences between the two systems. With respect to the L209F variant, the L209F-Y229W double mutant showed mechanical stabilization of loop 10 and the N-terminal region. In addition, Y229W substitution destabilized both the C-terminal region and the region from residues 149 to 154. The epistatic effect of the Y229W mutation jointly with the stabilization of loop 10 led to a better catalytic efficiency of β-lactams. NDM numbering is used in order to facilitate the comparison with other NDM-1 studies.
Collapse
|
41
|
Kiaei S, Moradi M, Hosseini-Nave H, Ziasistani M, Kalantar-Neyestanaki D. Endemic dissemination of different sequence types of carbapenem-resistant Klebsiella pneumoniae strains harboring bla NDM and 16S rRNA methylase genes in Kerman hospitals, Iran, from 2015 to 2017. Infect Drug Resist 2018; 12:45-54. [PMID: 30613156 PMCID: PMC6306073 DOI: 10.2147/idr.s186994] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Introduction The emergence and spread of Klebsiella pneumoniae strains resistant to multiple antimicrobial agents are considered as a serious challenge for nosocomial infections. Materials and methods In this study, 175 nonrepetitive clinical isolates of K. pneumoniae were collected from hospitalized patients in Kerman, Iran. Extended-spectrum β-lactamases (ESBLs), AmpC, and carbapenemase-producing isolates were recognized by phenotypic methods. The resistance genes including efflux pumps oqxA/oqxB, 16S rRNA methylase, ESBL, AmpC, and carbapenemase were detected by PCR-sequencing method. Molecular typing was performed by enterobacterial repetitive intergenic consensus-PCR and multilocus sequence typing methods among blaNDM-positive isolates. Results Thirty-seven (21.14%) isolates along with sequence types (STs): ST43, ST268, ST340, ST392, ST147, and ST16 were harbored blaNDM. ST43 in 2015 and ST268 during 2016–2017 were the most frequent STs among New Delhi metallo-beta-lactamase (NDM)-positive isolates. We found the distribution of some isolates with blaNDM, blaCTX-M, blaSHV, blaOXA, blaTEM, blaCMY, rmtC, and oqxA/oqxB. Enterobacterial repetitive intergenic consensus-PCR represented seven clusters (A–G) plus four singletons among NDM-positive isolates. This study provides the first report of blaNDM-1-positve K. pneumoniae along with ST268 as well as the spread of nosocomial infections with six different STs harboring blaNDM-1 and other resistance genes in hospital settings especially neonatal intensive care unit. Conclusion The dissemination of various clones of NDM-producing K. pneumoniae can contribute to increase the rate of their spread in health care settings. Therefore, molecular typing and detection of resistance genes have an important role in preventing and controlling infection by limiting the dissemination of multidrug-resistant isolates.
Collapse
Affiliation(s)
- Somayeh Kiaei
- Department of Microbiology and Virology, Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran,
| | - Mohammad Moradi
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran,
| | - Hossein Hosseini-Nave
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran,
| | - Mahsa Ziasistani
- Pathology and Stem Cell Research Center, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Kalantar-Neyestanaki
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran,
| |
Collapse
|
42
|
Abd ElSalam M, Gamal D, El Said M, Salem D, Abu Aitta A, S El Gamal M. Prevalence of Plasmid-Mediated Quinolone Resistance in Multidrug-Resistant Gram Negative Bacilli in Egypt. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/bpj/1565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Resistance to quinolone has increased significantly and one of the most reasons is plasmid-mediated quinolone resistance (PMQR). The aim of this study is to detect the prevalence of PMQR in multidrug-resistant (MDR) Gram negative bacilli and to characterize these resistance genes. A total of 420 Gram negative bacilli clinical isolates were collected from patients attending Misr children hospital. Isolates were identified by biochemical reactions, while antimicrobial susceptibility testingwas done by Kirby-Bauer disk diffusion method. Minimum inhibitory concentrations (MIC) of ciprofloxacin were detected by E-test, whereas combined test method was used to detect extended-spectrum β-lactamase (ESBL) production. QnrA, qnrB, and qnrS genes were determined by multiplex polymerase chain reaction (PCR). MDRGram negative bacilli represented 68% (268/420); most of them were recovered from blood culture specimens (21%).Among these MDR isolates21%(60/268) were ciprofloxacin resistant; with MICs >32µg/ml in 95% of the isolates.ESBL production was detected in 11.7% of the studied isolates. The qnr genes were detected in 60%. QnrS and qnrB were the detected genes in 77.8% and 16.7% of the isolates respectively. Both qnrB and qnrS genes were determined simultaneously in 5.5%.QnrB gene was found alone in only one isolate (14.3%) that was ESBL-producer. The most MDR isolates were recovered from blood culture; this confirms the occurrence of these superbugs and their ability to cause life threatening infections. The prevalence of quinolone resistant Gram negative bacilli clinical isolates is high. The mostly prevalent PMQR gene is qnrS followed by qnrB.
Collapse
Affiliation(s)
- Mohamed Abd ElSalam
- Departmentof Botany and Microbiology, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Doaa Gamal
- Department of Microbiology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Manal El Said
- Department of Microbiology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Dalia Salem
- Department of Microbiology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Aisha Abu Aitta
- Department of Microbiology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mamdouh S El Gamal
- Departmentof Botany and Microbiology, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
43
|
Identification, molecular characterization, and structural analysis of the bla NDM-1 gene/enzyme from NDM-1-producing Klebsiella pneumoniae isolates. J Antibiot (Tokyo) 2018; 72:155-163. [PMID: 30479395 DOI: 10.1038/s41429-018-0126-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/18/2018] [Accepted: 11/05/2018] [Indexed: 01/26/2023]
Abstract
NDM-1 comprises a carbapenemase that was first detected in 2008 in New Delhi, India. Since then, NDM-1-producing Klebsiella pneumoniae strains have been reported in many countries and usually associated with intra and inter-hospital dissemination, along with travel-related epidemiological links. In South America, Brazil represents the largest reservoir of NMD-1-producing K. pneumoniae. Here, we focused on the detection and molecular/structural characterization of the blaNDM-1 resistance gene/enzyme from 24 K. pneumoniae clinical isolates in the Midwest region of Brazil. Antimicrobial susceptibility assays showed that all isolates are resistant to carbapenems. Molecular typing of the isolates revealed seven clonal groups among the K. pneumoniae isolates, which may indicate intra or inter-hospital dissemination. Moreover, the blaNDM-1 gene was detected in all 24 K. pneumoniae isolates and the full blaNDM-1 gene was cloned. Bioinformatics analysis showed that the NDM-1 enzyme sequence found in our isolates is highly conserved when compared to other NDM-1 enzymes. In addition, molecular docking studies indicate that the NDM-1 identified binds to different carbapenems through hydrogen and zinc coordination bonds. In summary, we present the molecular characterization of NDM-1-producing K. pneumoniae strains isolated from different hospitals, also providing atomic level insights into molecular complexes NDM-1/carbapenem antibiotics.
Collapse
|
44
|
Ko KS. Antibiotic-resistant clones in Gram-negative pathogens: presence of global clones in Korea. J Microbiol 2018; 57:195-202. [PMID: 30552629 DOI: 10.1007/s12275-019-8491-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022]
Abstract
Antibiotic resistance is a global concern in public health. Antibiotic-resistant clones can spread nationally, internationally, and globally. This review considers representative antibiotic-resistant Gram-negative bacterial clones-CTX-M- 15-producing ST131 in Escherichia coli, extended-spectrum ß-lactamase-producing ST11 and KPC-producing ST258 in Klebsiella pneumoniae, IMP-6-producing, carbapenem-resistant ST235 in Pseudomonas aeruginosa, and OXA-23-producing global clone 2 in Acinetobacter baumannii-that have disseminated worldwide, including in Korea. The findings highlight the urgency for systematic monitoring and international cooperation to suppress the emergence and propagation of antibiotic resistance.
Collapse
Affiliation(s)
- Kwan Soo Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
45
|
Ahmad K, Khattak F, Ali A, Rahat S, Noor S, Mahsood N, Somayya R. Carbapenemases and Extended-Spectrum β-Lactamase-Producing Multidrug-Resistant Escherichia coli Isolated from Retail Chicken in Peshawar: First Report from Pakistan. J Food Prot 2018; 81:1339-1345. [PMID: 30019956 DOI: 10.4315/0362-028x.jfp-18-045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We report the prevalence of extended-spectrum β-lactamases and carbapenemases in Escherichia coli isolated from retail chicken in Peshawar, Pakistan. One hundred E. coli isolates were recovered from retail chicken. Antibiotic susceptibility testing was carried out against ampicillin, chloramphenicol, kanamycin, nalidixic acid, cephalothin, gentamicin, sulfamethoxazole-trimethoprim, and streptomycin. Phenotypic detection of β-lactamase production was analyzed through double disc synergy test using the antibiotics amoxicillin-clavulanate, cefotaxime, ceftazidime, cefepime, and aztreonam. Fifty multidrug-resistant isolates were screened for detection of sul1, aadA, cmlA, int, blaTEM, blaSHV, blaCTX-M, blaOXA-10, blaVIM, blaIMP, and blaNDM-1 genes. Resistance to ampicillin, nalidixic acid, kanamycin, streptomycin, cephalothin, sulfamethoxazole-trimethoprim, gentamicin, cefotaxime, ceftazidime, aztreonam, cefepime, amoxicillin-clavulanate, and chloramphenicol was 92, 91, 84, 73, 70, 67, 53, 48, 40, 39, 37, 36, and 23% respectively. Prevalence of sul1, aadA, cmlA, int, blaTEM, blaCTX-M, blaIMP, and blaNDM-1 was 78% ( n = 39), 76% ( n = 38), 20% ( n = 10), 90% ( n = 45), 74% ( n = 37), 94% ( n = 47), 22% ( n = 11), and 4% ( n = 2), respectively. blaSHV, blaOXA-10, and blaVIM were not detected. The coexistence of multiple antibiotic resistance genes in multidrug-resistant strains of E. coli is alarming. Hence, robust surveillance strategies should be developed with a focus on controlling the spread of antibiotic resistance genes via the food chain.
Collapse
Affiliation(s)
| | - Faryal Khattak
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan (ORCID: http://orcid.org/0000-0002-0532-0631 [K.A.])
| | - Amjad Ali
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan (ORCID: http://orcid.org/0000-0002-0532-0631 [K.A.])
| | - Shaista Rahat
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan (ORCID: http://orcid.org/0000-0002-0532-0631 [K.A.])
| | - Shazia Noor
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan (ORCID: http://orcid.org/0000-0002-0532-0631 [K.A.])
| | - Nargas Mahsood
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan (ORCID: http://orcid.org/0000-0002-0532-0631 [K.A.])
| | - Ramla Somayya
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan (ORCID: http://orcid.org/0000-0002-0532-0631 [K.A.])
| |
Collapse
|
46
|
Müller H, Sib E, Gajdiss M, Klanke U, Lenz-Plet F, Barabasch V, Albert C, Schallenberg A, Timm C, Zacharias N, Schmithausen RM, Engelhart S, Exner M, Parcina M, Schreiber C, Bierbaum G. Dissemination of multi-resistant Gram-negative bacteria into German wastewater and surface waters. FEMS Microbiol Ecol 2018; 94:4963742. [DOI: 10.1093/femsec/fiy057] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Heike Müller
- University of Bonn, University Hospital, Institute for Hygiene and Public Health, 53105 Bonn, Sigmund-Freud-Str. 25, Germany
| | - Esther Sib
- University of Bonn, University Hospital, Institute of Medical Microbiology, Immunology and Parasitology, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Mike Gajdiss
- University of Bonn, University Hospital, Institute of Medical Microbiology, Immunology and Parasitology, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Ursula Klanke
- University of Bonn, University Hospital, Institute of Medical Microbiology, Immunology and Parasitology, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Franziska Lenz-Plet
- University of Bonn, University Hospital, Institute of Medical Microbiology, Immunology and Parasitology, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Vanessa Barabasch
- University of Bonn, University Hospital, Institute of Medical Microbiology, Immunology and Parasitology, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Cathrin Albert
- University of Bonn, University Hospital, Institute of Medical Microbiology, Immunology and Parasitology, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Anna Schallenberg
- University of Bonn, University Hospital, Institute of Medical Microbiology, Immunology and Parasitology, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Christian Timm
- University of Bonn, University Hospital, Institute for Hygiene and Public Health, 53105 Bonn, Sigmund-Freud-Str. 25, Germany
| | - Nicole Zacharias
- University of Bonn, University Hospital, Institute for Hygiene and Public Health, 53105 Bonn, Sigmund-Freud-Str. 25, Germany
| | - Ricarda Maria Schmithausen
- University of Bonn, University Hospital, Institute for Hygiene and Public Health, 53105 Bonn, Sigmund-Freud-Str. 25, Germany
| | - Steffen Engelhart
- University of Bonn, University Hospital, Institute for Hygiene and Public Health, 53105 Bonn, Sigmund-Freud-Str. 25, Germany
| | - Martin Exner
- University of Bonn, University Hospital, Institute for Hygiene and Public Health, 53105 Bonn, Sigmund-Freud-Str. 25, Germany
| | - Marijo Parcina
- University of Bonn, University Hospital, Institute of Medical Microbiology, Immunology and Parasitology, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Christiane Schreiber
- University of Bonn, University Hospital, Institute for Hygiene and Public Health, 53105 Bonn, Sigmund-Freud-Str. 25, Germany
| | - Gabriele Bierbaum
- University of Bonn, University Hospital, Institute of Medical Microbiology, Immunology and Parasitology, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| |
Collapse
|
47
|
Taylor E, Sriskandan S, Woodford N, Hopkins KL. High prevalence of 16S rRNA methyltransferases among carbapenemase-producing Enterobacteriaceae in the UK and Ireland. Int J Antimicrob Agents 2018; 52:278-282. [PMID: 29596903 DOI: 10.1016/j.ijantimicag.2018.03.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/12/2018] [Accepted: 03/21/2018] [Indexed: 11/18/2022]
Abstract
The emergence of 16S rRNA methyltransferases (16S RMTases) worldwide is a growing concern due to their ability to confer high-level resistance (minimum inhibitory concentrations (MICs) >256 mg/L) to all clinically relevant aminoglycosides. As the occurrence of 16S RMTases in the United Kingdom has not been investigated to date, we screened 806 Enterobacteriaceae isolates displaying high-level aminoglycoside resistance (amikacin, gentamicin and tobramycin MICs ≥64, ≥32 and ≥32 mg/L, respectively) for 16S RMTases either by analysing whole-genome sequence (WGS) data (which were available for 449 isolates) or by polymerase chain reaction. A total of 94.5% (762/806) pan-aminoglycoside-resistant Enterobacteriaceae were positive for one or more 16S RMTase genes; armA was the most common (340, 44.6%) followed by rmtC (146, 19.2%), rmtF (137, 18.0%), rmtB (87, 11.4%) and various two-gene combinations (52, 6.8%). Most (93.4%; 712/762) 16S RMTase producers also carried acquired carbapenemase genes, with blaNDM the most common (592/712; 83.1%). Additionally, high-risk bacterial clones associated with blaNDM were identified in the subset of isolates with WGS data. These included Escherichia coli sequence types (STs) 405 (21.8%, 19/87), 167 (20.7%, 18/87) 410 (12.6%, 11/87) and K. pneumoniae STs 14 (35.6%, 112/315), 231 (15.6%, 49/315) and 147 (10.5%, 33/315). These accounted for 4.2% (15/358), 5.0% (18/358), 3.1% (11/358), 28.2% (101/358), 3.1% (11/358) and 7.0% (25/358) blaNDM-producing isolates, respectively. This study shows that 16S RMTases occur in the UK and Ireland and carbapenemases are particularly prevalent in 16S RMTase-producing Enterobacteriaceae. This association poses a risk to the treatment of multidrug-resistant Gram-negative infections in the clinical setting.
Collapse
Affiliation(s)
- Emma Taylor
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK; Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK.
| | - Shiranee Sriskandan
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
| | - Neil Woodford
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK; Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - Katie L Hopkins
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK; Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| |
Collapse
|
48
|
Potron A, Bernabeu S, Cuzon G, Pontiès V, Blanchard H, Seringe E, Naas T, Nordmann P, Dortet L. Analysis of OXA-204 carbapenemase-producing Enterobacteriaceae reveals possible endoscopy-associated transmission, France, 2012 to 2014. Euro Surveill 2017; 22:17-00048. [PMID: 29233256 PMCID: PMC5727592 DOI: 10.2807/1560-7917.es.2017.22.49.17-00048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OXA-48-like beta-lactamase producing bacteria are now endemic in several European and Mediterranean countries. Among this carbapenemase family, the OXA-48 and OXA-181 variants predominate, whereas other variants such as OXA-204 are rarely reported. Here, we report the molecular epidemiology of a collection of OXA-204-positive enterobacterial isolates (n = 29) recovered in France between October 2012 and May 2014. This study describes the first outbreak of OXA-204-producing Enterobacteriaceae in Europe, involving 12 isolates of an ST90 Escherichia coli clone and nine isolates of an ST147 Klebsiella pneumoniae clone. All isolates co-produced the cephalosporinase CMY-4, and 60% of them co-produced the extended-spectrum beta-lactamase CTX-M-15. The blaOXA-204 gene was located on a 150-kb IncA/C plasmid, isolated from various enterobacterial species in the same patient, indicating a high conjugative ability of this genetic vehicle.
Collapse
Affiliation(s)
- Anaïs Potron
- National Reference Centre for Antibiotic Resistance, (division of carbapenemase-producing Enterobacteriaceae), Le Kremlin-Bicêtre, France,Department of Bacteriology, University Hospital of Besançon, Université of Franche-Comté, Besançon, France
| | - Sandrine Bernabeu
- National Reference Centre for Antibiotic Resistance, (division of carbapenemase-producing Enterobacteriaceae), Le Kremlin-Bicêtre, France,Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France,EA7361 “Structure, Dynamic, Function and Expression of Broad Spectrum beta-Lactamases”, Paris-Sud University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France,Joint Research Unit EERA “Evolution and Ecology of Resistance to Antibiotics,” Institut Pasteur-APHP-Université Paris-Sud, Paris, France
| | - Gaëlle Cuzon
- National Reference Centre for Antibiotic Resistance, (division of carbapenemase-producing Enterobacteriaceae), Le Kremlin-Bicêtre, France,Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France,EA7361 “Structure, Dynamic, Function and Expression of Broad Spectrum beta-Lactamases”, Paris-Sud University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France,Joint Research Unit EERA “Evolution and Ecology of Resistance to Antibiotics,” Institut Pasteur-APHP-Université Paris-Sud, Paris, France
| | - Valérie Pontiès
- Santé Publique France, The French Public Health Agency, Saint-Maurice, France
| | - Hervé Blanchard
- Regional Coordinating Centre for Nosocomial Infection Control (C-CLIN Paris Nord), Paris, France
| | - Elise Seringe
- Regional Coordinating Centre for Nosocomial Infection Control (C-CLIN Paris Nord), Paris, France
| | - Thierry Naas
- National Reference Centre for Antibiotic Resistance, (division of carbapenemase-producing Enterobacteriaceae), Le Kremlin-Bicêtre, France,Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France,EA7361 “Structure, Dynamic, Function and Expression of Broad Spectrum beta-Lactamases”, Paris-Sud University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France,Joint Research Unit EERA “Evolution and Ecology of Resistance to Antibiotics,” Institut Pasteur-APHP-Université Paris-Sud, Paris, France
| | - Patrice Nordmann
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland,Institut National de la Santé et de la Recherche Médicale (INSERM) European Unit (LEA Paris, IAME, France), University of Fribourg, Switzerland,National Reference Centre for Emerging Antibiotic Resistance, Fribourg, Switzerland,Institute for Microbiology, University hospital and University of Lausanne, Lausanne, Switzerland
| | - Laurent Dortet
- National Reference Centre for Antibiotic Resistance, (division of carbapenemase-producing Enterobacteriaceae), Le Kremlin-Bicêtre, France,Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France,EA7361 “Structure, Dynamic, Function and Expression of Broad Spectrum beta-Lactamases”, Paris-Sud University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France,Joint Research Unit EERA “Evolution and Ecology of Resistance to Antibiotics,” Institut Pasteur-APHP-Université Paris-Sud, Paris, France
| |
Collapse
|
49
|
Zhao Y, Wang L, Zhang Z, Feng J, Kang H, Fang L, Jiang X, Zhang D, Zhan Z, Zhou D, Tong Y. Structural genomics of pNDM-BTR harboring In191 and Tn6360, and other bla NDM-carrying IncN1 plasmids. Future Microbiol 2017; 12:1271-1281. [DOI: 10.2217/fmb-2017-0067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To characterize a conjugative bla NDM-1-carrying plasmid pNDM-BTR from a clinical Escherichia coli isolate. Materials & methods: The complete nucleotide sequence of pNDM-BTR was determined using next-generation sequencing technology. Comparative genomic analysis of bla NDM-carrying IncN1 plasmids, including pNDM-BTR, was performed, and the antimicrobial resistance phenotypes were determined. Results: pNDM-BTR contained three accessory modules, namely IS26, a novel Tn3-family transposon Tn6360 and the dfrA14 region composed of In191, ecoRII–ecoRIImet and ΔIS1X2. The relatively small IncN1 backbones could integrate massive accessory modules, most of which were integrated at two ‘hotspots’. These IncN1 plasmids contained distinct profiles of accessory modules, which included those carrying various resistance genes. Conclusion: This study provides a deeper insight into horizontal transfer of resistance genes among IncN1 plasmids.
Collapse
Affiliation(s)
- Yachao Zhao
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Lijun Wang
- Department of Laboratory Medicine, Beijing Tsinghua Chang Gung Hospital, Tsinghua University, Beijing 102218, China
| | - Zhiyi Zhang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Jiao Feng
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Huaixing Kang
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410078, China
| | - Liqun Fang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Xiaoyuan Jiang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Defu Zhang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
- College of Food Science & Project Engineering, Bohai University, Jinzhou 121013, China
| | - Zhe Zhan
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Yigang Tong
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| |
Collapse
|
50
|
Abderrahim A, Djahmi N, Pujol C, Nedjai S, Bentakouk MC, Kirane-Gacemi D, Dekhil M, Sotto A, Lavigne JP, Pantel A. First Case of NDM-1-ProducingKlebsiella pneumoniaein Annaba University Hospital, Algeria. Microb Drug Resist 2017; 23:895-900. [DOI: 10.1089/mdr.2016.0213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Amel Abderrahim
- Institut National de la Santé et de la Recherche Médicale, U1047, Université de Montpellier, UFR de Médecine, Nîmes, France
- Laboratoire d'Amélioration Génétique des Plantes, Equipe Microorganismes et Environnement, Université Badji Mokhtar, Annaba, Algérie
| | - Nassima Djahmi
- Laboratoire de Microbiologie, CHU Ibn Rochd, Annaba, Algérie
| | | | - Sabina Nedjai
- Laboratoire de Microbiologie, CHU Ibn Rochd, Annaba, Algérie
| | - Mohamed Cherif Bentakouk
- Centre de Réanimation et de Traitement des Brûlés, Hôpital Ibn-Sina, CHU Annaba, Annaba, Algérie
| | - Djamila Kirane-Gacemi
- Laboratoire d'Amélioration Génétique des Plantes, Equipe Microorganismes et Environnement, Université Badji Mokhtar, Annaba, Algérie
| | - Mazouz Dekhil
- Laboratoire de Microbiologie, CHU Ibn Rochd, Annaba, Algérie
| | - Albert Sotto
- Institut National de la Santé et de la Recherche Médicale, U1047, Université de Montpellier, UFR de Médecine, Nîmes, France
- Service des Maladies Infectieuses et Tropicales, CHU Carémeau, Nîmes, France
| | - Jean-Philippe Lavigne
- Institut National de la Santé et de la Recherche Médicale, U1047, Université de Montpellier, UFR de Médecine, Nîmes, France
- Service de Microbiologie, CHU Carémeau, Nîmes, France
| | - Alix Pantel
- Institut National de la Santé et de la Recherche Médicale, U1047, Université de Montpellier, UFR de Médecine, Nîmes, France
- Service de Microbiologie, CHU Carémeau, Nîmes, France
| |
Collapse
|