1
|
Nur Aisyah D, Lokopessy AF, Naman M, Diva H, Manikam L, Adisasmito W, Kozlakidis Z. The Use of Digital Technology for COVID-19 Detection and Response Management in Indonesia: Mixed Methods Study. Interact J Med Res 2023; 12:e41308. [PMID: 36623206 PMCID: PMC10012204 DOI: 10.2196/41308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/02/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The COVID-19 pandemic has triggered a greater use of digital technologies as part of the health care response in many countries, including Indonesia. It is the world's fourth-most populous nation and Southeast Asia's most populous country, with considerable public health pressures. OBJECTIVE The aim of our study is to identify and review the use of digital health technologies in COVID-19 detection and response management in Indonesia. METHODS We conducted a literature review of publicly accessible information in technical and scientific journals, as well as news articles from September 2020 to August 2022 to identify the use case examples of digital technologies in COVID-19 detection and response management in Indonesia. RESULTS The results are presented in 3 groups, namely (1) big data, artificial intelligence, and machine learning (technologies for the collection or processing of data); (2) health care system technologies (acting at the public health level); and (3) COVID-19 screening, population treatment, and prevention population treatment (acting at the individual patient level). Some of these technologies are the result of government-academia-private sector collaborations during the pandemic, which represent a novel, multisectoral practice in Indonesia within the public health care ecosystem. A small number of the identified technologies pre-existed the pandemic but were upgraded and adapted for current needs. CONCLUSIONS Digital technologies were developed in Indonesia during the pandemic, with a direct impact on supporting COVID-19 management, detection, response, and treatment. They addressed different areas of the technological spectrum and with different levels of adoption, ranging from local to regional to national. The indirect impact of this wave of technological creation and use is a strong foundation for fostering future multisectoral collaboration within the national health care system of Indonesia.
Collapse
Affiliation(s)
- Dewi Nur Aisyah
- Indonesia One Health University Network, Depok, Indonesia
- Department of Epidemiology and Public Health, Institute of Epidemiology and Health Care, University College London, London, United Kingdom
| | - Alfiano Fawwaz Lokopessy
- Indonesia One Health University Network, Depok, Indonesia
- Faculty of Public Health, Universitas Indonesia, Depok, Indonesia
| | - Maryan Naman
- Aceso Global Health Consultants Pte Limited, Singapore, Singapore
| | - Haniena Diva
- Indonesia One Health University Network, Depok, Indonesia
| | - Logan Manikam
- Department of Epidemiology and Public Health, Institute of Epidemiology and Health Care, University College London, London, United Kingdom
- Aceso Global Health Consultants Pte Limited, Singapore, Singapore
| | - Wiku Adisasmito
- Indonesia One Health University Network, Depok, Indonesia
- Faculty of Public Health, Universitas Indonesia, Depok, Indonesia
| | - Zisis Kozlakidis
- International Agency for Research on Cancer World Health Organization, Lyon, France
| |
Collapse
|
2
|
Maryam S, Ul Haq I, Yahya G, Ul Haq M, Algammal AM, Saber S, Cavalu S. COVID-19 surveillance in wastewater: An epidemiological tool for the monitoring of SARS-CoV-2. Front Cell Infect Microbiol 2023; 12:978643. [PMID: 36683701 PMCID: PMC9854263 DOI: 10.3389/fcimb.2022.978643] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/03/2022] [Indexed: 01/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has prompted a lot of questions globally regarding the range of information about the virus's possible routes of transmission, diagnostics, and therapeutic tools. Worldwide studies have pointed out the importance of monitoring and early surveillance techniques based on the identification of viral RNA in wastewater. These studies indicated the presence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in human feces, which is shed via excreta including mucus, feces, saliva, and sputum. Subsequently, they get dumped into wastewater, and their presence in wastewater provides a possibility of using it as a tool to help prevent and eradicate the virus. Its monitoring is still done in many regions worldwide and serves as an early "warning signal"; however, a lot of limitations of wastewater surveillance have also been identified.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Biosciences, The Commission on Science and Technology for Sustainable Development in the South (COMSATS) University Islamabad (CUI), Islamabad, Pakistan
| | - Ihtisham Ul Haq
- Department of Biosciences, The Commission on Science and Technology for Sustainable Development in the South (COMSATS) University Islamabad (CUI), Islamabad, Pakistan
- Department of Physical Chemistry and Polymers Technology, Silesian University of Technology, Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mehboob Ul Haq
- Department of Biosciences, The Commission on Science and Technology for Sustainable Development in the South (COMSATS) University Islamabad (CUI), Islamabad, Pakistan
| | - Abdelazeem M. Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
3
|
Rong G, Zheng Y, Chen Y, Zhang Y, Zhu P, Sawan M. COVID-19 Diagnostic Methods and Detection Techniques. ENCYCLOPEDIA OF SENSORS AND BIOSENSORS 2023. [PMCID: PMC8409760 DOI: 10.1016/b978-0-12-822548-6.00080-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Hossain MAM, Uddin SMK, Hashem A, Mamun MA, Sagadevan S, Johan MR. Advancements in Detection Approaches of Severe Acute Respiratory Syndrome Coronavirus 2. Malays J Med Sci 2022; 29:15-33. [PMID: 36818907 PMCID: PMC9910375 DOI: 10.21315/mjms2022.29.6.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022] Open
Abstract
Diagnostic testing to identify individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a key role in selecting appropriate treatments, saving people's lives and preventing the global pandemic of COVID-19. By testing on a massive scale, some countries could successfully contain the disease spread. Since early viral detection may provide the best approach to curb the disease outbreak, the rapid and reliable detection of coronavirus (CoV) is therefore becoming increasingly important. Nucleic acid detection methods, especially real-time reverse transcription polymerase chain reaction (RT-PCR)-based assays are considered the gold standard for COVID-19 diagnostics. Some non-PCR-based molecular methods without thermocycler operation, such as isothermal nucleic acid amplification have been proved promising. Serologic immunoassays are also available. A variety of novel and improved methods based on biosensors, Clustered-Regularly Interspaced Short Palindromic Repeats (CRISPR) technology, lateral flow assay (LFA), microarray, aptamer etc. have also been developed. Several integrated, random-access, point-of-care (POC) molecular devices are rapidly emerging for quick and accurate detection of SARS-CoV-2 that can be used in the local hospitals and clinics. This review intends to summarize the currently available detection approaches of SARS-CoV-2, highlight gaps in existing diagnostic capacity, and propose potential solutions and thus may assist clinicians and researchers develop better technologies for rapid and authentic diagnosis of CoV infection.
Collapse
Affiliation(s)
- M. A. Motalib Hossain
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Syed Muhammad Kamal Uddin
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Abu Hashem
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
- Microbial Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - Mohammad Al Mamun
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Chemistry, Jagannath University, Dhaka, Bangladesh
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Asghar R, Rasheed M, ul Hassan J, Rafique M, Khan M, Deng Y. Advancements in Testing Strategies for COVID-19. BIOSENSORS 2022; 12:410. [PMID: 35735558 PMCID: PMC9220779 DOI: 10.3390/bios12060410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
The SARS-CoV-2 coronavirus, also known as the disease-causing agent for COVID-19, is a virulent pathogen that may infect people and certain animals. The global spread of COVID-19 and its emerging variation necessitates the development of rapid, reliable, simple, and low-cost diagnostic tools. Many methodologies and devices have been developed for the highly sensitive, selective, cost-effective, and rapid diagnosis of COVID-19. This review organizes the diagnosis platforms into four groups: imaging, molecular-based detection, serological testing, and biosensors. Each platform's principle, advancement, utilization, and challenges for monitoring SARS-CoV-2 are discussed in detail. In addition, an overview of the impact of variants on detection, commercially available kits, and readout signal analysis has been presented. This review will expand our understanding of developing advanced diagnostic approaches to evolve into susceptible, precise, and reproducible technologies to combat any future outbreak.
Collapse
Affiliation(s)
- Rabia Asghar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China;
| | - Madiha Rasheed
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China;
| | - Jalees ul Hassan
- Department of Wildlife and Ecology, Faculty of Fisheries and Wildlife, University of Veterinary and Animal Sciences-UVAS, Lahore 54000, Pakistan;
| | - Mohsin Rafique
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China;
| | - Mashooq Khan
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China;
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China;
| |
Collapse
|
6
|
Dhar BC. Diagnostic assay and technology advancement for detecting SARS-CoV-2 infections causing the COVID-19 pandemic. Anal Bioanal Chem 2022; 414:2903-2934. [PMID: 35211785 PMCID: PMC8872642 DOI: 10.1007/s00216-022-03918-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/01/2022] [Accepted: 01/20/2022] [Indexed: 12/23/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-caused COVID-19 pandemic has transmitted to humans in practically all parts of the world, producing socio-economic turmoil. There is an urgent need for precise, fast, and affordable diagnostic testing to be widely available for detecting SARS-CoV-2 and its mutations in various phases of the disease. Early diagnosis with great precision has been achieved using real-time polymerase chain reaction (RT-PCR) and similar other molecular methods, but theseapproaches are costly and involve rigorous processes that are not easily obtainable. Conversely, immunoassays that detect a small number of antibodies have been employed for quick, low-cost tests, but their efficiency in diagnosing infected people has been restricted. The use of biosensors in the detection of SARS-CoV-2 is vital for the COVID-19 pandemic’s control. This review gives an overview of COVID-19 diagnostic approaches that are currently being developed as well as nanomaterial-based biosensor technologies, to aid future technological advancement and innovation. These approaches can be integrated into point-of-care (POC) devices to quickly identify a large number of infected patients and asymptomatic carriers. The ongoing research endeavors and developments in complementary technologies will play a significant role in curbing the spread of the COVID-19 pandemic and fill the knowledge gaps in current diagnostic accuracy and capacity.
Collapse
Affiliation(s)
- Bidhan C Dhar
- Lineberger Comprehensive Cancer Center, University of North Carolina (UNC), 205 S Columbia St, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
7
|
Fall A, Kenmoe S, Ebogo-Belobo JT, Mbaga DS, Bowo-Ngandji A, Foe-Essomba JR, Tchatchouang S, Amougou Atsama M, Yéngué JF, Kenfack-Momo R, Feudjio AF, Nka AD, Mbongue Mikangue CA, Taya-Fokou JB, Magoudjou-Pekam JN, Noura EA, Zemnou-Tepap C, Meta-Djomsi D, Maïdadi-Foudi M, Kame-Ngasse GI, Nyebe I, Djukouo LG, Kengne Gounmadje L, Tchami Ngongang D, Oyono MG, Demeni Emoh CP, Tazokong HR, Mahamat G, Kengne-Ndé C, Sadeuh-Mba SA, Dia N, La Rosa G, Ndip L, Njouom R. Global prevalence and case fatality rate of Enterovirus D68 infections, a systematic review and meta-analysis. PLoS Negl Trop Dis 2022; 16:e0010073. [PMID: 35134062 PMCID: PMC8824346 DOI: 10.1371/journal.pntd.0010073] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
A substantial amount of epidemiological data has been reported on Enterovirus D68 (EV-D68) infections after the 2014 outbreak. Our goal was to map the case fatality rate (CFR) and prevalence of current and past EV-D68 infections. We conducted a systematic review (PROSPERO, CRD42021229255) with published articles on EV-68 infections in PubMed, Embase, Web of Science and Global Index Medicus up to January 2021. We determined prevalences using a model random effect. Of the 4,329 articles retrieved from the databases, 89 studies that met the inclusion criteria were from 39 different countries with apparently healthy individuals and patients with acute respiratory infections, acute flaccid myelitis and asthma-related diseases. The CFR estimate revealed occasional deaths (7/1353) related to EV-D68 infections in patients with severe acute respiratory infections. Analyses showed that the combined prevalence of current and past EV-D68 infections was 4% (95% CI = 3.1-5.0) and 66.3% (95% CI = 40.0-88.2), respectively. The highest prevalences were in hospital outbreaks, developed countries, children under 5, after 2014, and in patients with acute flaccid myelitis and asthma-related diseases. The present study shows sporadic deaths linked to severe respiratory EV-D68 infections. The study also highlights a low prevalence of current EV-D68 infections as opposed to the existence of EV-D68 antibodies in almost all participants of the included studies. These findings therefore highlight the need to implement and/or strengthen continuous surveillance of EV-D68 infections in hospitals and in the community for the anticipation of the response to future epidemics.
Collapse
Affiliation(s)
- Amary Fall
- Virology Department, Institute Pasteur of Dakar, Dakar, Senegal
| | - Sebastien Kenmoe
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Jean Thierry Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | | | - Arnol Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | | | | | - Marie Amougou Atsama
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | | | - Raoul Kenfack-Momo
- Department of Biochemistry, The University of Yaounde I, Yaounde, Cameroon
| | | | - Alex Durand Nka
- Virology Laboratory, Chantal Biya International Reference Center for Research on HIV/AIDS Prevention and Management, Yaounde, Cameroon
| | | | | | | | - Efietngab Atembeh Noura
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | | | - Dowbiss Meta-Djomsi
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | - Martin Maïdadi-Foudi
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | - Ginette Irma Kame-Ngasse
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - Inès Nyebe
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | | | | | | | - Martin Gael Oyono
- Department of Animals Biology and Physiology, The University of Yaounde I, Yaounde, Cameroon
| | | | | | - Gadji Mahamat
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - Cyprien Kengne-Ndé
- Research Monitoring and Planning Unit, National Aids Control Committee, Douala, Cameroon
| | | | - Ndongo Dia
- Virology Department, Institute Pasteur of Dakar, Dakar, Senegal
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Lucy Ndip
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Richard Njouom
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
| |
Collapse
|
8
|
Rasmi Y. Testing and diagnosis of SARS-CoV-2 infection. CORONAVIRUS DRUG DISCOVERY 2022. [PMCID: PMC9217735 DOI: 10.1016/b978-0-323-85156-5.00012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The recent outbreak of the coronavirus disease 2019 (COVID-19) has rapidly spread around the world since its discovery in China, in December 2019. The current standard method for determining whether a patient is infected with the SARS-CoV-2 virus involves taking a nasal or throat swab sample, which is then sent to laboratories for testing. The laboratories then use polymerase chain reaction (PCR)-based technology on respiratory specimens remain the gold standard to determine if the genetic material of the virus is present in the sample and use this information to diagnose the patient. However, serologic immunoassays and point-of-care technologies are rapidly emerging with high specificity and sensitivity as well. Even if there are excellent techniques for diagnosing symptomatic patients with COVID-19 in equipped laboratories, critical gaps still exist in the screening of asymptomatic individuals who are in the incubation phase of the virus, as well as in the accurate determination of live virus shedding during convalescence to inform decisions for ending isolation.
Collapse
|
9
|
Bukkitgar SD, Shetti NP, Aminabhavi TM. Electrochemical investigations for COVID-19 detection-A comparison with other viral detection methods. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 420:127575. [PMID: 33162783 PMCID: PMC7605744 DOI: 10.1016/j.cej.2020.127575] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/07/2020] [Accepted: 10/26/2020] [Indexed: 05/02/2023]
Abstract
Virus-induced infection such as SARS-CoV-2 is a serious threat to human health and the economic setback of the world. Continued advances in the development of technologies are required before the viruses undergo mutation. The low concentration of viruses in environmental samples makes the detection extremely challenging; simple, accurate and rapid detection methods are in urgent need. Of all the analytical techniques, electrochemical methods have the established capabilities to address the issues. Particularly, the integration of nanotechnology would allow miniature devices to be made available at the point-of-care. This review outlines the capabilities of electrochemical methods in conjunction with nanotechnology for the detection of SARS-CoV-2. Future directions and challenges of the electrochemical biosensors for pathogen detection are covered including wearable and conformal biosensors, detection of plant pathogens, multiplexed detection, and reusable biosensors for on-site monitoring, thereby providing low-cost and disposable biosensors.
Collapse
Key Words
- AIV H5N1, Avian influenza
- AIV, Avian influenza virus
- ASFV, African swine fever virus
- BVDV, Bovine viral diarrhea virus
- CGV, Chikungunya viruses
- CMV, Cucumber mosaic virus
- COVID-19
- CSFV, Classic swine fever virus
- CV, Cyclic voltammetry
- DAstV-1, Duck astrovirus 1
- DAstV-2, Duck astrovirus 2
- DENV, Dengue virus
- DEV, Duck enteritis virus
- DHAV-1, Duck hepatitis A virus 1
- DHAV-3, Duck hepatitis A virus 3
- DPV, Differential pulse voltammetry
- DRV-1, Duck reovirus 1
- DRV-2, Duck reovirus 2
- Detection
- EBV, Epstein-Barr virus
- EIS, Electric impedance spectroscopy
- EPC, External positive controls
- EV, Human enterovirus
- EV71, Human enterovirus 71
- Electrochemical sensor
- FMI SMOF, Fluorescence molecularly imprinted sensor based on a metal–organic framework
- GCE, Glassy carbon electrode
- GCFaV-1, Ginger chlorotic fleck associated virus 1
- GCFaV-2, Ginger chlorotic fleck-associated virus 2
- GEV VN-96, Gastroenteritis virus VN-96
- GPV, Goose parvovirus
- HHV, Human herpes virus 6
- HIAV, Human influenza A viruses
- HPB19, Human parvovirus B19
- HSV, Herpes simplex
- IAV, influenza A virus
- IEA, Interdigitated electrode array
- IMA, Interdigitated microelectrode array
- INAA, Isothermal nucleic acid amplification-based
- JEV, Japanese encephalitis virus
- LAMP, Loop-Mediated Isothermal Amplification
- LSV, Linear sweep voltammetry
- MERS, Middle East respiratory syndrome
- MIEC, Molecularly imprinted electrochemiluminescence
- MNV, Murine norovirus
- MeV, Measles virus
- NNV, Nervous necrosis virus
- Nanotechnology
- PBoV, Porcine bocavirus
- PCNAME, Pt-coated nanostructured alumina membrane electrode
- PCR
- PCRLFS, Polymerase Chain Reaction with a lateral flow strip with a lateral flow strip
- PCV, Porcine circovirus 3
- PEDV, Porcine epidemic diarrhoea virus
- PRRSV, porcine reproductive and respiratory syndrome virus
- PSV, Pseudorabies virus
- RCA, Rolling circle amplification
- RGO, Reduced graphene oxide
- RT-LAMP-VF, RT-LAMP and a vertical flow visualization strip
- RV, Rubella virus
- SARS, Severe acute respiratory syndrome
- SIVH1N1, Swine influenza virus
- SWV, Square wave voltammetry
- TGEV, transmissible gastroenteritis coronavirus
- TMUV, Tembusu virus
- USEGFET, Ultra-sensitive electrolyte-gated field-effect transistor
- VZV, Varicella-zoster virus
- VZV, varicella-Zoster virus
- Viruses
- ZV, Zika virus
Collapse
Affiliation(s)
- Shikandar D Bukkitgar
- Centre for Electrochemical Science and Materials, Department of Chemistry, K.L.E. Institute of Technology, Gokul, Hubballi 580030, Karnataka, India
| | - Nagaraj P Shetti
- Centre for Electrochemical Science and Materials, Department of Chemistry, K.L.E. Institute of Technology, Gokul, Hubballi 580030, Karnataka, India
| | - Tejraj M Aminabhavi
- Pharmaceutical Engineering, Soniya College of Pharmacy, Dharwad 580-007, India
| |
Collapse
|
10
|
Potential Misdiagnosis between COVID-19 and Dengue Infection Using Rapid Serological Test. Infect Dis Rep 2021; 13:540-551. [PMID: 34200159 PMCID: PMC8293083 DOI: 10.3390/idr13020050] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/03/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic that has a significant rapid transmission is an international public health concern. Several dengue-endemic countries reported similar clinical and laboratory features between COVID-19 and dengue in the early incubation period, and thus discerning the infection is difficult. As a dengue-endemic country, Indonesia also poses the same challenge during the COVID-19 outbreak. This current study analyzed the IgG and IgM profiles from COVID-19 patients by using a serological SARS-CoV-2 and dengue rapid test. In addition, 38 sera from healthy individuals (pre-COVID-19 date) were analyzed using a dengue rapid test. Among 120 samples, 4 samples indicated dengue IgG positive. However, IgM, NS1, and RT-PCR analyses showed negative results. Interestingly, regarding seropositivity of NS1 and DENV IgG from healthy individuals (pre COVID-19 infection), two samples were positive DENV IgG, while one of them was positive NS1. This suggested that in the dengue-endemic area, many people have already experienced dengue and have immunity against dengue virus. There is also the possibility of antibody cross-reactivity between COVID-19 and dengue infection. This also emphasizes the high demand for a rapid method with high sensitivity and specificity that can distinguish between SARS-CoV-2 and dengue.
Collapse
|
11
|
Yadav AK, Verma D, Kumar A, Kumar P, Solanki PR. The perspectives of biomarker-based electrochemical immunosensors, artificial intelligence and the Internet of Medical Things toward COVID-19 diagnosis and management. MATERIALS TODAY. CHEMISTRY 2021; 20:100443. [PMID: 33615086 PMCID: PMC7877231 DOI: 10.1016/j.mtchem.2021.100443] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/01/2020] [Accepted: 02/04/2021] [Indexed: 05/08/2023]
Abstract
The World Health Organization (WHO) has declared the COVID-19 an international health emergency due to the severity of infection progression, which became more severe due to its continuous spread globally and the unavailability of appropriate therapy and diagnostics systems. Thus, there is a need for efficient devices to detect SARS-CoV-2 infection at an early stage. Nowadays, the reverse transcription polymerase chain reaction (RT-PCR) technique is being applied for detecting this virus around the globe; however, factors such as stringent expertise, long diagnostic times, invasive and painful screening, and high costs have restricted the use of RT-PCR methods for rapid diagnostics. Therefore, the development of cost-effective, portable, sensitive, prompt and selective sensing systems to detect SARS-CoV-2 in biofluids at fM/pM/nM concentrations would be a breakthrough in diagnostics. Immunosensors that show increased specificity and sensitivity are considerably fast and do not imply costly reagents or instruments, reducing the cost for COVID-19 detection. The current developments in immunosensors perhaps signify the most significant opportunity for a rapid assay to detect COVID-19, without the need of highly skilled professionals and specialized tools to interpret results. Artificial intelligence (AI) and the Internet of Medical Things (IoMT) can also be equipped with this immunosensing approach to investigate useful networking through database management, sharing, and analytics to prevent and manage COVID-19. Herein, we represent the collective concepts of biomarker-based immunosensors along with AI and IoMT as smart sensing strategies with bioinformatics approach to monitor non-invasive early stage SARS-CoV-2 development, with fast point-of-care (POC) diagnostics as the crucial goal. This approach should be implemented quickly and verified practicality for clinical samples before being set in the present times for mass-diagnostic research.
Collapse
Affiliation(s)
- A K Yadav
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - D Verma
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
- Amity Institute of Applied Sciences, Amity University, Noida, Uttar Pradesh, 201301, India
| | - A Kumar
- National Institute of Immunology, New Delhi, 110067, India
| | - P Kumar
- Sri Aurobindo College, Delhi University, New Delhi, 110017, India
| | - P R Solanki
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
12
|
Benzigar MR, Bhattacharjee R, Baharfar M, Liu G. Current methods for diagnosis of human coronaviruses: pros and cons. Anal Bioanal Chem 2021; 413:2311-2330. [PMID: 33219449 PMCID: PMC7679240 DOI: 10.1007/s00216-020-03046-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/14/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
The current global fight against coronavirus disease (COVID-19) to flatten the transmission curve is put forth by the World Health Organization (WHO) as there is no immediate diagnosis or cure for COVID-19 so far. In order to stop the spread, researchers worldwide are working around the clock aiming to develop reliable tools for early diagnosis of severe acute respiratory syndrome (SARS-CoV-2) understanding the infection path and mechanisms. Currently, nucleic acid-based molecular diagnosis (real-time reverse transcription polymerase chain reaction (RT-PCR) test) is considered the gold standard for early diagnosis of SARS-CoV-2. Antibody-based serology detection is ineffective for the purpose of early diagnosis, but a potential tool for serosurveys, providing people with immune certificates for clearance from COVID-19 infection. Meanwhile, there are various blooming methods developed these days. In this review, we summarise different types of coronavirus discovered which can be transmitted between human beings. Methods used for diagnosis of the discovered human coronavirus (SARS, MERS, COVID-19) including nucleic acid detection, gene sequencing, antibody detection, antigen detection, and clinical diagnosis are presented. Their merits, demerits and prospects are discussed which can help the researchers to develop new generation of advanced diagnostic tools for accurate and effective control of human coronavirus transmission in the communities and hospitals.
Collapse
Affiliation(s)
- Mercy R Benzigar
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ripon Bhattacharjee
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mahroo Baharfar
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
13
|
Prabhakar PK, Lakhanpal J. Recent advances in the nucleic acid-based diagnostic tool for coronavirus. Mol Biol Rep 2020; 47:9033-9041. [PMID: 33025503 PMCID: PMC7538041 DOI: 10.1007/s11033-020-05889-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022]
Abstract
Abstract Recently in China, a novel coronavirus outbreak took place which caused pneumonia-like symptoms. This coronavirus belongs to the family of SARS and MERS and causes respiratory system disease known as COVID-19. At present we use polymerase chain reaction (PCR) based molecular biology methods for the detection of coronavirus. Other than these PCR based methods, some improved methods also exist such as microarray-based techniques, Real time-quantitative PCR, CRISPR-Cas13 based tools but almost all of the available methods have advantages and disadvantages. There are many limitations associated with this method and hence there is a need for a fast, more sensitive, and specific diagnostic tool which can detect a greater number of samples in less time. Here we have summarised currently available nucleic acid-based diagnostic methods for the detection of coronavirus and the need for developing a better technique for a fast and sensitive detection of coronavirus infections. Graphic abstract
Nucleic acid based detection tool for SARS-CoV-2.![]()
Collapse
Affiliation(s)
- Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, Lovely Professional University, Punjab, 144411, India.
| | - Jyoti Lakhanpal
- Department of Medical Laboratory Sciences, Lovely Professional University, Punjab, 144411, India
| |
Collapse
|
14
|
Asghari A, Naseri M, Safari H, Saboory E, Parsamanesh N. The Novel Insight of SARS-CoV-2 Molecular Biology and Pathogenesis and Therapeutic Options. DNA Cell Biol 2020; 39:1741-1753. [PMID: 32716648 DOI: 10.1089/dna.2020.5703] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
On December 31, 2019, a novel coronavirus, being the third highly infective CoV and named as coronavirus disease 2019 (COVID-19) in the city of Wuhan, was announced by the World Health Organization. COVID-19 has a 2% mortality rate, is known as the third extremely infective CoV infection, and has a mortality rate less than MERS-CoV and SARS-CoV. The CoV family comprises a chief number of positive single-stranded ss (+) RNA viruses that are recognized in mammals. The 2019-nCoV patients showed that the angiotensin-converting enzyme II (ACE2) was the same for SARS-CoV. Structural proteins have an essential role in virus released and budding to various host cells. Notably, evidence indicated human-to-human transmission, along with several exported patients of virus infection worldwide. Nowadays, no licensed antivirals drugs or vaccines for being utilized against these coronavirus infections are recognized. There is an urgent requirement for an extensive research of CoV infections to disclose the route of extension, pathogenesis, and diagnosis and then to recognize the therapeutic targets to facilitate disease control and surveillance. In this article, we present an overview of the common biological criteria of CoVs and explain pathogenesis with a focus on the therapeutic approach to suggest potential goals for treating and monitoring this emerging zoonotic disease.
Collapse
Affiliation(s)
- Arghavan Asghari
- Student Research Committee and Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamidreza Safari
- Department of Immunology, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Ehsan Saboory
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Negin Parsamanesh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
15
|
Ekrami E, Pouresmaieli M, Barati F, Asghari S, Ziarani FR, Shariati P, Mamoudifard M. Potential Diagnostic Systems for Coronavirus Detection: a Critical Review. Biol Proced Online 2020; 22:21. [PMID: 32884452 PMCID: PMC7462115 DOI: 10.1186/s12575-020-00134-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract Currently there are no effective anti-viral drugs for SARS-CoV-2, so the primary line of defense is to detect infected cases as soon as possible. The high rate of contagion for this virus and the highly nonspecific symptoms of the disease (Coronovirus disease 2019, (Covid-19)) that it causes, such as respiratory symptoms, cough, dyspnea, fever, and viral pneumonia, require the urgent establishment of precise and fast diagnostic tests to verify suspected cases, screen patients, and conduct virus surveillance. Nowadays, several virus detection methods are available for viral diseases, which act on specific properties of each virus or virus family, therefore, further investigations and trials are needed to find a highly efficient and accurate detection method to detect and prevent the outcomes of the disease. Hence, there is an urgent need for more and precise studies in this field. In this review, we discussed the properties of a new generation of coronaviruses (SARS-CoV-2) following routine virus detection methods and proposed new strategies and the use of potential samples for SARS-CoV-2 detection. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Elena Ekrami
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahdi Pouresmaieli
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Fatemeh Barati
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sahar Asghari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Farzad Ramezani Ziarani
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Parvin Shariati
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Matin Mamoudifard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
16
|
Laskar P, Yallapu MM, Chauhan SC. "Tomorrow Never Dies": Recent Advances in Diagnosis, Treatment, and Prevention Modalities against Coronavirus (COVID-19) amid Controversies. Diseases 2020; 8:E30. [PMID: 32781617 PMCID: PMC7563589 DOI: 10.3390/diseases8030030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
The outbreak of novel coronavirus disease (2019-nCoV or COVID-19) is responsible for severe health emergency throughout the world. The attack of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is found to be responsible for COVID-19. The World Health Organization has declared the ongoing global public health emergency as a pandemic. The whole world fights against this invincible enemy in various capacities to restore economy, lifestyle, and safe life. Enormous amount of scientific research work(s), administrative strategies, and economic measurements are in place to create a successful step against COVID-19. Furthermore, differences in opinion, facts, and implementation methods laid additional layers of complexities in this battle against survival. Thus, a timely overview of the recent, important, and overall inclusive developments against this pandemic is a pressing need for better understanding and dealing with COVID-19. In this review, we have systematically summarized the epidemiological studies, clinical features, biological properties, diagnostic methods, treatment modalities, and preventive measurements related to COVID-19.
Collapse
Affiliation(s)
- Partha Laskar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK;
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
17
|
Artika IM, Dewantari AK, Wiyatno A. Molecular biology of coronaviruses: current knowledge. Heliyon 2020; 6:e04743. [PMID: 32835122 PMCID: PMC7430346 DOI: 10.1016/j.heliyon.2020.e04743] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) late December 2019 in Wuhan, China, marked the third introduction of a highly pathogenic coronavirus into the human population in the twenty-first century. The constant spillover of coronaviruses from natural hosts to humans has been linked to human activities and other factors. The seriousness of this infection and the lack of effective, licensed countermeasures clearly underscore the need of more detailed and comprehensive understanding of coronavirus molecular biology. Coronaviruses are large, enveloped viruses with a positive sense single-stranded RNA genome. Currently, coronaviruses are recognized as one of the most rapidly evolving viruses due to their high genomic nucleotide substitution rates and recombination. At the molecular level, the coronaviruses employ complex strategies to successfully accomplish genome expression, virus particle assembly and virion progeny release. As the health threats from coronaviruses are constant and long-term, understanding the molecular biology of coronaviruses and controlling their spread has significant implications for global health and economic stability. This review is intended to provide an overview of our current basic knowledge of the molecular biology of coronaviruses, which is important as basic knowledge for the development of coronavirus countermeasures.
Collapse
Affiliation(s)
- I. Made Artika
- Biosafety Level 3 Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta, 10430, Indonesia
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Darmaga Campus, Bogor, 16680, Indonesia
| | - Aghnianditya Kresno Dewantari
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta, 10430, Indonesia
| | - Ageng Wiyatno
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta, 10430, Indonesia
| |
Collapse
|
18
|
Rajendran DK, Rajagopal V, Alagumanian S, Santhosh Kumar T, Sathiya Prabhakaran SP, Kasilingam D. Systematic literature review on novel corona virus SARS-CoV-2: a threat to human era. Virusdisease 2020; 31:161-173. [PMID: 32656310 PMCID: PMC7288266 DOI: 10.1007/s13337-020-00604-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the seventh-generation coronavirus family causing viral pandemic coronavirus disease (COVID-19) across globe affecting millions of people. The objectives of this study are to (1) identify the major research themes in COVID-19 literature, (2) determine the origin, symptoms and modes of transmission of COVID, (3) recommend the intervention and mitigation strategies adopted by the Governments globally against the spread of COVID-19 and the traumatization among the public? and (4) study the possible drugs/treatment plans against COVID-19. A systematic literature review and comprehensive analysis of 38 research articles on COVID-19 are conducted. An integrated Research focus parallel-ship network and keyword co-occurrence analysis are carried out to visualize the three research concepts in COVID-19 literature. Some of our observations include: (1) as SARS-CoV-2's RNA matches ~ 96% to SARS-CoV, it is assumed to be transmitted from the bats. (2) The common symptoms are high fever, dry cough, fatigue, sputum production, shortness of breath, diarrhoea etc. (3) A lockdown across 180 affected counties for more than a month with social-distancing and the precautions taken in SARS and MERS are recommended by the Governments. (4) Researchers' claim that nutrition and immunity enhancers and treatment plans such as arbidol, lopinavir/ritonavir, convalescent plasma and mesenchymal stem cells and drugs including remdesivir, hydroxychloroquine, azithromycin and favipiravir are effective against COVID-19. This complied report serves as guide to help the administrators, researchers and the medical officers to adopt recommended intervention strategies and the optimal treatment/drug against COVID-19.
Collapse
Affiliation(s)
| | - Varthini Rajagopal
- Department of Mechanical Engineering, Government College of Engineering Srirangam, Tiruchirappalli, Tamilnadu India
| | - S. Alagumanian
- Department of Botany, H.H. The Rajah’s College, Pudukkottai, Tamilnadu India
| | | | | | - Dharun Kasilingam
- Digital Platform and Strategies, MICA The School of Ideas, Ahmedabad, India
| |
Collapse
|
19
|
Kashir J, Yaqinuddin A. Loop mediated isothermal amplification (LAMP) assays as a rapid diagnostic for COVID-19. Med Hypotheses 2020; 141:109786. [PMID: 32361529 PMCID: PMC7182526 DOI: 10.1016/j.mehy.2020.109786] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/23/2020] [Indexed: 01/11/2023]
Abstract
Recently, a novel coronavirus (SARS-CoV-2; coronavirus disease 2019, COVID-19) has emerged, rapidly spreading and severely straining the capacity of the global health community. Many nations are employing combinations of containment and mitigation strategies, where early diagnosis of COVID-19 is vital in controlling illness progression and limiting viral spread within the population. Thus, rapid and accurate methods of early detection are vital to contain COVID-19 and prevent further spread and predicted subsequent infectious waves of viral recurrence in future. Immediately after its initial characterization, Chinese and American Centers for Disease Control and Prevention (CDCs) rapidly employed molecular assays for detection of COVID-19, mostly employing real-time polymerase chain reaction (RT-PCR) methods. However, such methods require specific expensive items of equipment and highly trained analysts, requiring upwards of 4–8 h to process. These requirements coupled with associated financial pressures may prevent effective deployment of such diagnostic tests. Loop mediated isothermal amplification (LAMP) is method of nucleic acid amplification which exhibits increased sensitivity and specificity are significantly rapid, and do not require expensive reagents or instruments, which aids in cost reduction for coronavirus detection. Studies have shown the successful application of LAMP assays in various forms to detect coronavirus RNA in patient samples, demonstrating that 1–10 copies of viral RNA template per reaction are sufficient for successful detection, ~100-fold more sensitive than conventional RT-PCR methods. Importantly, studies have also now demonstrated the effectiveness of LAMP methodology in the detection of SARS-CoV-2 RNA at significantly low levels, particularly following numerous improvements to LAMP assay protocols. We hypothesise that recent advancements in enhanced LAMP protocols assay perhaps represent the best chance for a rapid and robust assay for field diagnosis of COVID-19, without the requirement of specialized equipment and highly trained professionals to interpret results. Herein, we present our arguments with a view to disseminate such findings, to assist the combat of this virus that is proving so devastating. We hope that this strategy could be applied rapidly, and confirmed for viability with clinical samples, before being rolled out for mass-diagnostic testing in these current times.
Collapse
Affiliation(s)
- Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | | |
Collapse
|
20
|
Shen M, Zhou Y, Ye J, Abdullah Al-Maskri AA, Kang Y, Zeng S, Cai S. Recent advances and perspectives of nucleic acid detection for coronavirus. J Pharm Anal 2020; 10:97-101. [PMID: 32292623 PMCID: PMC7102540 DOI: 10.1016/j.jpha.2020.02.010] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/14/2022] Open
Abstract
The recent pneumonia outbreak caused by a novel coronavirus (SARS-CoV-2) is posing a great threat to global public health. Therefore, rapid and accurate identification of pathogenic viruses plays a vital role in selecting appropriate treatments, saving people’s lives and preventing epidemics. It is important to establish a quick standard diagnostic test for the detection of the infectious disease (COVID-19) to prevent subsequent secondary spread. Polymerase chain reaction (PCR) is regarded as a gold standard test for the molecular diagnosis of viral and bacterial infections with high sensitivity and specificity. Isothermal nucleic acid amplification is considered to be a highly promising candidate method due to its fundamental advantage in quick procedure time at constant temperature without thermocycler operation. A variety of improved or new approaches also have been developed. This review summarizes the currently available detection methods for coronavirus nucleic acid. It is anticipated that this will assist researchers and clinicians in developing better techniques for timely and effective detection of coronavirus infection. This review summarizes the currently available detection methods for coronavirus nucleic acid. It will assist researchers in developing better techniques for timely and effective detection of coronavirus infection. It will help the establishment of SARS-CoV-2 RNA detection method which is useful for the early diagnosis of COVID-19.
Collapse
Affiliation(s)
- Minzhe Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ying Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jiawei Ye
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Abdu Ahmed Abdullah Al-Maskri
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yu Kang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Sheng Cai
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|