1
|
Ma W, Tang S, Yao P, Zhou T, Niu Q, Liu P, Tang S, Chen Y, Gan L, Cao Y. Advances in acute respiratory distress syndrome: focusing on heterogeneity, pathophysiology, and therapeutic strategies. Signal Transduct Target Ther 2025; 10:75. [PMID: 40050633 PMCID: PMC11885678 DOI: 10.1038/s41392-025-02127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 03/09/2025] Open
Abstract
In recent years, the incidence of acute respiratory distress syndrome (ARDS) has been gradually increasing. Despite advances in supportive care, ARDS remains a significant cause of morbidity and mortality in critically ill patients. ARDS is characterized by acute hypoxaemic respiratory failure with diffuse pulmonary inflammation and bilateral edema due to excessive alveolocapillary permeability in patients with non-cardiogenic pulmonary diseases. Over the past seven decades, our understanding of the pathology and clinical characteristics of ARDS has evolved significantly, yet it remains an area of active research and discovery. ARDS is highly heterogeneous, including diverse pathological causes, clinical presentations, and treatment responses, presenting a significant challenge for clinicians and researchers. In this review, we comprehensively discuss the latest advancements in ARDS research, focusing on its heterogeneity, pathophysiological mechanisms, and emerging therapeutic approaches, such as cellular therapy, immunotherapy, and targeted therapy. Moreover, we also examine the pathological characteristics of COVID-19-related ARDS and discuss the corresponding therapeutic approaches. In the face of challenges posed by ARDS heterogeneity, recent advancements offer hope for improved patient outcomes. Further research is essential to translate these findings into effective clinical interventions and personalized treatment approaches for ARDS, ultimately leading to better outcomes for patients suffering from ARDS.
Collapse
Affiliation(s)
- Wen Ma
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Songling Tang
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Yao
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tingyuan Zhou
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Qingsheng Niu
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Liu
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyuan Tang
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Chen
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Gan
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Yu Cao
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China.
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China.
| |
Collapse
|
2
|
Guo K, Yin Y, Zheng L, Wu Z, Rao X, Zhu W, Zhou B, Liu L, Liu D. Integration of microbiomics, metabolomics, and transcriptomics reveals the therapeutic mechanism underlying Fuzheng-Qushi decoction for the treatment of lipopolysaccharide-induced lung injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118584. [PMID: 39019418 DOI: 10.1016/j.jep.2024.118584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuzheng-Qushi decoction (FZQS) is a practical Chinese herbal formula for relieving cough and fever. Therefore, the action and specific molecular mechanism of FZQS in the treatment of lung injury with cough and fever as the main symptoms need to be further investigated. AIMS OF THE STUDY To elucidate the protective effects of FZQS against lung injury in mice and reveal its potential targets and key biological pathways for the treatment of lung injury based on transcriptomics, microbiomics, and untargeted metabolomics analyses. MATERIALS AND METHODS Lipopolysaccharide (LPS) was used to induce a mouse model of lung injury, followed by the administration of FZQS. ELISA was used to detect IL-1β, IL-6, IL-17A, IL-4, IL-10, and TNF-α, in mouse lung tissues. Macrophage polarization and neutrophil activation were measured by flow cytometry. RNA sequencing (RNA-seq) was applied to screen for differentially expressed genes (DEGs) in lung tissues. RT-qPCR and Western blot assays were utilized to validate key DEGs and target proteins in lung tissues. 16S rRNA sequencing was employed to characterize the gut microbiota of mice. Metabolites in the gut were analyzed using untargeted metabolomics. RESULTS FZQS treatment significantly ameliorated lung histopathological damage, decreased pro-inflammatory cytokine levels, and increased anti-inflammatory cytokine levels. M1 macrophage levels in the peripheral blood decreased, M2 macrophage levels increased, and activated neutrophils were inhibited in mice with LPS-induced lung injury. Importantly, transcriptomic analysis showed that FZQS downregulated macrophage and neutrophil activation and migration and adhesion pathways by reversing 51 DEGs, which was further confirmed by RT-qPCR and Western blot analysis. In addition, FZQS modulated the dysbiosis of the gut microbiota by reversing the abundance of Corynebacterium, Facklamia, Staphylococcus, Paenalcaligenes, Lachnoclostridium, norank_f_Muribaculaceae, and unclassified_f_Lachnospiraceae. Meanwhile, metabolomics analysis revealed that FZQS significantly regulated tryptophan metabolism by reducing the levels of 3-Indoleacetonitrile and 5-Hydroxykynurenine. CONCLUSION FZQS effectively ameliorated LPS-induced lung injury by inhibiting the activation, migration, and adhesion of macrophages and neutrophils and modulating gut microbiota and its metabolites.
Collapse
Affiliation(s)
- Kaien Guo
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Yuting Yin
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Linxin Zheng
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Zenan Wu
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Xiaoyong Rao
- National Engineering Center for Manufacturing Technology of Solid Preparations of Traditional Chinese Medicine Manufacturing Technology, Nanchang, 330004, Jiangxi Province, China
| | - Weifeng Zhu
- Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Bugao Zhou
- Department of Research, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Liangji Liu
- Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Duanyong Liu
- Formula-pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China; School of Nursing, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| |
Collapse
|
3
|
Sanz RL, García F, Gutierrez A, García Menendez S, Inserra F, Ferder L, Manucha W. Vitamin D3 supplementation in COVID-19 patients with cardiovascular disease and gut dysbiosis. HIPERTENSION Y RIESGO VASCULAR 2024; 41:145-153. [PMID: 38871574 DOI: 10.1016/j.hipert.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The COVID-19 pandemic has highlighted the vulnerability of particular patient groups to SARS-CoV-2 infection, including those with cardiovascular diseases, hypertension, and intestinal dysbiosis. COVID-19 affects the gut, suggesting diet and vitamin D3 supplementation may affect disease progression. AIMS To evaluate levels of Ang II and Ang-(1-7), cytokine profile, and gut microbiota status in patients hospitalized for mild COVID-19 with a history of cardiovascular disease and treated with daily doses of vitamin D3. METHODS We recruited 50 adult patients. We screened 50 adult patients and accessed pathophysiology study 22, randomized to daily oral doses of 10,000IU vitamin D3 (n=11) or placebo (n=11). Plasma levels of Ang II and Ang-(1-7) were determined by radioimmunoassay, TMA and TMAO were measured by liquid chromatography and interleukins (ILs) 6, 8, 10 and TNF-α by ELISA. RESULTS The Ang-(1-7)/Ang II ratio, as an indirect measure of ACE2 enzymatic activity, increased in the vitamin D3 group (24±5pg/mL vs. 4.66±2pg/mL, p<0.01). Also, in the vitamin D3-treated, there was a significant decline in inflammatory ILs and an increase in protective markers, such as a substantial reduction in TMAO (5±2μmoles/dL vs. 60±10μmoles/dL, p<0.01). In addition, treated patients experienced less severity of infection, required less intensive care, had fewer days of hospitalization, and a reduced mortality rate. Additionally, improvements in markers of cardiovascular function were seen in the vitamin D3 group, including a tendency for reductions in blood pressure in hypertensive patients. CONCLUSIONS Vitamin D3 supplementation in patients with COVID-19 and specific conditions is associated with a more favourable prognosis, suggesting therapeutic potential in patients with comorbidities such as cardiovascular disease and gut dysbiosis.
Collapse
Affiliation(s)
- R L Sanz
- Área de Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo e IMBECU-CONICET, Mendoza, Argentina
| | - F García
- Clínica Sanatorio Mitre, Mendoza, Argentina
| | | | - S García Menendez
- Área de Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo e IMBECU-CONICET, Mendoza, Argentina
| | - F Inserra
- Universidad Maimónides, CABA, Buenos Aires, Argentina
| | - L Ferder
- Universidad Maimónides, CABA, Buenos Aires, Argentina
| | - W Manucha
- Área de Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo e IMBECU-CONICET, Mendoza, Argentina.
| |
Collapse
|
4
|
LaRiccia PJ, Cafaro T, John D, van Helmond N, Mitrev LV, Bandomer B, Brobyn TL, Hunter K, Roy S, Ng KQ, Goldstein H, Tsai A, Thwing D, Maag MA, Chung MK. Healthcare Costs and Healthcare Utilization Outcomes of Vitamin D3 Supplementation at 5000 IU Daily during a 10.9 Month Observation Period within a Pragmatic Randomized Clinical Trial. Nutrients 2023; 15:4435. [PMID: 37892510 PMCID: PMC10609978 DOI: 10.3390/nu15204435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Vitamin D insufficiency has been linked to multiple conditions including bone disease, respiratory disease, cardiovascular disease, diabetes, and cancer. Observational studies indicate lower healthcare costs and healthcare utilization with sufficient vitamin D levels. The secondary aims of our previously published pragmatic clinical trial of vitamin D3 supplementation were comparisons of healthcare costs and healthcare utilization. Comparisons were made between the vitamin D3 at 5000 IU supplementation group and a non-supplemented control group. Costs of care between the groups differed but were not statistically significant. Vitamin D3 supplementation reduced healthcare utilization in four major categories: hospitalizations for any reason (rate difference: -0.19 per 1000 person-days, 95%-CI: -0.21 to -0.17 per 1000 person-days, p < 0.0001); ICU admissions for any reason (rate difference: -0.06 per 1000 person-days, 95%-CI: -0.08 to -0.04 per 1000 person-days, p < 0.0001); emergency room visits for any reason (rate difference: -0.26 per 1000 person-days, 95%-CI: -0.46 to -0.05 per 1000 person-days, p = 0.0131; and hospitalizations due to COVID-19 (rate difference: -8.47 × 10-3 per 1000 person-days, 95%-CI: -0.02 to -1.05 × 10-3 per 1000 person-days, p = 0.0253). Appropriately powered studies of longer duration are recommended for replication of these utilization findings and analysis of cost differences.
Collapse
Affiliation(s)
- Patrick J. LaRiccia
- Won Sook Chung Foundation, Moorestown, NJ 08057, USA; (P.J.L.); (T.C.); (B.B.); (T.L.B.); (K.Q.N.); (H.G.); (D.T.); (M.A.M.); (M.K.C.)
- Center for Clinical Epidemiology and Biostatistics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Teresa Cafaro
- Won Sook Chung Foundation, Moorestown, NJ 08057, USA; (P.J.L.); (T.C.); (B.B.); (T.L.B.); (K.Q.N.); (H.G.); (D.T.); (M.A.M.); (M.K.C.)
- Department of Anesthesiology, Cooper University Health Care, Camden, NJ 08103, USA;
- Cooper Research Institute, Cooper University Health Care, Camden, NJ 08103, USA; (D.J.); (K.H.)
| | - Dibato John
- Cooper Research Institute, Cooper University Health Care, Camden, NJ 08103, USA; (D.J.); (K.H.)
- Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (S.R.); (A.T.)
| | - Noud van Helmond
- Department of Anesthesiology, Cooper University Health Care, Camden, NJ 08103, USA;
| | - Ludmil V. Mitrev
- Department of Anesthesiology, Cooper University Health Care, Camden, NJ 08103, USA;
- Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (S.R.); (A.T.)
| | - Brigid Bandomer
- Won Sook Chung Foundation, Moorestown, NJ 08057, USA; (P.J.L.); (T.C.); (B.B.); (T.L.B.); (K.Q.N.); (H.G.); (D.T.); (M.A.M.); (M.K.C.)
| | - Tracy L. Brobyn
- Won Sook Chung Foundation, Moorestown, NJ 08057, USA; (P.J.L.); (T.C.); (B.B.); (T.L.B.); (K.Q.N.); (H.G.); (D.T.); (M.A.M.); (M.K.C.)
- Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (S.R.); (A.T.)
- The Chung Institute of Integrative Medicine, Moorestown, NJ 08057, USA
- Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Krystal Hunter
- Cooper Research Institute, Cooper University Health Care, Camden, NJ 08103, USA; (D.J.); (K.H.)
- Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (S.R.); (A.T.)
| | - Satyajeet Roy
- Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (S.R.); (A.T.)
- Division of General Internal Medicine, Cooper University Health Care, Camden, NJ 08103, USA
| | - Kevin Q. Ng
- Won Sook Chung Foundation, Moorestown, NJ 08057, USA; (P.J.L.); (T.C.); (B.B.); (T.L.B.); (K.Q.N.); (H.G.); (D.T.); (M.A.M.); (M.K.C.)
- The Chung Institute of Integrative Medicine, Moorestown, NJ 08057, USA
- Division of Infectious Disease, Cooper University Health Care, Camden, NJ 08103, USA
| | - Helen Goldstein
- Won Sook Chung Foundation, Moorestown, NJ 08057, USA; (P.J.L.); (T.C.); (B.B.); (T.L.B.); (K.Q.N.); (H.G.); (D.T.); (M.A.M.); (M.K.C.)
| | - Alan Tsai
- Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (S.R.); (A.T.)
| | - Denise Thwing
- Won Sook Chung Foundation, Moorestown, NJ 08057, USA; (P.J.L.); (T.C.); (B.B.); (T.L.B.); (K.Q.N.); (H.G.); (D.T.); (M.A.M.); (M.K.C.)
| | - Mary Ann Maag
- Won Sook Chung Foundation, Moorestown, NJ 08057, USA; (P.J.L.); (T.C.); (B.B.); (T.L.B.); (K.Q.N.); (H.G.); (D.T.); (M.A.M.); (M.K.C.)
| | - Myung K. Chung
- Won Sook Chung Foundation, Moorestown, NJ 08057, USA; (P.J.L.); (T.C.); (B.B.); (T.L.B.); (K.Q.N.); (H.G.); (D.T.); (M.A.M.); (M.K.C.)
- Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (S.R.); (A.T.)
- The Chung Institute of Integrative Medicine, Moorestown, NJ 08057, USA
- Department of Family Medicine, Cooper University Health Care, Camden, NJ 08103, USA
| |
Collapse
|
5
|
Singh P, Hernandez‐Rauda R, Peña‐Rodas O. Preventative and therapeutic potential of animal milk components against COVID-19: A comprehensive review. Food Sci Nutr 2023; 11:2547-2579. [PMID: 37324885 PMCID: PMC10261805 DOI: 10.1002/fsn3.3314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/07/2023] [Accepted: 02/24/2023] [Indexed: 06/17/2023] Open
Abstract
The global pandemic of COVID-19 is considered one of the most catastrophic events on earth. During the pandemic, food ingredients may play crucial roles in preventing infectious diseases and sustaining people's general health and well-being. Animal milk acts as a super food since it has the capacity to minimize the occurrence of viral infections due to inherent antiviral properties of its ingredients. SARS-CoV-2 virus infection can be prevented by immune-enhancing and antiviral properties of caseins, α-lactalbumin, β-lactoglobulin, mucin, lactoferrin, lysozyme, lactoperoxidase, oligosaccharides, glycosaminoglycans, and glycerol monolaurate. Some of the milk proteins (i.e., lactoferrin) may work synergistically with antiviral medications (e.g., remdesivir), and enhance the effectiveness of treatment in this disease. Cytokine storm during COVID-19 can be managed by casein hydrolyzates, lactoferrin, lysozyme, and lactoperoxidase. Thrombus formation can be prevented by casoplatelins as these can inhibit human platelet aggregation. Milk vitamins (i.e., A, D, E, and B complexes) and minerals (i.e., Ca, P, Mg, Zn, and Se) can have significantly positive effects on boosting the immunity and health status of individuals. In addition, certain vitamins and minerals can also act as antioxidants, anti-inflammatory, and antivirals. Thus, the overall effect of milk might be a result of synergistic antiviral effects and host immunomodulator activities from multiple components. Due to multiple overlapping functions of milk ingredients, they can play vital and synergistic roles in prevention as well as supportive agents during principle therapy of COVID-19.
Collapse
Affiliation(s)
- Parminder Singh
- Department of Animal Husbandry AmritsarGovernment of PunjabAmritsarIndia
| | - Roberto Hernandez‐Rauda
- Laboratorio de Inocuidad de AlimentosUniversidad Doctor Andres BelloSan SalvadorEl Salvador, América Central
| | - Oscar Peña‐Rodas
- Laboratorio de Inocuidad de AlimentosUniversidad Doctor Andres BelloSan SalvadorEl Salvador, América Central
| |
Collapse
|
6
|
Khojah HMJ, Ahmed SA, Al-Thagfan SS, Alahmadi YM, Abdou YA. The Impact of Serum Levels of Vitamin D3 and Its Metabolites on the Prognosis and Disease Severity of COVID-19. Nutrients 2022; 14:nu14245329. [PMID: 36558489 PMCID: PMC9784025 DOI: 10.3390/nu14245329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Vitamin D is among the increasingly consumed dietary supplements during the COVID-19 pandemic. It plays a regulatory role in the immune system and moderates the renin-angiotensin system, which is implicated in infection pathogenesis. However, the investigation of serum levels of vitamin D3 forms and their relative ratios in COVID-19 patients is worth investigation to understand the impacts of disease severity. Hence, we investigated the serum levels of vitamin D3 (cholecalciferol) and its metabolites (calcifediol and calcitriol), in addition to their relative ratios and correlations with angiotensin-converting enzyme 2 (ACE2), interleukin-6 (Il-6), and neutrophil-lymphocyte ratio (NLR) in COVID-19 patients compared with healthy controls. Oropharyngeal specimens were collected from the study subjects for polymerase chain reaction testing for COVID-19. Whole blood samples were obtained for blood count and NLR testing, and sera were used for the analysis of the levels of the vitamin and its metabolites, ACE2, and IL-6. We enrolled 103 patients and 50 controls. ACE2, Il-6, and NLR were significantly higher in the patients group (72.37 ± 18.67 vs. 32.36 ± 11.27 U/L, 95.84 ± 25.23 vs. 2.76 ± 0.62 pg/mL, and 1.61 ± 0.30 vs. 1.07 ± 0.16, respectively). Cholecalciferol, calcifediol, and calcitriol were significantly lower in patients (18.50 ± 5.36 vs. 29.13 ± 4.94 ng/mL, 14.60 ± 3.30 vs. 23.10 ± 3.02 ng/mL, and 42.90 ± 8.44 vs. 65.15 ± 7.11 pg/mL, respectively). However, their relative ratios were normal in both groups. Levels of the vitamin and metabolites were strongly positively, strongly negatively, and moderately negatively correlated with ACE2, Il-6, and NLR, respectively. COVID-19 infection severity is associated with a significant decrease in vitamin D3 and its metabolites in a parallel pattern, and with a significant increase in ACE2, Il-6, and NLR. Higher levels of vitamin D and its metabolites are potentially protective against severe infection.
Collapse
Affiliation(s)
- Hani M. J. Khojah
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Al Madinah Al Munawarah 30001, Saudi Arabia
| | - Sameh A. Ahmed
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al Munawarah 30001, Saudi Arabia
- Correspondence: ; Tel.: +966-54-3110057
| | - Sultan S. Al-Thagfan
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Al Madinah Al Munawarah 30001, Saudi Arabia
| | - Yaser M. Alahmadi
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Al Madinah Al Munawarah 30001, Saudi Arabia
| | | |
Collapse
|
7
|
Gaudet M, Plesa M, Mogas A, Jalaleddine N, Hamid Q, Al Heialy S. Recent advances in vitamin D implications in chronic respiratory diseases. Respir Res 2022; 23:252. [PMID: 36117182 PMCID: PMC9483459 DOI: 10.1186/s12931-022-02147-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/14/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic airway inflammatory and infectious respiratory diseases are the most common medical respiratory conditions, associated with significant morbidity and mortality. Vitamin D (1,25(OH)2D3) deficiency has been shown to be highly prevalent in patients with chronic airway inflammatory and infectious diseases, correlated with increased disease severity. It has been established that vitamin D modulates ongoing abnormal immune responses in chronic respiratory diseases and is shown to restrict bacterial and viral colonization into the lungs. On the contrary, other studies revealed controversy findings regarding vitamin D efficacy in respiratory diseases. This review aims to update the current evidence regarding the role of vitamin D in airway inflammation and in various respiratory diseases. A comprehensive search of the last five years of literature was conducted using MEDLINE and non-MEDLINE PubMed databases, Ovid MEDLINE, SCOPUS-Elsevier, and data from in vitro and in vivo experiments, including clinical studies. This review highlights the importance of understanding the full range of implications that vitamin D may have on lung inflammation, infection, and disease severity in the context of chronic respiratory diseases.
Collapse
Affiliation(s)
- Mellissa Gaudet
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montréal, QC, Canada
| | - Maria Plesa
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montréal, QC, Canada
| | - Andrea Mogas
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montréal, QC, Canada
| | - Nour Jalaleddine
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Qutayba Hamid
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montréal, QC, Canada. .,College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| | - Saba Al Heialy
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montréal, QC, Canada. .,College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| |
Collapse
|
8
|
Chiang WF, Hsiao PJ, Chan JS. Vitamin D for Recovery of COVID-19 in Patients With Chronic Kidney Disease. Front Nutr 2022; 9:930176. [PMID: 35782942 PMCID: PMC9240470 DOI: 10.3389/fnut.2022.930176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/26/2022] [Indexed: 12/22/2022] Open
Abstract
The severity of coronavirus disease 2019 (COVID-19) is determined not only by viral damage to cells but also by the immune reaction in the host. In addition to therapeutic interventions that target the viral infection, immunoregulation may be helpful in the management of COVID-19. Vitamin D exerts effects on both innate and adaptive immunity and subsequently modulates immune responses to bacteria and viruses. Patients with chronic kidney disease (CKD) frequently have vitamin D deficiency and increased susceptibility to infection, suggesting a potential role of vitamin D in this vulnerable population. In this paper, we review the alterations of the immune system, the risk of COVID-19 infections and mechanisms of vitamin D action in the pathogenesis of COVID-19 in CKD patients. Previous studies have shown that vitamin D deficiency can affect the outcomes of COVID-19. Supplementing vitamin D during treatment may be protective against COVID-19. Future studies, including randomized control trials, are warranted to determine the effect of vitamin D supplementation on the recovery from COVID-19 in CKD patients.
Collapse
Affiliation(s)
- Wen-Fang Chiang
- Division of Nephrology, Department of Medicine, Armed Forces Taoyuan General Hospital, Taoyuan, Taiwan
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Po-Jen Hsiao
- Division of Nephrology, Department of Medicine, Armed Forces Taoyuan General Hospital, Taoyuan, Taiwan
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jenq-Shyong Chan
- Division of Nephrology, Department of Medicine, Armed Forces Taoyuan General Hospital, Taoyuan, Taiwan
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
9
|
Zheng J, Miao J, Guo R, Guo J, Fan Z, Kong X, Gao R, Yang L. Mechanism of COVID-19 Causing ARDS: Exploring the Possibility of Preventing and Treating SARS-CoV-2. Front Cell Infect Microbiol 2022; 12:931061. [PMID: 35774402 PMCID: PMC9237249 DOI: 10.3389/fcimb.2022.931061] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
Novel coronavirus pneumonia (COVID-19) is spreading worldwide, causing great harm and stress to humans. Since patients with novel coronavirus (SARS-CoV-2) have a high probability of developing acute respiratory distress syndrome (ARDS) in severe cases, the pathways through which SARS-CoV-2 causes lung injury have become a major concern in the scientific field. In this paper, we investigate the relationship between SARS-CoV-2 and lung injury and explore the possible mechanisms of COVID-19 in ARDS from the perspectives of angiotensin-converting enzyme 2 protein, cytokine storm, activation of the immune response, triggering of Fas/FasL signaling pathway to promote apoptosis, JAK/STAT pathway, NF-κB pathway, type I interferon, vitamin D, and explore the possibility of prevention and treatment of COVID-19. To explore the possibility of SARS-CoV-2, and to provide new ideas to stop the development of ARDS in COVID-19 patients.
Collapse
Affiliation(s)
- Jiajing Zheng
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiameng Miao
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Guo
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinhe Guo
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zheng Fan
- Department of Critical Medicine, The First Affiliated Hospital of Suzhou University, Suzhou, China
| | - Xianbin Kong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xianbin Kong, ; Rui Gao, ; Long Yang,
| | - Rui Gao
- Institute of Clinical Pharmacology of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xianbin Kong, ; Rui Gao, ; Long Yang,
| | - Long Yang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xianbin Kong, ; Rui Gao, ; Long Yang,
| |
Collapse
|
10
|
Bae JH, Choe HJ, Holick MF, Lim S. Association of vitamin D status with COVID-19 and its severity : Vitamin D and COVID-19: a narrative review. Rev Endocr Metab Disord 2022; 23:579-599. [PMID: 34982377 PMCID: PMC8724612 DOI: 10.1007/s11154-021-09705-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 01/08/2023]
Abstract
Vitamin D is associated with biological activities of the innate and adaptive immune systems, as well as inflammation. In observational studies, an inverse relationship has been found between serum 25-hydroxyvitamin D (25(OH)D) concentrations and the risk or severity of coronavirus disease 2019 (COVID-19). Several mechanisms have been proposed for the role of vitamin D in COVID-19, including modulation of immune and inflammatory responses, regulation of the renin-angiotensin-aldosterone system, and involvement in glucose metabolism and cardiovascular system. Low 25(OH)D concentrations might predispose patients with COVID-19 to severe outcomes not only via the associated hyperinflammatory syndrome but also by worsening preexisting impaired glucose metabolism and cardiovascular diseases. Some randomized controlled trials have shown that vitamin D supplementation is beneficial for reducing severe acute respiratory syndrome coronavirus 2 RNA positivity but not for reducing intensive care unit admission or all-cause mortality in patients with moderate-to-severe COVID-19. Current evidence suggests that taking a vitamin D supplement to maintain a serum concentration of 25(OH)D of at least 30 ng/mL (preferred range 40-60 ng/mL), can help reduce the risk of COVID-19 and its severe outcomes, including mortality. Although further well designed studies are warranted, it is prudent to recommend vitamin D supplements to people with vitamin D deficiency/insufficiency during the COVID-19 pandemic according to international guidelines.
Collapse
Affiliation(s)
- Jae Hyun Bae
- grid.411134.20000 0004 0474 0479Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Hun Jee Choe
- grid.412484.f0000 0001 0302 820XDepartment of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Michael F. Holick
- grid.189504.10000 0004 1936 7558Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Medical Campus, 715 Albany St #437, Boston, MA 02118 USA
| | - Soo Lim
- grid.412480.b0000 0004 0647 3378Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam, 13620 South Korea
| |
Collapse
|
11
|
Efird JT, Anderson E, Jindal C, Suzuki A. Interaction of Vitamin D and Corticosteroid Use in Hospitalized COVID-19 Patients: A Potential Explanation for Inconsistent Findings in the Literature. Curr Pharm Des 2022; 28:1695-1702. [PMID: 35440302 DOI: 10.2174/1381612828666220418132847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/11/2021] [Indexed: 12/15/2022]
Abstract
Vitamin D is an important immune-modulator with anti-inflammatory properties. While this prohormone has been studied extensively in the prevention and treatment of COVID-19, findings have been inconsistent regarding its overall benefit in patients hospitalized with COVID-19. Most studies to date have been observational in nature, not accounting for the use of corticosteroids. Furthermore, the few randomized clinical trials designed to examine the effect of vitamin D supplementation on COVID-19 outcomes have been relatively small and thus insufficiently powered to assure a balance of corticosteroid use between study arms. The current perspective addresses the interaction of vitamin D and corticosteroids as a potential explanation for the divergent results reported in the literature. Future research on vitamin D and COVID-19 will benefit by considering this interaction, especially among hospitalized patients requiring oxygen and mechanical ventilation.
Collapse
Affiliation(s)
- Jimmy T Efird
- Cooperative Studies Program Epidemiology Center, Durham (Duke) VA Health Care System, Durham, NC 27705, USA
| | | | - Charulata Jindal
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Ayako Suzuki
- Cooperative Studies Program Epidemiology Center, Durham (Duke) VA Health Care System, Durham, NC 27705, USA.,Department of Pharmaceutical Sciences and Experimental Therapeutics, Fraternal Order of Eagles Diabetes Research Center, Abboud Cardiovascular Research Center, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA.,Division of Gastroenterology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
12
|
Figueiredo DLA, Ximenez JPB, Seiva FRF, Panis C, Bezerra RDS, Ferrasa A, Cecchini AL, de Medeiros AI, Almeida AMF, Ramão A, Boldt ABW, Moya CF, Chin CM, de Paula D, Rech D, Gradia DF, Malheiros D, Venturini D, Tavares ER, Carraro E, Ribeiro EMDSF, Pereira EM, Tuon FF, Follador FAC, Fernandes GSA, Volpato H, Cólus IMDS, de Oliveira JC, Rodrigues JHDS, dos Santos JL, Visentainer JEL, Brandi JC, Serpeloni JM, Bonini JS, de Oliveira KB, Fiorentin K, Lucio LC, Faccin-Galhardi LC, Ferreto LED, Lioni LMY, Consolaro MEL, Vicari MR, Arbex MA, Pileggi M, Watanabe MAE, Costa MAR, Giannini MJSM, Amarante MK, Khalil NM, de Lima QA, Herai RH, Guembarovski RL, Shinsato RN, Mainardes RM, Giuliatti S, Yamada-Ogatta SF, Gerber VKDQ, Pavanelli WR, da Silva WC, Petzl-Erler ML, Valente V, Soares CP, Cavalli LR, Silva WA. COVID-19: The question of genetic diversity and therapeutic intervention approaches. Genet Mol Biol 2022; 44:e20200452. [PMID: 35421211 PMCID: PMC9075701 DOI: 10.1590/1678-4685-gmb-2020-0452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/24/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), is the largest pandemic in modern history with very high infection rates and considerable mortality. The disease, which emerged in China's Wuhan province, had its first reported case on December 29, 2019, and spread rapidly worldwide. On March 11, 2020, the World Health Organization (WHO) declared the COVID-19 outbreak a pandemic and global health emergency. Since the outbreak, efforts to develop COVID-19 vaccines, engineer new drugs, and evaluate existing ones for drug repurposing have been intensively undertaken to find ways to control this pandemic. COVID-19 therapeutic strategies aim to impair molecular pathways involved in the virus entrance and replication or interfere in the patients' overreaction and immunopathology. Moreover, nanotechnology could be an approach to boost the activity of new drugs. Several COVID-19 vaccine candidates have received emergency-use or full authorization in one or more countries, and others are being developed and tested. This review assesses the different strategies currently proposed to control COVID-19 and the issues or limitations imposed on some approaches by the human and viral genetic variability.
Collapse
Affiliation(s)
- David Livingstone Alves Figueiredo
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Medicina, Guarapuava, PR, Brazil
- Instituto para Pesquisa do Câncer (IPEC), Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - João Paulo Bianchi Ximenez
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicologia e Ciência de Alimentos, Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Fábio Rodrigues Ferreira Seiva
- Universidade Estadual do Norte do Paraná (UENP), Centro de Ciências Biológicas, Bandeirantes, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Carolina Panis
- Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Rafael dos Santos Bezerra
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro Regional de Ribeirão Preto, Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Adriano Ferrasa
- Universidade Estadual de Ponta Grossa, Ponta Grossa, Programa de Pós Graduação em Computação Aplicada, Ponta Grossa, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Alessandra Lourenço Cecchini
- Universidade Estadual de Londrina, Departamento de Patologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Alexandra Ivo de Medeiros
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Ana Marisa Fusco Almeida
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Anelisa Ramão
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Ciências Biológicas, Guarapuava, PR, Brazil
| | - Angelica Beate Winter Boldt
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Carla Fredrichsen Moya
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Medicina Veterinária, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Chung Man Chin
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Fármacos e Medicamentos, Araraquara, SP, Brazil
- União das Faculdades dos Grandes Lagos (UNILAGO), Centro de Pesquisa Avançada em Medicina, São José do Rio Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Daniel de Paula
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Farmácia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Daniel Rech
- Universidade Estadual do Oeste do Paraná (UNIOESTE), Hospital do Câncer Francisco Beltrão, Laboratório de Biologia de Tumores, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Daniela Fiori Gradia
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Danielle Malheiros
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Danielle Venturini
- Universidade Estadual de Londrina, Centro de Ciências da Saúde, Departamento de patologia, clínica e toxicologia, Laboratório de bioquímica clínica, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Eliandro Reis Tavares
- Universidade Estadual de Londrina, Departamento de Microbiologia, Centro de Ciências Biológicas, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Emerson Carraro
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Laboratório de Virologia Clínica, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Enilze Maria de Souza Fonseca Ribeiro
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Evani Marques Pereira
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Enfermagem, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Felipe Francisco Tuon
- Universidade Católica do Paraná, Laboratório de Doenças Infecciosas Emergentes, Pontifícia Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Franciele Aní Caovilla Follador
- Universidade Estadual do Oeste do Paraná, Departamento de Ciências da Vida, Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Glaura Scantamburlo Alves Fernandes
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Hélito Volpato
- Universidade Estadual do Paraná (UNESPAR), Faculdade de Ciências Biológicas, Centro de Ciências Humanas e Educação, Paranavaí, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Ilce Mara de Syllos Cólus
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Jaqueline Carvalho de Oliveira
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Jean Henrique da Silva Rodrigues
- Universidade do Estado de São Paulo (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Fármacos e Medicamentos, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Jean Leandro dos Santos
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Fármacos e Medicamentos, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Jeane Eliete Laguila Visentainer
- Universidade Estadual de Maringá, Laboratório de Imunogenética, Maringá, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Juliana Cristina Brandi
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Juliana Mara Serpeloni
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Juliana Sartori Bonini
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Laboratório de Neuropsicofarmacologia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Karen Brajão de Oliveira
- Universidade Estadual de Londrina, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Laboratório de Genética Molecular e Imunologia, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Karine Fiorentin
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Léia Carolina Lucio
- Universidade Estadual do Oeste do Paraná, Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Centro de Ciências da Saúde, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Ligia Carla Faccin-Galhardi
- Universidade Estadual de Londrina, Departamento de Microbiologia, Centro de Ciências Biológicas, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Lirane Elize Defante Ferreto
- Universidade Estadual do Oeste do Paraná, Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Centro de Ciências da Saúde, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Lucy Megumi Yamauchi Lioni
- Universidade Estadual do Norte do Paraná (UENP), Centro de Ciências Biológicas, Bandeirantes, PR, Brazil
- Universidade Estadual de Londrina, Departamento de Microbiologia, Centro de Ciências Biológicas, Londrina, PR, Brazil
| | - Marcia Edilaine Lopes Consolaro
- Universidade Estadual de Maringá, Departamento de Análises Clínicas e Biomedicina, Maringá, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Marcelo Ricardo Vicari
- Universidade Estadual de Ponta Grossa, Departamento de Biologia e Genética Estrutural e Molecular, Ponta Grossa, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Marcos Abdo Arbex
- Universidade de Araraquara, Faculdade de Medicina, Área temática de Pneumologia, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Marcos Pileggi
- Universidade Estadual de Ponta Grossa, Departamento de Biologia e Genética Estrutural e Molecular, Ponta Grossa, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Maria Angelica Ehara Watanabe
- Universidade Estadual de Londrina, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Laboratório de Imunologia, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Maria Antônia Ramos Costa
- Universidade do Estado do Paraná, Colegiada de Enfermagem, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Maria José S. Mendes Giannini
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Marla Karine Amarante
- Universidade Estadual de Londrina, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Laboratório de Imunologia, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Najeh Maissar Khalil
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Farmácia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Quirino Alves de Lima
- Universidade Estadual de Maringá, Laboratório de Imunogenética, Maringá, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Roberto H. Herai
- Universidade Católica do Paraná (PUCPR), Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Laboratório Experimental Multiusuário, Curitiba, PR, Brazil
- Universitário Católico Salesiano Auxilium (UNISALESIANO), Faculdade de Medicina, Centro Araçatuba, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Roberta Losi Guembarovski
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Rogério N. Shinsato
- Universidade Católica do Paraná (PUCPR), Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Laboratório Experimental Multiusuário, Curitiba, PR, Brazil
- Universitário Católico Salesiano Auxilium (UNISALESIANO), Faculdade de Medicina, Centro Araçatuba, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Rubiana Mara Mainardes
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Farmácia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Silvana Giuliatti
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro Regional de Ribeirão Preto, Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Universidade Estadual de Londrina, Departamento de Microbiologia, Centro de Ciências Biológicas, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Viviane Knuppel de Quadros Gerber
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Enfermagem, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Wander Rogério Pavanelli
- Universidade Estadual de Londrina, Laboratório de Imunoparasitologia de Doenças Negligenciadas e Câncer, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Weber Claudio da Silva
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Farmácia, Guarapuava, PR, Brazil
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Laboratório de Neuropsicofarmacologia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Maria Luiza Petzl-Erler
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Valeria Valente
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
- Faculdade de Medicina de Ribeirão Preto, Centro de Terapia Celular (CEPID/FAPESP), Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Christiane Pienna Soares
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Luciane Regina Cavalli
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Wilson Araujo Silva
- Instituto para Pesquisa do Câncer (IPEC), Guarapuava, PR, Brazil
- Faculdade de Medicina de Ribeirão Preto, Centro de Terapia Celular (CEPID/FAPESP), Ribeirão Preto, SP, Brazil
- Instituto Nacional de Ciência e Tecnologia em Células-Tronco e Terapia Celular (INCT/CNPq), Ribeirão Preto, SP, Brazil
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| |
Collapse
|
13
|
Pisoschi AM, Pop A, Iordache F, Stanca L, Geicu OI, Bilteanu L, Serban AI. Antioxidant, anti-inflammatory and immunomodulatory roles of vitamins in COVID-19 therapy. Eur J Med Chem 2022; 232:114175. [PMID: 35151223 PMCID: PMC8813210 DOI: 10.1016/j.ejmech.2022.114175] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
oxidative stress is caused by an abundant generation of reactive oxygen species, associated to a diminished capacity of the endogenous systems of the organism to counteract them. Activation of pro-oxidative pathways and boosting of inflammatory cytokines are always encountered in viral infections, including SARS-CoV-2. So, the importance of counteracting cytokine storm in COVID-19 pathology is highly important, to hamper the immunogenic damage of the endothelium and alveolar membranes. Antioxidants prevent oxidative processes, by impeding radical species generation. It has been proved that vitamin intake lowers oxidative stress markers, alleviates cytokine storm and has a potential role in reducing disease severity, by lowering pro-inflammatory cytokines, hampering hyperinflammation and organ failure. For the approached compounds, direct antiviral roles are also discussed in this review, as these activities encompass secretion of antiviral peptides, modulation of angiotensin-converting enzyme 2 receptor expression and interaction with spike protein, inactivation of furin protease, or inhibition of pathogen replication by nucleic acid impairment induction. Vitamin administration results in beneficial effects. Nevertheless, timing, dosage and mutual influences of these micronutrients should be carefullly regarded.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Aneta Pop
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Liviu Bilteanu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Blvd, Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
14
|
Walsh JB, McCartney DM, Laird É, McCarroll K, Byrne DG, Healy M, O’Shea PM, Kenny RA, Faul JL. Title: Understanding a Low Vitamin D State in the Context of COVID-19. Front Pharmacol 2022; 13:835480. [PMID: 35308241 PMCID: PMC8931482 DOI: 10.3389/fphar.2022.835480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/27/2022] [Indexed: 12/19/2022] Open
Abstract
While a low vitamin D state has been associated with an increased risk of infection by SARS-CoV-2 in addition to an increased severity of COVID-19 disease, a causal role is not yet established. Here, we review the evidence relating to i) vitamin D and its role in SARS-CoV-2 infection and COVID-19 disease ii) the vitamin D status in the Irish adult population iii) the use of supplemental vitamin D to treat a deficient status and iv) the application of the Bradford-Hill causation criteria. We conclude that reverse causality probably makes a minimal contribution to the presence of low vitamin D states in the setting of COVID-19. Applying the Bradford-Hill criteria, however, the collective literature supports a causal association between low vitamin D status, SARS-CoV-2 infection, and severe COVID-19 (respiratory failure, requirement for ventilation and mortality). A biologically plausible rationale exists for these findings, given vitamin D's role in immune regulation. The thresholds which define low, deficient, and replete vitamin D states vary according to the disease studied, underscoring the complexities for determining the goals for supplementation. All are currently unknown in the setting of COVID-19. The design of vitamin D randomised controlled trials is notoriously problematic and these trials commonly fail for a number of behavioural and methodological reasons. In Ireland, as in most other countries, low vitamin D status is common in older adults, adults in institutions, and with obesity, dark skin, low UVB exposure, diabetes and low socio-economic status. Physiological vitamin D levels for optimal immune function are considerably higher than those that can be achieved from food and sunlight exposure alone in Ireland. A window exists in which a significant number of adults could benefit from vitamin D supplementation, not least because of recent data demonstrating an association between vitamin D status and COVID-19. During the COVID pandemic, we believe that supplementation with 20-25ug (800-1000 IU)/day or more may be required for adults with apparently normal immune systems to improve immunity against SARS-CoV-2. We expect that higher monitored doses of 37.5-50 ug (1,500-2,000)/day may be needed for vulnerable groups (e.g., those with obesity, darker skin, diabetes mellitus and older adults). Such doses are within the safe daily intakes cited by international advisory agencies.
Collapse
Affiliation(s)
- James Bernard Walsh
- Mercer’s Institute for Successful Ageing, St James’s Hospital, Dublin, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Daniel M. McCartney
- School of Biological and Health Sciences, College of Sciences & Health, Technological University Dublin, Dublin, Ireland
| | - Éamon Laird
- Mercer’s Institute for Successful Ageing, St James’s Hospital, Dublin, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Kevin McCarroll
- Mercer’s Institute for Successful Ageing, St James’s Hospital, Dublin, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Declan G. Byrne
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Medicine Directorate, St. James’s Hospital, Dublin, Ireland
| | - Martin Healy
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Department of Clinical Biochemistry, St James’s Hospital, Dublin, Ireland
| | - Paula M. O’Shea
- Department of Clinical Biochemistry, Galway University Hospitals, Galway, Ireland
- School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Rose Anne Kenny
- Mercer’s Institute for Successful Ageing, St James’s Hospital, Dublin, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - John L. Faul
- James Connolly Memorial Asthma Research Centre, Royal College of Surgeons in Ireland, Connolly Hospital Blanchardstown, Dublin, Ireland
| |
Collapse
|
15
|
Pedrosa LFC, Barros ANAB, Leite-Lais L. Nutritional risk of vitamin D, vitamin C, zinc, and selenium deficiency on risk and clinical outcomes of COVID-19: A narrative review. Clin Nutr ESPEN 2022; 47:9-27. [PMID: 35063248 PMCID: PMC8571905 DOI: 10.1016/j.clnesp.2021.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023]
Abstract
The pathogenicity of the current coronavirus disease (COVID-19) shows postulates that optimal status of essential nutrients is crucial in supporting both the early viraemic and later hyperinflammatory phases of COVID-19. Micronutrients such as vitamin C, D, zinc, and selenium play roles in antioxidant, anti-inflammatory, antithrombotic, antiviral, and immuno-modulatory functions and are useful in both innate and adaptive immunity. The purpose of this review is to provide a high-level summary of evidence on clinical outcomes associated with nutritional risk of these micronutrients observed in patients with COVID-19. A literature search was performed on PubMed and Google Scholar to obtain findings of cross-sectional and experimental studies in humans. The search resulted in a total of 1212 reports including all nutrients, but only 85 were included according to the eligibility criteria. Despite the diversity of studies and the lack of randomized clinical trials and prospective cohorts, there is evidence of the potential protective and therapeutic roles of vitamin C, D, zinc, and selenium in COVID-19. The findings summarized in this review will contribute to guide interventions in clinical practice or in future clinical studies.
Collapse
Affiliation(s)
- Lucia F C Pedrosa
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, 59078-970, Brazil; Department of Nutrition, Federal University of Rio Grande do Norte, Natal, RN, 59078-970, Brazil.
| | - Acsa N A B Barros
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, 59078-970, Brazil
| | - Lucia Leite-Lais
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal, RN, 59078-970, Brazil
| |
Collapse
|
16
|
Getachew B, Tizabi Y. Vitamin D and COVID-19: Role of ACE2, age, gender, and ethnicity. J Med Virol 2021; 93:5285-5294. [PMID: 33990955 PMCID: PMC8242434 DOI: 10.1002/jmv.27075] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, disproportionally targets older people, particularly men, ethnic minorities, and individuals with underlying diseases such as compromised immune system, cardiovascular disease, and diabetes. The discrepancy in COVID-19 incidence and severity is multifaceted and likely involves biological, social, as well as nutritional status. Vitamin D deficiency, notably common in Black and Brown people and elderly, is associated with an increased susceptibility to many of the diseases comorbid with COVID-19. Vitamin D deficiency can cause over-activation of the pulmonary renin-angiotensin system (RAS) leading to the respiratory syndrome. RAS is regulated in part at least by angiotensin-converting enzyme 2 (ACE2), which also acts as a primary receptor for SARS-CoV-2 entry into the cells. Hence, vitamin D deficiency can exacerbate COVID-19, via its effects on ACE2. In this review we focus on influence of age, gender, and ethnicity on vitamin D-ACE2 interaction and susceptibility to COVID-19.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of PharmacologyCollege of Medicine, Howard UniversityWashington DCUSA
| | - Yousef Tizabi
- Department of PharmacologyCollege of Medicine, Howard UniversityWashington DCUSA
| |
Collapse
|
17
|
Nimavat N, Singh S, Singh P, Singh SK, Sinha N. Vitamin D deficiency and COVID-19: A case-control study at a tertiary care hospital in India. Ann Med Surg (Lond) 2021; 68:102661. [PMID: 34377451 PMCID: PMC8339450 DOI: 10.1016/j.amsu.2021.102661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022] Open
Abstract
Background As the pandemic COVID-19 affected developing and developed countries, there is no proven treatment options available yet. The anti-inflammatory, antiviral and immune modulator effect of Vitamin D could be beneficial to COVID-19. Aim To find out the possible association between Vitamin D and COVID-19. Methods The present case-control study was conducted at tertiary care hospital, AIIMS, Patna, Bihar, India. Total 156 cases and 204 controls were enrolled in the study after obtaining informed consent. Categorization of the patients were done based on clinical severity and level of Vitamin D. The association between these categories with different variables were analyzed using regression analysis and other statistical tests. Results The status of Vitamin D (optimal, mild to moderate deficiency and severe deficiency) differed significantly among cases and controls. Diabetes and hypertension were most prevalent comorbidities among cases. On regression analysis, the difference in Vitamin D level was significant (aOR, 3.295; 95%CI, 1.25-8.685). The association between Vitamin D status and clinical severity group was statistically significant among cases. Among all variables, age, diabetes, hypertension and clinical severity were associated with worst outcome. Conclusion Vitamin D status appears to be strongly associated with COVID-19 clinical severity. After COVID-19 confirmation, Vitamin D level should be measured in all patients and curative plus preventive therapy should be initiated.
Collapse
Affiliation(s)
- Nirav Nimavat
- Department of Community Medicine, SBKS MIRC, Sumandeep Vidyapeeth Deemed to be University, Vadodara, Gujarat, India
| | - Shruti Singh
- Department of Pharmacology, AIIMS, Patna, Bihar, India
| | - Pratibha Singh
- Department of Anaesthesiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | - Nishi Sinha
- Department of Pharmacology, AIIMS, Patna, Bihar, India
| |
Collapse
|
18
|
Story MJ. Essential sufficiency of zinc, ω-3 polyunsaturated fatty acids, vitamin D and magnesium for prevention and treatment of COVID-19, diabetes, cardiovascular diseases, lung diseases and cancer. Biochimie 2021; 187:94-109. [PMID: 34082041 PMCID: PMC8166046 DOI: 10.1016/j.biochi.2021.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Despite the development of a number of vaccines for COVID-19, there remains a need for prevention and treatment of the virus SARS-CoV-2 and the ensuing disease COVID-19. This report discusses the key elements of SARS-CoV-2 and COVID-19 that can be readily treated: viral entry, the immune system and inflammation, and the cytokine storm. It is shown that the essential nutrients zinc, ω-3 polyunsaturated fatty acids (PUFAs), vitamin D and magnesium provide the ideal combination for prevention and treatment of COVID-19: prevention of SARS-CoV-2 entry to host cells, prevention of proliferation of SARS-CoV-2, inhibition of excessive inflammation, improved control of the regulation of the immune system, inhibition of the cytokine storm, and reduction in the effects of acute respiratory distress syndrome (ARDS) and associated non-communicable diseases. It is emphasized that the non-communicable diseases associated with COVID-19 are inherently more prevalent in the elderly than the young, and that the maintenance of sufficiency of zinc, ω-3 PUFAs, vitamin D and magnesium is essential for the elderly to prevent the occurrence of non-communicable diseases such as diabetes, cardiovascular diseases, lung diseases and cancer. Annual checking of levels of these essential nutrients is recommended for those over 65 years of age, together with appropriate adjustments in their intake, with these services and supplies being at government cost. The cost:benefit ratio would be huge as the cost of the nutrients and the testing of their levels would be very small compared with the cost savings of specialists and hospitalization.
Collapse
Affiliation(s)
- Michael J Story
- Story Pharmaceutics Pty Ltd, PO Box 6086, Linden Park, South Australia, 5065, Australia.
| |
Collapse
|
19
|
Calcifediol Treatment and Hospital Mortality Due to COVID-19: A Cohort Study. Nutrients 2021; 13:nu13061760. [PMID: 34064175 PMCID: PMC8224356 DOI: 10.3390/nu13061760] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Context. Calcifediol has been proposed as a potential treatment for COVID-19 patients. Objective: To compare the administration or not of oral calcifediol on mortality risk of patients hospitalized because of COVID-19. Design: Retrospective, multicenter, open, non-randomized cohort study. Settings: Hospitalized care. Patients: Patients with laboratory-confirmed COVID-19 between 5 February and 5 May 2020 in five hospitals in the South of Spain. Intervention: Patients received calcifediol (25-hydroxyvitamin D3) treatment (0.266 mg/capsule, 2 capsules on entry and then one capsule on day 3, 7, 14, 21, and 28) or not. Main Outcome Measure: In-hospital mortality during the first 30 days after admission. Results: A total of 537 patients were hospitalized with COVID-19 (317 males (59%), median age, 70 years), and 79 (14.7%) received calcifediol treatment. Overall, in-hospital mortality during the first 30 days was 17.5%. The OR of death for patients receiving calcifediol (mortality rate of 5%) was 0.22 (95% CI, 0.08 to 0.61) compared to patients not receiving such treatment (mortality rate of 20%; p < 0.01). Patients who received calcifediol after admission were more likely than those not receiving treatment to have comorbidity and a lower rate of CURB-65 score for pneumonia severity ≥ 3 (one point for each of confusion, urea > 7 mmol/L, respiratory rate ≥ 30/min, systolic blood pressure < 90 mm Hg or diastolic blood pressure ≤ 60 mm Hg, and age ≥ 65 years), acute respiratory distress syndrome (moderate or severe), c-reactive protein, chronic kidney disease, and blood urea nitrogen. In a multivariable logistic regression model, adjusting for confounders, there were significant differences in mortality for patients receiving calcifediol compared with patients not receiving it (OR = 0.16 (95% CI 0.03 to 0.80). Conclusion: Among patients hospitalized with COVID-19, treatment with calcifediol, compared with those not receiving calcifediol, was significantly associated with lower in-hospital mortality during the first 30 days. The observational design and sample size may limit the interpretation of these findings.
Collapse
|
20
|
Al-Daghri NM, Amer OE, Alotaibi NH, Aldisi DA, Enani MA, Sheshah E, Aljohani NJ, Alshingetti N, Alomar SY, Alfawaz H, Hussain SD, Alnaami AM, Sabico S. Vitamin D status of Arab Gulf residents screened for SARS-CoV-2 and its association with COVID-19 infection: a multi-centre case-control study. J Transl Med 2021; 19:166. [PMID: 33902635 PMCID: PMC8072076 DOI: 10.1186/s12967-021-02838-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Vitamin D status in patients with COVID-19 is an on-going controversial issue. This study aims to determine differences in the serum 25(OH)D concentrations of Arab Gulf adult residents screened for SARS-CoV-2 and its association with risk of COVID-19 infection together with other comorbidities. METHODS In this multi-center, case-control study, a total of 220 male and female adults presenting with none to mild symptoms were screened for COVID-19 (n = 138 RT-PCR-confirmed SARS-CoV-2 positive and 82 negative controls). Medical history was noted. Anthropometrics were measured and non-fasting blood samples were collected for the assessment of glucose, lipids, inflammatory markers and serum 25(OH)D concentrations. RESULTS Serum 25(OH)D levels were significantly lower in the SARS-CoV-2 positive group compared to the negative group after adjustment for age and BMI (52.8 nmol/l ± 11.0 versus 64.5 nmol/l ± 11.1; p = 0.009). Being elderly (> 60 years) [Odds ratio 6 (95% Confidence Interval, CI 2-18; p = 0.001) as well as having type 2 diabetes (T2D) [OR 6 (95% CI 3-14); p < 0.001)] and low HDL cholesterol (HDL-c) [OR 6 (95% CI 3-14); p < 0.001)] were significant risk factors for COVID-19 infection independent of age, sex and obesity. CONCLUSIONS Among Arab Gulf residents screened for SARS-CoV-2, serum 25(OH) D levels were observed to be lower in those who tested positive than negative individuals, but it was the presence of old age, diabetes mellitus and low-HDL-c that were significantly associated with risk of COVID-19 infection. Large population-based randomized controlled trials should be conducted to assess the protective effects of vitamin D supplementation against COVID-19.
Collapse
Affiliation(s)
- Nasser M. Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, PO Box, 2455, Riyadh, 11451 Saudi Arabia
| | - Osama E. Amer
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, PO Box, 2455, Riyadh, 11451 Saudi Arabia
| | - Naif H. Alotaibi
- Department of Medicine, College of Medicine, King Saud University, Riyadh, 12372 Saudi Arabia
| | - Dara A. Aldisi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Mushira A. Enani
- Infectious Diseases Section, King Fahad Medical City, Riyadh, 59046 Saudi Arabia
| | - Eman Sheshah
- Diabetes Care Center, King Salman Bin Abdulaziz Hospital, Riyadh, 12769 Saudi Arabia
| | - Naji J. Aljohani
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, PO Box, 2455, Riyadh, 11451 Saudi Arabia
- Obesity, Endocrine and Metabolism Center, Department of Medicine, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Naemah Alshingetti
- Obstetrics and Gynaecology Department, King Salman Bin Abdulaziz Hospital, Riyadh, 11564 Saudi Arabia
| | - Suliman Y. Alomar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, 11495 Saudi Arabia
| | - Hanan Alfawaz
- College of Food Science & Agriculture, Department of Food Science & Nutrition, King Saud University, Riyadh, 11495 Saudi Arabia
| | - Syed D. Hussain
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, PO Box, 2455, Riyadh, 11451 Saudi Arabia
| | - Abdullah M. Alnaami
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, PO Box, 2455, Riyadh, 11451 Saudi Arabia
| | - Shaun Sabico
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, PO Box, 2455, Riyadh, 11451 Saudi Arabia
| |
Collapse
|