1
|
Siri Y, Malla B, Thao LT, Hirai S, Ruti AA, Rahmani AF, Raya S, Angga MS, Sthapit N, Shrestha S, Takeda T, Kitajima M, Dinh NQ, Phuc PD, Ngo HTT, Haramoto E. Assessment of environmental factors influencing SARS-CoV-2 in Vietnam's surface water across two years of clinical data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177449. [PMID: 39542275 DOI: 10.1016/j.scitotenv.2024.177449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Wastewater-based epidemiology (WBE) is an effective, non-invasive method for monitoring the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by tracking viral prevalence in water. This study aimed to investigate the presence of SARS-CoV-2 in surface water in Vietnam over two years. One-step quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays were employed to quantify SARS-CoV-2 and its variant-specific mutation sites (G339D/E484A) and pepper mild mottle virus (PMMoV) from a total of 315 samples (105 samples per site) to compare with reported Coronavirus disease 2019 (COVID-19) cases and environmental factors. SARS-CoV-2 was detected in 38 % (40/105), 43 % (45/105), and 39 % (41/105) of water samples from Sites A, B, and C, respectively, with concentrations of 3.0-5.6 log10 copies/L. PMMoV concentrations were 5.1-8.9 log10 copies/L. SARS-CoV-2 levels were higher in winter compared with summer. There was a strong positive association between the mutant type and SARS-CoV-2 concentrations (Spearman's rho = 0.77, p < 0.01). The mean concentrations of mutant and nonmutant types were 2.3 and 1.8 log10 copies/L, respectively. Peaks in SARS-CoV-2 concentrations preceded reported COVID-19 cases by 2-4 weeks, with the highest association observed at a 4-week delay (Pearson's correlation coefficient: 0.46-0.53). Environmental factors, including temperature, pH, and electrical conductivity, correlated negatively with SARS-CoV-2 (Spearman's rho = -0.21, -0.28, and -0.21, respectively, p < 0.05), whereas average rainfall, humidity, and dissolved oxygen correlated positively (Spearman's rho = 0.20, 0.27, and 0.51, respectively, p < 0.05). These correlations highlight the significance of environmental variables in understanding viral prevalence in water. Our findings confirmed the utility of WBE as an early warning system for long-term monitoring. Future research should incorporate environmental factors to improve prediction accuracy for clinical cases and other waterborne diseases.
Collapse
Affiliation(s)
- Yadpiroon Siri
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Le Thanh Thao
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; Environmental Chemistry and Ecotoxicology Lab, Phenikaa University, Yen Nghia Ward, Ha Dong District, Hanoi 12116, Viet Nam
| | - Soichiro Hirai
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Annisa Andarini Ruti
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Aulia Fajar Rahmani
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Made Sandhyana Angga
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Niva Sthapit
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sadhana Shrestha
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Tomoko Takeda
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaaki Kitajima
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Nguyen Quoc Dinh
- Environmental Chemistry and Ecotoxicology Lab, Phenikaa University, Yen Nghia Ward, Ha Dong District, Hanoi 12116, Viet Nam; External Engagement Office, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam
| | - Pham Duc Phuc
- Center for Public Health and Ecosystem Research, Hanoi University of Public Health, Viet Nam; Institute of Environmental Health and Sustainable Development, Hanoi, Viet Nam
| | - Huong Thi Thuy Ngo
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; Environmental Chemistry and Ecotoxicology Lab, Phenikaa University, Yen Nghia Ward, Ha Dong District, Hanoi 12116, Viet Nam.
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
2
|
Abe S, Wannigama DL, Suzuki Y, Akaneya D, Igarashi J, Suto M, Moriya K, Ishizawa D, Okuma Y, Hongsing P, Hurst C, Saethang T, Higgins PG, Stick SM, Kicic A. Real world effectiveness of early ensitrelvir treatment in patients with SARS-CoV-2, a retrospective case series. New Microbes New Infect 2024; 62:101522. [PMID: 39552926 PMCID: PMC11567130 DOI: 10.1016/j.nmni.2024.101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
Background Ensitrelvir, a 3C-like protease inhibitor, received emergency approval in Japan in November 2022 for treating non-hospitalized patients with mild-to-moderate COVID-19. However, confirmation of its real-world clinical effectiveness is limited. Methods This retrospective study evaluated 18 vaccinated outpatients (15 men; median age, 39.5 years; range, 26-56), treated with a 5-day oral ensitrelvir regimen (375 mg loading dose, followed by 125 mg daily) between December 1, 2022, and January 31, 2023. Nasal swabs were collected on days 0, 3, 6, and 9 for RT-qPCR to assess viral load. Variants were identified by Sanger sequencing, and outcomes were compared to historical controls. Patients were followed for 60 days to monitor for post-acute sequelae of COVID-19 (PASC). Results Symptoms such as mild fever and sore throat improved rapidly after one day of ensitrelvir treatment, with 66 % of patients recovering within six days. All individuals were infected with the BA.5 Omicron variant. Viral loads, as measured by Ct values, increased significantly from 21.82 at symptom onset to 37.65 b y day 6, with SARS-CoV-2 RNA undetectable in most patients by day 9. Those treated within 48 h of symptom onset showed the viral load reduction. Compared to historical controls, where symptom resolution took 8.5 days, ensitrelvir shortened recovery time to as little as 1.4 days for over 66 % of patients. Conclusion Ensitrelvir treatment resulted in rapid symptom relief and significant viral load reduction, with no adverse events, viral rebound, or PASC symptoms, demonstrating its potential efficacy and safety. Larger studies are needed for further confirmation.
Collapse
Affiliation(s)
- Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Pathogen Hunter's Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Pathogen Hunter's Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Department of Infectious Diseases, Faculty of Medicine Yamagata University, Yamagata, Japan
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, United Kingdom
| | - Yu Suzuki
- Department of Clinical Laboratory, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Daisuke Akaneya
- Department of Clinical Laboratory, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Junko Igarashi
- Department of Clinical Laboratory, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Mayu Suto
- Department of Clinical Laboratory, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Kazunori Moriya
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Daisuke Ishizawa
- Department of Pharmacy, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Yoshikazu Okuma
- Department of Pharmacy, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Cameron Hurst
- Molly Wardaguga Research Centre, Charles Darwin University, Queensland, Australia
- Department of Clinical Epidemiology, Faculty of Medicine, Thammasat University, Rangsit, Thailand, 10120
- Center of Excellence in Applied Epidemiology, Thammasat University, Rangsit, Thailand, 10120
| | - Thammakorn Saethang
- Department of Computer Science, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Stephen M. Stick
- Wal-yan Respiratory Centre, Telethon Kids Institute, University of Western Australia, Nedlands, 6009, Western Australia, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, 6009, Western Australia, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
| | - Anthony Kicic
- Wal-yan Respiratory Centre, Telethon Kids Institute, University of Western Australia, Nedlands, 6009, Western Australia, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, 6009, Western Australia, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
- School of Population Health, Curtin University, Bentley, 6102, Western Australia, Australia
| |
Collapse
|
3
|
Devianto LA, Amarasiri M, Wang L, Iizuka T, Sano D. Identification of protein biomarkers in wastewater linked to the incidence of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175649. [PMID: 39168326 DOI: 10.1016/j.scitotenv.2024.175649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/19/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Wastewater-based epidemiological (WBE) surveillance is a viable disease surveillance technique capable of monitoring the spread of infectious disease agents in sewershed communities. In addition to detecting viral genomes in wastewater, WBE surveillance can identify other endogenous biomarkers that are significantly elevated and excreted in the saliva, urine, and/or stool of infected individuals. Human protein biomarkers allow the realization of real-time WBE surveillance using highly sensitive biosensors. In this study, we analyzed endogenous protein biomarkers present in wastewater influent through liquid chromatography-tandem mass spectrophotometry and scaffold data-independent acquisition to identify candidate target protein biomarkers for WBE surveillance of SARS-CoV-2. We found that out of the 1382 proteins observed in the wastewater samples, 44 were human proteins associated with infectious diseases. These included immune response substances such as immunoglobulins, cytokine-chemokines, and complements, as well as proteins belonging to antimicrobial and antiviral groups. A significant correlation was observed between the intensity of human infectious disease-related protein biomarkers in wastewater and COVID-19 case numbers. Real-time WBE surveillance using biosensors targeting immune response proteins, such as antibodies or immunoglobulins, in wastewater holds promise for expediting the implementation of relevant policies for the effective prevention of infectious diseases in the near future.
Collapse
Affiliation(s)
- Luhur Akbar Devianto
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan; Department of Environmental Engineering, Faculty of Agriculture Technology, Brawijaya University, Malang 65145, Indonesia
| | - Mohan Amarasiri
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Luyao Wang
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Takehito Iizuka
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Daisuke Sano
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan; Wastewater Information Research Center, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan; New Industry Creation Hatchery Center, Tohoku University, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
4
|
Street R, Mathee A, Reddy T, Mahlangeni NT, Mangwana N, Nkambule S, Webster C, Dias S, Sharma JR, Ramharack P, Louw J, Surujlal-Naicker S, Berkowitz N, Mdhluli M, Gray G, Muller C, Johnson R. One Year of Wastewater Surveillance in South Africa Supporting COVID-19 Clinical Findings Across Two Waves of Infection. Microorganisms 2024; 12:2230. [PMID: 39597619 PMCID: PMC11596097 DOI: 10.3390/microorganisms12112230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Wastewater-based epidemiology (WBE) has been an important tool for the detection of COVID-19 outbreaks. The retrospective analysis of COVID-19 data is vital to understand the spread and impact of the virus as well as to inform future planning and response efforts. In this study, we evaluated the SARS-CoV-2 RNA levels in wastewater from 21 wastewater treatment plants (WWTPs) in the City of Cape Town (South Africa) over a period of 12 months and compared the (inactive) SARS-CoV-2 viral RNA in wastewater between wave 2 (November 2020 to January 2021) and wave 3 (June 2021 to September 2021). The SARS-CoV-2 RNA expression was quantified in wastewater using quantitative real-time PCR (qRT-PCR) by targeting the nucleocapsid (N) gene, and the resultant signal was normalized to the WWTP design capacity and catchment size. Our findings show that the maximum SARS-CoV-2 RNA signal was significantly higher in wave 3 than in wave 2 (p < 0.01). The duration of wave 3 (15 weeks) was longer than that of wave 2 (10 weeks), and the wastewater surveillance data supported the clinical findings, as evidenced by the two distinct waves. Furthermore, the data demonstrated the importance of long-term wastewater surveillance as a key indicator of changing trends.
Collapse
Affiliation(s)
- Renée Street
- Environment & Health Research Unit, South African Medical Research Council (SAMRC), Cape Town 7505, South Africa; (N.T.M.); (S.N.); (C.W.)
- Environmental Health Department, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa;
| | - Angela Mathee
- Environmental Health Department, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa;
- Environment & Health Research Unit, South African Medical Research Council (SAMRC), Johannesburg 2028, South Africa
| | - Tarylee Reddy
- Biostatistics Unit, South African Medical Research Council (SAMRC), Durban 4091, South Africa;
| | - Nomfundo T. Mahlangeni
- Environment & Health Research Unit, South African Medical Research Council (SAMRC), Cape Town 7505, South Africa; (N.T.M.); (S.N.); (C.W.)
| | - Noluxabiso Mangwana
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa; (N.M.); (S.D.); (J.R.S.); (P.R.); (J.L.); (C.M.); (R.J.)
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Sizwe Nkambule
- Environment & Health Research Unit, South African Medical Research Council (SAMRC), Cape Town 7505, South Africa; (N.T.M.); (S.N.); (C.W.)
| | - Candice Webster
- Environment & Health Research Unit, South African Medical Research Council (SAMRC), Cape Town 7505, South Africa; (N.T.M.); (S.N.); (C.W.)
| | - Stephanie Dias
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa; (N.M.); (S.D.); (J.R.S.); (P.R.); (J.L.); (C.M.); (R.J.)
| | - Jyoti Rajan Sharma
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa; (N.M.); (S.D.); (J.R.S.); (P.R.); (J.L.); (C.M.); (R.J.)
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Pritika Ramharack
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa; (N.M.); (S.D.); (J.R.S.); (P.R.); (J.L.); (C.M.); (R.J.)
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa; (N.M.); (S.D.); (J.R.S.); (P.R.); (J.L.); (C.M.); (R.J.)
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Swastika Surujlal-Naicker
- Scientific Services, Water and Sanitation Department, City of Cape Town Metropolitan Municipality, Cape Town 8000, South Africa;
| | - Natacha Berkowitz
- Community Service and Health, City Health, City of Cape Town, Hertzog Boulevard, Cape Town 8000, South Africa;
| | - Mongezi Mdhluli
- Chief Research Operations Office, South African Medical Research Council, Tygerberg 7050, South Africa;
| | - Glenda Gray
- Office of the President, South African Medical Research Council, Tygerberg 7050, South Africa;
| | - Christo Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa; (N.M.); (S.D.); (J.R.S.); (P.R.); (J.L.); (C.M.); (R.J.)
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa; (N.M.); (S.D.); (J.R.S.); (P.R.); (J.L.); (C.M.); (R.J.)
| |
Collapse
|
5
|
Deák G, Prangate R, Croitoru C, Matei M, Boboc M. The first detection of SARS-CoV-2 RNA in the wastewater of Bucharest, Romania. Sci Rep 2024; 14:21730. [PMID: 39289536 PMCID: PMC11408638 DOI: 10.1038/s41598-024-72854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
Wastewater-based epidemiology (WBE) has been previously used as a tool for pathogen identification within communities. After the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) outbreak, in 2020, Daughton proposed the implementation of a wastewater surveillance strategy that could determine the incidence of COVID-19 (coronavirus disease 2019) nationally. Individuals in various stages of SARS-CoV-2 infection, including presymptomatic, asymptomatic and symptomatic patients, can be identified as carriers of the virus in their urine, saliva, stool and other bodily secretions. Studies using this method were conducted to monitor the prevalence of the virus in high-density populations, such as cities but also in smaller communities, such as schools and college campuses. The aim of this pilot study was to assess the feasibility and effectiveness of wastewater surveillance in Bucharest, Romania, and wastewater samples were collected weekly from seven locations between July and September 2023. RNA (ribonucleic acid) extraction, followed by dPCR (digital polymerase chain reaction) analysis, was performed to detect viral genetic material. Additionally, NGS (next generation sequencing) technology was used to identify the circulating variants within the wastewater of Bucharest, Romania. Preliminary results indicate the successful detection of SARS-CoV-2 RNA in wastewater, providing valuable insights into the circulation of the virus within the community.
Collapse
Affiliation(s)
- György Deák
- National Institute for Research and Development in Environmental Protection, Splaiul Independenţei 294, 060031, Bucharest, Romania
| | - Raluca Prangate
- National Institute for Research and Development in Environmental Protection, Splaiul Independenţei 294, 060031, Bucharest, Romania.
| | - Cristina Croitoru
- National Institute for Research and Development in Environmental Protection, Splaiul Independenţei 294, 060031, Bucharest, Romania
| | - Monica Matei
- National Institute for Research and Development in Environmental Protection, Splaiul Independenţei 294, 060031, Bucharest, Romania
| | - Mădălina Boboc
- National Institute for Research and Development in Environmental Protection, Splaiul Independenţei 294, 060031, Bucharest, Romania
| |
Collapse
|
6
|
Pasha ABT, Kotlarz N, Holcomb D, Reckling S, Kays J, Bailey E, Guidry V, Christensen A, Berkowitz S, Engel LS, de Los Reyes F, Harris A. Monitoring SARS-CoV-2 RNA in wastewater from a shared septic system and sub-sewershed sites to expand COVID-19 disease surveillance. JOURNAL OF WATER AND HEALTH 2024; 22:978-992. [PMID: 38935450 DOI: 10.2166/wh.2024.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/21/2024] [Indexed: 06/29/2024]
Abstract
Wastewater-based epidemiology has expanded as a tool for collecting COVID-19 surveillance data, but there is limited information on the feasibility of this form of surveillance within decentralized wastewater systems (e.g., septic systems). This study assessed SARS-CoV-2 RNA concentrations in wastewater samples from a septic system servicing a mobile home park (66 households) and from two pumping stations serving a similarly sized (71 households) and a larger (1,000 households) neighborhood within a nearby sewershed over 35 weeks in 2020. Also, raw wastewater from a hospital in the same sewershed was sampled. The mobile home park samples had the highest detection frequency (39/39 days) and mean concentration of SARS-CoV-2 RNA (2.7 × 107 gene copies/person/day for the N1) among the four sampling sites. N1 gene and N2 gene copies were highly correlated across mobile home park samples (Pearson's r = 0.93, p < 0.0001). In the larger neighborhood, new COVID-19 cases were reported every week during the sampling period; however, we detected SARS-CoV-2 RNA in 12% of the corresponding wastewater samples. The results of this study suggest that sampling from decentralized wastewater infrastructure can be used for continuous monitoring of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- A B Tanvir Pasha
- Department of Civil, Construction and Environmental Engineering, North Carolina State University (NC State), 915 Partners Way, Raleigh, NC 27606, USA
| | - Nadine Kotlarz
- Center for Human Health and the Environment, NC State, Raleigh, NC, USA
| | - David Holcomb
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Stacie Reckling
- Division of Public Health, North Carolina Department of Health and Human Services, Raleigh, NC, USA
| | - Judith Kays
- Department of Civil, Construction and Environmental Engineering, North Carolina State University (NC State), 915 Partners Way, Raleigh, NC 27606, USA
| | | | - Virginia Guidry
- Division of Public Health, North Carolina Department of Health and Human Services, Raleigh, NC, USA
| | - Ariel Christensen
- Division of Public Health, North Carolina Department of Health and Human Services, Raleigh, NC, USA
| | - Steven Berkowitz
- Division of Public Health, North Carolina Department of Health and Human Services, Raleigh, NC, USA
| | - Lawrence S Engel
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Francis de Los Reyes
- Department of Civil, Construction and Environmental Engineering, North Carolina State University (NC State), 915 Partners Way, Raleigh, NC 27606, USA
| | - Angela Harris
- Department of Civil, Construction and Environmental Engineering, North Carolina State University (NC State), 915 Partners Way, Raleigh, NC 27606, USA E-mail:
| |
Collapse
|
7
|
Wannigama DL, Hurst C, Phattharapornjaroen P, Hongsing P, Sirichumroonwit N, Chanpiwat K, Rad S.M. AH, Storer RJ, Ounjai P, Kanthawee P, Ngamwongsatit N, Kupwiwat R, Kupwiwat C, Brimson JM, Devanga Ragupathi NK, Charuluxananan S, Leelahavanichkul A, Kanjanabuch T, Higgins PG, Badavath VN, Amarasiri M, Verhasselt V, Kicic A, Chatsuwan T, Pirzada K, Jalali F, Reiersen AM, Abe S, Ishikawa H. Early treatment with fluvoxamine, bromhexine, cyproheptadine, and niclosamide to prevent clinical deterioration in patients with symptomatic COVID-19: a randomized clinical trial. EClinicalMedicine 2024; 70:102517. [PMID: 38516100 PMCID: PMC10955208 DOI: 10.1016/j.eclinm.2024.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Background Repurposed drugs with host-directed antiviral and immunomodulatory properties have shown promise in the treatment of COVID-19, but few trials have studied combinations of these agents. The aim of this trial was to assess the effectiveness of affordable, widely available, repurposed drugs used in combination for treatment of COVID-19, which may be particularly relevant to low-resource countries. Methods We conducted an open-label, randomized, outpatient, controlled trial in Thailand from October 1, 2021, to June 21, 2022, to assess whether early treatment within 48-h of symptoms onset with combinations of fluvoxamine, bromhexine, cyproheptadine, and niclosamide, given to adults with confirmed mild SARS-CoV-2 infection, can prevent 28-day clinical deterioration compared to standard care. Participants were randomly assigned to receive treatment with fluvoxamine alone, fluvoxamine + bromhexine, fluvoxamine + cyproheptadine, niclosamide + bromhexine, or standard care. The primary outcome measured was clinical deterioration within 9, 14, or 28 days using a 6-point ordinal scale. This trial is registered with ClinicalTrials.gov (NCT05087381). Findings Among 1900 recruited, a total of 995 participants completed the trial. No participants had clinical deterioration by day 9, 14, or 28 days among those treated with fluvoxamine plus bromhexine (0%), fluvoxamine plus cyproheptadine (0%), or niclosamide plus bromhexine (0%). Nine participants (5.6%) in the fluvoxamine arm had clinical deterioration by day 28, requiring low-flow oxygen. In contrast, most standard care arm participants had clinical deterioration by 9, 14, and 28 days. By day 9, 32.7% (110) of patients in the standard care arm had been hospitalized without requiring supplemental oxygen but needing ongoing medical care. By day 28, this percentage increased to 37.5% (21). Additionally, 20.8% (70) of patients in the standard care arm required low-flow oxygen by day 9, and 12.5% (16) needed non-invasive or mechanical ventilation by day 28. All treated groups significantly differed from the standard care group by days 9, 14, and 28 (p < 0.0001). Also, by day 28, the three 2-drug treatments were significantly better than the fluvoxamine arm (p < 0.0001). No deaths occurred in any study group. Compared to standard care, participants treated with the combination agents had significantly decreased viral loads as early as day 3 of treatment (p < 0.0001), decreased levels of serum cytokines interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β) as early as day 5 of treatment, and interleukin-8 (IL-8) by day 7 of treatment (p < 0.0001) and lower incidence of post-acute sequelae of COVID-19 (PASC) symptoms (p < 0.0001). 23 serious adverse events occurred in the standard care arm, while only 1 serious adverse event was reported in the fluvoxamine arm, and zero serious adverse events occurred in the other arms. Interpretation Early treatment with these combinations among outpatients diagnosed with COVID-19 was associated with lower likelihood of clinical deterioration, and with significant and rapid reduction in the viral load and serum cytokines, and with lower burden of PASC symptoms. When started very soon after symptom onset, these repurposed drugs have high potential to prevent clinical deterioration and death in vaccinated and unvaccinated COVID-19 patients. Funding Ped Thai Su Phai (Thai Ducks Fighting Danger) social giver group.
Collapse
Affiliation(s)
- Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, United Kingdom
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata, 990-2212, Japan
| | - Cameron Hurst
- Molly Wardaguga Research Centre, Charles Darwin University, Queensland, Australia
| | - Phatthranit Phattharapornjaroen
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Academy, Gothenburg University, 40530, Gothenburg, Sweden
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Natchalaikorn Sirichumroonwit
- Institute of Medical Research and Technology Assessment, Department of Medical Services, Ministry of Public Health, Thailand
| | | | - Ali Hosseini Rad S.M.
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9010, Otago, New Zealand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Robin James Storer
- Office of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Phitsanuruk Kanthawee
- Public Health Major, School of Health Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Rosalyn Kupwiwat
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chaisit Kupwiwat
- Department of Critical Care Medicine, Vibhavadi Hospital, Bangkok, Thailand
| | - James Michael Brimson
- Department of Innovation and International Affair, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Naveen Kumar Devanga Ragupathi
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, United Kingdom
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom
- Division of Microbial Interactions, Department of Research and Development, Bioberrys Healthcare and Research Centre, Vellore, 632009, India
| | - Somrat Charuluxananan
- Department of Anesthesiology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Dialysis Policy and Practice Program (DiP3), School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Peritoneal Dialysis Excellence Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935, Cologne, Germany
| | - Vishnu Nayak Badavath
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad, 509301, India
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan
| | - Valerie Verhasselt
- Centre of Research for Immunology and Breastfeeding (CIBF), Medical School and School of Biomedical Science, University of Western Australia, Perth, Western Australia, 6009, Australia
- Immunology and Breastfeeding Group, Neonatal and Life Course Health Program, Telethon Kids Institute, Perth, Western Australia, 6009, Australia
| | - Anthony Kicic
- Telethon Kids Institute, University of Western Australia, Nedlands, 6009, Western Australia, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, 6009, Western Australia, Australia
- School of Public Health, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kashif Pirzada
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Family and Community Medicine, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Farid Jalali
- Department of Gastroenterology, Saddleback Medical Group, Laguna Hills, CA, United States
| | - Angela M. Reiersen
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Hitoshi Ishikawa
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata, 990-2212, Japan
| |
Collapse
|
8
|
Anupong S, Chadsuthi S, Hongsing P, Hurst C, Phattharapornjaroen P, Rad S.M. AH, Fernandez S, Huang AT, Vatanaprasan P, Saethang T, Luk-in S, Storer RJ, Ounjai P, Devanga Ragupathi NK, Kanthawee P, Ngamwongsatit N, Badavath VN, Thuptimdang W, Leelahavanichkul A, Kanjanabuch T, Miyanaga K, Cui L, Nanbo A, Shibuya K, Kupwiwat R, Sano D, Furukawa T, Sei K, Higgins PG, Kicic A, Singer AC, Chatsuwan T, Trowsdale S, Abe S, Ishikawa H, Amarasiri M, Modchang C, Wannigama DL. Exploring indoor and outdoor dust as a potential tool for detection and monitoring of COVID-19 transmission. iScience 2024; 27:109043. [PMID: 38375225 PMCID: PMC10875567 DOI: 10.1016/j.isci.2024.109043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
This study investigated the potential of using SARS-CoV-2 viral concentrations in dust as an additional surveillance tool for early detection and monitoring of COVID-19 transmission. Dust samples were collected from 8 public locations in 16 districts of Bangkok, Thailand, from June to August 2021. SARS-CoV-2 RNA concentrations in dust were quantified, and their correlation with community case incidence was assessed. Our findings revealed a positive correlation between viral concentrations detected in dust and the relative risk of COVID-19. The highest risk was observed with no delay (0-day lag), and this risk gradually decreased as the lag time increased. We observed an overall decline in viral concentrations in public places during lockdown, closely associated with reduced human mobility. The effective reproduction number for COVID-19 transmission remained above one throughout the study period, suggesting that transmission may persist in locations beyond public areas even after the lockdown measures were in place.
Collapse
Affiliation(s)
- Suparinthon Anupong
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sudarat Chadsuthi
- Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Cameron Hurst
- Molly Wardaguga Research Centre, Charles Darwin University, Brisbane, QLD, Australia
- Statistics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Phatthranit Phattharapornjaroen
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Academy, Gothenburg University, 40530 Gothenburg, Sweden
| | - Ali Hosseini Rad S.M.
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago 9010, New Zealand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Stefan Fernandez
- Department of Virology, U.S. Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Angkana T. Huang
- Department of Virology, U.S. Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - Thammakorn Saethang
- Department of Computer Science, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Sirirat Luk-in
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Robin James Storer
- Office of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Naveen Kumar Devanga Ragupathi
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, UK
- Division of Microbial Interactions, Department of Research and Development, Bioberrys Healthcare and Research Centre, Vellore 632009, India
| | - Phitsanuruk Kanthawee
- Public Health Major, School of Health Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Vishnu Nayak Badavath
- School of Pharmacy & Technology Management, SVKM’s Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad 509301, India
| | - Wanwara Thuptimdang
- Institute of Biomedical Engineering, Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Dialysis Policy and Practice Program (DiP3), School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Peritoneal Dialysis Excellence Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Kazuhiko Miyanaga
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Longzhu Cui
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Asuka Nanbo
- The National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Kenji Shibuya
- Tokyo Foundation for Policy Research, Minato-ku, Tokyo, Japan
| | - Rosalyn Kupwiwat
- Department of Dermatology. Faculty of Medicine Siriraj Hospital. Mahidol University, Bangkok, Thailand
| | - Daisuke Sano
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Takashi Furukawa
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Minato City, Tokyo 108-8641, Japan
| | - Kazunari Sei
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Minato City, Tokyo 108-8641, Japan
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands WA 6009, Australia
- School of Population Health, Curtin University, Bentley WA 6102, Australia
| | | | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sam Trowsdale
- Department of Environmental Science, University of Auckland, Auckland 1010, New Zealand
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Hitoshi Ishikawa
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata 990-2212, Japan
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Minato City, Tokyo 108-8641, Japan
| | - Charin Modchang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Centre of Excellence in Mathematics, MHESI, Bangkok 10400, Thailand
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Dhammika Leshan Wannigama
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, UK
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata 990-2212, Japan
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Pathogen Hunter’s Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| |
Collapse
|
9
|
Wannigama DL, Amarasiri M, Phattharapornjaroen P, Hurst C, Modchang C, Chadsuthi S, Anupong S, Miyanaga K, Cui L, Fernandez S, Huang AT, Ounjai P, Tacharoenmuang R, Ragupathi NKD, Sano D, Furukawa T, Sei K, Leelahavanichkul A, Kanjanabuch T, Higgins PG, Nanbo A, Kicic A, Singer AC, Chatsuwan T, Trowsdale S, Khatib A, Shibuya K, Abe S, Ishikawa H, Hongsing P. Tracing the new SARS-CoV-2 variant BA.2.86 in the community through wastewater surveillance in Bangkok, Thailand. THE LANCET. INFECTIOUS DISEASES 2023; 23:e464-e466. [PMID: 37813112 DOI: 10.1016/s1473-3099(23)00620-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Affiliation(s)
- Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan; Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand; Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia; Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, UK; Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan.
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences/Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami 252-0373, Japan.
| | - Phatthranit Phattharapornjaroen
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Cameron Hurst
- Molly Wardaguga Research Centre, Charles Darwin University, QLD, Australia; Statistics Unit, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Charin Modchang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Centre of Excellence in Mathematics, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand; Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand.
| | - Sudarat Chadsuthi
- Department of Physics, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Suparinthon Anupong
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kazuhiko Miyanaga
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Longzhu Cui
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Stefan Fernandez
- Department of Virology, US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Angkana T Huang
- Department of Virology, US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | - Naveen Kumar Devanga Ragupathi
- Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, UK; Division of Microbial Interactions, Department of Research and Development, Bioberrys Healthcare and Research Centre, Vellore, India
| | - Daisuke Sano
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan; Tohoku University, Sendai, Miyagi, Japan
| | - Takashi Furukawa
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences/Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami 252-0373, Japan
| | - Kazunari Sei
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences/Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami 252-0373, Japan
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand; Translational Research in Inflammation and Immunology Research Unit, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Dialysis Policy and Practice Program, School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Peritoneal Dialysis Excellence Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; German Centre for Infection Research, partner site Bonn-Cologne, Cologne, Germany
| | - Asuka Nanbo
- The National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia; Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, WA, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia; School of Population Health, Curtin University, Bentley, WA, Australia
| | | | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand; Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sam Trowsdale
- School of Environment, University of Auckland, Auckland, New Zealand
| | - Aisha Khatib
- Department of Family & Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Kenji Shibuya
- Tokyo Foundation for Policy Research, Minato-ku, Tokyo, Japan
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Hitoshi Ishikawa
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata, Japan
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai, Thailand; School of Integrative Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand.
| |
Collapse
|
10
|
Kumthip K, Khamrin P, Yodmeeklin A, Ushijima H, Maneekarn N. Molecular detection and characterization of SARS-CoV-2 in wastewater in Thailand during 2020-2022. J Infect Public Health 2023; 16:1884-1890. [PMID: 37839311 DOI: 10.1016/j.jiph.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND SARS-CoV-2 has been detected in feces of infected individuals and in wastewater in many countries, which indicates that wastewater may be used to monitor contamination of the virus in community. However, information about the presence of SARS-CoV-2 in different types of environmental water and their genetic characterization are still limited. The purpose of this study was to investigate the presence of SARS-CoV-2 contaminating in environmental water in Thailand. METHODS We collected 600 water samples from 10 different sampling sites in Chiang Mai city, Thailand twice a month from July 2020 to December 2022. The SARS-CoV-2 RNA was detected by real-time RT-PCR and further amplified for ORF1a and S genes to investigate their genetic relationship to the reference strains by phylogenetic analysis. RESULTS SARS-CoV-2 was detected at 0.17% in the wastewater sample collected in the vicinity of fresh market where the outbreak of COVID-19 cases were simultaneously reported. The detected SARS-CoV-2 strain (W323/21) had nucleotide and amino acid sequences identical to SARS-CoV-2 Delta variant. Amino acid sequence alignment of spike protein revealed that the W323/21 strain carried a mutation of D950N as it was demonstrated in Delta variant reference strains. CONCLUSIONS The findings indicated that SARS-CoV-2 Delta variant was detected in wastewater in Chiang Mai, Thailand during the outbreak of COVID-19, suggesting a circulation of the virus in environmental water and in the community during the outbreak.
Collapse
Affiliation(s)
- Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence (Emerging and Re-emerging Diarrheal Viruses), Chiang Mai University, Chiang Mai, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence (Emerging and Re-emerging Diarrheal Viruses), Chiang Mai University, Chiang Mai, Thailand
| | - Arpaporn Yodmeeklin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence (Emerging and Re-emerging Diarrheal Viruses), Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Ushijima
- Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence (Emerging and Re-emerging Diarrheal Viruses), Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
11
|
Alamin M, Hara-Yamamura H, Hata A, Zhao B, Ihara M, Tanaka H, Watanabe T, Honda R. Reduction of SARS-CoV-2 by biological nutrient removal and disinfection processes in full-scale wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165097. [PMID: 37356766 PMCID: PMC10290167 DOI: 10.1016/j.scitotenv.2023.165097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Detection of SARS-CoV-2 RNA in wastewater poses people's concerns regarding the potential risk in water bodies receiving wastewater treatment effluent, despite the infectious risk of SARS-CoV-2 in wastewater being speculated to be low. Unlike well-studied nonenveloped viruses, SARS-CoV-2 in wastewater is present abundantly in both solid and liquid fractions of wastewater. Reduction of SARS-CoV-2 in past studies were likely underestimated, as SARS-CoV-2 in influent wastewater were quantified in either solid or liquid fraction only. The objectives of this study were (i) to clarify the reduction in SARS-CoV-2 RNA during biological nutrient removal and disinfection processes in full-scale WWTPs, considering the SARS-CoV-2 present in both solid and liquid fractions of wastewater, and (ii) to evaluate applicability of pepper mild mottle virus (PMMoV) as a performance indicator for reduction of SARS-CoV-2 in WWTPs. Accordingly, large amount of SARS-CoV-2 RNA were partitioned in the solid fraction of influent wastewater for composite sampling than grab sampling. When SARS-CoV-2 RNA in the both solid and liquid fractions were considered, log reduction values (LRVs) of SARS-CoV-2 during step-feed multistage biological nitrogen removal (SM-BNR) and enhanced biological phosphorus removal (EBPR) processes ranged between>2.1-4.4 log and did not differ significantly from those in conventional activated sludge (CAS). The LRVs of SARS-CoV-2 RNA in disinfection processes by ozonation and chlorination did not differ significantly. PMMoV is a promising performance indicator to secure reduction of SARS-CoV-2 in WWTPs, because of its higher persistence in wastewater treatment processes and abundance at a detectable concentration even in the final effluent after disinfection.
Collapse
Affiliation(s)
- Md Alamin
- Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | | | - Akihiko Hata
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Japan
| | - Bo Zhao
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Japan; College of Environment, Hohai University, Nanjing 210098, China
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Japan; Faculty of Agriculture and Marine Science, Kochi University, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Japan
| | | | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Japan; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Japan.
| |
Collapse
|
12
|
Aguayo-Acosta A, Jiménez-Rodríguez MG, Silva-Lance F, Oyervides-Muñoz MA, Armenta-Castro A, de la Rosa O, Ovalle-Carcaño A, Melchor-Martínez EM, Aghalari Z, Parra-Saldívar R, Sosa-Hernández JE. Passive Sampler Technology for Viral Detection in Wastewater-Based Surveillance: Current State and Nanomaterial Opportunities. Viruses 2023; 15:1941. [PMID: 37766347 PMCID: PMC10537877 DOI: 10.3390/v15091941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Although wastewater-based surveillance (WBS) is an efficient community-wide surveillance tool, its implementation for pathogen surveillance remains limited by ineffective sample treatment procedures, as the complex composition of wastewater often interferes with biomarker recovery. Moreover, current sampling protocols based on grab samples are susceptible to fluctuant biomarker concentrations and may increase operative costs, often rendering such systems inaccessible to communities in low-to-middle-income countries (LMICs). As a response, passive samplers have emerged as a way to make wastewater sampling more efficient and obtain more reliable, consistent data. Therefore, this study aims to review recent developments in passive sampling technologies to provide researchers with the tools to develop novel passive sampling strategies. Although promising advances in the development of nanostructured passive samplers have been reported, optimization remains a significant area of opportunity for researchers in the area, as methods for flexible, robust adsorption and recovery of viral genetic materials would greatly improve the efficacy of WBS systems while making them more accessible for communities worldwide.
Collapse
Affiliation(s)
- Alberto Aguayo-Acosta
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Mildred G. Jiménez-Rodríguez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Fernando Silva-Lance
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Mariel Araceli Oyervides-Muñoz
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Arnoldo Armenta-Castro
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Orlado de la Rosa
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Antonio Ovalle-Carcaño
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Elda M. Melchor-Martínez
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Zahra Aghalari
- Faculty of Public Health, Babol University of Medical Sciences, Babol 47176-47754, Iran;
| | - Roberto Parra-Saldívar
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Juan Eduardo Sosa-Hernández
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| |
Collapse
|
13
|
Wannigama DL, Amarasiri M, Phattharapornjaroen P, Hurst C, Modchang C, Chadsuthi S, Anupong S, Miyanaga K, Cui L, Thuptimdang W, Ali Hosseini Rad SM, Fernandez S, Huang AT, Vatanaprasan P, Jay DJ, Saethang T, Luk-In S, Storer RJ, Ounjai P, Ragupathi NKD, Kanthawee P, Sano D, Furukawa T, Sei K, Leelahavanichkul A, Kanjanabuch T, Higgins PG, Nanbo A, Kicic A, Singer AC, Chatsuwan T, Trowsdale S, Siow R, Shibuya K, Abe S, Ishikawa H, Hongsing P. Tracing the transmission of mpox through wastewater surveillance in Southeast Asia. J Travel Med 2023; 30:taad096. [PMID: 37462504 DOI: 10.1093/jtm/taad096] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 09/07/2023]
Abstract
High population density and tourism in Southeast Asia increase the risk of mpox due to frequent interpersonal contacts. Our wastewater surveillance in six Southeast Asian countries revealed positive signals for Monkeypox virus (MPXV) DNA, indicating local transmission. This alerts clinicians and helps allocate resources like testing, vaccines and therapeutics in resource-limited countries.
Collapse
Affiliation(s)
- Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Aoyagi, Yamagata, Japan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Pathum Wan, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, South Yorkshire, UK
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Aoyagi, Yamagata, Japan
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences/Graduate School of Medical Sciences, Kitasato University, Sagamihara-Minami, Kanagawa, Japan
| | - Phatthranit Phattharapornjaroen
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Bangkok, Thailand
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Academy, Gothenburg University, Universitetsplatsen 1, 405 30 Gothenburg, Sweden
| | - Cameron Hurst
- Molly Wardaguga Research Centre, Charles Darwin University, Brisbane, Queensland, Australia
- Statistics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Charin Modchang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok, Thailand
- Centre of Excellence in Mathematics, MHESI, Ratchathewi, Bangkok, Thailand
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, Ratchathewi, Bangkok, Thailand
| | - Sudarat Chadsuthi
- Department of Physics, Faculty of Science, Naresuan University, Mueang Phitsanulok District, Phitsanulok, Thailand
| | - Suparinthon Anupong
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kazuhiko Miyanaga
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Longzhu Cui
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Wanwara Thuptimdang
- Institute of Biomedical Engineering, Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - S M Ali Hosseini Rad
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago, New Zealand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Pathum Wan Bangkok, Thailand
| | - Stefan Fernandez
- Department of Virology, U.S. Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Ratchathewi, Bangkok, Thailand
| | - Angkana T Huang
- Department of Virology, U.S. Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Ratchathewi, Bangkok, Thailand
| | - Porames Vatanaprasan
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Dylan John Jay
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Aoyagi, Yamagata, Japan
| | - Thammakorn Saethang
- Department of Computer Science, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Sirirat Luk-In
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Phutthamonthon District, Nakhon Pathom, Thailand
| | - Robin James Storer
- Office of Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Naveen Kumar Devanga Ragupathi
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, South Yorkshire, UK
| | - Phitsanuruk Kanthawee
- Public Health major, School of Health Science, Mae Fah Luang University, Mueang Chiang Rai District, Chiang Rai, Thailand
| | - Daisuke Sano
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Takashi Furukawa
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences/Graduate School of Medical Sciences, Kitasato University, Sagamihara-Minami, Kanagawa, Japan
| | - Kazunari Sei
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences/Graduate School of Medical Sciences, Kitasato University, Sagamihara-Minami, Kanagawa, Japan
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Pathum Wan, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
- Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
- Dialysis Policy and Practice Program (DiP3), School of Global Health, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
- Peritoneal Dialysis Excellence Center, King Chulalongkorn Memorial Hospital, Pathum Wan, Bangkok, Thailand
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Albertus-Magnus-Platz, Cologne, Germany
- German Centre for Infection Research, Partner site Bonn-Cologne, Albertus-Magnus-Platz, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Albertus-Magnus-Platz, Cologne, Germany
| | - Asuka Nanbo
- The National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Western Australia, Australia
- School of Population Health, Curtin University, Bentley, Bentley, 6102, Western Australia, Australia
| | - Andrew C Singer
- UK Centre for Ecology & Hydrology, Crowmarsh Gifford, Wallingford, UK
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Pathum Wan, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
| | - Sam Trowsdale
- School of Environmental Science, University of Auckland, Auckland CBD, Auckland, New Zealand
| | - Richard Siow
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, Denmark Hill Campus, The James Black Centre, 125 Coldharbour Lane, London, UK
- Vascular Biology and Inflammation Section, School of Cardiovascular Medicine and Sciences, King's College London, Denmark Hill Campus, The James Black Centre, 125 Coldharbour Lane, London, UK
- Department of Physiology, Anatomy & Genetics, University of Oxford, Broad St, Oxford, UK
| | | | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Aoyagi, Yamagata, Japan
| | - Hitoshi Ishikawa
- Yamagata Prefectural University of Health Sciences, Aoyagi, Yamagata, Japan
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Mueang Chiang Rai,Chiang Rai, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Mueang Chiang Rai,Chiang Rai, Thailand
| |
Collapse
|
14
|
Wannigama DL, Amarasiri M, Hongsing P, Hurst C, Modchang C, Chadsuthi S, Anupong S, Phattharapornjaroen P, Rad S. M. AH, Fernandez S, Huang AT, Vatanaprasan P, Jay DJ, Saethang T, Luk-in S, Storer RJ, Ounjai P, Devanga Ragupathi NK, Kanthawee P, Sano D, Furukawa T, Sei K, Leelahavanichkul A, Kanjanabuch T, Hirankarn N, Higgins PG, Kicic A, Singer AC, Chatsuwan T, Trowsdale S, Abe S, McLellan AD, Ishikawa H. COVID-19 monitoring with sparse sampling of sewered and non-sewered wastewater in urban and rural communities. iScience 2023; 26:107019. [PMID: 37351501 PMCID: PMC10250052 DOI: 10.1016/j.isci.2023.107019] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/31/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
Equitable SARS-CoV-2 surveillance in low-resource communities lacking centralized sewers is critical as wastewater-based epidemiology (WBE) progresses. However, large-scale studies on SARS-CoV-2 detection in wastewater from low-and middle-income countries is limited because of economic and technical reasons. In this study, wastewater samples were collected twice a month from 186 urban and rural subdistricts in nine provinces of Thailand mostly having decentralized and non-sewered sanitation infrastructure and analyzed for SARS-CoV-2 RNA variants using allele-specific RT-qPCR. Wastewater SARS-CoV-2 RNA concentration was used to estimate the real-time incidence and time-varying effective reproduction number (Re). Results showed an increase in SARS-CoV-2 RNA concentrations in wastewater from urban and rural areas 14-20 days earlier than infected individuals were officially reported. It also showed that community/food markets were "hot spots" for infected people. This approach offers an opportunity for early detection of transmission surges, allowing preparedness and potentially mitigating significant outbreaks at both spatial and temporal scales.
Collapse
Affiliation(s)
- Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, UK
- Pathogen Hunter’s Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Cameron Hurst
- Molly Wardaguga Research Centre, Charles Darwin University, Brisbane, QLD, Australia
- Statistics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Charin Modchang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Centre of Excellence in Mathematics, MHESI, Bangkok 10400, Thailand
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Sudarat Chadsuthi
- Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Suparinthon Anupong
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Phatthranit Phattharapornjaroen
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Academy, Gothenburg University, 40530 Gothenburg, Sweden
| | - Ali Hosseini Rad S. M.
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago 9010, New Zealand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Stefan Fernandez
- Department of Virology, U.S. Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Angkana T. Huang
- Department of Virology, U.S. Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Dylan John Jay
- Pathogen Hunter’s Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Thammakorn Saethang
- Department of Computer Science, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Sirirat Luk-in
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Robin James Storer
- Office of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Naveen Kumar Devanga Ragupathi
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Phitsanuruk Kanthawee
- Public Health major, School of Health Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Daisuke Sano
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Takashi Furukawa
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan
| | - Kazunari Sei
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan
| | - Asada Leelahavanichkul
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Dialysis Policy and Practice Program (DiP3), School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Peritoneal Dialysis Excellence Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- School of Population Health, Curtin University, Bentley, WA 6102, Australia
| | | | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sam Trowsdale
- Department of Environmental Science, University of Auckland, Auckland 1010, New Zealand
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Alexander D. McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago 9010, New Zealand
| | - Hitoshi Ishikawa
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata 990-2212, Japan
| |
Collapse
|
15
|
Cruz MC, Sanguino-Jorquera D, Aparicio González M, Irazusta VP, Poma HR, Cristóbal HA, Rajal VB. Sewershed surveillance as a tool for smart management of a pandemic in threshold countries. Case study: Tracking SARS-CoV-2 during COVID-19 pandemic in a major urban metropolis in northwestern Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160573. [PMID: 36460114 PMCID: PMC9705263 DOI: 10.1016/j.scitotenv.2022.160573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Wastewater-based epidemiology is an economical and effective tool for monitoring the COVID-19 pandemic. In this study we proposed sampling campaigns that addressed spatial-temporal trends within a metropolitan area. This is a local study of detection and quantification of SARS-CoV-2 in wastewater during the onset, rise, and decline of COVID-19 cases in Salta city (Argentina) over the course of a twenty-one-week period (13 Aug to 30 Dec) in 2020. Wastewater samples were gathered from 13 sewer manholes specific to each sewershed catchment, prior to convergence or mixing with other sewer lines, resulting in samples specific to individual catchments with defined areas. The 13 sewershed catchments selected comprise 118,832 connections to the network throughout the city, representing 84.7 % (534,747 individuals) of the total population. The number of COVID19-related exposure and symptoms cases in each area were registered using an application developed for smartphones by the provincial government. Geographical coordinates provided by the devices were recorded, and consequently, it was possible to geolocalise all app-cases and track them down to which of the 13 sampling catchments belonged. RNA fragments of SARS-CoV-2 were detected in every site since the beginning of the monitoring, anticipating viral circulation in the population. Over the course of the 21-week study, the concentrations of SARS-CoV-2 ranged between 1.77 × 104 and 4.35 × 107 genome copies/L. There was a correspondence with the highest viral load in wastewater and the peak number of cases reported by the app for each catchment. The associations were evaluated with correlation analysis. The viral loads of SARS-CoV-2 in wastewater were a feasible means to describe the trends of COVID-19 infections. Surveillance at sewershed scale, provided reliable and strategic information that could be used by local health stakeholders to manage the COVID-19 pandemic.
Collapse
Affiliation(s)
- Mercedes Cecilia Cruz
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina.
| | - Diego Sanguino-Jorquera
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina
| | - Mónica Aparicio González
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina
| | - Verónica Patricia Irazusta
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina; Facultad de Ciencias Naturales, UNSa, Salta, Argentina
| | - Hugo Ramiro Poma
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina
| | - Héctor Antonio Cristóbal
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina; Facultad de Ciencias Naturales, UNSa, Salta, Argentina
| | - Verónica Beatriz Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina; Facultad de Ingeniería, UNSa, Salta, Argentina; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
16
|
Wannigama DL, Amarasiri M, Hongsing P, Hurst C, Modchang C, Chadsuthi S, Anupong S, Phattharapornjaroen P, S M AHR, Fernandez S, Huang AT, Kueakulpattana N, Tanasatitchai C, Vatanaprasan P, Saethang T, Luk-In S, Storer RJ, Ounjai P, Ragupathi NKD, Kanthawee P, Sano D, Furukawa T, Sei K, Leelahavanichkul A, Kanjanabuch T, Hirankarn N, Higgins PG, Kicic A, Chatsuwan T, McLellan AD, Abe S. Multiple traces of monkeypox detected in non-sewered wastewater with sparse sampling from a densely populated metropolitan area in Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159816. [PMID: 36461562 PMCID: PMC9620434 DOI: 10.1016/j.scitotenv.2022.159816] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 06/10/2023]
Abstract
The monkeypox virus is excreted in the feces of infected individuals. Therefore, there is an interest in using viral load detection in wastewater for sentinel early surveillance at a community level and as a complementary approach to syndromic surveillance. We collected wastewater from 63 sewered and non-sewered locations in Bangkok city center between May and August 2022. Monkeypox viral DNA copy numbers were quantified using real-time polymerase chain reaction (PCR) and confirmed positive by Sanger sequencing. Monkeypox viral DNA was first detected in wastewater from the second week of June 2022, with a mean copy number of 16.4 copies/ml (n = 3). From the first week of July, the number of viral DNA copies increased to a mean copy number of 45.92 copies/ml. Positive samples were Sanger sequenced and confirmed the presence of the monkeypox virus. Our study is the first to detect monkeypox viral DNA in wastewater from various locations within Thailand. Results suggest that this could be a complementary source for detecting viral DNA and predicting upcoming outbreaks.
Collapse
Affiliation(s)
- Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan; Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia; Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, United Kingdom; Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan.
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai, Thailand; School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Cameron Hurst
- Molly Wardaguga Research Centre, Charles Darwin University, Queensland, Australia; Statistics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Charin Modchang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Centre of Excellence in Mathematics, MHESI, Bangkok 10400, Thailand; Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Sudarat Chadsuthi
- Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Suparinthon Anupong
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Phatthranit Phattharapornjaroen
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Academy, Gothenburg University, 40530 Gothenburg, Sweden
| | - Ali Hosseini Rad S M
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, Otago, New Zealand; Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Stefan Fernandez
- Department of Virology, U.S. Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Angkana T Huang
- Department of Virology, U.S. Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Naris Kueakulpattana
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chanikan Tanasatitchai
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Thammakorn Saethang
- Department of Computer Science, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Sirirat Luk-In
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Robin James Storer
- Office of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Naveen Kumar Devanga Ragupathi
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia; Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom; Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | | | - Daisuke Sano
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Takashi Furukawa
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan
| | - Kazunari Sei
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Dialysis Policy and Practice Program (DiP3), School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Peritoneal Dialysis Excellence Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nattiya Hirankarn
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan; Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany
| | - Anthony Kicic
- Telethon Kids Institute, University of Western Australia, Nedlands, 6009, Western Australia, Australia; School of Population Health, Curtin University, Bentley 6102, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands 6009, Western Australia, Australia
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Alexander D McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, Otago, New Zealand
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan; Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| |
Collapse
|
17
|
Silva CS, Tryndyak VP, Camacho L, Orloff MS, Porter A, Garner K, Mullis L, Azevedo M. Temporal dynamics of SARS-CoV-2 genome and detection of variants of concern in wastewater influent from two metropolitan areas in Arkansas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157546. [PMID: 35914602 PMCID: PMC9338166 DOI: 10.1016/j.scitotenv.2022.157546] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Although SARS-CoV-2 can cause severe illness and death, a percentage of the infected population is asymptomatic. This, along with other factors, such as insufficient diagnostic testing and underreporting due to self-testing, contributes to the silent transmission of SARS-CoV-2 and highlights the importance of implementing additional surveillance tools. The fecal shedding of the virus from infected individuals enables its detection in community wastewater, and this has become a valuable public health tool worldwide as it allows the monitoring of the disease on a populational scale. Here, we monitored the presence of SARS-CoV-2 and its dynamic genomic changes in wastewater sampled from two metropolitan areas in Arkansas during major surges of COVID-19 cases and assessed how the viral titers in these samples related to the clinical case counts between late April 2020 and January 2022. The levels of SARS-CoV-2 RNA were quantified by reverse-transcription quantitative polymerase chain reaction (RT-qPCR) using a set of TaqMan assays targeting three different viral genes (encoding ORF1ab polyprotein, surface glycoprotein, and nucleocapsid phosphoprotein). An allele-specific RT-qPCR approach was used to screen the samples for SARS-CoV-2 mutations. The identity and genetic diversity of the virus were further investigated through amplicon-based RNA sequencing, and SARS-CoV-2 variants of concern were detected in wastewater samples throughout the duration of this study. Our data show how changes in the virus genome can affect the sensitivity of specific RT-qPCR assays used in COVID-19 testing with the surge of new variants. A significant association was observed between viral titers in wastewater and recorded number of COVID-19 cases in the areas studied, except when assays failed to detect targets due to the presence of particular variants. These findings support the use of wastewater surveillance as a reliable complementary tool for monitoring SARS-CoV-2 and its genetic variants at the community level.
Collapse
Affiliation(s)
- Camila S Silva
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA.
| | - Volodymyr P Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Luísa Camacho
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Mohammed S Orloff
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Center for the Studies of Tobacco, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Austin Porter
- Department of Health Policy and Management, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Arkansas Department of Health, Little Rock, AR, USA
| | - Kelley Garner
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Arkansas Department of Health, Little Rock, AR, USA
| | - Lisa Mullis
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Marli Azevedo
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
18
|
Herrera-Uribe J, Naylor P, Rajab E, Mathews B, Coskuner G, Jassim MS, Al-Qahtani M, Stevenson NJ. Long term detection and quantification of SARS-CoV-2 RNA in wastewater in Bahrain. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 7:100082. [PMID: 37520797 PMCID: PMC9088096 DOI: 10.1016/j.hazadv.2022.100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 12/15/2022]
Abstract
Wastewater-based epidemiology is a corroborated environmental surveillance tool in the global fight against SARS-CoV-2. The analysis of wastewater for detection of SARS-CoV-2 RNA may assist policymakers to survey a specific infectious community. Herein, we report on a long-term quantification study in Bahrain to investigate the incidence of the SARS-CoV-2 RNA in wastewater during the COVID-19 pandemic. The ∼260,000 population of Muharraq Island in Bahrain is served by a discrete sewerage catchment, and all wastewater flows to a single large Sewage Treatment Plant (STP) with a capacity of 100,000 m3/day. The catchment is predominately domestic, but also serves several hospitals and Bahrain's international airport. Flow-weighted 24-h composite wastewater samples for the period February 2020 to October 2021 were analyzed for the presence of SARS-CoV-2 N1, N2 and E genes. A Spearman rank correlation demonstrated a moderate correlation between the concentration of SARS-CoV-2 N1, N2 and E genes in the wastewater samples and the number of COVID-19 cases reported on the same day of the sampling. SARS-CoV-2 viral genes were detected in wastewater samples shortly after the first cases of COVID-19 were reported by the health authorities in Bahrain by reverse transcription-polymerase chain reaction (RT-qPCR). The viral genes were detected in 55 of 65 samples (84.62%) during the whole study period and the concentration range was found to be between 0 and 11,508 RNA copies/mL across the viral genes tested (in average N1: 518.4, N2: 366.8 and E: 649.3 copies/mL). Furthermore, wastewater samples from two COVID-19-dedicated quarantine facilities were analysed and detected higher SARS-CoV-2 gene concentrations (range 27-19,105 copies/mL; in average N1: 5044, N2: 4833 and E: 8663 copies/mL). Our results highlight the potential use of RT-qPCR for SARS-CoV-2 detection and quantification in wastewater and present the moderate correlation between concentration of SARS-CoV-2 genes with reported COVID-19 cases for a specified population. Indeed, this study identifies this technique as a mechanism for long term monitoring of SARS-CoV-2 infection levels and hence provides public health and policymakers with a useful environmental surveillance tool during and after the current pandemic.
Collapse
Affiliation(s)
- J Herrera-Uribe
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - P Naylor
- Muharraq Wastewater Services Co. Muharraq STP, Hidd, Bahrain
| | - E Rajab
- School of Medicine, RCSI Bahrain, P.O. Box 15503, Adliya, Bahrain
| | - B Mathews
- Muharraq Wastewater Services Co. Muharraq STP, Hidd, Bahrain
| | - Gulnur Coskuner
- Department of Chemical Engineering, College of Engineering, University of Bahrain, Bahrain
| | - Majeed S Jassim
- Department of Chemical Engineering, College of Engineering, University of Bahrain, Bahrain
| | - M Al-Qahtani
- School of Medicine, RCSI Bahrain, P.O. Box 15503, Adliya, Bahrain
- Department of Medicine, Royal Medical Services, Bahrain Defence Force Hospital, Bahrain
| | - N J Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Viral Immunology Group, Royal College of Surgeons in Ireland (RCSI)-Medical College of Bahrain, Bahrain
| |
Collapse
|
19
|
Teeraananchai S, Law M, Boettiger D, Mata NDL, Gupte N, Chan YL, Pham TN, Chaiwarith R, Ly PS, Chan Y, Kiertiburanakul S, Khusuwan S, Zhang F, Yunihastuti E, Kumarasamy N, Pujari S, Azwa I, Somia IKA, Tanuma J, Ditangco R, Choi JY, Ng OT, Do CD, Gani Y, Ross J, Jiamsakul A, the TREAT Asia HIV Observational Database (TAHOD) of IeDEA Asia‐Pacific. Virological failure and treatment switch after ART initiation among people living with HIV with and without routine viral load monitoring in Asia. J Int AIDS Soc 2022; 25:e25989. [PMID: 36028921 PMCID: PMC9418417 DOI: 10.1002/jia2.25989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Viral load (VL) testing is still challenging to monitor treatment responses of antiretroviral therapy (ART) for HIV treatment programme in Asia. We assessed the association between routine VL testing and virological failure (VF) and determine factors associated with switching to second-line regimen. METHODS Among 21 sites from the TREAT Asia HIV Observational Database (TAHOD), people living with HIV (PLHIV) aged ≥18 years initiating ART from 2003 to 2021 were included. We calculated the average number of VL tests per patient per year between the date of ART initiation and the most recent visit. If the median average number of VL tests was ≥ 0.80 per patient per year, the site was classified as a routine VL site. A site with a median < 0.80 was classified into the non-routine VL sites. VF was defined as VL ≥1000 copies/ml during first-line therapy. Factors associated with VF were analysed using generalized estimating equations with Poisson distribution. RESULTS Of 6277 PLHIV starting ART after 2003, 3030 (48%) were from 11 routine VL testing sites and 3247 (52%) were from 10 non-routine VL testing sites. The median follow-up was 9 years (IQR 5-13). The median age was 35 (30-42) years; 68% were male and 5729 (91%) started non-nucleoside reverse-transcriptase inhibitor-based regimen. The median pre-ART CD4 count in PLHIV from routine VL sites was lower compared to non-routine VL sites (144 vs. 156 cells/mm3 , p <0.001). Overall, 1021 subsequent VF at a rate of 2.15 (95% CI 2.02-2.29) per 100 person-years (PY). VF was more frequent at non-routine VL sites (adjusted incidence rate ratio 2.85 [95% CI 2.27-3.59]) compared to routine VL sites. Other factors associated with an increased rate of VF were age <50 years and CD4 count <350 cells/mm3 . A total of 817 (13%) patients switched to second-line regimen at a rate of 1.44 (95% CI 1.35-1.54) per 100 PY. PLHIV at routine VL monitoring sites were at higher risk of switching than those at non-routine VL sites (adjusted sub-hazard ratio 1.78 95% CI [1.17-2.71]). CONCLUSIONS PLHIV from non-routine VL sites had a higher incidence of persistent VF and a low switching regimen rate, reflecting possible under-utilized VL testing.
Collapse
Affiliation(s)
- Sirinya Teeraananchai
- Department of StatisticsFaculty of ScienceKasetsart UniversityBangkokThailand
- HIV‐NAT, Thai Red Cross AIDS Research CentreBangkokThailand
| | - Matthew Law
- The Kirby InstituteUNSWSydneyNew South WalesAustralia
| | | | - Nicole De La Mata
- Sydney School of Public HealthThe University of SydneySydneyNew South WalesAustralia
| | - Nikhil Gupte
- BJ Government Medical College and Sassoon General HospitalPuneIndia
| | | | | | - Romanee Chaiwarith
- Chiang Mai University ‐ Research Institute for Health SciencesChiang MaiThailand
- Division of Infectious Diseases and Tropical MedicineDepartment of MedicineFaculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Penh Sun Ly
- National Center for HIV/AIDS, Dermatology & STDsPhnom PenhCambodia
| | | | | | | | - Fujie Zhang
- Beijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Evy Yunihastuti
- Faculty of Medicine, Universitas Indonesia ‐ Dr. Cipto Mangunkusumo General HospitalJakartaIndonesia
| | - Nagalingeswaran Kumarasamy
- Chennai Antiviral Research and Treatment Clinical Research Site (CART CRS)VHS‐Infectious Diseases Medical Centre, VHSChennaiIndia
| | | | - Iskandar Azwa
- University Malaya Medical CentreKuala LumpurMalaysia
| | | | - Junko Tanuma
- National Center for Global Health and MedicineTokyoJapan
| | - Rossana Ditangco
- Research Institute for Tropical MedicineMuntinlupa CityPhilippines
| | - Jun Yong Choi
- Division of Infectious DiseasesDepartment of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | | | | | | | - Jeremy Ross
- TREAT Asia, amfAR ‐ The Foundation for AIDS ResearchBangkokThailand
| | | | | |
Collapse
|
20
|
Otero MCB, Murao LAE, Limen MAG, Caalim DRA, Gaite PLA, Bacus MG, Acaso JT, Miguel RM, Corazo K, Knot IE, Sajonia H, de los Reyes FL, Jaraula CMB, Baja ES, Del Mundo DMN. Multifaceted Assessment of Wastewater-Based Epidemiology for SARS-CoV-2 in Selected Urban Communities in Davao City, Philippines: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8789. [PMID: 35886640 PMCID: PMC9324557 DOI: 10.3390/ijerph19148789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023]
Abstract
Over 60 countries have integrated wastewater-based epidemiology (WBE) in their COVID-19 surveillance programs, focusing on wastewater treatment plants (WWTP). In this paper, we piloted the assessment of SARS-CoV-2 WBE as a complementary public health surveillance method in susceptible communities in a highly urbanized city without WWTP in the Philippines by exploring the extraction and detection methods, evaluating the contribution of physico-chemical-anthropogenic factors, and attempting whole-genome sequencing (WGS). Weekly wastewater samples were collected from sewer pipes or creeks in six communities with moderate-to-high risk of COVID-19 transmission, as categorized by the City Government of Davao from November to December 2020. Physico-chemical properties of the wastewater and anthropogenic conditions of the sites were noted. Samples were concentrated using a PEG-NaCl precipitation method and analyzed by RT-PCR to detect the SARS-CoV-2 N, RdRP, and E genes. A subset of nine samples were subjected to WGS using the Minion sequencing platform. SARS-CoV-2 RNA was detected in twenty-two samples (91.7%) regardless of the presence of new cases. Cycle threshold values correlated with RNA concentration and attack rate. The lack of a sewershed map in the sampled areas highlights the need to integrate this in the WBE planning. A combined analysis of wastewater physico-chemical parameters such as flow rate, surface water temperature, salinity, dissolved oxygen, and total dissolved solids provided insights on the ideal sampling location, time, and method for WBE, and their impact on RNA recovery. The contribution of fecal matter in the wastewater may also be assessed through the coliform count and in the context of anthropogenic conditions in the area. Finally, our attempt on WGS detected single-nucleotide polymorphisms (SNPs) in wastewater which included clinically reported and newly identified mutations in the Philippines. This exploratory report provides a contextualized framework for applying WBE surveillance in low-sanitation areas.
Collapse
Affiliation(s)
- Maria Catherine B. Otero
- Department of Clinical Epidemiology, College of Medicine, University of the Philippines Manila, Ermita, Manila 1000, Philippines; (M.C.B.O.); (E.S.B.)
- College of Medicine Research Center, Davao Medical School Foundation, Inc., Bajada, Davao City 8000, Philippines
| | - Lyre Anni E. Murao
- Department of Biological Sciences and Environmental Studies, University of the Philippines Mindanao, Mintal, Davao City 8000, Philippines; (L.A.E.M.); (D.R.A.C.); (J.T.A.); (R.M.M.)
- Philippine Genome Center Mindanao, University of the Philippines Mindanao, Mintal, Davao City 8000, Philippines; (P.L.A.G.); (M.G.B.)
| | - Mary Antoinette G. Limen
- Marine Science Institute, University of the Philippines Diliman, Diliman, Quezon City 1101, Philippines; (M.A.G.L.); (C.M.B.J.)
| | - Daniel Rev A. Caalim
- Department of Biological Sciences and Environmental Studies, University of the Philippines Mindanao, Mintal, Davao City 8000, Philippines; (L.A.E.M.); (D.R.A.C.); (J.T.A.); (R.M.M.)
| | - Paul Lorenzo A. Gaite
- Philippine Genome Center Mindanao, University of the Philippines Mindanao, Mintal, Davao City 8000, Philippines; (P.L.A.G.); (M.G.B.)
| | - Michael G. Bacus
- Philippine Genome Center Mindanao, University of the Philippines Mindanao, Mintal, Davao City 8000, Philippines; (P.L.A.G.); (M.G.B.)
| | - Joan T. Acaso
- Department of Biological Sciences and Environmental Studies, University of the Philippines Mindanao, Mintal, Davao City 8000, Philippines; (L.A.E.M.); (D.R.A.C.); (J.T.A.); (R.M.M.)
- Philippine Genome Center Mindanao, University of the Philippines Mindanao, Mintal, Davao City 8000, Philippines; (P.L.A.G.); (M.G.B.)
| | - Refeim M. Miguel
- Department of Biological Sciences and Environmental Studies, University of the Philippines Mindanao, Mintal, Davao City 8000, Philippines; (L.A.E.M.); (D.R.A.C.); (J.T.A.); (R.M.M.)
| | - Kahlil Corazo
- Project Accessible Genomics; (K.C.); (I.E.K.); (H.S.II)
- Biology Department, Ateneo de Davao University, Roxas Avenue, Davao City 8000, Philippines
| | - Ineke E. Knot
- Project Accessible Genomics; (K.C.); (I.E.K.); (H.S.II)
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| | - Homer Sajonia
- Project Accessible Genomics; (K.C.); (I.E.K.); (H.S.II)
| | - Francis L. de los Reyes
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27207, USA;
| | - Caroline Marie B. Jaraula
- Marine Science Institute, University of the Philippines Diliman, Diliman, Quezon City 1101, Philippines; (M.A.G.L.); (C.M.B.J.)
| | - Emmanuel S. Baja
- Department of Clinical Epidemiology, College of Medicine, University of the Philippines Manila, Ermita, Manila 1000, Philippines; (M.C.B.O.); (E.S.B.)
- Institute of Clinical Epidemiology, National Institutes of Health, University of the Philippines Manila, Ermita, Manila 1000, Philippines
| | - Dann Marie N. Del Mundo
- Department of Food Science and Chemistry, University of the Philippines Mindanao, Mintal, Davao City 8000, Philippines
| |
Collapse
|
21
|
Acosta N, Bautista MA, Waddell BJ, McCalder J, Beaudet AB, Man L, Pradhan P, Sedaghat N, Papparis C, Bacanu A, Hollman J, Krusina A, Southern DA, Williamson T, Li C, Bhatnagar S, Murphy S, Chen J, Kuzma D, Clark R, Meddings J, Hu J, Cabaj JL, Conly JM, Dai X, Lu X, Chekouo T, Ruecker NJ, Achari G, Ryan MC, Frankowski K, Hubert CRJ, Parkins MD. Longitudinal SARS-CoV-2 RNA wastewater monitoring across a range of scales correlates with total and regional COVID-19 burden in a well-defined urban population. WATER RESEARCH 2022; 220:118611. [PMID: 35661506 PMCID: PMC9107283 DOI: 10.1016/j.watres.2022.118611] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/13/2022] [Accepted: 05/13/2022] [Indexed: 05/03/2023]
Abstract
Wastewater-based epidemiology (WBE) is an emerging surveillance tool that has been used to monitor the ongoing COVID-19 pandemic by tracking SARS-CoV-2 RNA shed into wastewater. WBE was performed to monitor the occurrence and spread of SARS-CoV-2 from three wastewater treatment plants (WWTP) and six neighborhoods in the city of Calgary, Canada (population 1.44 million). A total of 222 WWTP and 192 neighborhood samples were collected from June 2020 to May 2021, encompassing the end of the first-wave (June 2020), the second-wave (November end to December 2020) and the third-wave of the COVID-19 pandemic (mid-April to May 2021). Flow-weighted 24-hour composite samples were processed to extract RNA that was then analyzed for two SARS-CoV-2-specific regions of the nucleocapsid gene, N1 and N2, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Using this approach SARS-CoV-2 RNA was detected in 98.06% (406/414) of wastewater samples. SARS-CoV-2 RNA abundance was compared to clinically diagnosed COVID-19 cases organized by the three-digit postal code of affected individuals' primary residences, enabling correlation analysis at neighborhood, WWTP and city-wide scales. Strong correlations were observed between N1 & N2 gene signals in wastewater and new daily cases for WWTPs and neighborhoods. Similarly, when flow rates at Calgary's three WWTPs were used to normalize observed concentrations of SARS-CoV-2 RNA and combine them into a city-wide signal, this was strongly correlated with regionally diagnosed COVID-19 cases and clinical test percent positivity rate. Linked census data demonstrated disproportionate SARS-CoV-2 in wastewater from areas of the city with lower socioeconomic status and more racialized communities. WBE across a range of urban scales was demonstrated to be an effective mechanism of COVID-19 surveillance.
Collapse
Affiliation(s)
- Nicole Acosta
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - María A Bautista
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Barbara J Waddell
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Janine McCalder
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada; Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Alexander Buchner Beaudet
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada; Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Lawrence Man
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Puja Pradhan
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada; Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Navid Sedaghat
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada; Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Chloe Papparis
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada; Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Andra Bacanu
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada; Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Jordan Hollman
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada; Department of Geosciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Alexander Krusina
- Department of Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Danielle A Southern
- Department of Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Tyler Williamson
- Department of Community Health Sciences, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada; O'Brien Institute for Public Health, University of Calgary, Calgary, 3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada
| | - Carmen Li
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Srijak Bhatnagar
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Sean Murphy
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Jianwei Chen
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Darina Kuzma
- Advancing Canadian Water Assets, University of Calgary, 3131 210 Ave SE, Calgary, Alberta, T0L 0×0, Canada
| | - Rhonda Clark
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada; Advancing Canadian Water Assets, University of Calgary, 3131 210 Ave SE, Calgary, Alberta, T0L 0×0, Canada
| | - Jon Meddings
- Department of Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Jia Hu
- Department of Community Health Sciences, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada; O'Brien Institute for Public Health, University of Calgary, Calgary, 3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada; Provincial Population & Public Health, Alberta Health Services, 3030 Hospital Drive NW, Calgary, Alberta, T2N 4W4, Canada
| | - Jason L Cabaj
- Department of Community Health Sciences, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada; O'Brien Institute for Public Health, University of Calgary, Calgary, 3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada; Provincial Population & Public Health, Alberta Health Services, 3030 Hospital Drive NW, Calgary, Alberta, T2N 4W4, Canada
| | - John M Conly
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada; Department of Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; O'Brien Institute for Public Health, University of Calgary, Calgary, 3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada; Infection Prevention and Control, Alberta Health Services, 1403 29th Street NW, Calgary, Alberta, T2N 2T9, Canada; Department of Pathology and Laboratory Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Xiaotian Dai
- Department of Mathematics and Statistics, University of Calgary, 2500 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Xuewen Lu
- Department of Mathematics and Statistics, University of Calgary, 2500 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Thierry Chekouo
- Department of Mathematics and Statistics, University of Calgary, 2500 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Norma J Ruecker
- Water Quality Services, City of Calgary, 625 25 Ave SE, Calgary, Alberta, T2G 4k8, Canada
| | - Gopal Achari
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - M Cathryn Ryan
- Department of Geosciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, 3131 210 Ave SE, Calgary, Alberta, T0L 0×0, Canada
| | - Casey R J Hubert
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Michael D Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada; Department of Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
22
|
Alamin M, Tsuji S, Hata A, Hara-Yamamura H, Honda R. Selection of surrogate viruses for process control in detection of SARS-CoV-2 in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153737. [PMID: 35149069 PMCID: PMC8824713 DOI: 10.1016/j.scitotenv.2022.153737] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 05/24/2023]
Abstract
Since SARS-CoV-2 RNA in wastewater is often present at low concentration or under detection limit, ensuring the reliability of detection processes using appropriate process controls is essential. The objective of this study was to evaluate applicability and limitations of candidate surrogate viruses as process controls under combinations of different virus concentration and RNA extraction methods. Detection efficiency of SARS-CoV-2 spiked in wastewater was compared with those of candidate surrogate viruses of bacteriophage ϕ6, pepper mild mottle virus (PMMoV), F-specific coliphage (F-phage), and murine norovirus (MNV). After inactivated SARS-CoV-2 and ϕ6 were spiked in two different wastewaters, the viruses in solid and liquid fractions of wastewater were concentrated by centrifuge and polyethylene glycol (PEG) precipitation, respectively. Viral RNA was extracted by using QIAamp Viral RNA Mini Kit and 3 other commercially available extraction kits, then quantified by reverse transcription-quantitative PCR using CDCN1 assay. Regardless of extraction kits, SARS-CoV-2 was consistently detected with good efficiency from both liquid (11-200%) and solid fractions (7.1-93%). Among the candidate process controls, PMMoV was widely detected at good efficiencies from both liquid and solid fractions regardless of selection of RNA extraction kits. F-phage and MNV also showed good detection efficiencies in most combinations of wastewater fractions and RNA extraction kits. An enveloped virus ɸ6 was found often undetected or to have very low detection efficiency (0.1-4.2%) even when SARS-CoV-2 spiked in wastewater was detected with good efficiency. Consequently, PMMoV is widely applicable as process control for detection of SARS-CoV-2 either in liquid fractions concentrated by PEG precipitation, or in solid fractions concentrated by centrifuge.
Collapse
Affiliation(s)
- Md Alamin
- Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | - Shohei Tsuji
- School of Environmental Design, Kanazawa University, Japan
| | - Akihiko Hata
- Faculty of Engineering, Toyama Prefectural University, Japan
| | | | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Japan.
| |
Collapse
|
23
|
Tharak A, Kopperi H, Hemalatha M, Kiran U, C. G. G, Moharir S, Mishra RK, Mohan SV. Longitudinal and Long-Term Wastewater Surveillance for COVID-19: Infection Dynamics and Zoning of Urban Community. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2697. [PMID: 35270390 PMCID: PMC8910010 DOI: 10.3390/ijerph19052697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023]
Abstract
Wastewater-based epidemiology (WBE) is emerging as a potential approach to study the infection dynamics of SARS-CoV-2 at a community level. Periodic sewage surveillance can act as an indicative tool to predict the early surge of pandemic within the community and understand the dynamics of infection and, thereby, facilitates for proper healthcare management. In this study, we performed a long-term epidemiological surveillance to assess the SARS-CoV-2 spread in domestic sewage over one year (July 2020 to August 2021) by adopting longitudinal sampling to represent a selected community (~2.5 lakhs population). Results indicated temporal dynamics in the viral load. A consistent amount of viral load was observed during the months from July 2020 to November 2020, suggesting a higher spread of the viral infection among the community, followed by a decrease in the subsequent two months (December 2020 and January 2021). A marginal increase was observed during February 2021, hinting at the onset of the second wave (from March 2021) that reached it speak in April 2021. Dynamics of the community infection rates were calculated based on the viral gene copies to assess the severity of COVID-19 spread. With the ability to predict the infection spread, longitudinal WBE studies also offer the prospect of zoning specific areas based on the infection rates. Zoning of the selected community based on the infection rates assists health management to plan and manage the infection in an effective way. WBE promotes clinical inspection with simultaneous disease detection and management, in addition to an advance warning signal to anticipate outbreaks, with respect to the slated community/zones, to tackle, prepare for and manage the pandemic.
Collapse
Affiliation(s)
- Athmakuri Tharak
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; (A.T.); (H.K.); (M.H.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Harishankar Kopperi
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; (A.T.); (H.K.); (M.H.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Manupati Hemalatha
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; (A.T.); (H.K.); (M.H.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Uday Kiran
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, India; (G.C.G.); (S.M.)
| | - Gokulan C. G.
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, India; (G.C.G.); (S.M.)
| | - Shivranjani Moharir
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, India; (G.C.G.); (S.M.)
| | - Rakesh K. Mishra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, India; (G.C.G.); (S.M.)
| | - S. Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; (A.T.); (H.K.); (M.H.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| |
Collapse
|
24
|
Sangsanont J, Rattanakul S, Kongprajug A, Chyerochana N, Sresung M, Sriporatana N, Wanlapakorn N, Poovorawan Y, Mongkolsuk S, Sirikanchana K. SARS-CoV-2 RNA surveillance in large to small centralized wastewater treatment plants preceding the third COVID-19 resurgence in Bangkok, Thailand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151169. [PMID: 34699826 PMCID: PMC8540006 DOI: 10.1016/j.scitotenv.2021.151169] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 05/07/2023]
Abstract
Wastewater surveillance for SARS-CoV-2 RNA has been a successful indicator of COVID-19 outbreaks in populations prior to clinical testing. However, this has been mostly conducted in high-income countries, which means there is a dearth of performance investigations in low- and middle-income countries with different socio-economic settings. This study evaluated the applicability of SARS-CoV-2 RNA monitoring in wastewater (n = 132) to inform COVID-19 infection in the city of Bangkok, Thailand using CDC N1 and N2 RT-qPCR assays. Wastewater influents (n = 112) and effluents (n = 20) were collected from 19 centralized wastewater treatment plants (WWTPs) comprising four large, four medium, and 11 small WWTPs during seven sampling events from January to April 2021 prior to the third COVID-19 resurgence that was officially declared in April 2021. The CDC N1 assay showed higher detection rates and mostly lower Ct values than the CDC N2. SARS-CoV-2 RNA was first detected at the first event when new reported cases were low. Increased positive detection rates preceded an increase in the number of newly reported cases and increased over time with the reported infection incidence. Wastewater surveillance (both positive rates and viral loads) showed strongest correlation with daily new COVID-19 cases at 22-24 days lag (Spearman's Rho = 0.85-1.00). Large WWTPs (serving 432,000-580,000 of the population) exhibited similar trends of viral loads and new cases to those from all 19 WWTPs, emphasizing that routine monitoring of the four large WWTPs could provide sufficient information for the city-scale dynamics. Higher sampling frequency at fewer sites, i.e., at the four representative WWTPs, is therefore suggested especially during the subsiding period of the outbreak to indicate the prevalence of COVID-19 infection, acting as an early warning of COVID-19 resurgence.
Collapse
Affiliation(s)
- Jatuwat Sangsanont
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Water Science and Technology for Sustainable Environmental Research Group, Chulalongkorn University, Bangkok 10330, Thailand
| | - Surapong Rattanakul
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Akechai Kongprajug
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Natcha Chyerochana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Montakarn Sresung
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Nonnarit Sriporatana
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok 10400, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok 10400, Thailand.
| |
Collapse
|
25
|
Thongpradit S, Prasongtanakij S, Srisala S, Kumsang Y, Chanprasertyothin S, Boonkongchuen P, Pitidhammabhorn D, Manomaipiboon P, Somchaiyanon P, Chandanachulaka S, Hirunrueng T, Ongphiphadhanakul B. A Simple Method to Detect SARS-CoV-2 in Wastewater at Low Virus Concentration. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2022; 2022:4867626. [PMID: 35242195 PMCID: PMC8888108 DOI: 10.1155/2022/4867626] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022]
Abstract
Background Since its initial appearance in December 2019, coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread globally. Wastewater surveillance has been demonstrated as capable of identifying infection clusters early. The purpose of this study was to investigate a quick and simple method to detect SARS-CoV-2 in wastewater in Thailand during the early stages of the second outbreak wave when the prevalence of the disease and the virus concentration in wastewater were low. Methods Wastewater samples were collected from a hospital caring for patients with COVID-19 and from 35 markets, two of which were associated with recently reported COVID-19 cases. Then, samples were concentrated by membrane filtering prior to SARS-CoV-2 detection by RT-qPCR. Results SARS-CoV-2 RNA was detected in the wastewater samples from the hospital; the Ct values for the N, ORF1ab, and S genes progressively increased as the number of patients admitted to the treatment floor decreased. Notably, the ORF1ab and S genes were still detectable in wastewater even when only one patient with COVID-19 remained at the hospital. SARS-CoV-2 RNA was detected in the wastewater samples from fresh market where COVID-19 cases were reported. Conclusions Our findings suggest that wastewater surveillance for SARS-CoV-2 is sensitive and can detect the virus even in places with a high ambient temperature and relatively low prevalence of COVID-19.
Collapse
Affiliation(s)
- Supranee Thongpradit
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand
| | - Somsak Prasongtanakij
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand
| | - Supanart Srisala
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand
| | - Yothin Kumsang
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand
| | | | - Pairoj Boonkongchuen
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Samut Prakan, Thailand
| | - Dhanesh Pitidhammabhorn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Samut Prakan, Thailand
| | | | | | | | | | - Boonsong Ongphiphadhanakul
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand
| |
Collapse
|
26
|
Crank K, Chen W, Bivins A, Lowry S, Bibby K. Contribution of SARS-CoV-2 RNA shedding routes to RNA loads in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150376. [PMID: 34610564 PMCID: PMC8443535 DOI: 10.1016/j.scitotenv.2021.150376] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 05/18/2023]
Abstract
A portion of those infected with SARS-CoV-2 shed the virus and its genetic material in respiratory fluids, saliva, urine, and stool, thus giving the potential to monitor for infections via wastewater. Wastewater surveillance efforts to date have largely assumed that stool shedding has been the primary source of SARS-CoV-2 RNA signal; however, there are increasing questions about the possible contribution of other shedding routes, with implications for wastewater surveillance design and feasibility. In this study we used clinical SARS-CoV-2 RNA shedding data and a Monte Carlo framework to assess the relative contribution of various shedding routes on SARS-CoV-2 RNA loads in wastewater. Stool shedding dominated total SARS-CoV-2 RNA load for community-level surveillance, with mean contributions more than two orders of magnitude greater than other shedding routes. However, RNA loads were more nuanced when considering building-level monitoring efforts designed to identify a single infected individual, where any shedding route could plausibly contribute a detectable signal. The greatest source of model variability was viral load in excreta, suggesting that future modeling efforts may be improved by incorporating specific modeling scenarios with precise SARS-CoV-2 shedding data, and beyond that wastewater surveillance must continue to account for large variability during data analysis and reporting. Importantly, the findings imply that wastewater surveillance at finer spatial scales is not entirely dependent on shedding via feces for sensitive detection of infections thus enlarging the potential use cases of wastewater as a non-intrusive surveillance methodology.
Collapse
Affiliation(s)
- K Crank
- Department of Civil & Environmental Engineering & Earth Science, University of Notre Dame, 156 Fitzpatrick Hall, South Bend, IN 46556, USA
| | - W Chen
- Department of Civil & Environmental Engineering & Earth Science, University of Notre Dame, 156 Fitzpatrick Hall, South Bend, IN 46556, USA
| | - A Bivins
- Department of Civil & Environmental Engineering & Earth Science, University of Notre Dame, 156 Fitzpatrick Hall, South Bend, IN 46556, USA
| | - S Lowry
- Department of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - K Bibby
- Department of Civil & Environmental Engineering & Earth Science, University of Notre Dame, 156 Fitzpatrick Hall, South Bend, IN 46556, USA.
| |
Collapse
|
27
|
Shah S, Gwee SXW, Ng JQX, Lau N, Koh J, Pang J. Wastewater surveillance to infer COVID-19 transmission: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150060. [PMID: 34798721 PMCID: PMC8423771 DOI: 10.1016/j.scitotenv.2021.150060] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 05/18/2023]
Abstract
Successful detection of SARS-COV-2 in wastewater suggests the potential utility of wastewater-based epidemiology (WBE) for COVID-19 community surveillance. This systematic review aims to assess the performance of wastewater surveillance as early warning system of COVID-19 community transmission. A systematic search was conducted in PubMed, Medline, Embase and the WBE Consortium Registry according to PRISMA guidelines for relevant articles published until 31st July 2021. Relevant data were extracted and summarized. Quality of each paper was assessed using an assessment tool adapted from Bilotta et al.'s tool for environmental science. Of 763 studies identified, 92 studies distributed across 34 countries were shortlisted for qualitative synthesis. A total of 26,197 samples were collected between January 2020 and May 2021 from various locations serving population ranging from 321 to 11,400,000 inhabitants. Overall sample positivity was moderate at 29.2% in all examined settings with the spike (S) gene having maximum rate of positive detections and nucleocapsid (N) gene being the most targeted. Wastewater signals preceded confirmed cases by up to 63 days, with 13 studies reporting sample positivity before the first cases were detected in the community. At least 50 studies reported an association of viral load with community cases. While wastewater surveillance cannot replace large-scale diagnostic testing, it can complement clinical surveillance by providing early signs of potential transmission for more active public health responses. However, more studies using standardized and validated methods are required along with risk analysis and modelling to understand the dynamics of viral outbreaks.
Collapse
Affiliation(s)
- Shimoni Shah
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore; Centre for Infectious Disease Epidemiology and Research, National University of Singapore, Singapore 117549, Singapore.
| | - Sylvia Xiao Wei Gwee
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore; Centre for Infectious Disease Epidemiology and Research, National University of Singapore, Singapore 117549, Singapore.
| | - Jamie Qiao Xin Ng
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore; Centre for Infectious Disease Epidemiology and Research, National University of Singapore, Singapore 117549, Singapore.
| | - Nicholas Lau
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore; Centre for Infectious Disease Epidemiology and Research, National University of Singapore, Singapore 117549, Singapore.
| | - Jiayun Koh
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore; Centre for Infectious Disease Epidemiology and Research, National University of Singapore, Singapore 117549, Singapore.
| | - Junxiong Pang
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore; Centre for Infectious Disease Epidemiology and Research, National University of Singapore, Singapore 117549, Singapore.
| |
Collapse
|
28
|
Rowe LA, Beddingfield BJ, Goff K, Killeen SZ, Chirichella NR, Melton A, Roy CJ, Maness NJ. Intra-Host SARS-CoV-2 Evolution in the Gut of Mucosally-Infected Chlorocebus aethiops (African Green Monkeys). Viruses 2022; 14:77. [PMID: 35062281 PMCID: PMC8777858 DOI: 10.3390/v14010077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 02/04/2023] Open
Abstract
In recent months, several SARS-CoV-2 variants have emerged that enhance transmissibility and escape host humoral immunity. Hence, the tracking of viral evolutionary trajectories is clearly of great importance. Little is known about SARS-CoV-2 evolution in nonhuman primate models used to test vaccines and therapies and to model human disease. Viral RNA was sequenced from rectal swabs from Chlorocebus aethiops (African green monkeys) after experimental respiratory SARS-CoV-2 infection. Two distinct patterns of viral evolution were identified that were shared between all collected samples. First, mutations in the furin cleavage site that were initially present in the virus as a consequence of VeroE6 cell culture adaptation were not detected in viral RNA recovered in rectal swabs, confirming the necessity of this motif for viral infection in vivo. Three amino acid changes were also identified; ORF 1a S2103F, and spike D215G and H655Y, which were detected in rectal swabs from all sampled animals. These findings are demonstrative of intra-host SARS-CoV-2 evolution and may identify a host-adapted variant of SARS-CoV-2 that would be useful in future primate models involving SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lori A. Rowe
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
| | - Brandon J. Beddingfield
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
| | - Kelly Goff
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
| | - Stephanie Z. Killeen
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
| | - Nicole R. Chirichella
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
| | - Alexandra Melton
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
| | - Chad J. Roy
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Nicholas J. Maness
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
29
|
Hrudey SE, Conant B. The devil is in the details: emerging insights on the relevance of wastewater surveillance for SARS-CoV-2 to public health. JOURNAL OF WATER AND HEALTH 2022; 20:246-270. [PMID: 35100171 DOI: 10.2166/wh.2021.186] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The severe health consequences and global spread of the COVID-19 pandemic have necessitated the rapid development of surveillance programs to inform public health responses. Efforts to support surveillance capacity have included an unprecedented global research response into the use of genetic signals of SARS-CoV-2 in wastewater following the initial demonstration of the virus' detectability in wastewater in early 2020. The confirmation of fecal shedding of SARS-CoV-2 from asymptomatic, infected and recovering individuals further supports the potential for wastewater analysis to augment public health conventional surveillance techniques based on clinical testing of symptomatic individuals. We have reviewed possible capabilities projected for wastewater surveillance to support pandemic management, including independent, objective and cost-effective data generation that complements and addresses attendant limitations of clinical surveillance, early detection (i.e., prior to clinical reporting) of infection, estimation of disease prevalence, tracking of trends as possible indicators of success or failure of public health measures (mask mandates, lockdowns, vaccination, etc.), informing and engaging the public about pandemic trends, an application within sewer networks to identify infection hotspots, monitoring for presence or changes in infections from institutions (e.g., long-term care facilities, prisons, educational institutions and vulnerable industrial plants) and tracking of appearance/progression of viral variants of concern.
Collapse
Affiliation(s)
- Steve E Hrudey
- Analytical & Environmental Toxicology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada E-mail:
| | - Bernadette Conant
- Canadian Water Network, University of Waterloo, 200 University Avenue W, Waterloo ON N2L 3G1, Canada
| |
Collapse
|
30
|
Sangkham S. A review on detection of SARS-CoV-2 RNA in wastewater in light of the current knowledge of treatment process for removal of viral fragments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113563. [PMID: 34488114 PMCID: PMC8373619 DOI: 10.1016/j.jenvman.2021.113563] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 05/05/2023]
Abstract
The entire globe is affected by the novel disease of coronavirus 2019 (COVID-19 or 2019-nCoV), which is formally recognised as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The World Health Organisation (WHO) announced this disease as a global pandemic. The presence of SARS-CoV-2 RNA in unprocessed wastewater has become a cause of worry due to these emerging pathogens in the process of wastewater treatment, as reported in the present study. This analysis intends to interpret the fate, environmental factors and route of transmission of SARS-CoV-2, along with its eradication by treating the wastewater for controlling and preventing its further spread. Different recovery estimations of the virus have been depicted by the detection of SARS-CoV-2 RNA in wastewater through the viral concentration techniques. Most frequently used viral concentration techniques include polyethylene glycol (PEG) precipitation, ultrafiltration, electronegative membrane, and ultracentrifugation, after which the detection and quantification of SARS-CoV-2 RNA are done in wastewater samples through quantitative reverse transcription-polymerase chain reaction (RT-qPCR). The wastewater treatment plant (WWTP) holds the key responsibility of eliminating pathogens prior to the discharge of wastewater into surface water bodies. The removal of SARS-CoV-2 RNA at the treatment stage is dependent on the operations of wastewater treatment systems during the outbreak of the virus; particularly, in the urban and extensively populated regions. Efficient primary, secondary and tertiary methods of wastewater treatment and disinfection can reduce or inactivate SARS-CoV-2 RNA before being drained out. Nonetheless, further studies regarding COVID-19-related disinfectants, environment conditions and viral concentrations in each treatment procedure, implications on the environment and regular monitoring of transmission need to be done urgently. Hence, monitoring the SARS-CoV-2 RNA in samples of wastewater under the procedure of wastewater-based epidemiology (WBE) supplement the real-time data pertaining to the investigation of the COVID-19 pandemic in the community, regional and national levels.
Collapse
Affiliation(s)
- Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Muang District, Phayao, 56000, Thailand.
| |
Collapse
|
31
|
Acosta N, Bautista MA, Hollman J, McCalder J, Beaudet AB, Man L, Waddell BJ, Chen J, Li C, Kuzma D, Bhatnagar S, Leal J, Meddings J, Hu J, Cabaj JL, Ruecker NJ, Naugler C, Pillai DR, Achari G, Ryan MC, Conly JM, Frankowski K, Hubert CR, Parkins MD. A multicenter study investigating SARS-CoV-2 in tertiary-care hospital wastewater. viral burden correlates with increasing hospitalized cases as well as hospital-associated transmissions and outbreaks. WATER RESEARCH 2021; 201:117369. [PMID: 34229222 PMCID: PMC8214445 DOI: 10.1016/j.watres.2021.117369] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/07/2021] [Accepted: 06/12/2021] [Indexed: 05/18/2023]
Abstract
SARS-CoV-2 has been detected in wastewater and its abundance correlated with community COVID-19 cases, hospitalizations and deaths. We sought to use wastewater-based detection of SARS-CoV-2 to assess the epidemiology of SARS-CoV-2 in hospitals. Between August and December 2020, twice-weekly wastewater samples from three tertiary-care hospitals (totaling > 2100 dedicated inpatient beds) were collected. Hospital-1 and Hospital-2 could be captured with a single sampling point whereas Hospital-3 required three separate monitoring sites. Wastewater samples were concentrated and cleaned using the 4S-silica column method and assessed for SARS-CoV-2 gene-targets (N1, N2 and E) and controls using RT-qPCR. Wastewater SARS-CoV-2 as measured by quantification cycle (Cq), genome copies and genomes normalized to the fecal biomarker PMMoV were compared to the total daily number of patients hospitalized with active COVID-19, confirmed cases of hospital-acquired infection, and the occurrence of unit-specific outbreaks. Of 165 wastewater samples collected, 159 (96%) were assayable. The N1-gene from SARS-CoV-2 was detected in 64.1% of samples, N2 in 49.7% and E in 10%. N1 and N2 in wastewater increased over time both in terms of the amount of detectable virus and the proportion of samples that were positive, consistent with increasing hospitalizations at those sites with single monitoring points (Pearson's r = 0.679, P < 0.0001, Pearson's r = 0.799, P < 0.0001, respectively). Despite increasing hospitalizations through the study period, nosocomial-acquired cases of COVID-19 (Pearson's r = 0.389, P < 0.001) and unit-specific outbreaks were discernable with significant increases in detectable SARS-CoV-2 N1-RNA (median 112 copies/ml) versus outbreak-free periods (0 copies/ml; P < 0.0001). Wastewater-based monitoring of SARS-CoV-2 represents a promising tool for SARS-CoV-2 passive surveillance and case identification, containment, and mitigation in acute- care medical facilities.
Collapse
Affiliation(s)
- Nicole Acosta
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Abbreviation
| | - María A Bautista
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Abbreviation
| | - Jordan Hollman
- Department of Geosciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Abbreviation; Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Abbreviation
| | - Janine McCalder
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Abbreviation; Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Abbreviation
| | - Alexander Buchner Beaudet
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Abbreviation
| | - Lawrence Man
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Abbreviation
| | - Barbara J Waddell
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Abbreviation
| | - Jianwei Chen
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Abbreviation
| | - Carmen Li
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Abbreviation
| | - Darina Kuzma
- Advancing Canadian Wastewater Assets, University of Calgary, 3131 210 Ave SE, Calgary, Alberta, Abbreviation
| | - Srijak Bhatnagar
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Abbreviation
| | - Jenine Leal
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Abbreviation; Infection Prevention and Control, Alberta Health Services, 1403 29th Street NW, Calgary, Alberta, Abbreviation; Department of Community Health Sciences, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, Abbreviation; O'Brien Institute for Public Health, University of Calgary, 3280 Hospital Dr NW, Calgary, Alberta, Abbreviation
| | - Jon Meddings
- Department of Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Abbreviation
| | - Jia Hu
- Department of Community Health Sciences, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, Abbreviation; Provincial Population & Public Health, Alberta Health Services, 3030 Hospital Drive NW, Calgary, Alberta, Abbreviation; O'Brien Institute for Public Health, University of Calgary, 3280 Hospital Dr NW, Calgary, Alberta, Abbreviation
| | - Jason L Cabaj
- Department of Community Health Sciences, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, Abbreviation; O'Brien Institute for Public Health, University of Calgary, 3280 Hospital Dr NW, Calgary, Alberta, Abbreviation
| | - Norma J Ruecker
- Water Quality Services, City of Calgary, 625 25 Ave SE, Calgary, Alberta, Abbreviation
| | - Christopher Naugler
- Department of Community Health Sciences, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, Abbreviation; Department of Pathology and Laboratory Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Abbreviation
| | - Dylan R Pillai
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Abbreviation; Department of Pathology and Laboratory Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Abbreviation; Alberta Precision Laboratories, Alberta Health Services, 3535 Research Rd NW, Calgary, Alberta, Abbreviation
| | - Gopal Achari
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Abbreviation
| | - M Cathryn Ryan
- Department of Geosciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Abbreviation
| | - John M Conly
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Abbreviation; Infection Prevention and Control, Alberta Health Services, 1403 29th Street NW, Calgary, Alberta, Abbreviation; Department of Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Abbreviation; O'Brien Institute for Public Health, University of Calgary, 3280 Hospital Dr NW, Calgary, Alberta, Abbreviation; Department of Pathology and Laboratory Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Abbreviation; Snyder Institute for Chronic Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Abbreviation
| | - Kevin Frankowski
- Advancing Canadian Wastewater Assets, University of Calgary, 3131 210 Ave SE, Calgary, Alberta, Abbreviation
| | - Casey Rj Hubert
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Abbreviation
| | - Michael D Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Abbreviation; Department of Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Abbreviation; Snyder Institute for Chronic Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Abbreviation.
| |
Collapse
|