1
|
Hoeggerl AD, Nunhofer V, Weidner L, Lauth W, Zimmermann G, Badstuber N, Grabmer C, Kartal O, Jungbauer C, Neureiter H, Held N, Ortner T, Flamm M, Osterbrink J, Rohde E, Laner-Plamberger S. Dissecting the dynamics of SARS-CoV-2 reinfections in blood donors with pauci- or asymptomatic COVID-19 disease course at initial infection. Infect Dis (Lond) 2024; 56:954-964. [PMID: 38869944 DOI: 10.1080/23744235.2024.2367112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Understanding the dynamics of SARS-CoV-2 reinfections is crucial for public health policy, vaccine development, and long-term disease management. However, data on reinfections in the general population remains scarce. OBJECTIVES This study aimed to investigate SARS-CoV-2 antibody dynamics among Austrian blood donors, representing healthy adults, over two years following primary infection and to evaluate the reinfection risk. METHODS 117,895 blood donations were analysed for SARS-CoV-2 total anti-N levels from June 2020 to December 2023. We examined anti-N and anti-S antibody dynamics and in vitro functionality in 230 study participants at five defined times during 24 months, assessing associations with demographics, vaccination status, and reinfection awareness. RESULTS The seroprevalence of SARS-CoV-2 infection-derived anti-N antibodies increased over time, reaching 90% by February 2023 and remaining at that level since then. According to serological screenings, we found an 88% reinfection rate, which is in contrast to participants' reports indicating a reinfection rate of 59%. Our data further reveal that about 26% of reinfections went completely unnoticed. Antibody dynamics were independent of age, sex, and ABO blood group. Interestingly, individuals with multiple reinfections reported symptoms more frequently during their primary infection. Our results further show that vaccination modestly affected reinfection risk and disease course. CONCLUSION SARS-CoV-2 reinfections were uncommon until the end of 2021 but became common with the advent of Omicron. This study highlights the underestimation of reinfection rates in healthy adults and underscores the need for continued surveillance, which is an important support for public health policies and intervention strategies.
Collapse
Affiliation(s)
- Alexandra Domnica Hoeggerl
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Salzburg, Austria
| | - Verena Nunhofer
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Salzburg, Austria
| | - Lisa Weidner
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Salzburg, Austria
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, Vienna, Austria
| | - Wanda Lauth
- Team Biostatistics and Big Medical Data, IDA Lab Salzburg, PMU Salzburg, Salzburg, Austria
- Research Programme Biomedical Data Science, PMU Salzburg, Salzburg, Austria
| | - Georg Zimmermann
- Team Biostatistics and Big Medical Data, IDA Lab Salzburg, PMU Salzburg, Salzburg, Austria
- Research Programme Biomedical Data Science, PMU Salzburg, Salzburg, Austria
| | - Natalie Badstuber
- Department of Psychological Assessment, Institute of Psychology, Paris-Lodron-University of Salzburg, Salzburg, Austria
| | - Christoph Grabmer
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Salzburg, Austria
| | - Orkan Kartal
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Salzburg, Austria
| | - Christof Jungbauer
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Salzburg, Austria
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, Vienna, Austria
| | - Heidrun Neureiter
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Salzburg, Austria
| | - Nina Held
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Salzburg, Austria
| | - Tuulia Ortner
- Department of Psychological Assessment, Institute of Psychology, Paris-Lodron-University of Salzburg, Salzburg, Austria
| | - Maria Flamm
- Center for Public Health and Healthcare Research, Institute of General Practice, Family Medicine and Preventive Medicine, PMU Salzburg, Salzburg, Austria
| | - Jürgen Osterbrink
- Center for Public Health and Healthcare Research, Institute of Nursing Science and Practice, PMU Salzburg, Salzburg, Austria
| | - Eva Rohde
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Salzburg, Austria
- GMP Laboratory, Paracelsus Medical University, Salzburg, Austria
| | - Sandra Laner-Plamberger
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Salzburg, Austria
| |
Collapse
|
2
|
Grebe E, Stone M, Spencer BR, Akinseye A, Wright DJ, Di Germanio C, Bruhn R, Zurita KG, Contestable P, Green V, Lanteri MC, Saa P, Biggerstaff BJ, Coughlin MM, Kleinman S, Custer B, Jones JM, Busch MP. Detection of Nucleocapsid Antibodies Associated with Primary SARS-CoV-2 Infection in Unvaccinated and Vaccinated Blood Donors. Emerg Infect Dis 2024; 30:1621-1630. [PMID: 38981189 PMCID: PMC11286071 DOI: 10.3201/eid3008.240659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Nucleocapsid antibody assays can be used to estimate SARS-CoV-2 infection prevalence in regions implementing spike-based COVID-19 vaccines. However, poor sensitivity of nucleocapsid antibody assays in detecting infection after vaccination has been reported. We derived a lower cutoff for identifying previous infections in a large blood donor cohort (N = 142,599) by using the Ortho VITROS Anti-SARS-CoV-2 Total-N Antibody assay, improving sensitivity while maintaining specificity >98%. We validated sensitivity in samples donated after self-reported swab-confirmed infections diagnoses. Sensitivity for first infections in unvaccinated donors was 98.1% (95% CI 98.0-98.2) and for infection after vaccination was 95.6% (95% CI 95.6-95.7) based on the standard cutoff. Regression analysis showed sensitivity was reduced in the Delta compared with Omicron period, in older donors, in asymptomatic infections, <30 days after infection, and for infection after vaccination. The standard Ortho N antibody threshold demonstrated good sensitivity, which was modestly improved with the revised cutoff.
Collapse
Affiliation(s)
| | | | - Bryan R. Spencer
- Vitalant Research Institute, San Francisco, California, USA (E. Grebe, M. Stone, C. Di Germanio, R. Bruhn, K.G. Zurita, B. Custer, M.P. Busch)
- University of California, San Francisco (M. Stone, R. Bruhn, M.C. Lanteri, B. Custer, M.P. Busch)
- American Red Cross, Rockville, Maryland, USA (B.R. Spencer, P. Saa)
- Westat, Rockville (A. Akinseye, D. Wright); QuidelOrtho, Rochester, New York, USA (P. Contestable)
- Creative Testing Solutions, Tempe, Arizona, USA (V. Green, M.C. Lanteri)
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (B.J. Biggerstaff)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (M.M. Coughlin, J.M. Jones)
- University of British Columbia, Vancouver, British Columbia, Canada (S. Kleinman)
| | - Akintunde Akinseye
- Vitalant Research Institute, San Francisco, California, USA (E. Grebe, M. Stone, C. Di Germanio, R. Bruhn, K.G. Zurita, B. Custer, M.P. Busch)
- University of California, San Francisco (M. Stone, R. Bruhn, M.C. Lanteri, B. Custer, M.P. Busch)
- American Red Cross, Rockville, Maryland, USA (B.R. Spencer, P. Saa)
- Westat, Rockville (A. Akinseye, D. Wright); QuidelOrtho, Rochester, New York, USA (P. Contestable)
- Creative Testing Solutions, Tempe, Arizona, USA (V. Green, M.C. Lanteri)
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (B.J. Biggerstaff)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (M.M. Coughlin, J.M. Jones)
- University of British Columbia, Vancouver, British Columbia, Canada (S. Kleinman)
| | - David J. Wright
- Vitalant Research Institute, San Francisco, California, USA (E. Grebe, M. Stone, C. Di Germanio, R. Bruhn, K.G. Zurita, B. Custer, M.P. Busch)
- University of California, San Francisco (M. Stone, R. Bruhn, M.C. Lanteri, B. Custer, M.P. Busch)
- American Red Cross, Rockville, Maryland, USA (B.R. Spencer, P. Saa)
- Westat, Rockville (A. Akinseye, D. Wright); QuidelOrtho, Rochester, New York, USA (P. Contestable)
- Creative Testing Solutions, Tempe, Arizona, USA (V. Green, M.C. Lanteri)
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (B.J. Biggerstaff)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (M.M. Coughlin, J.M. Jones)
- University of British Columbia, Vancouver, British Columbia, Canada (S. Kleinman)
| | - Clara Di Germanio
- Vitalant Research Institute, San Francisco, California, USA (E. Grebe, M. Stone, C. Di Germanio, R. Bruhn, K.G. Zurita, B. Custer, M.P. Busch)
- University of California, San Francisco (M. Stone, R. Bruhn, M.C. Lanteri, B. Custer, M.P. Busch)
- American Red Cross, Rockville, Maryland, USA (B.R. Spencer, P. Saa)
- Westat, Rockville (A. Akinseye, D. Wright); QuidelOrtho, Rochester, New York, USA (P. Contestable)
- Creative Testing Solutions, Tempe, Arizona, USA (V. Green, M.C. Lanteri)
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (B.J. Biggerstaff)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (M.M. Coughlin, J.M. Jones)
- University of British Columbia, Vancouver, British Columbia, Canada (S. Kleinman)
| | - Roberta Bruhn
- Vitalant Research Institute, San Francisco, California, USA (E. Grebe, M. Stone, C. Di Germanio, R. Bruhn, K.G. Zurita, B. Custer, M.P. Busch)
- University of California, San Francisco (M. Stone, R. Bruhn, M.C. Lanteri, B. Custer, M.P. Busch)
- American Red Cross, Rockville, Maryland, USA (B.R. Spencer, P. Saa)
- Westat, Rockville (A. Akinseye, D. Wright); QuidelOrtho, Rochester, New York, USA (P. Contestable)
- Creative Testing Solutions, Tempe, Arizona, USA (V. Green, M.C. Lanteri)
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (B.J. Biggerstaff)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (M.M. Coughlin, J.M. Jones)
- University of British Columbia, Vancouver, British Columbia, Canada (S. Kleinman)
| | - Karla G. Zurita
- Vitalant Research Institute, San Francisco, California, USA (E. Grebe, M. Stone, C. Di Germanio, R. Bruhn, K.G. Zurita, B. Custer, M.P. Busch)
- University of California, San Francisco (M. Stone, R. Bruhn, M.C. Lanteri, B. Custer, M.P. Busch)
- American Red Cross, Rockville, Maryland, USA (B.R. Spencer, P. Saa)
- Westat, Rockville (A. Akinseye, D. Wright); QuidelOrtho, Rochester, New York, USA (P. Contestable)
- Creative Testing Solutions, Tempe, Arizona, USA (V. Green, M.C. Lanteri)
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (B.J. Biggerstaff)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (M.M. Coughlin, J.M. Jones)
- University of British Columbia, Vancouver, British Columbia, Canada (S. Kleinman)
| | - Paul Contestable
- Vitalant Research Institute, San Francisco, California, USA (E. Grebe, M. Stone, C. Di Germanio, R. Bruhn, K.G. Zurita, B. Custer, M.P. Busch)
- University of California, San Francisco (M. Stone, R. Bruhn, M.C. Lanteri, B. Custer, M.P. Busch)
- American Red Cross, Rockville, Maryland, USA (B.R. Spencer, P. Saa)
- Westat, Rockville (A. Akinseye, D. Wright); QuidelOrtho, Rochester, New York, USA (P. Contestable)
- Creative Testing Solutions, Tempe, Arizona, USA (V. Green, M.C. Lanteri)
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (B.J. Biggerstaff)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (M.M. Coughlin, J.M. Jones)
- University of British Columbia, Vancouver, British Columbia, Canada (S. Kleinman)
| | - Valerie Green
- Vitalant Research Institute, San Francisco, California, USA (E. Grebe, M. Stone, C. Di Germanio, R. Bruhn, K.G. Zurita, B. Custer, M.P. Busch)
- University of California, San Francisco (M. Stone, R. Bruhn, M.C. Lanteri, B. Custer, M.P. Busch)
- American Red Cross, Rockville, Maryland, USA (B.R. Spencer, P. Saa)
- Westat, Rockville (A. Akinseye, D. Wright); QuidelOrtho, Rochester, New York, USA (P. Contestable)
- Creative Testing Solutions, Tempe, Arizona, USA (V. Green, M.C. Lanteri)
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (B.J. Biggerstaff)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (M.M. Coughlin, J.M. Jones)
- University of British Columbia, Vancouver, British Columbia, Canada (S. Kleinman)
| | - Marion C. Lanteri
- Vitalant Research Institute, San Francisco, California, USA (E. Grebe, M. Stone, C. Di Germanio, R. Bruhn, K.G. Zurita, B. Custer, M.P. Busch)
- University of California, San Francisco (M. Stone, R. Bruhn, M.C. Lanteri, B. Custer, M.P. Busch)
- American Red Cross, Rockville, Maryland, USA (B.R. Spencer, P. Saa)
- Westat, Rockville (A. Akinseye, D. Wright); QuidelOrtho, Rochester, New York, USA (P. Contestable)
- Creative Testing Solutions, Tempe, Arizona, USA (V. Green, M.C. Lanteri)
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (B.J. Biggerstaff)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (M.M. Coughlin, J.M. Jones)
- University of British Columbia, Vancouver, British Columbia, Canada (S. Kleinman)
| | - Paula Saa
- Vitalant Research Institute, San Francisco, California, USA (E. Grebe, M. Stone, C. Di Germanio, R. Bruhn, K.G. Zurita, B. Custer, M.P. Busch)
- University of California, San Francisco (M. Stone, R. Bruhn, M.C. Lanteri, B. Custer, M.P. Busch)
- American Red Cross, Rockville, Maryland, USA (B.R. Spencer, P. Saa)
- Westat, Rockville (A. Akinseye, D. Wright); QuidelOrtho, Rochester, New York, USA (P. Contestable)
- Creative Testing Solutions, Tempe, Arizona, USA (V. Green, M.C. Lanteri)
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (B.J. Biggerstaff)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (M.M. Coughlin, J.M. Jones)
- University of British Columbia, Vancouver, British Columbia, Canada (S. Kleinman)
| | - Brad J. Biggerstaff
- Vitalant Research Institute, San Francisco, California, USA (E. Grebe, M. Stone, C. Di Germanio, R. Bruhn, K.G. Zurita, B. Custer, M.P. Busch)
- University of California, San Francisco (M. Stone, R. Bruhn, M.C. Lanteri, B. Custer, M.P. Busch)
- American Red Cross, Rockville, Maryland, USA (B.R. Spencer, P. Saa)
- Westat, Rockville (A. Akinseye, D. Wright); QuidelOrtho, Rochester, New York, USA (P. Contestable)
- Creative Testing Solutions, Tempe, Arizona, USA (V. Green, M.C. Lanteri)
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (B.J. Biggerstaff)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (M.M. Coughlin, J.M. Jones)
- University of British Columbia, Vancouver, British Columbia, Canada (S. Kleinman)
| | - Melissa M. Coughlin
- Vitalant Research Institute, San Francisco, California, USA (E. Grebe, M. Stone, C. Di Germanio, R. Bruhn, K.G. Zurita, B. Custer, M.P. Busch)
- University of California, San Francisco (M. Stone, R. Bruhn, M.C. Lanteri, B. Custer, M.P. Busch)
- American Red Cross, Rockville, Maryland, USA (B.R. Spencer, P. Saa)
- Westat, Rockville (A. Akinseye, D. Wright); QuidelOrtho, Rochester, New York, USA (P. Contestable)
- Creative Testing Solutions, Tempe, Arizona, USA (V. Green, M.C. Lanteri)
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (B.J. Biggerstaff)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (M.M. Coughlin, J.M. Jones)
- University of British Columbia, Vancouver, British Columbia, Canada (S. Kleinman)
| | - Steve Kleinman
- Vitalant Research Institute, San Francisco, California, USA (E. Grebe, M. Stone, C. Di Germanio, R. Bruhn, K.G. Zurita, B. Custer, M.P. Busch)
- University of California, San Francisco (M. Stone, R. Bruhn, M.C. Lanteri, B. Custer, M.P. Busch)
- American Red Cross, Rockville, Maryland, USA (B.R. Spencer, P. Saa)
- Westat, Rockville (A. Akinseye, D. Wright); QuidelOrtho, Rochester, New York, USA (P. Contestable)
- Creative Testing Solutions, Tempe, Arizona, USA (V. Green, M.C. Lanteri)
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (B.J. Biggerstaff)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (M.M. Coughlin, J.M. Jones)
- University of British Columbia, Vancouver, British Columbia, Canada (S. Kleinman)
| | - Brian Custer
- Vitalant Research Institute, San Francisco, California, USA (E. Grebe, M. Stone, C. Di Germanio, R. Bruhn, K.G. Zurita, B. Custer, M.P. Busch)
- University of California, San Francisco (M. Stone, R. Bruhn, M.C. Lanteri, B. Custer, M.P. Busch)
- American Red Cross, Rockville, Maryland, USA (B.R. Spencer, P. Saa)
- Westat, Rockville (A. Akinseye, D. Wright); QuidelOrtho, Rochester, New York, USA (P. Contestable)
- Creative Testing Solutions, Tempe, Arizona, USA (V. Green, M.C. Lanteri)
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (B.J. Biggerstaff)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (M.M. Coughlin, J.M. Jones)
- University of British Columbia, Vancouver, British Columbia, Canada (S. Kleinman)
| | - Jefferson M. Jones
- Vitalant Research Institute, San Francisco, California, USA (E. Grebe, M. Stone, C. Di Germanio, R. Bruhn, K.G. Zurita, B. Custer, M.P. Busch)
- University of California, San Francisco (M. Stone, R. Bruhn, M.C. Lanteri, B. Custer, M.P. Busch)
- American Red Cross, Rockville, Maryland, USA (B.R. Spencer, P. Saa)
- Westat, Rockville (A. Akinseye, D. Wright); QuidelOrtho, Rochester, New York, USA (P. Contestable)
- Creative Testing Solutions, Tempe, Arizona, USA (V. Green, M.C. Lanteri)
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (B.J. Biggerstaff)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (M.M. Coughlin, J.M. Jones)
- University of British Columbia, Vancouver, British Columbia, Canada (S. Kleinman)
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, California, USA (E. Grebe, M. Stone, C. Di Germanio, R. Bruhn, K.G. Zurita, B. Custer, M.P. Busch)
- University of California, San Francisco (M. Stone, R. Bruhn, M.C. Lanteri, B. Custer, M.P. Busch)
- American Red Cross, Rockville, Maryland, USA (B.R. Spencer, P. Saa)
- Westat, Rockville (A. Akinseye, D. Wright); QuidelOrtho, Rochester, New York, USA (P. Contestable)
- Creative Testing Solutions, Tempe, Arizona, USA (V. Green, M.C. Lanteri)
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (B.J. Biggerstaff)
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (M.M. Coughlin, J.M. Jones)
- University of British Columbia, Vancouver, British Columbia, Canada (S. Kleinman)
| |
Collapse
|
7
|
Erikstrup C, Laksafoss AD, Gladov J, Kaspersen KA, Mikkelsen S, Hindhede L, Boldsen JK, Jørgensen SW, Ethelberg S, Holm DK, Bruun MT, Nissen J, Schwinn M, Brodersen T, Mikkelsen C, Sækmose SG, Sørensen E, Harritshøj LH, Aagaard B, Dinh KM, Busch MP, Jørgensen CS, Krause TG, Ullum H, Ostrowski SR, Espenhain L, Pedersen OBV. Seroprevalence and infection fatality rate of the SARS-CoV-2 Omicron variant in Denmark: A nationwide serosurveillance study. Lancet Reg Health Eur 2022; 21:100479. [PMID: 35959415 PMCID: PMC9355516 DOI: 10.1016/j.lanepe.2022.100479] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Introduction of the Omicron variant caused a steep rise in SARS-CoV-2 infections despite high vaccination coverage in the Danish population. We used blood donor serosurveillance to estimate the percentage of recently infected residents in the similarly aged background population with no known comorbidity. Methods To detect SARS-CoV-2 antibodies induced due to recent infection, and not vaccination, we assessed anti-nucleocapsid (anti-N) immunoglobulin G (IgG) in blood donor samples. Individual level data on SARS-CoV-2 RT-PCR results and vaccination status were available. Anti-N IgG was measured fortnightly from January 18 to April 3, 2022. Samples from November 2021 were analysed to assess seroprevalence before introduction of the Omicron variant in Denmark. Findings A total of 43 088 donations from 35 309 Danish blood donors aged 17–72 years were screened. In November 2021, 1·2% (103/8 701) of donors had detectable anti-N IgG antibodies. Adjusting for test sensitivity (estimates ranging from 74%–81%) and November seroprevalence, we estimate that 66% (95% confidence intervals (CI): 63%–70%) of the healthy, similarly aged Danish population had been infected between November 1, 2021, and March 15, 2022. One third of infections were not captured by SARS-CoV-2 RT-PCR testing. The infection fatality rate (IFR) was 6·2 (CI: 5·1–7·5) per 100 000 infections. Interpretation Screening for anti-N IgG and linkage to national registers allowed us to detect recent infections and accurately assess assay sensitivity in vaccinated or previously infected individuals during the Omicron outbreak. The IFR was lower than during previous waves. Funding The Danish Ministry of Health.
Collapse
Affiliation(s)
- Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, DK-8000 Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, DK-8000 Aarhus C, Denmark
- Corresponding author at: Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark.
| | - Anna Damkjær Laksafoss
- Epidemiological Infectious Disease Preparedness, Statens Serum Institut, DK-2300 Copenhagen S, Denmark
| | - Josephine Gladov
- Department of Clinical Immunology, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Kathrine Agergård Kaspersen
- Department of Clinical Immunology, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Susan Mikkelsen
- Department of Clinical Immunology, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Lotte Hindhede
- Department of Clinical Immunology, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Jens Kjærgaard Boldsen
- Department of Clinical Immunology, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Steen Ethelberg
- Epidemiological Infectious Disease Preparedness, Statens Serum Institut, DK-2300 Copenhagen S, Denmark
| | - Dorte Kinggaard Holm
- Department of Clinical Immunology, Odense University Hospital, DK-5000 Odense, Denmark
| | - Mie Topholm Bruun
- Department of Clinical Immunology, Odense University Hospital, DK-5000 Odense, Denmark
| | - Janna Nissen
- Department of Clinical Immunology, Copenhagen University Hospital, DK-2100 Copenhagen Ø, Denmark
| | - Michael Schwinn
- Department of Clinical Immunology, Copenhagen University Hospital, DK-2100 Copenhagen Ø, Denmark
| | - Thorsten Brodersen
- Department of Clinical Immunology, Zealand University Hospital, DK-4700 Naestved, Denmark
| | - Christina Mikkelsen
- Department of Clinical Immunology, Copenhagen University Hospital, DK-2100 Copenhagen Ø, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health, Copenhagen University, DK-2200 Copenhagen Ø, Denmark
| | - Susanne Gjørup Sækmose
- Department of Clinical Immunology, Zealand University Hospital, DK-4700 Naestved, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, DK-2100 Copenhagen Ø, Denmark
| | - Lene Holm Harritshøj
- Department of Clinical Immunology, Copenhagen University Hospital, DK-2100 Copenhagen Ø, Denmark
| | - Bitten Aagaard
- Department of Clinical Immunology, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| | - Khoa Manh Dinh
- Department of Clinical Immunology, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Michael P. Busch
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
- Vitalant Research Institute, San Francisco, CA, USA
| | - Charlotte Sværke Jørgensen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, DK-2300 Copenhagen S, Denmark
| | - Tyra Grove Krause
- Epidemiological Infectious Disease Preparedness, Statens Serum Institut, DK-2300 Copenhagen S, Denmark
| | - Henrik Ullum
- Epidemiological Infectious Disease Preparedness, Statens Serum Institut, DK-2300 Copenhagen S, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, DK-2100 Copenhagen Ø, Denmark
- Department of Clinical Medicine, University of Copenhagen, DK-2200 Copenhagen Ø, Denmark
| | - Laura Espenhain
- Epidemiological Infectious Disease Preparedness, Statens Serum Institut, DK-2300 Copenhagen S, Denmark
| | - Ole Birger Vesterager Pedersen
- Department of Clinical Immunology, Zealand University Hospital, DK-4700 Naestved, Denmark
- Department of Clinical Medicine, University of Copenhagen, DK-2200 Copenhagen Ø, Denmark
| |
Collapse
|