1
|
Saha P, Sau S, Kalia NP, Sharma DK. 2-Aryl-Benzoimidazoles as Type II NADH Dehydrogenase Inhibitors of Mycobacterium tuberculosis. ACS Infect Dis 2024; 10:3699-3711. [PMID: 39360674 DOI: 10.1021/acsinfecdis.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The nonproton pumping type II NADH dehydrogenase in Mycobacterium tuberculosis is essential for meeting the energy needs in terms of ATP under normal aerobic and stressful hypoxic environmental states. Type II NADH dehydrogenase conduits electrons into the electron transport chain in Mycobacterium tuberculosis, which results in ATP synthesis. Therefore, the inhibition of NDH-2 ensures the abolishment of the entire ATP synthesis machinery. Also, type II NADH dehydrogenase is absent in the mammalian genome, thus making it a potential target for antituberculosis drug discovery. Herein, we have screened a commercially available library of drug-like molecules and have identified a hit having a benzimidazole core moiety (6, H37Rv mc26230; minimum inhibitory concentration (MIC) = 16 μg/mL and ATP IC50 = 0.23 μg/mL) interfering with the oxidative phosphorylation pathway. Extensive medicinal chemistry optimization resulted in analogue 8, with MIC = 4 μg/mL and ATP IC50 = 0.05 μg/mL against the H37Rv mc26230 strain of Mycobacterium tuberculosis. Compounds 6 and 8 were found to be active against mono- and multidrug-resistant mycobacterium strains and demonstrated a bactericidal response. The Peredox-mCherry experiment and identification of single-nucleotide polymorphisms in mutants of CBR-5992 (a known type II NADH dehydrogenase inhibitor) were used to confirm the molecules as inhibitors of the type II NADH dehydrogenase enzyme. The safety index >10 for the test active molecules revealed the safety of test molecules.
Collapse
Affiliation(s)
- Pallavi Saha
- Department of Pharmaceutical Engg. and Tech., IIT-Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shashikanta Sau
- Department of Pharmacology and Toxicology, NIPER-Hyderabad, Hyderabad, 500037, India
| | - Nitin Pal Kalia
- Department of Pharmacology and Toxicology, NIPER-Hyderabad, Hyderabad, 500037, India
| | - Deepak K Sharma
- Department of Pharmaceutical Engg. and Tech., IIT-Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
2
|
Rastegar M, Nazar E, Nasehi M, Sharafi S, Fakoor V, Shakeri MT. Bayesian estimation of the time-varying reproduction number for pulmonary tuberculosis in Iran: A registry-based study from 2018 to 2022 using new smear-positive cases. Infect Dis Model 2024; 9:963-974. [PMID: 38873589 PMCID: PMC11169078 DOI: 10.1016/j.idm.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/09/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Tuberculosis (TB) is one of the most prevalent infectious diseases in the world, causing major public health problems in developing countries. The rate of TB incidence in Iran was estimated to be 13 per 100,000 in 2021. This study aimed to estimate the reproduction number and serial interval for pulmonary tuberculosis in Iran. Material and methods The present national historical cohort study was conducted from March 2018 to March 2022 based on data from the National Tuberculosis and Leprosy Registration Center of Iran's Ministry of Health and Medical Education (MOHME). The study included 30,762 tuberculosis cases and 16,165 new smear-positive pulmonary tuberculosis patients in Iran. We estimated the reproduction number of pulmonary tuberculosis in a Bayesian framework, which can incorporate uncertainty in estimating it. Statistical analyses were accomplished in R software. Results The mean age at diagnosis of patients was 52.3 ± 21.2 years, and most patients were in the 35-63 age group (37.1%). Among the data, 9121 (56.4%) cases were males, and 7044 (43.6%) were females. Among patients, 7459 (46.1%) had a delayed diagnosis between 1 and 3 months. Additionally, 3039 (18.8%) cases were non-Iranians, and 2978 (98%) were Afghans. The time-varying reproduction number for pulmonary tuberculosis disease was calculated at an average of 1.06 ± 0.05 (95% Crl 0.96-1.15). Conclusions In this study, the incidence and the time-varying reproduction number of pulmonary tuberculosis showed the same pattern. The mean of the time-varying reproduction number indicated that each infected person is causing at least one new infection over time, and the chain of transmission is not being disrupted.
Collapse
Affiliation(s)
- Maryam Rastegar
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Eisa Nazar
- Orthopedic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahshid Nasehi
- Centre for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Saeed Sharafi
- Centre for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Vahid Fakoor
- Department of Statistics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Taghi Shakeri
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Marco MH, Ahmedov S, Castro KG. The global impact of COVID-19 on tuberculosis: A thematic scoping review, 2020-2023. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003043. [PMID: 38959278 PMCID: PMC11221697 DOI: 10.1371/journal.pgph.0003043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/25/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND This thematic scoping review of publications sought to understand the global impact of COVID-19 on tuberculosis (TB), interpret the scope of resonating themes, and offer policy recommendations to stimulate TB recovery and future pandemic preparedness. DATA SOURCES Publications were captured from three search engines, PubMed, EBSCO, and Google Scholar, and applicable websites written in English from January 1, 2020, to April 30, 2023. STUDY SELECTION Our scoping review was limited to publications detailing the impact of COVID-19 on TB. Original research, reviews, letters, and editorials describing the deleterious and harmful--yet sometimes positive--impact of COVID-19 (sole exposure) on TB (sole outcome) were included. The objective was to methodically categorize the impacts into themes through a comprehensive review of selected studies to provide significant health policy guidance. DATA EXTRACTION Two authors independently screened citations and full texts, while the third arbitrated when consensus was not met. All three performed data extraction. DATA SYNTHESIS/RESULTS Of 1,755 screened publications, 176 (10%) covering 39 countries over 41 months met the inclusion criteria. By independently using a data extraction instrument, the three authors identified ten principal themes from each publication. These themes were later finalized through a consensus decision. The themes encompassed TB's care cascade, patient-centered care, psychosocial issues, and health services: 1) case-finding and notification (n = 45; 26%); 2) diagnosis and laboratory systems (n = 19; 10.7%) 3) prevention, treatment, and care (n = 22; 12.2%); 4) telemedicine/telehealth (n = 12; 6.8%); 5) social determinants of health (n = 14; 8%); 6) airborne infection prevention and control (n = 8; 4.6%); 7) health system strengthening (n = 22; 13%); 8) mental health (n = 13; 7.4%); 9) stigma (n = 11; 6.3%); and 10) health education (n = 10; 5.7%). LIMITATIONS Heterogeneity of publications within themes. CONCLUSIONS We identified ten globally generalizable themes of COVID-19's impact on TB. The impact and lessons learned from the themed analysis propelled us to draft public health policy recommendations to direct evidence-informed guidance that strengthens comprehensive global responses, recovery for TB, and future airborne pandemic preparedness.
Collapse
Affiliation(s)
- Michael H. Marco
- TB Division, Office of Infectious Diseases, Bureau for Global Health, United States Agency for International Development, Washington, District of Columbia, United States of America
- Global Health Technical Assistance and Mission Support, Vienna, Virginia, United States of America
| | - Sevim Ahmedov
- TB Division, Office of Infectious Diseases, Bureau for Global Health, United States Agency for International Development, Washington, District of Columbia, United States of America
| | - Kenneth G. Castro
- TB Division, Office of Infectious Diseases, Bureau for Global Health, United States Agency for International Development, Washington, District of Columbia, United States of America
- Rollins School of Public Health, School of Medicine, Emory/Georgia TB Research Advancement Center, Atlanta, Georgia, United States of America
| |
Collapse
|
4
|
Maipan-Uku JY, Cavus N. Forecasting tuberculosis incidence: a review of time series and machine learning models for prediction and eradication strategies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-16. [PMID: 38916208 DOI: 10.1080/09603123.2024.2368137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/05/2024] [Indexed: 06/26/2024]
Abstract
Despite efforts by the World Health Organization (WHO), tuberculosis (TB) remains a leading cause of fatalities globally. This study reviews time series and machine learning models for TB incidence prediction, identifies popular algorithms, and highlights the need for further research to improve accuracy and global scope. SCOPUS, PUBMED, IEEE, Web of Science, and PRISMA were used for search and article selection from 2012 to 2023. The results revealed that ARIMA, SARIMA, ETS, GRNN, BPNN, NARNN, NNAR, and RNN are popular time series and ML algorithms adopted for TB incidence rate predictions. The inaccurate TB incidence prediction and limited global scope of prior studies suggest a need for further research. This review serves as a roadmap for the WHO to focus on regions that require more attention for TB prevention and the need for more sophisticated models for TB incidence predictions.
Collapse
Affiliation(s)
- Jamilu Yahaya Maipan-Uku
- Department of Computer Science, Ibrahim Badamasi Babangida University, Lapai, Nigeria
- Department of Computer Information Systems, Near East University, Nicosia, Turkey
- Computer Information Systems Research and Technology Centre, Near East University, Nicosia, Turkey
| | - Nadire Cavus
- Department of Computer Information Systems, Near East University, Nicosia, Turkey
- Computer Information Systems Research and Technology Centre, Near East University, Nicosia, Turkey
| |
Collapse
|
5
|
Mishra HK. The Applications of ELISpot in the Identification and Treatment of Various Forms of Tuberculosis and in the Cancer Immunotherapies. Methods Mol Biol 2024; 2768:51-58. [PMID: 38502387 DOI: 10.1007/978-1-0716-3690-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
ELISpot (enzyme-linked immunospot) is a powerful immunological tool for the detection of cytokine-secreting cells at a single-cell resolution. It is widely used for the diagnosis of various infectious diseases, e.g., tuberculosis and sarcoidosis, and it is also widely used in cancer immunotherapy research. Its ability to distinguish between active and latent forms of tuberculosis makes it an extremely powerful tool for epidemiological studies and contact tracing. In addition to that, it is a very useful tool for the research and development of cancer immunotherapies. ELISpot can be employed to assess the immune responses against various tumor-associated antigens, which could provide valuable insights for the development of effective therapies against cancers. Furthermore, it plays a crucial role to the evaluation of immune responses against specific antigens that not only could aid in vaccine development but also assist in treatment monitoring and development of therapeutic and diagnostic strategies. This chapter briefly describes some of the applications of ELISpot in tuberculosis and cancer research.
Collapse
|
6
|
Fenta MD, Ogundijo OA, Warsame AAA, Belay AG. Facilitators and barriers to tuberculosis active case findings in low- and middle-income countries: a systematic review of qualitative research. BMC Infect Dis 2023; 23:515. [PMID: 37550614 PMCID: PMC10405492 DOI: 10.1186/s12879-023-08502-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) is an ancient infection and a major public health problem in many low- and middle-income countries (LMICs). Active case finding (ACF) programs have been established to effectively reduce TB in endemic global communities. However, there is little information about the evidence-based benefits of active case finding at both the individual and community levels. Accurately identifying the facilitators and barriers to TB-ACF provides information that can be used in planning and design as the world aims to end the global TB epidemic by 2035. Therefore, this study aimed to identify the facilitators and barriers to tuberculosis ACF in LMICs. METHODS A systematic search was performed using recognized databases such as PubMed, Google Scholar, SCOPUS, HINARI, and other reference databases. Relevant studies that assessed or reported the ACF of TB conducted in LMICs were included in this study. The Joanna Briggs Institute's (JBI) Critical Appraisal Tool was used to assess the quality of the selected studies. The Statement of Enhancing Transparency in Reporting the Synthesis of Qualitative Research (ENTREQ) was used to strengthen the protocol for this systematic review. The Confidence of Evidence Review Quality (CERQual) approach was also used to assess the reliability of the review findings. RESULTS From 228 search results, a total of 23 studies were included in the final review. Tuberculosis ACF results were generated under two main themes: barriers and facilitators in LMICs, and two sub-themes of the barriers (healthcare-related and non-healthcare-related barriers). Finally, barriers to active TB case finding were found to be related to (1) the healthcare workers' experience, knowledge, and skills in detecting TB-ACF, (2) distance and time; (3) availability and workload of ACF healthcare workers; (4) barriers related to a lack of resources such as diagnostic equipment, reagents, and consumables at TB-ACF; (5) the stigma associated with TB-ACF detection; (6) the lack of training of existing and new healthcare professionals to detect TB-ACF; (7) communication strategies and language limitations associated with TB ACF; and (8) poor or no community awareness of tuberculosis. Stigma was the most patient-related obstacle to detecting active TB cases in LMICs. CONCLUSION This review found that surveillance, monitoring, health worker training, integration into health systems, and long-term funding of health facilities were key to the sustainability of ACF in LMICs. Understanding the elimination of the identified barriers is critical to ensuring a maximum tuberculosis control strategy through ACF.
Collapse
Affiliation(s)
- Melkie Dagnaw Fenta
- Department of Clinical Veterinary Medicine, University of Gondar, Gondar, Ethiopia.
| | - Oluwaseun Adeolu Ogundijo
- Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ahmed Abi Abdi Warsame
- Department of Animal Production and Marketing, Faculty of Agriculture and Environment Science, Gulu University, Gulu, Uganda
| | - Abebaw Getachew Belay
- Department of Veterinary Public Health and Epidemiology, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
7
|
Ning B, Shen J, Liu F, Zhang H, Jiang X. Baicalein Suppresses NLRP3 and AIM2 Inflammasome-Mediated Pyroptosis in Macrophages Infected by Mycobacterium tuberculosis via Induced Autophagy. Microbiol Spectr 2023; 11:e0471122. [PMID: 37125940 PMCID: PMC10269511 DOI: 10.1128/spectrum.04711-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) continues to pose a significant threat to global health because it causes granulomas and systemic inflammatory responses during active tuberculosis (TB). Mtb can induce macrophage pyroptosis, which results in the release of IL-1β and causes tissue damage, thereby promoting its spread. In the absence of anti-TB drugs, host-directed therapy (HDT) has been demonstrated to be an effective strategy against TB. In this study, we used an in vitro Mtb-infected macrophage model to assess the effect of baicalein, derived from Scutellariae radix, on pyroptosis induced in Mtb-infected macrophages. Further, we investigated the molecular mechanisms underlying the actions of baicalein. The results of the study suggest that baicalein inhibits pyroptosis in Mtb-infected macrophages by downregulating the assembly of AIM2 and NLRP3 inflammasome and promoting autophagy. Further research has also shown that the mechanism by which baicalein promotes autophagy may involve the inhibition of the activation of the Akt/mTOR pathway and the inhibition of the AIM2 protein, which affects the levels of CHMP2A protein required to promote autophagy. Thus, our data show that baicalein can inhibit Mtb infection-induced macrophage pyroptosis and has the potential to be a new adjunctive HDT drug. IMPORTANCE Current strategies for treating drug-resistant tuberculosis have limited efficacy and undesirable side effects; hence, research on new treatments, including innovative medications, is required. Host-directed therapy (HDT) has emerged as a viable strategy for modulating host cell responses in order to enhance protective immunity against infections. Baicalein, extracted from Scutellariae radix, was shown to inhibit pyroptosis caused by Mycobacterium tuberculosis-infected macrophages and was associated with autophagy. Our findings reveal that baicalein can be used as an adjunctive treatment for tuberculosis or other inflammatory diseases by regulating immune function and enhancing the antibacterial ability of the host. It also provides a new idea for exploring the anti-inflammatory mechanism of baicalein.
Collapse
Affiliation(s)
- Bangzuo Ning
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjing Shen
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fanglin Liu
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hemin Zhang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Jiang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Kumar GS, Sameena P, Karthik V, Ghanate N. Prospective study on outcome of MDR-TB using the shorter regimen during COVID-19 pandemic. J Family Med Prim Care 2023; 12:1087-1091. [PMID: 37636185 PMCID: PMC10451567 DOI: 10.4103/jfmpc.jfmpc_1723_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 08/29/2023] Open
Abstract
Background According to Indian TB report 2020, 66,225 MDR/RR-TB cases were detected in India, 56,569 (85%) were put on treatment, and 40,397 (75%) were initiated on shorter drug regimens at the time of diagnosis. In the absence of an effective vaccine, there is an urgent need for new treatment regimens, drugs, and diagnostics to slow the evolution of drug resistance and limit transmission of resistant variants, as well as to ameliorate the treatment outcome of patients infected with MDR/XDR M. tuberculosis strains. Aim To evaluate the efficacy of a shorter drug regimen in MDR-PTB and estimate the adverse effects of drugs used in the regimen. Methods This is an institution-based prospective study which included 135 confirmed MDR-PTB patients. Patients with extra-pulmonary MDR-TB and use of SLI for more than one month were excluded. Results The success rate using a shorter regimen was 65.2% which is respectable, given the COVID-19 pandemic considered during the study period. Minor adverse events such as nausea (39.3%) and vomiting (34.8%) were reported. Rare adverse effects such as hearing loss (8.9%) and hypothyroidism (0.2%) were also seen in the study population. Conclusion Overall treatment success was similar when compared to other studies done previously. A shorter drug regimen was associated with minor adverse effects such as gastrointestinal adverse effects such as vomiting and hearing loss observed in elderly patients. Baseline unknown drug resistance and lower BMI were associated with unsuccessful outcomes. Measures should be taken to improve nutrition. Our results argue the need for improving baseline DST at peripheral areas in order to effectively evaluate resistance to other drugs, especially in settings with high levels of first and second-line drug resistance.
Collapse
Affiliation(s)
- G Sravan Kumar
- Department of Pulmonary Medicine, Governement General and Chest Hospital, Affilated to Osmania Medical College, Hyderabad, Telangana, India
| | - P Sameena
- Department of Pulmonary Medicine, Governement General Hospital, Sangareddy, Telangana, India
| | - V Karthik
- Department of Pulmonary Medicine, Governement General and Chest Hospital, Affilated to Osmania Medical College, Hyderabad, Telangana, India
| | - Nalini Ghanate
- Department of Pulmonary Medicine, Governement General and Chest Hospital, Affilated to Osmania Medical College, Hyderabad, Telangana, India
| |
Collapse
|
9
|
Kim R, Jayanti RP, Lee H, Kim HK, Kang J, Park IN, Kim J, Oh JY, Kim HW, Lee H, Ghim JL, Ahn S, Long NP, Cho YS, Shin JG. Development of a population pharmacokinetic model of pyrazinamide to guide personalized therapy: impacts of geriatric and diabetes mellitus on clearance. Front Pharmacol 2023; 14:1116226. [PMID: 37305528 PMCID: PMC10250603 DOI: 10.3389/fphar.2023.1116226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/19/2023] [Indexed: 06/13/2023] Open
Abstract
Objectives: This study was performed to develop a population pharmacokinetic model of pyrazinamide for Korean tuberculosis (TB) patients and to explore and identify the influence of demographic and clinical factors, especially geriatric diabetes mellitus (DM), on the pharmacokinetics (PK) of pyrazinamide (PZA). Methods: PZA concentrations at random post-dose points, demographic characteristics, and clinical information were collected in a multicenter prospective TB cohort study from 18 hospitals in Korea. Data obtained from 610 TB patients were divided into training and test datasets at a 4:1 ratio. A population PK model was developed using a nonlinear mixed-effects method. Results: A one-compartment model with allometric scaling for body size effect adequately described the PK of PZA. Geriatric patients with DM (age >70 years) were identified as a significant covariate, increasing the apparent clearance of PZA by 30% (geriatric patients with DM: 5.73 L/h; others: 4.50 L/h), thereby decreasing the area under the concentration-time curve from 0 to 24 h by a similar degree compared with other patients (geriatric patients with DM: 99.87 μg h/mL; others: 132.3 μg h/mL). Our model was externally evaluated using the test set and provided better predictive performance compared with the previously published model. Conclusion: The established population PK model sufficiently described the PK of PZA in Korean TB patients. Our model will be useful in therapeutic drug monitoring to provide dose optimization of PZA, particularly for geriatric patients with DM and TB.
Collapse
Affiliation(s)
- Ryunha Kim
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Rannissa Puspita Jayanti
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Hongyeul Lee
- Division of Pulmonary, Critical Care Medicine, Department of Internal Medicine, Inje University College of Medicine, Busan Paik Hospital, Busan, Republic of Korea
| | - Hyun-Kuk Kim
- Division of Pulmonology, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Busan, Republic of Korea
| | - Jiyeon Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang-si, Republic of Korea
| | - I-Nae Park
- Department of Internal Medicine, Inje University Seoul Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
| | - Jehun Kim
- Pulmonary Division, Department of IM, Kosin University Gospel Hospital, Busan, Republic of Korea
| | - Jee Youn Oh
- Division of Pulmonology, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Hyung Woo Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Heayon Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong-Lyul Ghim
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Sangzin Ahn
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Phuoc Long
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Yong-Soon Cho
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Jae-Gook Shin
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
- Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, Republic of Korea
| |
Collapse
|
10
|
Khan FU, Khan FU, Aqeel MT, Hayat K, Chang J, Rehman AU, Fang Y. A randomized controlled trial to evaluate the impact of pharmacist-led clinical interventions on the health-related quality of life among TB patients. Front Pharmacol 2023; 14:1171985. [PMID: 37292150 PMCID: PMC10246751 DOI: 10.3389/fphar.2023.1171985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
Background: The study was designed to evaluate the impact of pharmacist-led clinical interventions on the health-related quality of life among tuberculosis patients in Pakistan. Methods: A randomized, controlled prospective study was carried out in a Pakistan Institute of Medical Sciences hospital tuberculosis (TB) control center. Participants who visited the TB center between September 2020 and December 2021 were randomly assigned to two clusters, the usual care group (UC group) vs. the intervention group (pharmaceutical care group), in a 1:1 ratio by a simple envelope technique. In the intervention group, a patient received centered care that encompassed informed decision-making, which can increase the quality of care and monitoring of adverse drug events. However, the control group received routine TB treatment at the hospital. The EuroQol-5D-3L instrument was used to assess the health-related quality of life (HRQoL) at the baseline and in the third and sixth months of the treatment time period. Results: A total of 503 patients were eligible, of which only 426 patients were included in this study. At the end of the study, n = 205 of the patients in the intervention group and n = 185 of those in the control group were analyzed. In the intervention group, the EQ-5D-3L health utility score improved significantly (p < 0.001) (from the baseline mean ± SD, 0.40 ± 0.36, to 6 months of treatment, 0.89 ± 0.09, while in the control group from 0.42 ± 0.35 to 0.78 ± 0.27). In multivariate regression analysis, the variables that remained statistically associated (p < 0.001) with the HRQoL (unstandardized β [95% confidence interval]) of the control group were as follows: gender, female vs. male (-0.039 [-0.076 to -0.003]); body weight, less than 40 kg vs. more than 40 kg (-0.109 [-0.195 to -0.024]); patients with any comorbidity vs. without comorbidity (-0.136 [-0.252 to -0.020]); and smokers vs. non-smokers (-0.204 [-0.291 to -0.118]). The study did not find any statistically significant associations between the intervention group's variables and the HRQoL. Conclusion: Patient-centered care interventions led by pharmacists as part of care coordination enhanced the HRQoL for TB patients significantly. According to this study, clinical pharmacists should be included in the interdisciplinary clinical staff for TB patient management.
Collapse
Affiliation(s)
- Farman Ullah Khan
- Department of Pharmacy Administration and Clinical Pharmacy, Xi’an Jiaotong University, Xi’an, China
- Center for Drug Safety and Policy Research, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Center for Health Reform and Development Research, Xi’an Jiaotong University, Xi’an, China
- Research Institute for Drug Safety and Monitoring, Institute of Pharmaceutical Science and Technology, Xi’an, China
- Faculty of Pharmacy, Hamdard University Islamabad Campus, Islamabad, Pakistan
| | - Faiz Ullah Khan
- Department of Pharmacy Administration and Clinical Pharmacy, Xi’an Jiaotong University, Xi’an, China
- Center for Drug Safety and Policy Research, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Center for Health Reform and Development Research, Xi’an Jiaotong University, Xi’an, China
- Research Institute for Drug Safety and Monitoring, Institute of Pharmaceutical Science and Technology, Xi’an, China
| | | | - Khezar Hayat
- Department of Pharmacy Administration and Clinical Pharmacy, Xi’an Jiaotong University, Xi’an, China
- Center for Drug Safety and Policy Research, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Center for Health Reform and Development Research, Xi’an Jiaotong University, Xi’an, China
- Research Institute for Drug Safety and Monitoring, Institute of Pharmaceutical Science and Technology, Xi’an, China
| | - Jie Chang
- Department of Pharmacy Administration and Clinical Pharmacy, Xi’an Jiaotong University, Xi’an, China
- Center for Drug Safety and Policy Research, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Center for Health Reform and Development Research, Xi’an Jiaotong University, Xi’an, China
- Research Institute for Drug Safety and Monitoring, Institute of Pharmaceutical Science and Technology, Xi’an, China
| | - Asim ur Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yu Fang
- Department of Pharmacy Administration and Clinical Pharmacy, Xi’an Jiaotong University, Xi’an, China
- Center for Drug Safety and Policy Research, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Center for Health Reform and Development Research, Xi’an Jiaotong University, Xi’an, China
- Research Institute for Drug Safety and Monitoring, Institute of Pharmaceutical Science and Technology, Xi’an, China
| |
Collapse
|
11
|
Thu VTA, Dat LD, Jayanti RP, Trinh HKT, Hung TM, Cho YS, Long NP, Shin JG. Advancing personalized medicine for tuberculosis through the application of immune profiling. Front Cell Infect Microbiol 2023; 13:1108155. [PMID: 36844400 PMCID: PMC9950414 DOI: 10.3389/fcimb.2023.1108155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
While early and precise diagnosis is the key to eliminating tuberculosis (TB), conventional methods using culture conversion or sputum smear microscopy have failed to meet demand. This is especially true in high-epidemic developing countries and during pandemic-associated social restrictions. Suboptimal biomarkers have restricted the improvement of TB management and eradication strategies. Therefore, the research and development of new affordable and accessible methods are required. Following the emergence of many high-throughput quantification TB studies, immunomics has the advantages of directly targeting responsive immune molecules and significantly simplifying workloads. In particular, immune profiling has been demonstrated to be a versatile tool that potentially unlocks many options for application in TB management. Herein, we review the current approaches for TB control with regard to the potentials and limitations of immunomics. Multiple directions are also proposed to hopefully unleash immunomics' potential in TB research, not least in revealing representative immune biomarkers to correctly diagnose TB. The immune profiles of patients can be valuable covariates for model-informed precision dosing-based treatment monitoring, prediction of outcome, and the optimal dose prediction of anti-TB drugs.
Collapse
Affiliation(s)
- Vo Thuy Anh Thu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Ly Da Dat
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Rannissa Puspita Jayanti
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Hoang Kim Tu Trinh
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh, Ho Chi Minh City, Vietnam
| | - Tran Minh Hung
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Yong-Soon Cho
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea,*Correspondence: Jae-Gook Shin, ; Nguyen Phuoc Long,
| | - Jae-Gook Shin
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea,Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, Republic of Korea,*Correspondence: Jae-Gook Shin, ; Nguyen Phuoc Long,
| |
Collapse
|
12
|
Chowdhury K, Ahmad R, Sinha S, Dutta S, Haque M. Multidrug-Resistant TB (MDR-TB) and Extensively Drug-Resistant TB (XDR-TB) Among Children: Where We Stand Now. Cureus 2023; 15:e35154. [PMID: 36819973 PMCID: PMC9938784 DOI: 10.7759/cureus.35154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2023] [Indexed: 02/20/2023] Open
Abstract
Drug-resistant tuberculosis (DR-TB) has continued to be a global health cataclysm. It is an arduous condition to tackle but is curable with the proper choice of drug and adherence to the drug therapy. WHO has introduced newer drugs with all-oral shorter regimens, but the COVID-19 pandemic has disrupted the achievements and raised the severity. The COVID-19 controlling mechanism is based on social distancing, using face masks, personal protective equipment, medical glove, head shoe cover, face shield, goggles, hand hygiene, and many more. Around the globe, national and international health authorities impose lockdown and movement control orders to ensure social distancing and prevent transmission of COVID-19 infection. Therefore, WHO proposed a TB control program impaired during a pandemic. Children, the most vulnerable group, suffer more from the drug-resistant form and act as the storehouse of future fatal cases. It has dire effects on physical health and hampers their mental health and academic career. Treatment of drug-resistant cases has more success stories in children than adults, but enrollment for treatment has been persistently low in this age group. Despite that, drug-resistant childhood tuberculosis has been neglected, and proper surveillance has not yet been achieved. Insufficient reporting, lack of appropriate screening tools for children, less accessibility to the treatment facility, inadequate awareness, and reduced funding for TB have worsened the situation. All these have resulted in jeopardizing our dream to terminate this deadly condition. So, it is high time to focus on this issue to achieve our Sustainable Development Goals (SDGs), the goal of ending TB by 2030, as planned by WHO. This review explores childhood TB's current position and areas to improve. This review utilized electronic-based data searched through PubMed, Google Scholar, Google Search Engine, Science Direct, and Embase.
Collapse
Affiliation(s)
- Kona Chowdhury
- Pediatrics, Gonoshasthaya Samaj Vittik Medical College, Dhaka, BGD
| | - Rahnuma Ahmad
- Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Susmita Sinha
- Physiology, Khulna City Medical College, Khulna, BGD
| | - Siddhartha Dutta
- Pharmacology, All India Institute of Medical Sciences, Rajkot, IND
| | - Mainul Haque
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
13
|
Vasam M, Goulikar RK. Approaches for designing and delivering solid lipid nanoparticles of distinct antitubercular drugs. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:828-843. [PMID: 36341573 DOI: 10.1080/09205063.2022.2144791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tuberculosis (TB) is still the biggest infectious disease among adults globally, which effects the social and biological lives of patients as well as the economic liability of healthcare systems. Current treatment regime has challenges with drug resistant (MDR/XDR) strains and the failure of standard therapeutic interventions against these TB strains. In the recent years, several nanocarrier-based drug delivery systems developed (including lipid-based) with anti-tuberculosis drugs via targeted delivery to improve the therapeutic outcomes. In this review, we attempt to summarize on the composition of the reported solid lipid-based particles (SLNPs), their various production methodologies, and properties of the delivery system, and their influence on cellular and pharmacokinetic aspects are also discussed. Besides, we have highlighted anti-TB drugs delivering via lipid-based systems have shown promising outcomes, however clinical translation of such systems is still under investigation. Based on recent advancements and reports, it is recommended that future efforts be made to accelerate the translational development of lipid-based nanocarriers to improve TB treatment.
Collapse
Affiliation(s)
- Mallikarjun Vasam
- Chaitanya (Deemed to be University)-Pharmacy, Hanamkonda, Warangal, Telangana, India
| | - Rama Krishna Goulikar
- Chaitanya (Deemed to be University)-Pharmacy, Hanamkonda, Warangal, Telangana, India
| |
Collapse
|
14
|
Mir MA, Mir B, Kumawat M, Alkhanani M, Jan U. Manipulation and exploitation of host immune system by pathogenic Mycobacterium tuberculosis for its advantage. Future Microbiol 2022; 17:1171-1198. [PMID: 35924958 DOI: 10.2217/fmb-2022-0026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can become a long-term infection by evading the host immune response. Coevolution of Mtb with humans has resulted in its ability to hijack the host's immune systems in a variety of ways. So far, every Mtb defense strategy is essentially dependent on a subtle balance that, if shifted, can promote Mtb proliferation in the host, resulting in disease progression. In this review, the authors summarize many important and previously unknown mechanisms by which Mtb evades the host immune response. Besides recently found strategies by which Mtb manipulates the host molecular regulatory machinery of innate and adaptive immunity, including the intranuclear regulatory machinery, costimulatory molecules, the ubiquitin system and cellular intrinsic immune components will be discussed. A holistic understanding of these immune-evasion mechanisms is of foremost importance for the prevention, diagnosis and treatment of tuberculosis and will lead to new insights into tuberculosis pathogenesis and the development of more effective vaccines and treatment regimens.
Collapse
Affiliation(s)
- Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Bilkees Mir
- Department of Biochemistry & Biochemical Engineering, SHUATS, Allahabad, UP, India
| | - Manoj Kumawat
- Department of Microbiology, Indian Council of Medical Research (ICMR)-NIREH, Bhopal, MP, India
| | - Mustfa Alkhanani
- Biology Department, College of Sciences, University of Hafr Al Batin, P. O. Box 1803, Hafar Al Batin, Saudi Arabia
| | - Ulfat Jan
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| |
Collapse
|
15
|
Facilitators and Barriers to Implementation of a Childhood Tuberculosis Control Program in Bangladesh: A Mixed-Methods Study from BRAC Urban DOTS Centres in Dhaka. NURSING REPORTS 2022; 12:371-386. [PMID: 35645362 PMCID: PMC9149828 DOI: 10.3390/nursrep12020036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/17/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
The case detection rate of childhood tuberculosis in Bangladesh is 4%, far below the World Health Organization predicted rate of 10–15% for a country with a high burden of tuberculosis. A concurrent triangulation mixed-methods study was carried out in eight urban DOTS (Directly Observed Treatment, Short-course) centres to investigate the factors contributing to the diagnosis and treatment of childhood tuberculosis. Front-line health care workers (Shasthya Shebika) (n = 111) were surveyed to understand knowledge, attitude, and practice (KAP) of the diagnosis and treatment of childhood tuberculosis. In-depth interviews were conducted with field workers (n = 32) and mothers of TB cases (n = 4). Stakeholders involved in implementing the tuberculosis program (n = 9) participated in the key informant interviews. Knowledge of Shasthya Shebika was associated with the components addressed during refresher training (p = 0.02). Government stewardship, presence of specific guidelines, knowledge and capacity building of front-line health workers were identified as the key facilitators. Frequent turnover of key managerial positions in the government, stigma, delays in seeking care, lack of diagnostic facilities, and poor engagement of private practitioners were identified as major constraints. It was identified that the government should focus on improving diagnostic capacities, conduct research on childhood tuberculosis, and produce awareness materials.
Collapse
|
16
|
Jayanti RP, Long NP, Phat NK, Cho YS, Shin JG. Semi-Automated Therapeutic Drug Monitoring as a Pillar toward Personalized Medicine for Tuberculosis Management. Pharmaceutics 2022; 14:pharmaceutics14050990. [PMID: 35631576 PMCID: PMC9147223 DOI: 10.3390/pharmaceutics14050990] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/10/2022] Open
Abstract
Standard tuberculosis (TB) management has failed to control the growing number of drug-resistant TB cases worldwide. Therefore, innovative approaches are required to eradicate TB. Model-informed precision dosing and therapeutic drug monitoring (TDM) have become promising tools for adjusting anti-TB drug doses corresponding with individual pharmacokinetic profiles. These are crucial to improving the treatment outcome of the patients, particularly for those with complex comorbidity and a high risk of treatment failure. Despite the actual benefits of TDM at the bedside, conventional TDM encounters several hurdles related to laborious, time-consuming, and costly processes. Herein, we review the current practice of TDM and discuss the main obstacles that impede it from successful clinical implementation. Moreover, we propose a semi-automated TDM approach to further enhance precision medicine for TB management.
Collapse
Affiliation(s)
- Rannissa Puspita Jayanti
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Korea; (R.P.J.); (N.P.L.); (N.K.P.); (Y.-S.C.)
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Nguyen Phuoc Long
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Korea; (R.P.J.); (N.P.L.); (N.K.P.); (Y.-S.C.)
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Nguyen Ky Phat
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Korea; (R.P.J.); (N.P.L.); (N.K.P.); (Y.-S.C.)
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Yong-Soon Cho
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Korea; (R.P.J.); (N.P.L.); (N.K.P.); (Y.-S.C.)
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Jae-Gook Shin
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Korea; (R.P.J.); (N.P.L.); (N.K.P.); (Y.-S.C.)
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
- Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan 47392, Korea
- Correspondence: ; Tel.: +82-51-890-6709; Fax: +82-51-893-1232
| |
Collapse
|