1
|
Nash D, Palermo CN, Inamoto I, Charles TC, Nissimov JI, Short SM. Hybrid sequencing reveals the genome of a Chrysochromulina parva virus and highlight its distinct replication strategy. BMC Genomics 2025; 26:498. [PMID: 40382578 PMCID: PMC12085832 DOI: 10.1186/s12864-025-11700-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025] Open
Abstract
Chrysochromulina parva (C. parva) is a eukaryotic freshwater haptophyte algae found in lakes and rivers worldwide. It is known to be infected by viruses, yet knowledge of the diversity and activity of these viruses is still very limited. Based on sequences of PCR-amplified DNA polymerase B (polB) gene fragments, Chrysochromulina parva virus BQ1 (CpV-BQ1) was the first known lytic agent of C. parva, and was considered a member of the virus family Phycodnaviridae, order Algavirales. However, the genome of a different C. parva-infecting virus (CpV-BQ2, or Tethysvirus ontarioense) from another virus family, the Mesomimiviridae, order Imitervirales, was the first sequenced. Here, we report the complete genome sequence of the putative phycodnavirus CpV-BQ1, accession PQ783904. The complete CpV-BQ1 genome sequence is 165,454 bp with a GC content of 32.32% and it encodes 193 open reading frames. Phylogenetic analyses of several virus hallmark genes including the polB, the late gene transcription factor (VLTF-3), and the putative A32-like virion packaging ATPase (Viral A32) all demonstrate that CpV-BQ1 is most closely related to other viruses in the phylum Megaviricetes within the order Algavirales, family Phycodnaviridae.
Collapse
Affiliation(s)
- Delaney Nash
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Christine N Palermo
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Ichiro Inamoto
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Trevor C Charles
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Jozef I Nissimov
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Steven M Short
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
2
|
Neuber J, Lang C, Aurass P, Flieger A. Tools and mechanisms of vacuolar escape leading to host egress in Legionella pneumophila infection: Emphasis on bacterial phospholipases. Mol Microbiol 2024; 121:368-384. [PMID: 37891705 DOI: 10.1111/mmi.15183] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
The phenomenon of host cell escape exhibited by intracellular pathogens is a remarkably versatile occurrence, capable of unfolding through lytic or non-lytic pathways. Among these pathogens, the bacterium Legionella pneumophila stands out, having adopted a diverse spectrum of strategies to disengage from their host cells. A pivotal juncture that predates most of these host cell escape modalities is the initial escape from the intracellular compartment. This critical step is increasingly supported by evidence suggesting the involvement of several secreted pathogen effectors, including lytic proteins. In this intricate landscape, L. pneumophila emerges as a focal point for research, particularly concerning secreted phospholipases. While nestled within its replicative vacuole, the bacterium deftly employs both its type II (Lsp) and type IVB (Dot/Icm) secretion systems to convey phospholipases into either the phagosomal lumen or the host cell cytoplasm. Its repertoire encompasses numerous phospholipases A (PLA), including three enzymes-PlaA, PlaC, and PlaD-bearing the GDSL motif. Additionally, there are 11 patatin-like phospholipases A as well as PlaB. Furthermore, the bacterium harbors three extracellular phospholipases C (PLCs) and one phospholipase D. Within this comprehensive review, we undertake an exploration of the pivotal role played by phospholipases in the broader context of phagosomal and host cell egress. Moreover, we embark on a detailed journey to unravel the established and potential functions of the secreted phospholipases of L. pneumophila in orchestrating this indispensable process.
Collapse
Affiliation(s)
- Jonathan Neuber
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Christina Lang
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Philipp Aurass
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
3
|
Ayesha A, Chow FWN, Leung PHM. Role of Legionella pneumophila outer membrane vesicles in host-pathogen interaction. Front Microbiol 2023; 14:1270123. [PMID: 37817751 PMCID: PMC10561282 DOI: 10.3389/fmicb.2023.1270123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Legionella pneumophila is an opportunistic intracellular pathogen that inhabits artificial water systems and can be transmitted to human hosts by contaminated aerosols. Upon inhalation, it colonizes and grows inside the alveolar macrophages and causes Legionnaires' disease. To effectively control and manage Legionnaires' disease, a deep understanding of the host-pathogen interaction is crucial. Bacterial extracellular vesicles, particularly outer membrane vesicles (OMVs) have emerged as mediators of intercellular communication between bacteria and host cells. These OMVs carry a diverse cargo, including proteins, toxins, virulence factors, and nucleic acids. OMVs play a pivotal role in disease pathogenesis by helping bacteria in colonization, delivering virulence factors into host cells, and modulating host immune responses. This review highlights the role of OMVs in the context of host-pathogen interaction shedding light on the pathogenesis of L. pneumophila. Understanding the functions of OMVs and their cargo provides valuable insights into potential therapeutic targets and interventions for combating Legionnaires' disease.
Collapse
Affiliation(s)
| | | | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
4
|
Weiler AJ, Spitz O, Gudzuhn M, Schott-Verdugo SN, Kamel M, Thiele B, Streit WR, Kedrov A, Schmitt L, Gohlke H, Kovacic F. A phospholipase B from Pseudomonas aeruginosa with activity towards endogenous phospholipids affects biofilm assembly. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159101. [DOI: 10.1016/j.bbalip.2021.159101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022]
|
5
|
Budowa i znaczenie II systemu sekrecji białek w ekologii i patogenezie Legionella pneumophila. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Pałeczki Legionella pneumophila pasożytują w komórkach odległych filogenetycznie gospodarzy, w środowisku wodnym w pierwotniakach, a w organizmie człowieka w makrofagach alweolarnych. Zdolność tych bakterii do wewnątrzkomórkowego namnażania się w komórkach fagocytujących, wyspecjalizowanych do niszczenia mikroorganizmów, ma podstawowe znaczenie dla rozwoju nietypowego zapalenia płuc zwanego chorobą legionistów. Umiejscowione na kilku różnych loci chromosomu bakteryjnego geny II systemu sekrecji L. pneumophila kodują co najmniej 25 białek, w tym enzymy o aktywności lipolitycznej, proteolitycznej, rybonukleazy oraz białka unikalne bakterii Legionella. W środowisku naturalnym T2SS L. pneumophila odgrywa decydującą rolę w ekologii tych drobnoustrojów determinując ich zdolność do przeżycia zarówno w postaci planktonicznej, jak i w strukturach biofilmu w słodkowodnych zbiornikach o niskiej temperaturze. Białka T2SS umożliwiają L. pneumophila zakażenie różnych gatunków pierwotniaków, a substraty tego systemu określają zakres pierwotniaczego gospodarza. Namnażanie się bakterii w różnorodnych pierwotniakach przyczynia się do ich rozsiewania oraz transmisji do antropogenicznych źródeł. Białka wydzielane za pomocą II systemu sekrecji determinują również zdolność L. pneumophila do zakażania mysich makrofagów alweolarnych i szpiku kostnego, ludzkich makrofagów linii U937 i THP-1 oraz komórek nabłonkowych pęcherzyków płucnych. Enzymy wydzielane za pomocą tego systemu, takie jak: proteazy, aminopeptydazy czy fosfolipazy umożliwiają pozyskanie substancji pokarmowych oraz powodują destrukcję tkanki płucnej myszy. W organizmie człowieka białka T2SS przyczyniają się do osłabienia wrodzonej odpowiedzi immunologicznej na zakażenie L. pneumophila przez hamowanie indukcji prozapalnych cytokin (IL-6, TNF-α, IL-1 oraz IL-8).
Collapse
|
6
|
Wilson SK, Heckendorn J, Martorelli Di Genova B, Koch LL, Rooney PJ, Morrissette N, Lebrun M, Knoll LJ. A Toxoplasma gondii patatin-like phospholipase contributes to host cell invasion. PLoS Pathog 2020; 16:e1008650. [PMID: 32628723 PMCID: PMC7365478 DOI: 10.1371/journal.ppat.1008650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 07/16/2020] [Accepted: 05/22/2020] [Indexed: 11/23/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that can invade any nucleated cell of any warm-blooded animal. In a previous screen to identify virulence determinants, disruption of gene TgME49_305140 generated a T. gondii mutant that could not establish a chronic infection in mice. The protein product of TgME49_305140, here named TgPL3, is a 277 kDa protein with a patatin-like phospholipase (PLP) domain and a microtubule binding domain. Antibodies generated against TgPL3 show that it is localized to the apical cap. Using a rapid selection FACS-based CRISPR/Cas-9 method, a TgPL3 deletion strain (ΔTgPL3) was generated. ΔTgPL3 parasites have defects in host cell invasion, which may be caused by reduced rhoptry secretion. We generated complementation clones with either wild type TgPL3 or an active site mutation in the PLP domain by converting the catalytic serine to an alanine, ΔTgPL3::TgPL3S1409A (S1409A). Complementation of ΔTgPL3 with wild type TgPL3 restored all phenotypes, while S1409A did not, suggesting that phospholipase activity is necessary for these phenotypes. ΔTgPL3 and S1409A parasites are also virtually avirulent in vivo but induce a robust antibody response. Vaccination with ΔTgPL3 and S1409A parasites protected mice against subsequent challenge with a lethal dose of Type I T. gondii parasites, making ΔTgPL3 a compelling vaccine candidate. These results demonstrate that TgPL3 has a role in rhoptry secretion, host cell invasion and survival of T. gondii during acute mouse infection.
Collapse
Affiliation(s)
- Sarah K. Wilson
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Linden Drive, Madison, Wisconsin, United States of America
| | | | - Bruno Martorelli Di Genova
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Linden Drive, Madison, Wisconsin, United States of America
| | - Lindsey L. Koch
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Linden Drive, Madison, Wisconsin, United States of America
| | - Peggy J. Rooney
- Stratatech Corporation, Charmany Drive, Madison, Wisconsin, United States of America
| | - Naomi Morrissette
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | | | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Linden Drive, Madison, Wisconsin, United States of America
| |
Collapse
|
7
|
Rameshwaram NR, Singh P, Ghosh S, Mukhopadhyay S. Lipid metabolism and intracellular bacterial virulence: key to next-generation therapeutics. Future Microbiol 2018; 13:1301-1328. [DOI: 10.2217/fmb-2018-0013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lipid metabolism is thought to play a key role in the pathogenicity of several intracellular bacteria. Bacterial lipolytic enzymes hydrolyze lipids from the host cell to release free fatty acids which are used as an energy source and building blocks for the synthesis of cell envelope and also to modulate host immune responses. In this review, we discussed the role of lipid metabolism and lipolytic enzymes in the life cycle and virulence of Mycobacterium tuberculosis and other intracellular bacteria. The lipolytic enzymes appear to be potential candidates for developing novel therapeutics by targeting lipid metabolism for controlling M. tuberculosis and other intracellular pathogenic bacteria. [Formula: see text]
Collapse
Affiliation(s)
- Nagender Rao Rameshwaram
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
| | - Parul Singh
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
- Graduate Studies, Manipal University, Manipal, Karnataka, India. 576 104
| | - Sudip Ghosh
- Molecular Biology Division, National Institute of Nutrition (ICMR), Jamai-Osmania PO, Hyderabad, India. 500 007
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
| |
Collapse
|
8
|
Virulence Traits of Environmental and Clinical Legionella pneumophila Multilocus Variable-Number Tandem-Repeat Analysis (MLVA) Genotypes. Appl Environ Microbiol 2018. [PMID: 29523542 DOI: 10.1128/aem.00429-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Legionella pneumophila causes water-based infections resulting in severe pneumonia. Recently, we showed that different MLVA-8 (multilocus variable-number tandem-repeat analysis using 8 loci) genotypes dominated different sites of a drinking-water distribution system. Each genotype displayed a unique temperature-dependent growth behavior. Here we compared the pathogenicity potentials of different MLVA-8 genotypes of environmental and clinical strains. The virulence traits studied were hemolytic activity and cytotoxicity toward amoebae and macrophages. Clinical strains were significantly more hemolytic than environmental strains, while their cytotoxicity toward amoebae was significantly lower at 30°C. No significant differences were detected between clinical and environmental strains in cytotoxicity toward macrophages. Significant differences in virulence were observed between the environmental genotypes (Gt). Gt15 strains showed a significantly higher hemolytic activity. In contrast, Gt4 and Gt6 strains were more infective toward Acanthamoeba castellanii Moreover, Gt4 strains exhibited increased cytotoxicity toward macrophages and demonstrated a broader temperature range of amoebal lysis than Gt6 and Gt15 strains. Understanding the virulence traits of Legionella genotypes may improve the assessment of public health risks of Legionella in drinking water.IMPORTANCELegionella pneumophila is the causative agent of a severe form of pneumonia. Here we demonstrated that clinical strains were significantly more cytotoxic toward red blood cells than environmental strains, while their cytotoxicity toward macrophages was similar. Genotype 4 (Gt4) strains were highly cytotoxic toward amoebae and macrophages and lysed amoebae in a broader temperature range than to the other studied genotypes. The results can explain the relatively high success of Gt4 in the environment and in clinical samples; thus, Gt4 strains should be considered a main factor for the assessment of public health risks of Legionella in drinking water. Our findings shed light on the ecology, virulence, and pathogenicity potential of different L. pneumophila genotypes, which can be a valuable parameter for future modeling and quantitative microbial risk assessment of Legionella in drinking-water systems.
Collapse
|
9
|
Wilson SK, Knoll LJ. Patatin-like phospholipases in microbial infections with emerging roles in fatty acid metabolism and immune regulation by Apicomplexa. Mol Microbiol 2017; 107:34-46. [PMID: 29090840 DOI: 10.1111/mmi.13871] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/22/2022]
Abstract
Emerging lipidomic technologies have enabled researchers to dissect the complex roles of phospholipases in lipid metabolism, cellular signaling and immune regulation. Host phospholipase products are involved in stimulating and resolving the inflammatory response to pathogens. While many pathogen-derived phospholipases also manipulate the immune response, they have recently been shown to be involved in lipid remodeling and scavenging during replication. Animal and plant hosts as well as many pathogens contain a family of patatin-like phospholipases, which have been shown to have phospholipase A2 activity. Proteins containing patatin-like phospholipase domains have been identified in protozoan parasites within the Apicomplexa phylum. These parasites are the causative agents of some of the most widespread human diseases. Malaria, caused by Plasmodium spp., kills nearly half a million people worldwide each year. Toxoplasma and Cryptosporidium infect millions of people each year with lethal consequences in immunocompromised populations. Parasite-derived patatin-like phospholipases are likely effective drug targets and progress in the tools available to the Apicomplexan field will allow for a closer look at the interplay of lipid metabolism and immune regulation during host infection.
Collapse
Affiliation(s)
- Sarah K Wilson
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Laura J Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
10
|
Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact 2017; 277:21-32. [DOI: 10.1016/j.cbi.2017.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/09/2017] [Accepted: 08/11/2017] [Indexed: 11/18/2022]
|
11
|
Hiller M, Lang C, Michel W, Flieger A. Secreted phospholipases of the lung pathogen Legionella pneumophila. Int J Med Microbiol 2017; 308:168-175. [PMID: 29108710 DOI: 10.1016/j.ijmm.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/06/2017] [Accepted: 10/22/2017] [Indexed: 11/28/2022] Open
Abstract
Legionella pneumophila is an intracellular pathogen and the main causative agent of Legionnaires' disease, a potentially fatal pneumonia. The bacteria infect both mammalian cells and environmental hosts, such as amoeba. Inside host cells, the bacteria withstand the multifaceted defenses of the phagocyte and replicate within a unique membrane-bound compartment, the Legionella-containing vacuole (LCV). For establishment and maintenance of the infection, L. pneumophila secretes many proteins including effector proteins by means of different secretion systems and outer membrane vesicles. Among these are a large variety of lipolytic enzymes which possess phospholipase/lysophospholipase and/or glycerophospholipid:cholesterol acyltransferase activities. Secreted lipolytic activities may contribute to bacterial virulence, for example via modification of eukaryotic membranes, such as the LCV. In this review, we describe the secretion systems of L. pneumophila, introduce the classification of phospholipases, and summarize the state of the art on secreted L. pneumophila phospholipases. We especially highlight those enzymes secreted via the type II secretion system Lsp, via the type IVB secretion system Dot/Icm, via outer membrane vesicles, and such where the mode of secretion has not yet been defined. We also give an overview on the complexity of their activities, activation mechanisms, localization, growth-phase dependent abundance, and their role in infection.
Collapse
Affiliation(s)
- Miriam Hiller
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Burgstraße 37, 38855 Wernigerode, Germany
| | - Christina Lang
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Burgstraße 37, 38855 Wernigerode, Germany
| | - Wiebke Michel
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Burgstraße 37, 38855 Wernigerode, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Burgstraße 37, 38855 Wernigerode, Germany.
| |
Collapse
|
12
|
Gomez-Cambronero J, Fite K, Miller TE. How miRs and mRNA deadenylases could post-transcriptionally regulate expression of tumor-promoting protein PLD. Adv Biol Regul 2017; 68:107-119. [PMID: 28964725 DOI: 10.1016/j.jbior.2017.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022]
Abstract
Phospholipase D (PLD) plays a key role in both cell membrane lipid reorganization and architecture, as well as a cell signaling protein via the product of its enzymatic reaction, phosphatidic acid (PA). PLD is involved in promoting breast cancer cell growth, proliferation, and metastasis and both gene and protein expression are upregulated in breast carcinoma human samples. In spite of all this, the ultimate reason as to why PLD expression is high in cancer cells vs. their normal counterparts remains largely unknown. Until we understand this and the associated signaling pathways, it will be difficult to establish PLD as a bona fide target to explore new potential cancer therapeutic approaches. Recently, our lab has identified several molecular mechanisms by which PLD expression is high in breast cancer cells and they all involve post-transcriptional control of its mRNA. First, PA, a mitogen, functions as a protein and mRNA stabilizer that counteracts natural decay and degradation. Second, there is a repertoire of microRNAs (miRs) that keep PLD mRNA translation at low levels in normal cells, but their effects change with starvation and during endothelial-to-mesenchymal transition (EMT) in cancer cells. Third, there is a novel way of post-transcriptional regulation of PLD involving 3'-exonucleases, specifically the deadenylase, Poly(A)-specific Ribonuclease (PARN), which tags mRNA for mRNA for degradation. This would enable PLD accumulation and ultimately breast cancer cell growth. We review in depth the emerging field of post-transcriptional regulation of PLD, which is only recently beginning to be understood. Since, surprisingly, so little is known about post-transcriptional regulation of PLD and related phospholipases (PLC or PLA), this new knowledge could help our understanding of how post-transcriptional deregulation of a lipid enzyme expression impacts tumor growth.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Wright State University School of Medicine, Department of Biochemistry and Molecular Biology, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA.
| | - Kristen Fite
- Wright State University School of Medicine, Department of Biochemistry and Molecular Biology, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | - Taylor E Miller
- Wright State University School of Medicine, Department of Biochemistry and Molecular Biology, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| |
Collapse
|
13
|
Abshire CF, Dragoi AM, Roy CR, Ivanov SS. MTOR-Driven Metabolic Reprogramming Regulates Legionella pneumophila Intracellular Niche Homeostasis. PLoS Pathog 2016; 12:e1006088. [PMID: 27942021 PMCID: PMC5179073 DOI: 10.1371/journal.ppat.1006088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/22/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023] Open
Abstract
Vacuolar bacterial pathogens are sheltered within unique membrane-bound organelles that expand over time to support bacterial replication. These compartments sequester bacterial molecules away from host cytosolic immunosurveillance pathways that induce antimicrobial responses. The mechanisms by which the human pulmonary pathogen Legionella pneumophila maintains niche homeostasis are poorly understood. We uncovered that the Legionella-containing vacuole (LCV) required a sustained supply of host lipids during expansion. Lipids shortage resulted in LCV rupture and initiation of a host cell death response, whereas excess of host lipids increased LCVs size and housing capacity. We found that lipids uptake from serum and de novo lipogenesis are distinct redundant supply mechanisms for membrane biogenesis in Legionella-infected macrophages. During infection, the metabolic checkpoint kinase Mechanistic Target of Rapamycin (MTOR) controlled lipogenesis through the Serum Response Element Binding Protein 1 and 2 (SREBP1/2) transcription factors. In Legionella-infected macrophages a host-driven response that required the Toll-like receptors (TLRs) adaptor protein Myeloid differentiation primary response gene 88 (Myd88) dampened MTOR signaling which in turn destabilized LCVs under serum starvation. Inactivation of the host MTOR-suppression pathway revealed that L. pneumophila sustained MTOR signaling throughout its intracellular infection cycle by a process that required the upstream regulator Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and one or more Dot/Icm effector proteins. Legionella-sustained MTOR signaling facilitated LCV expansion and inhibition of the PI3K-MTOR-SREPB1/2 axis through pharmacological or genetic interference or by activation of the host MTOR-suppression response destabilized expanding LCVs, which in turn triggered cell death of infected macrophages. Our work identified a host metabolic requirement for LCV homeostasis and demonstrated that L. pneumophila has evolved to manipulate MTOR-dependent lipogenesis for optimal intracellular replication.
Collapse
Affiliation(s)
- Camille F. Abshire
- Department of Medicine, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, United States of America
| | - Ana-Maria Dragoi
- Department of Medicine, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, United States of America
| | - Craig R. Roy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Stanimir S. Ivanov
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, United States of America
| |
Collapse
|
14
|
Friedrich V, Gruber C, Nimeth I, Pabinger S, Sekot G, Posch G, Altmann F, Messner P, Andrukhov O, Schäffer C. Outer membrane vesicles of Tannerella forsythia: biogenesis, composition, and virulence. Mol Oral Microbiol 2015; 30:451-473. [PMID: 25953484 PMCID: PMC4604654 DOI: 10.1111/omi.12104] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2015] [Indexed: 12/25/2022]
Abstract
Tannerella forsythia is the only 'red-complex' bacterium covered by an S-layer, which has been shown to affect virulence. Here, outer membrane vesicles (OMVs) enriched with putative glycoproteins are described as a new addition to the virulence repertoire of T. forsythia. Investigations of this bacterium are hampered by its fastidious growth requirements and the recently discovered mismatch of the available genome sequence (92A2 = ATCC BAA-2717) and the widely used T. forsythia strain (ATCC 43037). T. forsythia was grown anaerobically in serum-free medium and biogenesis of OMVs was analyzed by electron and atomic force microscopy. This revealed OMVs with a mean diameter of ~100 nm budding off from the outer membrane while retaining the S-layer. An LC-ESI-TOF/TOF proteomic analysis of OMVs from three independent biological replicates identified 175 proteins. Of these, 14 exhibited a C-terminal outer membrane translocation signal that directs them to the cell/vesicle surface, 61 and 53 were localized to the outer membrane and periplasm, respectively, 22 were predicted to be extracellular, and 39 to originate from the cytoplasm. Eighty proteins contained the Bacteroidales O-glycosylation motif, 18 of which were confirmed as glycoproteins. Release of pro-inflammatory mediators from the human monocytic cell line U937 and periodontal ligament fibroblasts upon stimulation with OMVs followed a concentration-dependent increase that was more pronounced in the presence of soluble CD14 in conditioned media. The inflammatory response was significantly higher than that caused by whole T. forsythia cells. Our study represents the first characterization of T. forsythia OMVs, their proteomic composition and immunogenic potential.
Collapse
Affiliation(s)
- V Friedrich
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - C Gruber
- Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - I Nimeth
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - S Pabinger
- AIT Austrian Institute of Technology, Health & Environment Department, Molecular Diagnostics, Vienna, Austria
| | - G Sekot
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - G Posch
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - F Altmann
- Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - P Messner
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - O Andrukhov
- Division of Conservative Dentistry and Periodontology, Competence Centre of Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - C Schäffer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
15
|
Jurkowitz MS, Patel A, Wu LC, Krautwater A, Pfeiffer DR, Bell CE. The YhhN protein of Legionella pneumophila is a Lysoplasmalogenase. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:742-51. [PMID: 25445671 PMCID: PMC4282143 DOI: 10.1016/j.bbamem.2014.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/25/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
Lysoplasmalogenase catalyzes hydrolytic cleavage of the vinyl-ether bond of lysoplasmalogen to yield fatty aldehyde and glycerophospho-ethanolamine or glycerophospho-choline. We recently purified lysoplasmalogenase from rat liver microsomes and identified the protein as TMEM86B, an integral membrane protein that is a member of the YhhN family found in numerous species of eukaryotes and bacteria. To test the hypothesis that bacterial YhhN proteins also function as lysoplasmalogenase enzymes, we cloned the Lpg1991 gene of Legionella pneumophila, which encodes a 216 amino acid YhhN protein (LpYhhN), and expressed it in Escherichia coli as a C-terminal-GFP-His8-fusion. Membranes were solubilized and the fusion protein was purified by nickel-affinity chromatography, cleaved with Tobacco Etch Virus protease, and subjected to a reverse nickel column to purify the un-tagged LpYhhN. Both the fusion protein and un-tagged LpYhhN exhibit robust lysoplasmalogenase activity, cleaving the vinyl-ether bond of lysoplasmalogen with a Vmax of 12 µmol/min/mg protein and a Km of 45 μM. LpYhhN has no activity on diradyl plasmalogen, 1-alkenyl-glycerol, and monoacylglycerophospho-ethanolamine or monoacylglycerophospho-choline; the pH optimum is 6.5-7.0. These properties are very similar to mammalian TMEM86B. Sequence analysis suggests that YhhN proteins contain eight transmembrane helices, an N-in/C-in topology, and about 5 highly conserved amino acid residues that may form an active site. This work is the first to demonstrate a function for a bacterial YhhN protein, as a vinyl ether bond hydrolase specific for lysoplasmalogen. Since L. pneumophila does not contain endogenous plasmalogens, we hypothesize that LpYhhN may serve to protect the bacterium from lysis by lysoplasmalogen derived from plasmalogens of the host.
Collapse
Affiliation(s)
- Marianne S Jurkowitz
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Aalapi Patel
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Lai-Chu Wu
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA; The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Annalise Krautwater
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Douglas R Pfeiffer
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Charles E Bell
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Dourado MN, Bogas AC, Pomini AM, Andreote FD, Quecine MC, Marsaioli AJ, Araújo WL. Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules. Braz J Microbiol 2014; 44:1331-9. [PMID: 24688531 PMCID: PMC3958207 DOI: 10.1590/s1517-83822013000400044] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 04/04/2013] [Indexed: 11/21/2022] Open
Abstract
Bacteria from the genus Methylobacterium interact symbiotically (endophytically and epiphytically) with different plant species. These interactions can promote plant growth or induce systemic resistance, increasing plant fitness. The plant colonization is guided by molecular communication between bacteria-bacteria and bacteria-plants, where the bacteria recognize specific exuded compounds by other bacteria (e.g. homoserine molecules) and/or by the plant roots (e.g. flavonoids, ethanol and methanol), respectively. In this context, the aim of this study was to evaluate the effect of quorum sensing molecules (N-acyl-homoserine lactones) and plant exudates (including ethanol) in the expression of a series of bacterial genes involved in Methylobacterium-plant interaction. The selected genes are related to bacterial metabolism (mxaF), adaptation to stressful environment (crtI, phoU and sss), to interactions with plant metabolism compounds (acdS) and pathogenicity (patatin and phoU). Under in vitro conditions, our results showed the differential expression of some important genes related to metabolism, stress and pathogenesis, thereby AHL molecules up-regulate all tested genes, except phoU, while plant exudates induce only mxaF gene expression. In the presence of plant exudates there is a lower bacterial density (due the endophytic and epiphytic colonization), which produce less AHL, leading to down regulation of genes when compared to the control. Therefore, bacterial density, more than plant exudate, influences the expression of genes related to plant-bacteria interaction.
Collapse
Affiliation(s)
| | | | - Armando M Pomini
- Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Fernando Dini Andreote
- Departamento de Ciências do Solos, Escola Superior de Agricultura "Luiz de Queiróz", Universidade de São Paulo, Piracicaba, SP, Brazil
| | | | - Anita J Marsaioli
- Instituto de Química, Universidade de Campinas, Campinas, São Paulo, Brazil
| | - Welington Luiz Araújo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
17
|
Li L, Mou X, Nelson DR. Characterization of Plp, a phosphatidylcholine-specific phospholipase and hemolysin of Vibrio anguillarum. BMC Microbiol 2013; 13:271. [PMID: 24279474 PMCID: PMC4222444 DOI: 10.1186/1471-2180-13-271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vibrio anguillarum is the causative agent of vibriosis in fish. Several extracellular proteins secreted by V. anguillarum have been shown to contribute to virulence. While two hemolysin gene clusters, vah1-plp and rtxACHBDE, have been previously identified and described, the activities of the protein encoded by the plp gene were not known. Here we describe the biochemical activities of the plp-encoded protein and its role in pathogenesis. RESULTS The plp gene, one of the components in vah1 cluster, encodes a 416-amino-acid protein (Plp), which has homology to lipolytic enzymes containing the catalytic site amino acid signature SGNH. Hemolytic activity of the plp mutant increased 2-3-fold on sheep blood agar indicating that plp represses vah1; however, hemolytic activity of the plp mutant decreased by 2-3-fold on fish blood agar suggesting that Plp has different effects against erythrocytes from different species. His6-tagged recombinant Plp protein (rPlp) was over-expressed in E. coli. Purified and re-folded active rPlp exhibited phospholipase A2 activity against phosphatidylcholine and no activity against phosphatidylserine, phosphatidylethanolamine, or sphingomyelin. Characterization of rPlp revealed broad optimal activities at pH 5-9 and at temperatures of 30-64°C. Divalent cations and metal chelators did not affect activity of rPlp. We also demonstrated that Plp was secreted using thin layer chromatography and immunoblot analysis. Additionally, rPlp had strong hemolytic activity towards rainbow trout erythrocytes, but not to sheep erythrocytes suggesting that rPlp is optimized for lysis of phosphatidylcholine-rich fish erythrocytes. Further, only the loss of the plp gene had a significant effect on hemolytic activity of culture supernatant on fish erythrocytes, while the loss of rtxA and/or vah1 had little effect. However, V. anguillarum strains with mutations in plp or in plp and vah1 exhibited no significant reduction in virulence compared to the wild type strain when used to infect rainbow trout. CONCLUSION The plp gene of V. anguillarum encoding a phospholipase with A2 activity is specific for phosphatidylcholine and, therefore, able to lyse fish erythrocytes, but not sheep erythrocytes. Mutation of plp does not affect the virulence of V. anguillarum in rainbow trout.
Collapse
Affiliation(s)
- Ling Li
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Rd,, Kingston, RI 02881, USA.
| | | | | |
Collapse
|
18
|
Gedvilaite A, Jomantiene R, Dabrisius J, Norkiene M, Davis RE. Functional analysis of a lipolytic protein encoded in phytoplasma phage based genomic island. Microbiol Res 2013; 169:388-94. [PMID: 24168924 DOI: 10.1016/j.micres.2013.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/09/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
Abstract
Wall-less bacteria known as phytoplasmas are obligate transkingdom parasites and pathogens of plants and insect vectors. These unusual bacteria possess some of the smallest genomes known among pathogenic bacteria, and have never been successfully isolated in artificial culture. Disease symptoms induced by phytoplasmas in infected plants include abnormal growth and often severe yellowing of leaves, but mechanisms involved in phytoplasma parasitism and pathogenicity are little understood. A phage based genomic island (sequence variable mosaic, SVM) in the genome of Malaysian periwinkle yellows (MPY) phytoplasma harbors a gene encoding membrane-targeted proteins, including a putative phospholipase (PL), potentially important in pathogen-host interactions. Since some phytoplasmal disease symptoms could possibly be accounted for, at least in part, by damage and/or degradation of host cell membranes, we hypothesize that the MPY phytoplasma putative PL is an active enzyme. To test this hypothesis, functional analysis of the MPY putative pl gene-encoded protein was carried out in vitro after its expression in bacterial and yeast hosts. The results demonstrated that the heterologously expressed phytoplasmal putative PL is an active lipolytic enzyme and could possibly act as a pathogenicity factor in the plant, and/or insect, host.
Collapse
Affiliation(s)
- Alma Gedvilaite
- Institute of Biotechnology Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | - Jonas Dabrisius
- Institute of Biotechnology Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Milda Norkiene
- Institute of Biotechnology Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania; Nature Research Centre, Akademijos 2, Vilnius, Lithuania
| | - Robert E Davis
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| |
Collapse
|
19
|
Zhu W, Hammad LA, Hsu F, Mao Y, Luo ZQ. Induction of caspase 3 activation by multiple Legionella pneumophila Dot/Icm substrates. Cell Microbiol 2013; 15:1783-95. [PMID: 23773455 DOI: 10.1111/cmi.12157] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 12/11/2022]
Abstract
The intracellular pathogen Legionella pneumophila is able to strike a balance between the death and survival of the host cell during infection. Despite the presence of high level of active caspase 3, the executioner caspase of apoptotic cell death, infected permissive macrophages are markedly resistant to exogenous apoptotic stimuli. Several bacterial molecules capable of promoting the cell survival pathways have been identified, but proteins involved in the activation of caspase 3 remain unknown. To study the mechanism of L. pneumophila-mediated caspase 3 activation, we tested all known Dot/Icm substrates for their ability to activate caspase 3. Five effectors capable of causing caspase 3 activation upon transient expression were identified. Among these, by using its ability to activate caspase 3 by inducing the release of cytochrome c from the mitochondria, we demonstrated that VipD is a phospholipase A2, which hydrolyses phosphatidylethanolamine (PE) and phosphocholine (PC) on the mitochondrial membrane in a manner that appears to require host cofactor(s). The lipase activity leads to the production of free fatty acids and 2-lysophospholipids, which destabilize the mitochondrial membrane and may contribute to the release of cytochrome c and the subsequent caspase 3 activation. Furthermore, we found that whereas it is not detectably defectively in caspase 3 activation in permissive cells, amutant lacking all of these five genes is less potent in inducing apoptosis in dendritic cells. Our results reveal that activation of host cell death pathways by L. pneumophila is a result of the effects of multiple bacterial proteins with diverse biochemical functions.
Collapse
Affiliation(s)
- Wenhan Zhu
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN, 47907, USA
| | | | | | | | | |
Collapse
|
20
|
Seipel K, Flieger A. Legionella phospholipases implicated in infection: determination of enzymatic activities. Methods Mol Biol 2013; 954:355-65. [PMID: 23150408 DOI: 10.1007/978-1-62703-161-5_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The intracellularly replicating lung pathogen Legionella pneumophila expresses a multitude of different phospholipases which are important virulence tools during host cell infection. To study the lipolytic properties including substrate specificities of potential L. pneumophila phospholipases A (PLA), we used different assays to monitor lipid hydrolysis. Here we describe methods for quantitative analysis of liberated fatty acids via a photometric assay and for identification of specific lipids which are generated by PLA action by means of lipid extraction and thin-layer chromatography. The latter approach also identifies glycerophospholipid:cholesterol acyltransferase activity which may be associated with PLA activity and is responsible for the transfer of fatty acids derived from a phospholipid to an acceptor molecule, such as cholesterol. These methods applied for specific L. pneumophila enzyme knockout mutants compared to the wild type or for recombinantly expressed protein allow to conclude on substrate specificity and/or contribution of a specific enzyme to the total lipolytic activity. Further, via analysis of separated cellular fractions, such as culture supernatants and cell lysates, information on the localization of the enzymes will be obtained.
Collapse
Affiliation(s)
- Kathleen Seipel
- Division of Bacterial Infections (FG11), Robert Koch-Institut, Wernigerode, Germany
| | | |
Collapse
|
21
|
Aurass P, Schlegel M, Metwally O, Harding CR, Schroeder GN, Frankel G, Flieger A. The Legionella pneumophila Dot/Icm-secreted effector PlcC/CegC1 together with PlcA and PlcB promotes virulence and belongs to a novel zinc metallophospholipase C family present in bacteria and fungi. J Biol Chem 2013; 288:11080-92. [PMID: 23457299 PMCID: PMC3630882 DOI: 10.1074/jbc.m112.426049] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/19/2013] [Indexed: 11/06/2022] Open
Abstract
Legionella pneumophila is a water-borne bacterium that causes pneumonia in humans. PlcA and PlcB are two previously defined L. pneumophila proteins with homology to the phosphatidylcholine-specific phospholipase C (PC-PLC) of Pseudomonas fluorescens. Additionally, we found that Lpg0012 shows similarity to PLCs and has been shown to be a Dot/Icm-injected effector, CegC1, which is designated here as PlcC. It remained unclear, however, whether these L. pneumophila proteins exhibit PLC activity. PlcC expressed in Escherichia coli hydrolyzed a broad phospholipid spectrum, including PC, phosphatidylglycerol (PG), and phosphatidylinositol. The addition of Zn(2+) ions activated, whereas EDTA inhibited, PlcC-derived PLC activity. Protein homology search revealed that the three Legionella enzymes and P. fluorescens PC-PLC share conserved domains also present in uncharacterized fungal proteins. Fifteen conserved amino acids were essential for enzyme activity as identified via PlcC mutagenesis. Analysis of defined L. pneumophila knock-out mutants indicated Lsp-dependent export of PG-hydrolyzing PLC activity. PlcA and PlcB exhibited PG-specific activity and contain a predicted Sec signal sequence. In line with the reported requirement of host cell contact for Dot/Icm-dependent effector translocation, PlcC showed cell-associated PC-specific PLC activity after bacterial growth in broth. A PLC triple mutant, but not single or double mutants, exhibited reduced host killing in a Galleria mellonella infection model, highlighting the importance of the three PLCs in pathogenesis. In summary, we describe here a novel Zn(2+)-dependent PLC family present in Legionella, Pseudomonas, and fungi with broad substrate preference and function in virulence.
Collapse
Affiliation(s)
- Philipp Aurass
- From the Division of Bacterial Infections, Robert Koch-Institut, Burgstrasse 37, 38855 Wernigerode, Germany and
| | - Maren Schlegel
- From the Division of Bacterial Infections, Robert Koch-Institut, Burgstrasse 37, 38855 Wernigerode, Germany and
| | - Omar Metwally
- From the Division of Bacterial Infections, Robert Koch-Institut, Burgstrasse 37, 38855 Wernigerode, Germany and
| | - Clare R. Harding
- the MRC Centre for Molecular Bacteriology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Gunnar N. Schroeder
- the MRC Centre for Molecular Bacteriology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Gad Frankel
- the MRC Centre for Molecular Bacteriology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Antje Flieger
- From the Division of Bacterial Infections, Robert Koch-Institut, Burgstrasse 37, 38855 Wernigerode, Germany and
| |
Collapse
|
22
|
Kuhle K, Flieger A. Legionella phospholipases implicated in virulence. Curr Top Microbiol Immunol 2013; 376:175-209. [PMID: 23925490 DOI: 10.1007/82_2013_348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phospholipases are diverse enzymes produced in eukaryotic hosts and their bacterial pathogens. Several pathogen phospholipases have been identified as major virulence factors acting mainly in two different modes: on the one hand, they have the capability to destroy host membranes and on the other hand they are able to manipulate host signaling pathways. Reaction products of bacterial phospholipases may act as secondary messengers within the host and therefore influence inflammatory cascades and cellular processes, such as proliferation, migration, cytoskeletal changes as well as membrane traffic. The lung pathogen and intracellularly replicating bacterium Legionella pneumophila expresses a variety of phospholipases potentially involved in disease-promoting processes. So far, genes encoding 15 phospholipases A, three phospholipases C, and one phospholipase D have been identified. These cell-associated or secreted phospholipases may contribute to intracellular establishment, to egress of the pathogen from the host cell, and to the observed lung pathology. Due to the importance of phospholipase activities for host cell processes, it is conceivable that the pathogen enzymes may mimic or substitute host cell phospholipases to drive processes for the pathogen's benefit. The following chapter summarizes the current knowledge on the L. pneumophila phospholipases, especially their substrate specificity, localization, mode of secretion, and impact on host cells.
Collapse
Affiliation(s)
- Katja Kuhle
- FG 11 - Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institut, Burgstr. 37, 38855, Wernigerode, Germany
| | | |
Collapse
|
23
|
Ku B, Lee KH, Park WS, Yang CS, Ge J, Lee SG, Cha SS, Shao F, Heo WD, Jung JU, Oh BH. VipD of Legionella pneumophila targets activated Rab5 and Rab22 to interfere with endosomal trafficking in macrophages. PLoS Pathog 2012; 8:e1003082. [PMID: 23271971 PMCID: PMC3521694 DOI: 10.1371/journal.ppat.1003082] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 10/28/2012] [Indexed: 12/02/2022] Open
Abstract
Upon phagocytosis, Legionella pneumophila translocates numerous effector proteins into host cells to perturb cellular metabolism and immunity, ultimately establishing intracellular survival and growth. VipD of L. pneumophila belongs to a family of bacterial effectors that contain the N-terminal lipase domain and the C-terminal domain with an unknown function. We report the crystal structure of VipD and show that its C-terminal domain robustly interferes with endosomal trafficking through tight and selective interactions with Rab5 and Rab22. This domain, which is not significantly similar to any known protein structure, potently interacts with the GTP-bound active form of the two Rabs by recognizing a hydrophobic triad conserved in Rabs. These interactions prevent Rab5 and Rab22 from binding to downstream effectors Rabaptin-5, Rabenosyn-5 and EEA1, consequently blocking endosomal trafficking and subsequent lysosomal degradation of endocytic materials in macrophage cells. Together, this work reveals endosomal trafficking as a target of L. pneumophila and delineates the underlying molecular mechanism. Legionella pneumophila is a pathogen bacterium that causes Legionnaires' disease accompanied by severe pneumonia. Surprisingly, this pathogen invades and replicates inside macrophages, whose major function is to detect and destroy invading microorganisms. How L. pneumophila can be “immune” to this primary immune cell has been a focus of intensive research. Upon being engulfed by a macrophage cell, L. pneumophila translocates hundreds of bacterial proteins into this host cell. These proteins, called bacterial effectors, are thought to manipulate normal host cellular processes. However, which host molecules and how they are targeted by the bacterial effectors are largely unknown. In this study, we determined the three-dimensional structure of L. pneumophila effector protein VipD, whose function in macrophage was unknown. Ensuing analyses revealed that VipD selectively and tightly binds two host signaling proteins Rab5 and Rab22, which are key regulators of early endosomal vesicle trafficking. These interactions prevent the activated form of Rab5 and Rab22 from binding their downstream signaling proteins, resulting in the blockade of endosomal trafficking in macrophages. The presented work shows that L. pneumophila targets endosomal Rab proteins and delineates the underlying molecular mechanism, providing a new insight into the pathogen's strategies to dysregulate normal intracellular processes.
Collapse
Affiliation(s)
- Bonsu Ku
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Kwang-Hoon Lee
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Wei Sun Park
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Chul-Su Yang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jianning Ge
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- National Institute of Biological Sciences, Beijing, China
| | - Seong-Gyu Lee
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Sun-Shin Cha
- Marine Biotechnology Research Center, Korea Ocean Research and Development Institute, Ansan, Korea
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China
| | - Won Do Heo
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jae U. Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Byung-Ha Oh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- * E-mail:
| |
Collapse
|
24
|
Lang C, Rastew E, Hermes B, Siegbrecht E, Ahrends R, Banerji S, Flieger A. Zinc metalloproteinase ProA directly activates Legionella pneumophila PlaC glycerophospholipid:cholesterol acyltransferase. J Biol Chem 2012; 287:23464-78. [PMID: 22582391 DOI: 10.1074/jbc.m112.346387] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzymes secreted by Legionella pneumophila, such as phospholipases A (PLAs) and glycerophospholipid:cholesterol acyltransferases (GCATs), may target host cell lipids and therefore contribute to the establishment of Legionnaires disease. L. pneumophila possesses three proteins, PlaA, PlaC, and PlaD, belonging to the GDSL family of lipases/acyltransferases. We have shown previously that PlaC is the major GCAT secreted by L. pneumophila and that the zinc metalloproteinase ProA is essential for GCAT activity. Here we characterized the mode of PlaC GCAT activation and determined that ProA directly processes PlaC. We further found that not only cholesterol but also ergosterol present in protozoa was palmitoylated by PlaC. Such ester formations were not induced by either PlaA or PlaD. PlaD was shown here to possess lysophospholipase A activity, and interestingly, all three GDSL enzymes transferred short chain fatty acids to sterols. The three single putative catalytic amino acids (Ser-37, Asp-398, and His-401) proved essential for all PlaC-associated PLA, lysophospholipase A, and GCAT activities. A further four cysteine residues are important for the PLA/GCAT activities as well as their oxidized state, and we therefore conclude that PlaC likely forms at least one disulfide loop. Analysis of cleavage site and loop deletion mutants suggested that for GCAT activation deletion of several amino acids within the loop is necessary rather than cleavage at a single site. Our data therefore suggest a novel enzyme inhibition/activation mechanism where a disulfide loop inhibits PlaC GCAT activity until the protein is exported to the external space where it is ProA-activated.
Collapse
Affiliation(s)
- Christina Lang
- Division of Bacterial Infections, Robert Koch-Institut, Burgstrasse 37, 38855 Wernigerode, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Role of lipids in Coxiella burnetii infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 984:199-213. [PMID: 22711633 DOI: 10.1007/978-94-007-4315-1_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lipids are essential components of both eukaryotic and prokaryotic cells, serving diverse functions including energy metabolism and membrane structure. Intracellular vacuolar pathogens such as Coxiella burnetii require lipids for both normal bacterial functions as well as formation of the acidic, phagolysosomal-like parasitophorous vacuole (PV) surrounding the bacteria. As an intracellular pathogen, C. burnetii can acquire lipid through both de novo bacterial synthesis and subversion of host cell pools. The C. burnetii genome encodes enzymes required for de novo synthesis of fatty acids and phospholipids. The high percentage of branched fatty acids suggests C. burnetii modifies these molecules to generate a bacterial cell envelope that can resist the harsh environment of the PV, such as the acidic pH. In addition to fatty acids and their derivatives, C. burnetii requires isoprenoids, particularly sterols as the PV membrane is cholesterol-rich. With the exception of two eukaryote-like sterol reductases, C. burnetii does not have the capability to generate cholesterol, suggesting sterols are actively diverted from the host cell. While C. burnetii utilizes host cell lipids for membrane biogenesis and possibly energy, bacterial manipulation of host cell lipid signaling pathways may support establishment of the intracellular niche. For example, effectors secreted by the C. burnetii Type IV secretion system may either directly or indirectly modify host cell lipids. Further understanding of the lipid biosynthetic capabilities of C. burnetii, along with C. burnetii's manipulation of host cell lipids, will provide insight into the host-pathogen relationship.
Collapse
|
26
|
Lang C, Flieger A. Characterisation of Legionella pneumophila phospholipases and their impact on host cells. Eur J Cell Biol 2011; 90:903-12. [DOI: 10.1016/j.ejcb.2010.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/08/2010] [Accepted: 12/13/2010] [Indexed: 01/16/2023] Open
|
27
|
Hilbi H, Hoffmann C, Harrison CF. Legionella spp. outdoors: colonization, communication and persistence. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:286-296. [PMID: 23761274 DOI: 10.1111/j.1758-2229.2011.00247.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bacteria of the genus Legionella persist in a wide range of environmental habitats, including biofilms, protozoa and nematodes. Legionellaceae are 'accidental' human pathogens that upon inhalation cause a severe pneumonia termed 'Legionnaires' disease'. The interactions of L. pneumophila with eukaryotic hosts are governed by the Icm/Dot type IV secretion system (T4SS) and more than 150 'effector proteins', which subvert signal transduction pathways and promote the formation of the replication-permissive 'Legionella-containing vacuole'. The Icm/Dot T4SS is essential to infect free-living protozoa, such as the amoeba Dictyostelium discoideum, as well as the nematode Caenorhabditis elegans, or mammalian macrophages. To adapt to different niches, L. pneumophila not only responds to exogenous cues, but also to endogenous signals, such as the α-hydroxyketone compound LAI-1 (Legionella autoinducer-1). The long-term adaptation of Legionella spp. is based on extensive horizontal DNA transfer. In fact, Legionella spp. have acquired canonical 'genomic islands' of prokaryotic origin, but also a number of eukaryotic genes. Since many aspects of Legionella virulence against environmental predators and immune phagocytes are similar, an understanding of Legionella ecology provides valuable insights into the pathogenesis of legionellaceae for humans.
Collapse
Affiliation(s)
- Hubert Hilbi
- Max von Pettenkofer Institute, Ludwig-Maximilian University Munich, Pettenkoferstrasse 9a, 80336 Munich, Germany
| | | | | |
Collapse
|
28
|
Shevchuk O, Jäger J, Steinert M. Virulence properties of the legionella pneumophila cell envelope. Front Microbiol 2011; 2:74. [PMID: 21747794 PMCID: PMC3129009 DOI: 10.3389/fmicb.2011.00074] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 03/30/2011] [Indexed: 01/15/2023] Open
Abstract
The bacterial envelope plays a crucial role in the pathogenesis of infectious diseases. In this review, we summarize the current knowledge of the structure and molecular composition of the Legionella pneumophila cell envelope. We describe lipopolysaccharides biosynthesis and the biological activities of membrane and periplasmic proteins and discuss their decisive functions during the pathogen–host interaction. In addition to adherence, invasion, and intracellular survival of L. pneumophila, special emphasis is laid on iron acquisition, detoxification, key elicitors of the immune response and the diverse functions of outer membrane vesicles. The critical analysis of the literature reveals that the dynamics and phenotypic plasticity of the Legionella cell surface during the different metabolic stages require more attention in the future.
Collapse
Affiliation(s)
- Olga Shevchuk
- Institut für Mikrobiologie, Technische Universität Braunschweig Braunschweig, Germany
| | | | | |
Collapse
|
29
|
The genome of Erysipelothrix rhusiopathiae, the causative agent of swine erysipelas, reveals new insights into the evolution of firmicutes and the organism's intracellular adaptations. J Bacteriol 2011; 193:2959-71. [PMID: 21478354 DOI: 10.1128/jb.01500-10] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erysipelothrix rhusiopathiae is a Gram-positive bacterium that represents a new class, Erysipelotrichia, in the phylum Firmicutes. The organism is a facultative intracellular pathogen that causes swine erysipelas, as well as a variety of diseases in many animals. Here, we report the first complete genome sequence analysis of a member of the class Erysipelotrichia. The E. rhusiopathiae genome (1,787,941 bp) is one of the smallest genomes in the phylum Firmicutes. Phylogenetic analyses based on the 16S rRNA gene and 31 universal protein families suggest that E. rhusiopathiae is phylogenetically close to Mollicutes, which comprises Mycoplasma species. Genome analyses show that the overall features of the E. rhusiopathiae genome are similar to those of other Gram-positive bacteria; it possesses a complete set of peptidoglycan biosynthesis genes, two-component regulatory systems, and various cell wall-associated virulence factors, including a capsule and adhesins. However, it lacks many orthologous genes for the biosynthesis of wall teichoic acids (WTA) and lipoteichoic acids (LTA) and the dltABCD operon, which is responsible for d-alanine incorporation into WTA and LTA, suggesting that the organism has an atypical cell wall. In addition, like Mollicutes, its genome shows a complete loss of fatty acid biosynthesis pathways and lacks the genes for the biosynthesis of many amino acids, cofactors, and vitamins, indicating reductive genome evolution. The genome encodes nine antioxidant factors and nine phospholipases, which facilitate intracellular survival in phagocytes. Thus, the E. rhusiopathiae genome represents evolutionary traits of both Firmicutes and Mollicutes and provides new insights into its evolutionary adaptations for intracellular survival.
Collapse
|
30
|
Belaunzarán ML, Lammel EM, de Isola ELD. Phospholipases a in trypanosomatids. Enzyme Res 2011; 2011:392082. [PMID: 21603263 PMCID: PMC3092542 DOI: 10.4061/2011/392082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 02/07/2011] [Indexed: 12/17/2022] Open
Abstract
Phospholipases are a complex and important group of enzymes widespread in nature, that play crucial roles in diverse biochemical processes and are classified as A1, A2, C, and D. Phospholipases A1 and A2 activities have been linked to pathogenesis in various microorganisms, and particularly in pathogenic protozoa they have been implicated in cell invasion. Kinetoplastids are a group of flagellated protozoa, including extra- and intracellular parasites that cause severe disease in humans and animals. In the present paper, we will mainly focus on the three most important kinetoplastid human pathogens, Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp., giving a perspective of the research done up to now regarding biochemical, biological, and molecular characteristics of Phospholipases A1 and A2 and their contribution to pathogenesis.
Collapse
Affiliation(s)
- María Laura Belaunzarán
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, piso 13, C1121ABG Buenos Aires, Argentina
| | | | | |
Collapse
|
31
|
Abstract
The genus Legionella contains more than 50 species, of which at least 24 have been associated with human infection. The best-characterized member of the genus, Legionella pneumophila, is the major causative agent of Legionnaires' disease, a severe form of acute pneumonia. L. pneumophila is an intracellular pathogen, and as part of its pathogenesis, the bacteria avoid phagolysosome fusion and replicate within alveolar macrophages and epithelial cells in a vacuole that exhibits many characteristics of the endoplasmic reticulum (ER). The formation of the unusual L. pneumophila vacuole is a feature of its interaction with the host, yet the mechanisms by which the bacteria avoid classical endosome fusion and recruit markers of the ER are incompletely understood. Here we review the factors that contribute to the ability of L. pneumophila to infect and replicate in human cells and amoebae with an emphasis on proteins that are secreted by the bacteria into the Legionella vacuole and/or the host cell. Many of these factors undermine eukaryotic trafficking and signaling pathways by acting as functional and, in some cases, structural mimics of eukaryotic proteins. We discuss the consequences of this mimicry for the biology of the infected cell and also for immune responses to L. pneumophila infection.
Collapse
|
32
|
Schunder E, Adam P, Higa F, Remer KA, Lorenz U, Bender J, Schulz T, Flieger A, Steinert M, Heuner K. Phospholipase PlaB is a new virulence factor of Legionella pneumophila. Int J Med Microbiol 2010; 300:313-23. [DOI: 10.1016/j.ijmm.2010.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 01/08/2010] [Accepted: 01/20/2010] [Indexed: 12/01/2022] Open
|
33
|
Eylert E, Herrmann V, Jules M, Gillmaier N, Lautner M, Buchrieser C, Eisenreich W, Heuner K. Isotopologue profiling of Legionella pneumophila: role of serine and glucose as carbon substrates. J Biol Chem 2010; 285:22232-43. [PMID: 20442401 DOI: 10.1074/jbc.m110.128678] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Legionella pneumophila (Lp) is commonly found in freshwater habitats but is also the causative agent of Legionnaires' disease when infecting humans. Although various virulence factors have been reported, little is known about the nutrition and the metabolism of the bacterium. Here, we report the application of isotopologue profiling for analyzing the metabolism of L. pneumophila. Cultures of Lp were supplied with [U-(13)C(3)]serine, [U-(13)C(6)]glucose, or [1,2-(13)C(2)]glucose. After growth, (13)C enrichments and isotopologue patterns of protein-derived amino acids and poly-3-hydroxybutyrate were determined by mass spectrometry and/or NMR spectroscopy. The labeling patterns detected in the experiment with [U-(13)C(3)]serine showed major carbon flux from serine to pyruvate and from pyruvate to acetyl-CoA, which serves as a precursor of poly-3-hydroxybutyrate or as a substrate of a complete citrate cycle with Si specificity of the citrate synthase. Minor carbon flux was observed between pyruvate and oxaloacetate/malate by carboxylation and decarboxylation, respectively. The apparent lack of label in Val, Ile, Leu, Pro, Phe, Met, Arg, and Tyr confirmed that L. pneumophila is auxotrophic for these amino acids. Experiments with [(13)C]glucose showed that the carbohydrate is also used as a substrate to feed the central metabolism. The specific labeling patterns due to [1,2-(13)C(2)]glucose identified the Entner-Doudoroff pathway as the predominant route for glucose utilization. In line with these observations, a mutant lacking glucose-6-phosphate dehydrogenase (Delta zwf) did not incorporate label from glucose at significant levels and was slowly outcompeted by the wild type strain in successive rounds of infection in Acanthamoeba castellanii, indicating the importance of this enzyme and of carbohydrate usage in general for the life cycle of Lp.
Collapse
Affiliation(s)
- Eva Eylert
- Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Functional characterization of a phospholipase A(2) homolog from Rickettsia typhi. J Bacteriol 2010; 192:3294-303. [PMID: 20435729 DOI: 10.1128/jb.00155-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Phospholipase A(2) (PLA(2)) has long been proposed to be involved in rickettsial entry into host cells, escape from the phagosome to evade destruction by lysosomal exposure, and lysis of the host cells. However, the corresponding rickettsial gene(s) encoding a protein with PLA(2) activity has not been identified or functionally characterized. Here, we report that the Rickettsia typhi genome possesses two genes encoding patatin-like PLA(2) proteins, RT0590 and RT0522. Sequence analysis of RT0522 and RT0590 reveals the presence of the conserved motifs essential for PLA(2) activity. Transcriptional analysis indicates that RT0522, but not RT0590, is transcribed at all stages of intracellular growth of R. typhi in Vero cells. The differential gene expression pattern of RT0522 at various stages of growth suggests its potential role during R. typhi infection of host cells. In silico, RT0522 is predicted to be noncytoplasmic and its gene does not encode a recognizable signal peptide sequence. However, our data indicate that RT0522 is secreted into the host cytoplasm. In addition, we observe that RT0522 protein expression is cytotoxic to both yeast and Vero cells. Importantly, we demonstrate that recombinant RT0522 possesses phospholipase A activity that requires a eukaryotic host cofactor for activation. Both cytotoxicity and phospholipase A activity associated with RT0522 were reduced by PLA(2) inhibitors. Site-directed mutagenesis of predicted catalytic Ser/Asp residues of RT0522 also eliminates cytotoxicity and phospholipase A activity. To our knowledge, RT0522 is the first protein identified from Rickettsia typhi with functional phospholipase A activity.
Collapse
|
35
|
Dalebroux ZD, Yagi BF, Sahr T, Buchrieser C, Swanson MS. Distinct roles of ppGpp and DksA in Legionella pneumophila differentiation. Mol Microbiol 2010; 76:200-19. [PMID: 20199605 DOI: 10.1111/j.1365-2958.2010.07094.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To transit between hosts, intracellular Legionella pneumophila transform into a motile, infectious, transmissive state. Here we exploit the pathogen's life cycle to examine how guanosine tetraphosphate (ppGpp) and DksA cooperate to govern bacterial differentiation. Transcriptional profiling revealed that during transmission alarmone accumulation increases the mRNA for flagellar and Type IV-secretion components, secreted host effectors and regulators, and decreases transcripts for translation, membrane modification and ATP synthesis machinery. DksA is critical for differentiation, since mutants are defective for stationary phase survival, flagellar gene activation, lysosome avoidance and macrophage cytotoxicity. The roles of ppGpp and DksA depend on the context. For macrophage transmission, ppGpp is essential, whereas DksA is dispensable, indicating that ppGpp can act autonomously. In broth, DksA promotes differentiation when ppGpp levels increase, or during fatty acid stress, as judged by flaA expression and evasion of degradation by macrophages. For flagella morphogenesis, DksA is required for basal fliA (sigma(28)) promoter activity. When alarmone levels increase, DksA cooperates with ppGpp to generate a pulse of Class II rod RNA or to amplify the Class III sigma factor and Class IV flagellin RNAs. Thus, DksA responds to the level of ppGpp and other stress signals to co-ordinate L. pneumophila differentiation.
Collapse
Affiliation(s)
- Zachary D Dalebroux
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
36
|
Schmitz-Esser S, Tischler P, Arnold R, Montanaro J, Wagner M, Rattei T, Horn M. The genome of the amoeba symbiont "Candidatus Amoebophilus asiaticus" reveals common mechanisms for host cell interaction among amoeba-associated bacteria. J Bacteriol 2010; 192:1045-57. [PMID: 20023027 PMCID: PMC2812958 DOI: 10.1128/jb.01379-09] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 12/07/2009] [Indexed: 11/20/2022] Open
Abstract
Protozoa play host for many intracellular bacteria and are important for the adaptation of pathogenic bacteria to eukaryotic cells. We analyzed the genome sequence of "Candidatus Amoebophilus asiaticus," an obligate intracellular amoeba symbiont belonging to the Bacteroidetes. The genome has a size of 1.89 Mbp, encodes 1,557 proteins, and shows massive proliferation of IS elements (24% of all genes), although the genome seems to be evolutionarily relatively stable. The genome does not encode pathways for de novo biosynthesis of cofactors, nucleotides, and almost all amino acids. "Ca. Amoebophilus asiaticus" encodes a variety of proteins with predicted importance for host cell interaction; in particular, an arsenal of proteins with eukaryotic domains, including ankyrin-, TPR/SEL1-, and leucine-rich repeats, which is hitherto unmatched among prokaryotes, is remarkable. Unexpectedly, 26 proteins that can interfere with the host ubiquitin system were identified in the genome. These proteins include F- and U-box domain proteins and two ubiquitin-specific proteases of the CA clan C19 family, representing the first prokaryotic members of this protein family. Consequently, interference with the host ubiquitin system is an important host cell interaction mechanism of "Ca. Amoebophilus asiaticus". More generally, we show that the eukaryotic domains identified in "Ca. Amoebophilus asiaticus" are also significantly enriched in the genomes of other amoeba-associated bacteria (including chlamydiae, Legionella pneumophila, Rickettsia bellii, Francisella tularensis, and Mycobacterium avium). This indicates that phylogenetically and ecologically diverse bacteria which thrive inside amoebae exploit common mechanisms for interaction with their hosts, and it provides further evidence for the role of amoebae as training grounds for bacterial pathogens of humans.
Collapse
|
37
|
Yutin N, Wolf YI, Raoult D, Koonin EV. Eukaryotic large nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and reconstruction of viral genome evolution. Virol J 2009; 6:223. [PMID: 20017929 PMCID: PMC2806869 DOI: 10.1186/1743-422x-6-223] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 12/17/2009] [Indexed: 11/12/2022] Open
Abstract
Background The Nucleo-Cytoplasmic Large DNA Viruses (NCLDV) comprise an apparently monophyletic class of viruses that infect a broad variety of eukaryotic hosts. Recent progress in isolation of new viruses and genome sequencing resulted in a substantial expansion of the NCLDV diversity, resulting in additional opportunities for comparative genomic analysis, and a demand for a comprehensive classification of viral genes. Results A comprehensive comparison of the protein sequences encoded in the genomes of 45 NCLDV belonging to 6 families was performed in order to delineate cluster of orthologous viral genes. Using previously developed computational methods for orthology identification, 1445 Nucleo-Cytoplasmic Virus Orthologous Groups (NCVOGs) were identified of which 177 are represented in more than one NCLDV family. The NCVOGs were manually curated and annotated and can be used as a computational platform for functional annotation and evolutionary analysis of new NCLDV genomes. A maximum-likelihood reconstruction of the NCLDV evolution yielded a set of 47 conserved genes that were probably present in the genome of the common ancestor of this class of eukaryotic viruses. This reconstructed ancestral gene set is robust to the parameters of the reconstruction procedure and so is likely to accurately reflect the gene core of the ancestral NCLDV, indicating that this virus encoded a complex machinery of replication, expression and morphogenesis that made it relatively independent from host cell functions. Conclusions The NCVOGs are a flexible and expandable platform for genome analysis and functional annotation of newly characterized NCLDV. Evolutionary reconstructions employing NCVOGs point to complex ancestral viruses.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | |
Collapse
|
38
|
Molmeret M, Jones S, Santic M, Habyarimana F, Esteban MTG, Kwaik YA. Temporal and spatial trigger of post-exponential virulence-associated regulatory cascades by Legionella pneumophila after bacterial escape into the host cell cytosol. Environ Microbiol 2009; 12:704-15. [PMID: 19958381 DOI: 10.1111/j.1462-2920.2009.02114.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During late stages of infection and prior to lysis of the infected macrophages or amoeba, the Legionella pneumophila-containing phagosome becomes disrupted, followed by bacterial escape into the host cell cytosol, where the last few rounds of bacterial proliferation occur prior to lysis of the plasma membrane. This coincides with growth transition into the post-exponential (PE) phase, which is controlled by regulatory cascades including RpoS and the LetA/S two-component regulator. Whether the temporal expression of flagella by the regulatory cascades at the PE phase is exhibited within the phagosome or after bacterial escape into the host cell cytosol is not known. We have utilized fluorescence microscopy-based phagosome integrity assay to differentiate between vacuolar and cytosolic bacteria/or bacteria within disrupted phagosomes. Our data show that during late stages of infection, expression of FlaA is triggered after bacterial escape into the macrophage cytosol and the peak of FlaA expression is delayed for few hours after cytosolic residence of the bacteria. Importantly, bacterial escape into the host cell cytosol is independent of flagella, RpoS and the two-component regulator LetA/S, which are all triggered by L. pneumophila upon growth transition into the PE phase. Disruption of the phagosome and bacterial escape into the cytosol of macrophages is independent of the bacterial pore-forming activity, and occurs prior to the induction of apoptosis during late stages of infection. We conclude that the temporal and spatial engagement of virulence-associated regulatory cascades by L. pneumophila at the PE phase is temporally and spatially triggered after phagosomal escape and bacterial residence in the host cell cytosol.
Collapse
Affiliation(s)
- Maëlle Molmeret
- Department of Microbiology and Immunology, Room MS-410, University of Louisville College of Medicine, Louisville, KY 40292, USA
| | | | | | | | | | | |
Collapse
|
39
|
Bender J, Rydzewski K, Broich M, Schunder E, Heuner K, Flieger A. Phospholipase PlaB of Legionella pneumophila represents a novel lipase family: protein residues essential for lipolytic activity, substrate specificity, and hemolysis. J Biol Chem 2009; 284:27185-94. [PMID: 19640837 DOI: 10.1074/jbc.m109.026021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Legionella pneumophila possesses several phospholipases capable of host cell manipulation and lung damage. Recently, we discovered that the major cell-associated hemolytic phospholipase A (PlaB) shares no homology to described phospholipases and is dispensable for intracellular replication in vitro. Nevertheless, here we show that PlaB is the major lipolytic activity in L. pneumophila cell infections and that PlaB utilizes a typical catalytic triad of Ser-Asp-His for effective hydrolysis of phospholipid substrates. Crucial residues were found to be located within the N-terminal half of the protein, and amino acids embedding these active sites were unique for PlaB and homologs. We further showed that catalytic activity toward phosphatidylcholine but not phosphatidylglycerol is directly linked to hemolytic potential of PlaB. Although the function of the prolonged PlaB C terminus remains to be elucidated, it is essential for lipolysis, since the removal of 15 amino acids already abolishes enzyme activity. Additionally, we determined that PlaB preferentially hydrolyzes long-chain fatty acid substrates containing 12 or more carbon atoms. Since phospholipases play an important role as bacterial virulence factors, we examined cell-associated enzymatic activities among L. pneumophila clinical isolates and non-pneumophila species. All tested clinical isolates showed comparable activities, whereas of the non-pneumophila species, only Legionella gormanii and Legionella spiritensis possessed lipolytic activities similar to those of L. pneumophila and comprised plaB-like genes. Interestingly, phosphatidylcholine-specific phospholipase A activity and hemolytic potential were more pronounced in L. pneumophila. Therefore, hydrolysis of the eukaryotic membrane constituent phosphatidylcholine triggered by PlaB could be an important virulence tool for Legionella pathogenicity.
Collapse
Affiliation(s)
- Jennifer Bender
- Division of Bacterial Infections, FG11, Robert Koch-Institut, Burgstrasse 37, Wernigerode 38855, Germany
| | | | | | | | | | | |
Collapse
|
40
|
bdhA-patD operon as a virulence determinant, revealed by a novel large-scale approach for identification of Legionella pneumophila mutants defective for amoeba infection. Appl Environ Microbiol 2009; 75:4506-15. [PMID: 19411431 DOI: 10.1128/aem.00187-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, is an intracellular parasite of eukaryotic cells. In the environment, it colonizes amoebae. After being inhaled into the human lung, the bacteria infect and damage alveolar cells in a way that is mechanistically similar to the amoeba infection. Several L. pneumophila traits, among those the Dot/Icm type IVB protein secretion machinery, are essential for exploiting host cells. In our search for novel Legionella virulence factors, we developed an agar plate assay, designated the scatter screen, which allowed screening for mutants deficient in infecting Acanthamoeba castellanii amoebae. Likewise, an L. pneumophila clone bank consisting of 23,000 transposon mutants was investigated here, and 19 different established Legionella virulence genes, for example, dot/icm genes, were identified. Importantly, 70 novel virulence-associated genes were found. One of those is L. pneumophila bdhA, coding for a protein with homology to established 3-hydroxybutyrate dehydrogenases involved in poly-3-hydroxybutyrate metabolism. Our study revealed that bdhA is cotranscribed with patD, encoding a patatin-like protein of L. pneumophila showing phospholipase A and lysophospholipase A activities. In addition to strongly reduced lipolytic activities and increased poly-3-hydroxybutyrate levels, the L. pneumophila bdhA-patD mutant showed a severe replication defect in amoebae and U937 macrophages. Our data suggest that the operon is involved in poly-3-hydroxybutyrate utilization and phospholipolysis and show that the bdhA-patD operon is a virulence determinant of L. pneumophila. In summary, the screen for amoeba-sensitive Legionella clones efficiently isolated mutants that do not grow in amoebae and, in the case of the bdhA-patD mutant, also human cells.
Collapse
|
41
|
Barret M, Frey-Klett P, Boutin M, Guillerm-Erckelboudt AY, Martin F, Guillot L, Sarniguet A. The plant pathogenic fungus Gaeumannomyces graminis var. tritici improves bacterial growth and triggers early gene regulations in the biocontrol strain Pseudomonas fluorescens Pf29Arp. THE NEW PHYTOLOGIST 2009; 181:435-447. [PMID: 19121038 DOI: 10.1111/j.1469-8137.2008.02675.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In soil, some antagonistic rhizobacteria contribute to reduce root diseases caused by phytopathogenic fungi. Direct modes of action of these bacteria have been largely explored; however, commensal interaction also takes place between these microorganisms and little is known about the influence of filamentous fungi on bacteria. An in vitro confrontation bioassay between the pathogenic fungus Gaeumannomyces graminis var. tritici (Ggt) and the biocontrol bacterial strain Pseudomonas fluorescens Pf29Arp was set up to analyse bacterial transcriptional changes induced by the fungal mycelium at three time-points of the interaction before cell contact and up until contact. For this, a Pf29Arp shotgun DNA microarray was constructed. Specifity of Ggt effect was assessed in comparison with one of two other filamentous fungi, Laccaria bicolor and Magnaporthe grisea. During a commensal interaction, Ggt increased the growth rate of Pf29Arp. Before contact, Ggt induced bacterial genes involved in mycelium colonization. At contact, genes encoding protein of stress response and a patatin-like protein were up-regulated. Among all the bacterial genes identified, xseB was specifically up-regulated at contact by Ggt but down-regulated by the other fungi. Data showed that the bacterium sensed the presence of the fungus early, but the main gene alteration occurred during bacterial-fungal cell contact.
Collapse
Affiliation(s)
- M Barret
- INRA, Agrocampus Ouest-Université Rennes 1, UMR1099 BiO3P 'Biologie des Organismes et des Populations Appliquée à la Protection des Plantes', 35653 Le Rheu, France;INRA, UMR 1136 INRA-Nancy Université'Interactions Arbres/Microorganismes', 54280 Champenoux, France;IRISA-INRIA, Campus de Beaulieu Bâtiment 12, 35042 Rennes, France
| | - P Frey-Klett
- INRA, Agrocampus Ouest-Université Rennes 1, UMR1099 BiO3P 'Biologie des Organismes et des Populations Appliquée à la Protection des Plantes', 35653 Le Rheu, France;INRA, UMR 1136 INRA-Nancy Université'Interactions Arbres/Microorganismes', 54280 Champenoux, France;IRISA-INRIA, Campus de Beaulieu Bâtiment 12, 35042 Rennes, France
| | - M Boutin
- INRA, Agrocampus Ouest-Université Rennes 1, UMR1099 BiO3P 'Biologie des Organismes et des Populations Appliquée à la Protection des Plantes', 35653 Le Rheu, France;INRA, UMR 1136 INRA-Nancy Université'Interactions Arbres/Microorganismes', 54280 Champenoux, France;IRISA-INRIA, Campus de Beaulieu Bâtiment 12, 35042 Rennes, France
| | - A-Y Guillerm-Erckelboudt
- INRA, Agrocampus Ouest-Université Rennes 1, UMR1099 BiO3P 'Biologie des Organismes et des Populations Appliquée à la Protection des Plantes', 35653 Le Rheu, France;INRA, UMR 1136 INRA-Nancy Université'Interactions Arbres/Microorganismes', 54280 Champenoux, France;IRISA-INRIA, Campus de Beaulieu Bâtiment 12, 35042 Rennes, France
| | - F Martin
- INRA, Agrocampus Ouest-Université Rennes 1, UMR1099 BiO3P 'Biologie des Organismes et des Populations Appliquée à la Protection des Plantes', 35653 Le Rheu, France;INRA, UMR 1136 INRA-Nancy Université'Interactions Arbres/Microorganismes', 54280 Champenoux, France;IRISA-INRIA, Campus de Beaulieu Bâtiment 12, 35042 Rennes, France
| | - L Guillot
- INRA, Agrocampus Ouest-Université Rennes 1, UMR1099 BiO3P 'Biologie des Organismes et des Populations Appliquée à la Protection des Plantes', 35653 Le Rheu, France;INRA, UMR 1136 INRA-Nancy Université'Interactions Arbres/Microorganismes', 54280 Champenoux, France;IRISA-INRIA, Campus de Beaulieu Bâtiment 12, 35042 Rennes, France
| | - A Sarniguet
- INRA, Agrocampus Ouest-Université Rennes 1, UMR1099 BiO3P 'Biologie des Organismes et des Populations Appliquée à la Protection des Plantes', 35653 Le Rheu, France;INRA, UMR 1136 INRA-Nancy Université'Interactions Arbres/Microorganismes', 54280 Champenoux, France;IRISA-INRIA, Campus de Beaulieu Bâtiment 12, 35042 Rennes, France
| |
Collapse
|