1
|
Thanh C, Avallone S, Chochois V, Douny C, Bethune K, Mith H, Peng C, Servent A, Collombel I. Nutritional and microbiological dynamics in the preparation of prahoc fish paste. PLoS One 2025; 20:e0321834. [PMID: 40273221 PMCID: PMC12021279 DOI: 10.1371/journal.pone.0321834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/12/2025] [Indexed: 04/26/2025] Open
Abstract
Prahoc is a traditional fermented fish widely consumed in Cambodia. Nevertheless, the processing and nutritional values of this daily-consumed product were poorly described. This study offers a detailed analysis of the biochemistry, nutritional composition, and microbiota during the six-month Prahoc incubation. Macronutrients (e.g. lipids, proteins) are rather well preserved during the preparation of the fish paste but the fatty acid and amino acid profiles are slightly modified at the end of the unit operation. Free amino acids increased, which facilitates the in vitro digestibility of the final paste, while beneficial fatty acids, such as eicosapentaenoic and docosahexaenoic acids, decreased. At the end of the process, the peroxide value was nearly five times greater than the limit set by the Codex Alimentarius (10 meq O2/kg). Biogenic amines, particularly cadaverine, were present but remained within acceptable limits. Metabarcoding analysis revealed that salt-tolerant bacteria dominated the fermentation process, while fungal activity was minimal. Lactic acid bacteria, such as Vagococcus and Streptococcus, were predominant before salt addition, while the fish pathogen Aeromonas established itself immediately after. Clostridium remained steady throughout, and Lentibacillus became dominant after six months. Food safety concerns related to biogenic amines, peroxides, and Clostridium highlight the need for establishing standard operational practices among national processors to mitigate food risks.
Collapse
Affiliation(s)
- Channmuny Thanh
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
- Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Sylvie Avallone
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Vincent Chochois
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Caroline Douny
- Department of Food Sciences, Laboratory of Food Analysis, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals & Health (FARAH), Veterinary Public Health, University of Liège, Liège, Belgium
| | - Kevin Bethune
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Hasika Mith
- Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Chanthol Peng
- Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Adrien Servent
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Ingrid Collombel
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| |
Collapse
|
2
|
Tamai R, Kiyoura Y. Candida Infections: The Role of Saliva in Oral Health-A Narrative Review. Microorganisms 2025; 13:717. [PMID: 40284554 PMCID: PMC12029948 DOI: 10.3390/microorganisms13040717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Candida species, particularly Candida albicans, are causative agents of oral infections to which immunocompromised patients are especially susceptible. Reduced saliva flow (xerostomia) can lead to Candida overgrowth, as saliva contains antibacterial components such as histatins and β-defensins that inhibit fungal growth and adhesion to the oral mucosa. Candida adheres to host tissues, forms biofilms, and secretes enzymes required for tissue invasion and immune evasion. Secretory asparaginyl proteinases (Saps) and candidalysin, a cytolytic peptide toxin, are vital to Candida virulence, and agglutinin-like sequence (Als) proteins are crucial for adhesion, invasion, and biofilm formation. C. albicans is a risk factor for dental caries and may increase periodontal disease virulence when it coexists with Porphyromonas gingivalis. Candida infections have been suggested to heighten the risk of oral cancer based on a relationship between Candida species and oral squamous cell carcinoma (OSCC) or oral potentially malignant disorder (OPMD). Meanwhile, β-glucan in the Candida cell wall has antitumor effects. In addition, Candida biofilms protect viruses such as herpesviruses and coxsackieviruses. Understanding the intricate interactions between Candida species, host immune responses, and coexisting microbial communities is essential for developing preventive and therapeutic strategies against oral Candida infections, particularly in immunocompromised individuals.
Collapse
Affiliation(s)
| | - Yusuke Kiyoura
- Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| |
Collapse
|
3
|
Aita A, Lelli D, Gherardi G, Pedone C, Antonelli Incalzi R. Kodamaea ohmeri Leg Skin Ulcer Infection in an Immunocompetent Patient: A Case Report. Chemotherapy 2024; 69:100-103. [PMID: 38301610 DOI: 10.1159/000536588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Kodamaea ohmeri is an emerging fungus recognised as an important pathogen in immunocompromised hosts, responsible for life-threatening infections. CASE PRESENTATION We describe a case of a 69-year-old immunocompetent man with a long history of leg skin ulcers infected by K. ohmeri. This is the first case of leg wounds infected by K. ohmeri in an immunocompetent patient. The infection was successfully treated with voriconazole 200 mg daily. CONCLUSION Though rare, K. ohmeri should be considered in patients with skin ulcers that are poorly responsive to medical treatment, even if not immunocompromised.
Collapse
Affiliation(s)
- Angelo Aita
- Unità di Ricerca di Medicina Interna, Facoltà Dipartimentale di Medicina e Chirurgia, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Diana Lelli
- Unità Operativa di Ricerca di Geriatria, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Giovanni Gherardi
- Unità di Scienze Batteriologiche Applicate, Dipartimento di Medicina e Chirurgia, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Claudio Pedone
- Unità Operativa di Ricerca di Geriatria, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Unità di Ricerca di Geriatria, Facoltà Dipartimentale di Medicina e Chirurgia, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Raffaele Antonelli Incalzi
- Unità di Ricerca di Medicina Interna, Facoltà Dipartimentale di Medicina e Chirurgia, Università Campus Bio-Medico di Roma, Rome, Italy
- Unità Operativa di Ricerca di Medicina Interna, Fondazione Policlinico Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
4
|
Gómez-Gaviria M, García-Carnero LC, Baruch-Martínez DA, Mora-Montes HM. The Emerging Pathogen Candida metapsilosis: Biological Aspects, Virulence Factors, Diagnosis, and Treatment. Infect Drug Resist 2024; 17:171-185. [PMID: 38268929 PMCID: PMC10807450 DOI: 10.2147/idr.s448213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
Fungal infections represent a constant and growing menace to public health. This concern is due to the emergence of new fungal species and the increase in antifungal drug resistance. Mycoses caused by Candida species are among the most common nosocomial infections and are associated with high mortality rates when the infection affects deep-seated organs. Candida metapsilosis is part of the Candida parapsilosis complex and has been described as part of the oral microbiota of healthy individuals. Within the complex, this species is considered the least virulent; however, the prevalence has been increasing in recent years, as well as an increment in the resistance to some antifungal drugs. One of the main concerns of candidiasis caused by this species is the wide range of clinical manifestations, ranging from tissue colonization to superficial infections, and in more severe cases it can spread, which makes diagnosis and treatment difficult. The study of virulence factors of this species is limited, however, proteomic comparisons between species indicate that virulence factors in this species could be similar to those already described for C. albicans. However, differences may exist, taking into account changes in the lifestyle of the species. Here, we provide a detailed review of the current literature about this organism, the caused disease, and some sharing aspects with other members of the complex, focusing on its biology, virulence factors, the host-fungus interaction, the identification, diagnosis, and treatment of infection.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto., México
| | - Laura C García-Carnero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto., México
| | - Dario A Baruch-Martínez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto., México
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto., México
| |
Collapse
|
5
|
Aisara J, Wongsanittayarak J, Leangnim N, Utama K, Sangthong P, Sriyotai W, Mahatheeranont S, Phongthai S, Unban K, Lumyong S, Khanongnuch C, Wongputtisin P, Kanpiengjai A. Purification and characterization of crude fructooligosaccharides extracted from red onion (Allium cepa var. viviparum) by yeast treatment. Microb Cell Fact 2024; 23:17. [PMID: 38200553 PMCID: PMC10782719 DOI: 10.1186/s12934-023-02289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Yeast treatment has been used for purification of fructooligosaccharides (FOSs). However, the main drawback of this approach is that yeast can only partially remove sucrose from crude FOSs. The main objective of this research was to screen yeast strains for the capability of selectively consuming unwanted sugars, namely fructose, glucose, and sucrose, in crude FOSs extracted from red onion (Allium cepa var. viviparum) with minimal effect on FOS content. RESULTS Among 43 yeast species isolated from Miang, ethnic fermented tea leaves, and Assam tea flowers, Candida orthopsilosis FLA44.2 and Priceomyces melissophilus FLA44.8 exhibited the greatest potential to specifically consume these unwanted sugars. In a shake flask, direct cultivation of C. orthopsilosis FLA44.2 was achieved in the original crude FOSs containing an initial FOSs concentration of 88.3 ± 1.2 g/L and 52.9 ± 1.2 g/L of the total contents of fructose, glucose, and sucrose. This was successful with 93.7% purity and 97.8% recovery after 24 h of cultivation. On the other hand, P. melissophilus FLA48 was limited by initial carbohydrate concentration of crude FOSs in terms of growth and sugar utilization. However, it could directly purify two-fold diluted crude FOSs to 95.2% purity with 92.2% recovery after 72 h of cultivation. Purification of crude FOSs in 1-L fermenter gave similar results to the samples purified in a shake flask. Extracellular β-fructosidase was assumed to play a key role in the effective removal of sucrose. Both Candida orthopsilosis FLA44.2 and P. melissophilus FLA44.8 showed γ-hemolytic activity, while their culture broth had no cytotoxic effect on viability of small intestinal epithelial cells, preliminarily indicating their safety for food processing. The culture broth obtained from yeast treatment was passed through an activated charcoal column for decolorization and deodorization. After being freeze dried, the final purified FOSs appeared as a white granular powder similar to refined sugar and was odorless since the main sulfur-containing volatile compounds, including dimethyl disulfide and dipropyl trisulfide, were almost completely removed. CONCLUSION The present purification process is considered simple and straight forward, and provides new and beneficial insight into utilization of alternative yeast species for purification of FOSs.
Collapse
Affiliation(s)
- Jakkrit Aisara
- Program in Biotechnology, Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai, 50200, Thailand
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jirat Wongsanittayarak
- Program in Biotechnology, Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai, 50200, Thailand
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nalapat Leangnim
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kraikrit Utama
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Padchanee Sangthong
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Woraprapa Sriyotai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sugunya Mahatheeranont
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Suphat Phongthai
- Division of Food Science and Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kridsada Unban
- Division of Food Science and Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Saisamorn Lumyong
- Division of Microbiology, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300, Thailand
| | - Chartchai Khanongnuch
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pairote Wongputtisin
- Program in Biotechnology, Faculty of Science, Maejo University, Chiang Mai, 50200, Thailand
| | - Apinun Kanpiengjai
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
6
|
Glushakova A, Kachalkin A, Rodionova E. The role of fruits as reservoirs for resistant and virulent strains of opportunistic yeasts. World J Microbiol Biotechnol 2023; 39:313. [PMID: 37733093 DOI: 10.1007/s11274-023-03758-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Strains of the Candida parapsilosis and Meyerozyma guilliermondii species complexes isolated from the internal tissues of 26 fruit species from 21 countries were evaluated for their susceptibility to conventional antifungal compounds (fluconazole, voriconazole, amphotericin B) and hydrolytic activity. A total of 144 strains were studied. Resistance to at least one of the antifungal compounds tested was found in 26.4% of the endophytic strains examined. Most of the strains were insensitive to fluconazole. Multiresistance was detected only in two strains of C. parapsilosis sensu stricto from tropical apples. Phospholipase production and proteolytic and hemolytic activities were significantly higher in endophytes from tropical fruits. Resistant and virulent strains of opportunistic yeasts can thus spread worldwide via purchased fruit, which can harm people with a weakened immune status and children whose immune systems are not yet fully developed.
Collapse
Affiliation(s)
- Anna Glushakova
- Soil Science Faculty, Lomonosov Moscow State University, 119991, Moscow, Russia.
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, 105064, Russia.
| | - Aleksey Kachalkin
- Soil Science Faculty, Lomonosov Moscow State University, 119991, Moscow, Russia
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of RAS, Pushchino, 142290, Russia
| | - Evgenia Rodionova
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, 105064, Russia
| |
Collapse
|
7
|
El Hajj E, Glaser A, Yancey D, Byl A, Rahman M. Fungal Endocarditis: A Rare Cause of Left Ventricular Outflow Obstruction. Methodist Debakey Cardiovasc J 2023; 19:64-68. [PMID: 37636317 PMCID: PMC10453950 DOI: 10.14797/mdcvj.1241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/14/2023] [Indexed: 08/29/2023] Open
Abstract
A 53-year-old male presented with worsening fever, chest pain, and dyspnea during the past 2 weeks. He was hypoxic, tachycardic, and hypotensive on admission. Labs were notable for high-sensitivity troponin of 657 pg/mL and B-type natriuretic peptide of 1,648 pg/mL. Chest imaging was consistent with acute respiratory distress syndrome. Transthoracic echocardiography revealed an ejection fraction of 30% to 35% and a mobile 1.5 cm x 1.6 cm hyperechoic mass on the ventricular surface of the aortic valve (AV) with left ventricular outflow obstruction and mean pressure gradient of 38.7 mm Hg and maximum velocity of 3.64 m/s. The patient was initiated on empiric antibiotic and antifungal therapy. Cardiothoracic surgery was consulted for urgent AV repair. Blood cultures were positive for Candida metapsilosis, and intravenous fluconazole and micafungin were initiated. Despite aggressive and prompt medical management, the patient sustained cerebral embolic events in the middle cerebral artery territory and passed away.
Collapse
Affiliation(s)
- Elia El Hajj
- Louisiana State University Health Sciences Center, New Orleans, Louisiana, US
| | - Alexander Glaser
- Louisiana State University Health Sciences Center, New Orleans, Louisiana, US
| | - David Yancey
- Louisiana State University Health Sciences Center, New Orleans, Louisiana, US
| | - Allen Byl
- Louisiana State University Health Sciences Center, New Orleans, Louisiana, US
| | - Mehnaz Rahman
- Louisiana State University Health Sciences Center, New Orleans, Louisiana, US
| |
Collapse
|
8
|
Kajadpai N, Angchuan J, Khunnamwong P, Srisuk N. Diversity of duckweed ( Lemnaceae) associated yeasts and their plant growth promoting characteristics. AIMS Microbiol 2023; 9:486-517. [PMID: 37649804 PMCID: PMC10462456 DOI: 10.3934/microbiol.2023026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 09/01/2023] Open
Abstract
The diversity of duckweed (Lemnaceae) associated yeasts was studied using a culture-dependent method. A total of 252 yeast strains were isolated from 53 duckweed samples out of the 72 samples collected from 16 provinces in Thailand. Yeast identification was conducted based on the D1/D2 region of the large subunit (LSU) rRNA gene sequence analysis. It revealed that 55.2% and 44.8% yeast species were Ascomycota and Basidiomycota duckweed associated yeasts, respectively. Among all, Papiliotrema laurentii, a basidiomycetous yeast, was found as the most prevalent species showing a relative of frequency and frequency of occurrence of 21.8% and 25%, respectively. In this study, high diversity index values were shown, indicated by the Shannon-Wiener index (H'), Shannon equitability index (EH) and Simpson diversity index (1-D) values of 3.48, 0.86 and 0.96, respectively. The present results revealed that the yeast community on duckweed had increased species diversity, with evenness among species. Principal coordinate analysis (PCoA) revealed no marked differences in yeast communities among duckweed genera. The species accumulation curve showed that the observed species richness was lower than expected. Investigation of the plant growth promoting traits of the isolated yeast on duckweed revealed that 178 yeast strains produced indole-3-acetic acid (IAA) at levels ranging from 0.08-688.93 mg/L. Moreover, siderophore production and phosphate solubilization were also studied. One hundred and seventy-three yeast strains produced siderophores and exhibited siderophores that showed 0.94-2.55 activity units (AU). One hundred six yeast strains showed phosphate solubilization activity, expressed as solubilization efficiency (SE) units, in the range of 0.32-2.13 SE. This work indicates that duckweed associated yeast is a potential microbial resource that can be used for plant growth promotion.
Collapse
Affiliation(s)
- Napapohn Kajadpai
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Jirameth Angchuan
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Pannida Khunnamwong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Biodiversity Center Kasetsart University (BDCKU), Bangkok 10900, Thailand
| | - Nantana Srisuk
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Biodiversity Center Kasetsart University (BDCKU), Bangkok 10900, Thailand
| |
Collapse
|
9
|
Martín-Gómez MT, Puig-Asensio M. C. parapsilosis: The importance of an emerging pathogen. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2023; 41:67-69. [PMID: 36759056 DOI: 10.1016/j.eimce.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 02/09/2023]
Affiliation(s)
| | - Mireia Puig-Asensio
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Institute for Biomedical Research (IDIBELL), l'Hospitalet de Llobregat, Barcelona, Spain; Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC; CB21/13/00009), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
Martín-Gómez MT, Puig-Asensio M. C. parapsilosis: The importance of an emerging pathogen. Enferm Infecc Microbiol Clin 2022. [DOI: 10.1016/j.eimc.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
O’Brien CE, Zhai B, Ola M, Bergin SA, Ó Cinnéide E, O’Connor Í, Rolling T, Miranda E, Babady NE, Hohl TM, Butler G. Identification of a novel Candida metapsilosis isolate reveals multiple hybridization events. G3 (BETHESDA, MD.) 2022; 12:jkab367. [PMID: 34791169 PMCID: PMC8727981 DOI: 10.1093/g3journal/jkab367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 01/27/2023]
Abstract
Candida metapsilosis is a member of the Candida parapsilosis species complex, a group of opportunistic human pathogens. Of all the members of this complex, C. metapsilosis is the least virulent, and accounts for a small proportion of invasive Candida infections. Previous studies established that all C. metapsilosis isolates are hybrids, originating from a single hybridization event between two lineages, parent A and parent B. Here, we use MinION and Illumina sequencing to characterize a C. metapsilosis isolate that originated from a separate hybridization. One of the parents of the new isolate is very closely related to parent A. However, the other parent (parent C) is not the same as parent B. Unlike C. metapsilosis AB isolates, the C. metapsilosis AC isolate has not undergone introgression at the mating type-like locus. In addition, the A and C haplotypes are not fully collinear. The C. metapsilosis AC isolate has undergone loss of heterozygosity with a preference for haplotype A, indicating that this isolate is in the early stages of genome stabilization.
Collapse
Affiliation(s)
- Caoimhe E O’Brien
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Bing Zhai
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mihaela Ola
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Sean A Bergin
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Eoin Ó Cinnéide
- School of Medicine, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Ísla O’Connor
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Thierry Rolling
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edwin Miranda
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - N Esther Babady
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10007, USA
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
12
|
Frías-De-León MG, García-Salazar E, Reyes-Montes MDR, Duarte-Escalante E, Acosta-Altamirano G. Opportunistic Yeast Infections and Climate Change: The Emergence of Candida auris. Fungal Biol 2022. [DOI: 10.1007/978-3-030-89664-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Genetic Manipulation as a Tool to Unravel Candida parapsilosis Species Complex Virulence and Drug Resistance: State of the Art. J Fungi (Basel) 2021; 7:jof7060459. [PMID: 34200514 PMCID: PMC8228522 DOI: 10.3390/jof7060459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 01/12/2023] Open
Abstract
An increase in the rate of isolation of Candida parapsilosis in the past decade, as well as increased identification of azole-resistant strains are concerning, and require better understanding of virulence-like factors and drug-resistant traits of these species. In this regard, the present review “draws a line” on the information acquired, thus far, on virulence determinants and molecular mechanisms of antifungal resistance in these opportunistic pathogens, mainly derived from genetic manipulation studies. This will provide better focus on where we stand in our understanding of the C. parapsilosis species complex–host interaction, and how far we are from defining potential novel targets or therapeutic strategies—key factors to pave the way for a more tailored management of fungal infections caused by these fungal pathogens.
Collapse
|
14
|
Role of CpALS4790 and CpALS0660 in Candida parapsilosis Virulence: Evidence from a Murine Model of Vaginal Candidiasis. J Fungi (Basel) 2020; 6:jof6020086. [PMID: 32545584 PMCID: PMC7345767 DOI: 10.3390/jof6020086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 11/17/2022] Open
Abstract
The Candida parapsilosis genome encodes for five agglutinin-like sequence (Als) cell-wall glycoproteins involved in adhesion to biotic and abiotic surfaces. The work presented here is aimed at analyzing the role of the two still uncharacterized ALS genes in C. parapsilosis, CpALS4790 and CpALS0660, by the generation and characterization of CpALS4790 and CpALS066 single mutant strains. Phenotypic characterization showed that both mutant strains behaved as the parental wild type strain regarding growth rate in liquid/solid media supplemented with cell-wall perturbing agents, and in the ability to produce pseudohyphae. Interestingly, the ability of the CpALS0660 null mutant to adhere to human buccal epithelial cells (HBECs) was not altered when compared with the wild-type strain, whereas deletion of CpALS4790 led to a significant loss of the adhesion capability. RT-qPCR analysis performed on the mutant strains in co-incubation with HBECs did not highlight significant changes in the expression levels of others ALS genes. In vivo experiments in a murine model of vaginal candidiasis indicated a significant reduction in CFUs recovered from BALB/C mice infected with each mutant strain in comparison to those infected with the wild type strain, confirming the involvement of CpAls4790 and CpAls5600 proteins in C. parapsilosis vaginal candidiasis in mice.
Collapse
|
15
|
Marcos‐Arias C, Mateo E, Jurado‐Martín I, Pena‐Fernández N, Cantón E, Pemán J, Quindós G, Eraso E. Utility of two PCR‐RFLP‐based techniques for identification of
Candida parapsilosis
complex blood isolates. Mycoses 2020; 63:461-470. [DOI: 10.1111/myc.13061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 12/29/2022]
Affiliation(s)
| | | | | | | | - Emilia Cantón
- Instituto de Investigación Sanitaria La Fe Valencia Spain
| | - Javier Pemán
- Instituto de Investigación Sanitaria La Fe Valencia Spain
| | | | | |
Collapse
|
16
|
Zoppo M, Luca MD, Villarreal SN, Poma N, Barrasa MI, Bottai D, Vyas VK, Tavanti A. A CRISPR/Cas9-based strategy to simultaneously inactivate the entire ALS gene family in Candida orthopsilosis. Future Microbiol 2019; 14:1383-1396. [PMID: 31659913 DOI: 10.2217/fmb-2019-0168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: In this study, the CRISPR gene-editing approach was used to simultaneously inactivate all three members of the ALS gene family in the opportunistic pathogen Candida orthopsilosis. Materials & methods: Using a single gRNA and repair template, CRISPR-edited clones were successfully generated in a one-step process in both C. orthopsilosis reference and clinical strains. Results: The phenotypic characterization of the ALS triple-edited strains revealed no impact on growth in liquid or solid media. However, pseudohyphal formation and the ability to adhere to human buccal epithelial cells were significantly decreased in triple-edited clones. Conclusion: Our CRISPR/Cas9 system is a powerful tool for simultaneous editing of fungal gene families, which greatly accelerates the generation of multiple gene-edited Candida strains. Data deposition: Nucleotide sequence data are available in the GenBank databases under the accession numbers MK875971, MK875972, MK875973, MK875974, MK875975, MK875976, MK875977.
Collapse
Affiliation(s)
- Marina Zoppo
- Department of Biology, University of Pisa, Pisa, 56127, Italy
| | | | | | - Noemi Poma
- Department of Biology, University of Pisa, Pisa, 56127, Italy
| | | | - Daria Bottai
- Department of Biology, University of Pisa, Pisa, 56127, Italy
| | - Valmik K Vyas
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Arianna Tavanti
- Department of Biology, University of Pisa, Pisa, 56127, Italy
| |
Collapse
|
17
|
Zoppo M, Di Luca M, Franco M, Rizzato C, Lupetti A, Stringaro A, De Bernardis F, Schaudinn C, Barrasa MI, Bottai D, Vyas VK, Tavanti A. CpALS4770 and CpALS4780 contribution to the virulence of Candida parapsilosis. Microbiol Res 2019; 231:126351. [PMID: 31707298 DOI: 10.1016/j.micres.2019.126351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/30/2019] [Accepted: 10/06/2019] [Indexed: 12/26/2022]
Abstract
The ability of yeast to adhere to biotic and abiotic surfaces represents an essential trait during the early stages of infection. Agglutinin-like sequence (Als) cell-wall proteins play a key role in adhesion of Candida species. Candida parapsilosis genome encompasses 5 ALS members, of which only the role of CPAR2_404800 has been elucidated. The present project was aimed at investigating the contribution of C. parapsilosis Als proteins by generating edited strains lacking functional Als proteins. CPAR2_404770 and CPAR2_404780, further indicated as CpALS4770 and CpALS4780, were selected for the generation of single and double edited strains using an episomal CRISPR/Cas9 technology. Phenotypic characterization of mutant strains revealed that editing of both genes had no impact on the in vitro growth of C. parapsilosis or on morphogenesis. Notably, CpALS4770-edited strain showed a reduction of biofilm formation and adhesive properties to human buccal cells (HBECs). Conversely, single CpALS4780-edited strain did not show any difference compared to the wild-type strain in all the assays performed, while the double CpALS4770-CpALS4780 mutant revealed an increased ability to produce biofilm, a hyper-adhesive phenotype to HBECs, and a marked tendency to form cellular aggregates. Murine vaginal infection experiments indicated a significant reduction in CFUs recovered from BALC/c mice infected with single and double edited strains, compared to those infected with the wild-type strain. These finding clearly indicate that CpAls4770 plays a role in adhesion to biotic and abiotic surfaces, while both CpALS4770 and CpALS4780 genes are required for C. parapsilosis ability to colonize and persist in the vaginal mucosa.
Collapse
Affiliation(s)
- Marina Zoppo
- Department of Biology, University of Pisa, Pisa, Italy.
| | | | - Mauro Franco
- Department of Biology, University of Pisa, Pisa, Italy
| | - Cosmeri Rizzato
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonella Lupetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Italian National Institute of Health, Rome, Italy
| | - Flavia De Bernardis
- Department of Infectious Diseases, Italian National Institute of Health, Rome, Italy
| | - Christoph Schaudinn
- Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
| | | | - Daria Bottai
- Department of Biology, University of Pisa, Pisa, Italy
| | - Valmik K Vyas
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | |
Collapse
|
18
|
Ferreira EO, Mendes INVF, Monteiro SG, Crosara KTB, Siqueira WL, de Maria Pedroso Silva de Azevedo C, Moffa EB, de Andrade Monteiro C. Virulence properties and sensitivity profile of Candida parapsilosis complex species and Kodamaea ohmeri isolates from onychomycosis of HIV/AIDS patients. Microb Pathog 2019; 132:282-292. [PMID: 31082527 DOI: 10.1016/j.micpath.2019.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Cutaneous fungal infections include onychomycosis, an infection of the nail that affects both healthy and immunocompromised patients. This study investigated the in vitro hydrolytic enzymes production, adhesion and biofilm formation capacity of Candida parapsilosis complex species and Kodamaea ohmeri isolates from onychomycoses of HIV/AIDS patients and also established the antifungal sensitivity profiles of these isolates. Onychomycosis in HIV/AIDS patients showed a high prevalence of emerging yeasts, among which C. parapsilosis complex species and K. ohmeri were the most frequent. Three C. parapsilosis sensu stricto and two C. orthopsilosis isolates were resistant to amphotericin B and 83% of isolates were resistant to terbinafine. All three different species evaluated were proteinase and hemolysin producers. All isolates adhered to stainless steel and siliconized latex surfaces, and carbohydrates intensified adhesion of all isolates. Isolates adhered to keratinous nail and 50% formed biofilms with strong intensity. In multispecies or polymicrobial biofilms, C. albicans and Staphylococcus aureus regulated the biofilm formation of the analyzed species, decreasing the number of their cells in biofilms. The isolation of emerging yeast species from onychomycosis which are great producers of hydrolytic enzymes and with high adhesion and biofilm formation capacity is a result that should be considered relevant in clinical practice. In addition, half of the isolates was resistant to at least one of the tested antifungals. Taken together these data corroborate the infectious capacity and viability of these isolates under favorable conditions.
Collapse
Affiliation(s)
- Erika Oliveira Ferreira
- Laboratório de Microbiologia Aplicada, Programa de Mestrado em Biologia Parasitária, Universidade Ceuma, São Luís, MA, Brazil
| | | | - Sílvio Gomes Monteiro
- Laboratório de Microbiologia Aplicada, Programa de Mestrado em Biologia Parasitária, Universidade Ceuma, São Luís, MA, Brazil
| | - Karla Tonelli Bicalho Crosara
- School of Dentistry and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Walter Luiz Siqueira
- School of Dentistry and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | | | - Eduardo Buozi Moffa
- Laboratório de Microbiologia Aplicada, Programa de Mestrado em Biologia Parasitária, Universidade Ceuma, São Luís, MA, Brazil; School of Dentistry and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Cristina de Andrade Monteiro
- Laboratório de Microbiologia Aplicada, Programa de Mestrado em Biologia Parasitária, Universidade Ceuma, São Luís, MA, Brazil; Departamento de Biologia, Instituto Federal de Educação Tecnológica do Maranhão, São Luís, MA, Brazil.
| |
Collapse
|
19
|
Oh SH, Smith B, Miller AN, Staker B, Fields C, Hernandez A, Hoyer LL. Agglutinin-Like Sequence ( ALS) Genes in the Candida parapsilosis Species Complex: Blurring the Boundaries Between Gene Families That Encode Cell-Wall Proteins. Front Microbiol 2019; 10:781. [PMID: 31105652 PMCID: PMC6499006 DOI: 10.3389/fmicb.2019.00781] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022] Open
Abstract
The agglutinin-like sequence (Als) proteins are best-characterized in Candida albicans and known for their role in adhesion of the fungal cell to host and abiotic surfaces. ALS sequences are often misassembled in whole-genome sequence data because each species has multiple ALS loci that contain similar sequences, most notably tandem copies of highly conserved repeated sequences. The Candida parapsilosis species complex includes Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis, three distinct but closely related species. Using publicly available genome resources, de novo genome assemblies, and laboratory experimentation including Sanger sequencing, five ALS genes were characterized in C. parapsilosis strain CDC317, three in C. orthopsilosis strain 90-125, and four in C. metapsilosis strain ATCC 96143. The newly characterized ALS genes shared similar features with the well-known C. albicans ALS family, but also displayed unique attributes such as novel short, imperfect repeat sequences that were found in other genes encoding fungal cell-wall proteins. Evidence of recombination between ALS sequences and other genes was most obvious in CmALS2265, which had the 5' end of an ALS gene and the repeated sequences and 3' end from the IFF/HYR family. Together, these results blur the boundaries between the fungal cell-wall families that were defined in C. albicans. TaqMan assays were used to quantify relative expression for each ALS gene. Some measurements were complicated by the assay location within the ALS gene. Considerable variation was noted in relative gene expression for isolates of the same species. Overall, however, there was a trend toward higher relative gene expression in saturated cultures rather than younger cultures. This work provides a complete description of the ALS genes in the C. parapsilosis species complex and a toolkit that promotes further investigations into the role of the Als proteins in host-fungal interactions.
Collapse
Affiliation(s)
- Soon-Hwan Oh
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Brooke Smith
- Department of Biology, Millikin University, Decatur, IL, United States
| | | | - Bart Staker
- Seattle Structural Genomics Center for Infectious Disease, Seattle Children’s Hospital, Seattle, WA, United States
| | - Christopher Fields
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Alvaro Hernandez
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Lois L. Hoyer
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
20
|
Characterization of the Candida orthopsilosis agglutinin-like sequence (ALS) genes. PLoS One 2019; 14:e0215912. [PMID: 31017950 PMCID: PMC6481836 DOI: 10.1371/journal.pone.0215912] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/10/2019] [Indexed: 12/11/2022] Open
Abstract
Agglutinin like sequence (Als) cell-wall proteins play a key role in adhesion and virulence of Candida species. Compared to the well-characterized Candida albicans ALS genes, little is known about ALS genes in the Candida parapsilosis species complex. Three incomplete ALS genes were identified in the genome sequence for Candida orthopsilosis strain 90–125 (GenBank assembly ASM31587v1): CORT0C04210 (named CoALS4210), CORT0C04220 (CoALS4220) and CORT0B00800 (CoALS800). To complete the gene sequences, new data were derived from strain 90–125 using Illumina (short-read) and Oxford Nanopore (long-read) methods. Long-read sequencing analysis confirmed the presence of 3 ALS genes in C. orthopsilosis 90–125 and resolved the gaps located in repetitive regions of CoALS800 and CoALS4220. In the new genome assembly (GenBank PQBP00000000), the CoALS4210 sequence was slightly longer than in the original assembly. C. orthopsilosis Als proteins encoded features well-known in C. albicans Als proteins such as a secretory signal peptide, N-terminal domain with a peptide-binding cavity, amyloid-forming region, repeated sequences, and a C-terminal site for glycosylphosphatidylinositol anchor addition that, in yeast, suggest localization of the proteins in the cell wall. CoAls4210 and CoAls800 lacked the classic C. albicans Als tandem repeats, instead featuring short, imperfect repeats with consensus motifs such as SSSEPP and GSGN. Quantitative RT-PCR showed differential regulation of CoALS genes by growth stage in six genetically diverse C. orthopsilosis clinical isolates, which also exhibited length variation in the ALS alleles, and strain-specific gene expression patterns. Overall, long-read DNA sequencing methodology was instrumental in generating an accurate assembly of CoALS genes, thus revealing their unconventional features and first insights into their allelic variability within C. orthopsilosis clinical isolates.
Collapse
|
21
|
CORT0C04210 is required for Candida orthopsilosis adhesion to human buccal cells. Fungal Genet Biol 2018; 120:19-29. [DOI: 10.1016/j.fgb.2018.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 01/09/2023]
|
22
|
Sobel JD, Suprapaneni S. Candida parapsilosis Vaginal Infection-a New Site of Azole Drug Resistance. Curr Infect Dis Rep 2018; 20:43. [PMID: 30151658 DOI: 10.1007/s11908-018-0649-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Evaluation of pathogenicity of an uncommon vaginal Candida species, Candida parapsilosis with particular references to susceptibility to conventional antifungal agents. RECENT FINDINGS C. parapsilosis vaginal isolates usually present in asymptomatic women as commensals but may induce vulvovaginal symptoms indistinguishable from C. albicans requiring antifungal therapy; however, recent experience reveals clinically relevant resistance to the azole class of antimycotics. CONCLUSION Clinicians are required to determine a causal relationship between vaginal isolates of C. parapsilosis before prescribing antifungal agents, recognizing the possibility of fluconazole resistance to explain refractory symptomatology.
Collapse
Affiliation(s)
- J D Sobel
- Division of Infectious Diseases, Wayne State University School of Medicine, 540 E. Canfield St., 1241 Scott Hall, Detroit, MI, 48201, USA.
| | - S Suprapaneni
- Division of Infectious Diseases, Wayne State University School of Medicine, 540 E. Canfield St., 1241 Scott Hall, Detroit, MI, 48201, USA
| |
Collapse
|
23
|
Pathogenesis of the Candida parapsilosis Complex in the Model Host Caenorhabditis elegans. Genes (Basel) 2018; 9:genes9080401. [PMID: 30096852 PMCID: PMC6116074 DOI: 10.3390/genes9080401] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022] Open
Abstract
Caenorhabditiselegans is a valuable tool as an infection model toward the study of Candida species. In this work, we endeavored to develop a C. elegans-Candidaparapsilosis infection model by using the fungi as a food source. Three species of the C. parapsilosis complex (C. parapsilosis (sensu stricto), Candida orthopsilosis and Candida metapsilosis) caused infection resulting in C. elegans killing. All three strains that comprised the complex significantly diminished the nematode lifespan, indicating the virulence of the pathogens against the host. The infection process included invasion of the intestine and vulva which resulted in organ protrusion and hyphae formation. Importantly, hyphae formation at the vulva opening was not previously reported in C. elegans-Candida infections. Fungal infected worms in the liquid assay were susceptible to fluconazole and caspofungin and could be found to mount an immune response mediated through increased expression of cnc-4, cnc-7, and fipr-22/23. Overall, the C. elegans-C. parapsilosis infection model can be used to model C. parapsilosis host-pathogen interactions.
Collapse
|
24
|
Candidemia in Children Caused by Uncommon Species of Candida. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2018. [DOI: 10.5812/pedinfect.11895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
25
|
Wu YM, Huang PY, Lu JJ, Shie SS, Ye JJ, Wu TS, Huang CT. Risk factors and outcomes of candidemia caused by Candida parapsilosis complex in a medical center in northern Taiwan. Diagn Microbiol Infect Dis 2017; 90:44-49. [PMID: 29132935 DOI: 10.1016/j.diagmicrobio.2017.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/18/2017] [Accepted: 10/02/2017] [Indexed: 12/26/2022]
Abstract
To investigate the risk factors and outcomes associated with Candida parapsilosis candidemia, a retrospective study was conducted at a tertiary medical center in northern Taiwan. Patients with C. parapsilosis candidemia and corresponding controls with C. albicans candidemia were chosen and their demographics, comorbidities, risk factors, and clinical outcomes were reviewed. Antifungal susceptibility tests were performed using the Sensititre YeastOne colorimetric system. Matrix-assisted laser desorption ionization-time of flight mass spectrometry was used to classify the genomic species. Of the 270 candidemias found in 253 patients, C. albicans was the most common Candida species isolated (43.0%), followed by C. parapsilosis (22.6%), C. tropicalis (17.4%), and C. glabrata (10.0%). The 30-day mortality of C. parapsilosis candidemia was significantly lower than that of C. albicans candidemia (21.7% vs. 53.9%, P<0.001). C. parapsilosis was positively associated with antifungal agent exposure [OR 7.261 (95% CI, 1.603-32.879), P=0.010], but negatively associated with Candida colonization [OR 0.303 (95% CI, 0.123-0.745), P=0.009], and immunosuppressant use [OR 0.264 (95% CI, 0.099-0.705), P=0.008]. In-hospital mortality was associated with the Sequential Organ Failure Assessment Score [OR 1.255 (95% CI, 1.002-1.573), P=0.048]. The clinical outcomes did not differ across genomic species and in the minimum inhibitory concentrations of fluconazole.
Collapse
Affiliation(s)
- Yen-Mu Wu
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.
| | - Po-Yen Huang
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Shian-Sen Shie
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Jung-Jr Ye
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.
| | - Ting-Shu Wu
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Ching-Tai Huang
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
26
|
Reyes-Montes MDR, Duarte-Escalante E, Martínez-Herrera E, Acosta-Altamirano G, Frías-De León MG. Current status of the etiology of candidiasis in Mexico. Rev Iberoam Micol 2017; 34:203-210. [DOI: 10.1016/j.riam.2017.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 04/24/2017] [Accepted: 05/26/2017] [Indexed: 11/16/2022] Open
|
27
|
Neji S, Hadrich I, Trabelsi H, Abbes S, Cheikhrouhou F, Sellami H, Makni F, Ayadi A. Virulence factors, antifungal susceptibility and molecular mechanisms of azole resistance among Candida parapsilosis complex isolates recovered from clinical specimens. J Biomed Sci 2017; 24:67. [PMID: 28870262 PMCID: PMC5582387 DOI: 10.1186/s12929-017-0376-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/30/2017] [Indexed: 01/12/2023] Open
Abstract
Background The aim of this study was to determine the biofilm formation, the extracellular enzymatic activities of 182 clinical isolates of the Candida parapsilosis complex. Methods Molecular identification of the C. parapsilosis species complex was performed using PCR RFLP of SADH gene and PCR sequencing of ITS region. The susceptibility of ours isolates to antifungal agents and molecular mechanisms underlying azole resistance were evaluated. Results 63.5% of C. parapsilosis were phospholipase positive with moderate activity for the majority of strains. None of the C. metapsilosis or C. orthopsilosis isolates was able to produce phospholipase. Higher caseinase activities were detected in C. parapsilosis (Pz = 0.5 ± 0.18) and C. orthopsilosis (Pz = 0.49 ± 0.07) than in C. metapsilosis isolates (Pz = 0.72 ± 0.1). 96.5% of C. parapsilosis strains and all isolates of C. metapsilosis and C. orthopsilosis produced gelatinase. All the strains possessed the ability to show haemolysis on blood agar. C. metapsilosis exhibited the low haemolysin production with statistical significant differences compared to C. parapsilosis and C. orthopsilosis. The biofilm forming ability of C. parapsilosis was highly strain dependent with important heterogeneity, which was less evident with both C. orthopsilosis and C. metapsilosis. Some C. parapsilosis isolates met the criterion for susceptible dose dependent to fluconazole (10.91%), itraconazole (16.36%) and voriconazole (7.27%). Moreover, 5.45% and 1.82% of C. parapsilosis isolates were respectively resistant to fluconazole and voriconazole. All strains of C. metapsilosis and C. orthopsilosis were susceptible to azoles; and isolates of all three species exhibited 100% of susceptibility to caspofungin, amphotericin B and 5-flucytosine. Conclusions A combination of molecular mechanisms, including the overexpression of ERG11, and genes encoding efflux pumps (CDR1, MDR1, and MRR1) were involved in azole resistance in C. parapsilosis.
Collapse
Affiliation(s)
- Sourour Neji
- Laboratory of Parasitology - Mycology, UH Habib Bourguiba, Sfax, Tunisia.,Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Ines Hadrich
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Sfax, Tunisia.
| | - Houaida Trabelsi
- Laboratory of Parasitology - Mycology, UH Habib Bourguiba, Sfax, Tunisia.,Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Salma Abbes
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Fatma Cheikhrouhou
- Laboratory of Parasitology - Mycology, UH Habib Bourguiba, Sfax, Tunisia.,Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Hayet Sellami
- Laboratory of Parasitology - Mycology, UH Habib Bourguiba, Sfax, Tunisia.,Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Fattouma Makni
- Laboratory of Parasitology - Mycology, UH Habib Bourguiba, Sfax, Tunisia.,Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Ali Ayadi
- Laboratory of Parasitology - Mycology, UH Habib Bourguiba, Sfax, Tunisia.,Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Sfax, Tunisia
| |
Collapse
|
28
|
Pires RH, Cataldi TR, Franceschini LM, Labate MV, Fusco-Almeida AM, Labate CA, Palma MS, Soares Mendes-Giannini MJ. Metabolic profiles of planktonic and biofilm cells of Candida orthopsilosis. Future Microbiol 2016; 11:1299-1313. [PMID: 27662506 DOI: 10.2217/fmb-2016-0025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIM This study aims to understand which Candida orthopsilosis protein aids fungus adaptation upon its switching from planktonic growth to biofilm. MATERIALS & METHODS Ion mobility separation within mass spectrometry analysis combination were used. RESULTS Proteins mapped for different biosynthetic pathways showed that selective ribosome autophagy might occur in biofilms. Glucose, used as a carbon source in the glycolytic flux, changed to glycogen and trehalose. CONCLUSION Candida orthopsilosis expresses proteins that combine a variety of mechanisms to provide yeasts with the means to adjust the catalytic properties of enzymes. Adjustment of the enzymes helps modulate the biosynthesis/degradation rates of the available nutrients, in order to control and coordinate the metabolic pathways that enable cells to express an adequate response to nutrient availability.
Collapse
Affiliation(s)
- Regina Helena Pires
- Department of Clinical Analysis, Clinical Mycology Laboratory, Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista Júlio de Mesquita Filho, FCFAr, Rodovia Araraquara-Jaú, km1, Araraquara 14801-902, SP, Brazil
| | - Thaís Regiani Cataldi
- Department of Genetics, ESALQ/USP - Univ de São Paulo, Laboratory Max Feffer Plant Genetics, Av. Pádua Dias 11, Caixa Postal 83, Piracicaba 13400-970, SP, Brazil
| | - Livia Maria Franceschini
- Department of Genetics, ESALQ/USP - Univ de São Paulo, Laboratory Max Feffer Plant Genetics, Av. Pádua Dias 11, Caixa Postal 83, Piracicaba 13400-970, SP, Brazil
| | - Mônica Veneziano Labate
- Department of Genetics, ESALQ/USP - Univ de São Paulo, Laboratory Max Feffer Plant Genetics, Av. Pádua Dias 11, Caixa Postal 83, Piracicaba 13400-970, SP, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, Clinical Mycology Laboratory, Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista Júlio de Mesquita Filho, FCFAr, Rodovia Araraquara-Jaú, km1, Araraquara 14801-902, SP, Brazil
| | - Carlos Alberto Labate
- Department of Genetics, ESALQ/USP - Univ de São Paulo, Laboratory Max Feffer Plant Genetics, Av. Pádua Dias 11, Caixa Postal 83, Piracicaba 13400-970, SP, Brazil
| | - Mario Sérgio Palma
- Department of Biology, Lab. Structural Biology & Zoochemistry, CEIS, Univ Estadual Paulista Júlio de Mesquita Filho, UNESP, Institute of Biosciences, Av. 24-A, 1515. Bela Vista, Rio Claro 13506-900, SP, Brazil
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, Clinical Mycology Laboratory, Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista Júlio de Mesquita Filho, FCFAr, Rodovia Araraquara-Jaú, km1, Araraquara 14801-902, SP, Brazil
| |
Collapse
|
29
|
Pryszcz LP, Németh T, Gácser A, Gabaldón T. Genome comparison of Candida orthopsilosis clinical strains reveals the existence of hybrids between two distinct subspecies. Genome Biol Evol 2016; 6:1069-78. [PMID: 24747362 PMCID: PMC4040990 DOI: 10.1093/gbe/evu082] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Candida parapsilosis species complex comprises a group of emerging human pathogens of varying virulence. This complex was recently subdivided into three different species: C. parapsilosis sensu stricto, C. metapsilosis, and C. orthopsilosis. Within the latter, at least two clearly distinct subspecies seem to be present among clinical isolates (Type 1 and Type 2). To gain insight into the genomic differences between these subspecies, we undertook the sequencing of a clinical isolate classified as Type 1 and compared it with the available sequence of a Type 2 clinical strain. Unexpectedly, the analysis of the newly sequenced strain revealed a highly heterozygous genome, which we show to be the consequence of a hybridization event between both identified subspecies. This implicitly suggests that C. orthopsilosis is able to mate, a so-far unanswered question. The resulting hybrid shows a chimeric genome that maintains a similar gene dosage from both parental lineages and displays ongoing loss of heterozygosity. Several of the differences found between the gene content in both strains relate to virulent-related families, with the hybrid strain presenting a higher copy number of genes coding for efflux pumps or secreted lipases. Remarkably, two clinical strains isolated from distant geographical locations (Texas and Singapore) are descendants of the same hybrid line, raising the intriguing possibility of a relationship between the hybridization event and the global spread of a virulent clone.
Collapse
Affiliation(s)
- Leszek P Pryszcz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | | | | | | |
Collapse
|
30
|
Giacobino J, Montelli AC, Barretti P, Bruder-Nascimento A, Caramori JT, Barbosa L, Bagagli E. Fungal peritonitis in patients undergoing peritoneal dialysis (PD) in Brazil: molecular identification, biofilm production and antifungal susceptibility of the agents. Med Mycol 2016; 54:725-732. [PMID: 27143636 DOI: 10.1093/mmy/myw030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/12/2016] [Indexed: 11/14/2022] Open
Abstract
This paper presents data on fungal peritonitis (FP) in patients undergoing peritoneal dialysis (PD) at the University Hospital of Botucatu Medical School, São Paulo, Brazil. In a total of 422 patients, 30 developed FP, from which the medical records and the fungal isolates of 23 patient cases were studied. All patients presented abdominal pain, cloudy peritoneal effluent, needed hospitalization, had the catheter removed and were treated with fluconazole or fluconazole plus 5-flucitosine; six of them died due to FP. Concerning the agents, it was observed that Candida parapsilosis was the leading species (9/23), followed by Candida albicans (5/23), Candida orthopsilosis (4/23), Candida tropicalis (3/23), Candida guilliermondii (1/23), and Kodamaea ohmeri (1/23). All the isolates were susceptible to amphotericin B, voriconazole and caspofungin whereas C. albicans isolates were susceptible to all antifungals tested. Resistance to fluconazole was observed in three isolates of C. orthopsilosis, and dose-dependent susceptibility to this antifungal was observed in two isolates of C. parapsilosis and in the K. ohmeri isolate. Biofilm production estimates were high or moderate in most isolates, especially in C. albicans species, and low in C. parapsilosis species, with a marked variation among the isolates. This Brazilian study reinforces that FP in PD is caused by a diverse group of yeasts, most prevalently C. parapsilosis sensu stricto species. In addition, they present significant variation in susceptibility to antifungals and biofilm production, thus contributing to the complexity and severity of the clinical features.
Collapse
Affiliation(s)
- Juliana Giacobino
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, UNESP, Botucatu
| | | | - Pasqual Barretti
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, UNESP
| | | | | | - Luciano Barbosa
- Departamento de Bioestatística, Instituto de Biociências, UNESP, Botucatu
| | - Eduardo Bagagli
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, UNESP, Botucatu
| |
Collapse
|
31
|
Barbedo LS, Figueiredo-Carvalho MHG, Muniz MDM, Zancopé-Oliveira RM. The identification and differentiation of the Candida parapsilosis complex species by polymerase chain reaction-restriction fragment length polymorphism of the internal transcribed spacer region of the rDNA. Mem Inst Oswaldo Cruz 2016; 111:267-70. [PMID: 27074256 PMCID: PMC4830116 DOI: 10.1590/0074-02760150466] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/01/2016] [Indexed: 12/11/2022] Open
Abstract
Currently, it is accepted that there are three species that were formerly grouped under Candida parapsilosis: C. para- psilosis sensu stricto, Candida orthopsilosis, and Candida metapsilosis. In fact, the antifungal susceptibility profiles and distinct virulence attributes demonstrate the differences in these nosocomial pathogens. An accurate, fast, and economical identification of fungal species has been the main goal in mycology. In the present study, we searched sequences that were available in the GenBank database in order to identify the complete sequence for the internal transcribed spacer (ITS)1-5.8S-ITS2 region, which is comprised of the forward and reverse primers ITS1 and ITS4. Subsequently, an in silico polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to differentiate the C. parapsilosis complex species. Ninety-eight clinical isolates from patients with fungaemia were submitted for analysis, where 59 isolates were identified as C. parapsilosis sensu stricto, 37 were identified as C. orthopsilosis, and two were identified as C. metapsilosis. PCR-RFLP quickly and accurately identified C. parapsilosis complex species, making this method an alternative and routine identification system for use in clinical mycology laboratories.
Collapse
Affiliation(s)
- Leonardo Silva Barbedo
- Fundação Oswaldo Cruz, Instituto Nacional de Infectologia Evandro Chagas,
Laboratório de Micologia, Rio de Janeiro, RJ, Brasil
| | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Attila Gacser
- a Department of Microbiology ; University of Szeged ; Szeged , Hungary
| |
Collapse
|
33
|
Bertini A, Zoppo M, Lombardi L, Rizzato C, De Carolis E, Vella A, Torelli R, Sanguinetti M, Tavanti A. Targeted gene disruption in Candida parapsilosis demonstrates a role for CPAR2_404800 in adhesion to a biotic surface and in a murine model of ascending urinary tract infection. Virulence 2015; 7:85-97. [PMID: 26632333 DOI: 10.1080/21505594.2015.1112491] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Candida parapsilosis is an emerging opportunistic pathogen, second in frequency only to C. albicans and commonly associated with both mucosal and systemic infections. Adhesion to biotic surfaces is a key step for the development of mycoses. The C. parapsilosis genome encodes 5 predicted agglutinin-like sequence proteins and their precise role in the adhesion process still remains to be elucidated. In this study, we focused on the putative adhesin Cpar2_404800, in view of its high homology to the most important adhesion molecule in C. albicans. Two independent lineages of C. parapsilosis CPAR2_404800 heterozygous and null mutants were obtained by site-specific deletion. CPAR2_404800 mutants did not differ from wild-type strain in terms of in vitro growth or in their ability to undergo morphogenesis. However, when compared for adhesion to a biotic surface, CPAR2_404800 null mutants exhibited a marked reduction in their adhesion to buccal epithelial cells (>60% reduction of adhesion index). Reintroduction of one copy of CPAR2_404800 gene in the null background restored wild type phenotype. A murine model of urinary tract infection was used to elucidate the in vivo contribution of CPAR2_404800. A 0.5 and 1 log10 reduction in colony forming unit numbers (per gram) was observed respectively in bladder and kidneys obtained from mice infected with null mutant compared to wild-type infected ones. Taken together, these findings provide the first evidence for a direct role of CPAR2_404800 in C. parapsilosis adhesion to host surfaces and demonstrate its contribution to the pathogenesis of murine urinary candidiasis.
Collapse
Affiliation(s)
- Alessia Bertini
- a Department of Biology ; Genetic Unit; University of Pisa ; Pisa , Italy
| | - Marina Zoppo
- a Department of Biology ; Genetic Unit; University of Pisa ; Pisa , Italy
| | - Lisa Lombardi
- a Department of Biology ; Genetic Unit; University of Pisa ; Pisa , Italy
| | - Cosmeri Rizzato
- a Department of Biology ; Genetic Unit; University of Pisa ; Pisa , Italy
| | - Elena De Carolis
- b Institute of Microbiology; Catholic University of the Sacred Heart ; Rome , Italy
| | - Antonietta Vella
- b Institute of Microbiology; Catholic University of the Sacred Heart ; Rome , Italy
| | - Riccardo Torelli
- b Institute of Microbiology; Catholic University of the Sacred Heart ; Rome , Italy
| | - Maurizio Sanguinetti
- b Institute of Microbiology; Catholic University of the Sacred Heart ; Rome , Italy
| | - Arianna Tavanti
- a Department of Biology ; Genetic Unit; University of Pisa ; Pisa , Italy
| |
Collapse
|
34
|
Molecular Characterization of Candida africana in Genital Specimens in Shanghai, China. BIOMED RESEARCH INTERNATIONAL 2015; 2015:185387. [PMID: 26665002 PMCID: PMC4668292 DOI: 10.1155/2015/185387] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/12/2015] [Indexed: 01/13/2023]
Abstract
Candida africana, an emerging yeast pathogen, is closely related to Candida albicans and most commonly involved in vulvovaginal candidiasis (VVC). However, its prevalence in candidal balanoposthitis is still unclear. In this study, the prevalence of C. africana in both candidal balanoposthitis and VVC in a sexually transmitted diseases (STD) clinic in Shanghai, China, was analyzed, and the molecular characterization and susceptible profiles of C. africana isolates were investigated. As results, C. africana was only isolated in 5 out of 79 (6.3%) cases of candidal balanoposthitis rather than cases with vulvovaginal candidiasis. Among them, 4 out of 5 isolates share the same genotype of DST 782 with an isolate from vaginal swab in Japan published previously. All C. africana isolates were susceptible to amphotericin B, flucytosine, fluconazole, itraconazole, voriconazole, posaconazole, caspofungin, and micafungin.
Collapse
|
35
|
Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) and Bayesian phylogenetic analysis to characterize Candida clinical isolates. J Microbiol Methods 2015; 119:214-22. [PMID: 26551247 DOI: 10.1016/j.mimet.2015.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/01/2015] [Accepted: 11/05/2015] [Indexed: 11/23/2022]
Abstract
Clinical Candida isolates from two different hospitals in Rome were identified and clustered by MALDI-TOF MS system and their origin and evolution estimated by Bayesian phylogenetic analysis. The different species of Candida were correctly identified and clustered separately, confirming the ability of these techniques to discriminate between different Candida species. Focusing MALDI-TOF analysis on a single Candida species, Candida albicans and Candida parapsilosis strains clustered differently for hospital setting as well as for period of isolation than Candida glabrata and Candida tropicalis isolates. The evolutionary rates of C. albicans and C. parapsilosis (1.93×10(-2) and 1.17×10(-2)substitutions/site/year, respectively) were in agreement with a higher rate of mutation of these species, even in a narrow period, than what was observed in C. glabrata and C. tropicalis strains (6.99×10(-4) and 7.52×10(-3)substitutions/site/year, respectively). C. albicans resulted as the species with the highest between and within clades genetic distance values in agreement with the temporal-related clustering found by MALDI-TOF and the high evolutionary rate 1.93×10(-2)substitutions/site/year.
Collapse
|
36
|
Pryszcz LP, Németh T, Saus E, Ksiezopolska E, Hegedűsová E, Nosek J, Wolfe KH, Gacser A, Gabaldón T. The Genomic Aftermath of Hybridization in the Opportunistic Pathogen Candida metapsilosis. PLoS Genet 2015; 11:e1005626. [PMID: 26517373 PMCID: PMC4627764 DOI: 10.1371/journal.pgen.1005626] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/05/2015] [Indexed: 01/17/2023] Open
Abstract
Candida metapsilosis is a rarely-isolated, opportunistic pathogen that belongs to a clade of pathogenic yeasts known as the C. parapsilosis sensu lato species complex. To gain insight into the recent evolution of C. metapsilosis and the genetic basis of its virulence, we sequenced the genome of 11 clinical isolates from various locations, which we compared to each other and to the available genomes of the two remaining members of the complex: C. orthopsilosis and C. parapsilosis. Unexpectedly, we found compelling genomic evidence that C. metapsilosis is a highly heterozygous hybrid species, with all sequenced clinical strains resulting from the same past hybridization event involving two parental lineages that were approximately 4.5% divergent in sequence. This result indicates that the parental species are non-pathogenic, but that hybridization between them formed a new opportunistic pathogen, C. metapsilosis, that has achieved a worldwide distribution. We show that these hybrids are diploid and we identified strains carrying loci for both alternative mating types, which supports mating as the initial mechanism for hybrid formation. We trace the aftermath of this hybridization at the genomic level, and reconstruct the evolutionary relationships among the different strains. Recombination and introgression -resulting in loss of heterozygosis- between the two subgenomes have been rampant, and includes the partial overwriting of the MTLa mating locus in all strains. Collectively, our results shed light on the recent genomic evolution within the C. parapsilosis sensu lato complex, and argue for a re-definition of species within this clade, with at least five distinct homozygous lineages, some of which having the ability to form hybrids.
Collapse
Affiliation(s)
- Leszek P. Pryszcz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Tibor Németh
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Ester Saus
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ewa Ksiezopolska
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eva Hegedűsová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Kenneth H. Wolfe
- UCD Conway Institute, School of Medicine & Medical Science, University College Dublin, Dublin, Ireland
| | - Attila Gacser
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
37
|
Ziccardi M, Souza LOP, Gandra RM, Galdino ACM, Baptista ARS, Nunes APF, Ribeiro MA, Branquinha MH, Santos ALS. Candida parapsilosis (sensu lato) isolated from hospitals located in the Southeast of Brazil: Species distribution, antifungal susceptibility and virulence attributes. Int J Med Microbiol 2015; 305:848-59. [PMID: 26319940 DOI: 10.1016/j.ijmm.2015.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/28/2015] [Accepted: 08/10/2015] [Indexed: 01/12/2023] Open
Abstract
Candida parapsilosis (sensu lato), which represents a fungal complex composed of three genetically related species - Candida parapsilosis sensu stricto, Candida orthopsilosis and Candida metapsilosis, has emerged as an important yeast causing fungemia worldwide. The goal of the present work was to assess the prevalence, antifungal susceptibility and production of virulence traits in 53 clinical isolates previously identified as C. parapsilosis (sensu lato) obtained from hospitals located in the Southeast of Brazil. Species forming this fungal complex are physiologically/morphologically indistinguishable; however, polymerase chain reaction followed by restriction fragment length polymorphism of FKS1 gene has solved the identification inaccuracy, revealing that 43 (81.1%) isolates were identified as C. parapsilosis sensu stricto and 10 (18.9%) as C. orthopsilosis. No C. metapsilosis was found. The geographic distribution of these Candida species was uniform among the studied Brazilian States (São Paulo, Rio de Janeiro and Espírito Santo). All C. orthopsilosis and almost all C. parapsilosis sensu stricto (95.3%) isolates were susceptible to amphotericin B, fluconazole, itraconazole, voriconazole and caspofungin. Nevertheless, one C. parapsilosis sensu stricto isolate was resistant to fluconazole and another one was resistant to caspofungin. C. parapsilosis sensu stricto isolates exhibited higher MIC mean values to amphotericin B, fluconazole and caspofungin than those of C. orthopsilosis, while C. orthopsilosis isolates displayed higher MIC mean to itraconazole compared to C. parapsilosis sensu stricto. Identical MIC mean values to voriconazole were measured for these Candida species. All the isolates of both species were able to form biofilm on polystyrene surface. Impressively, biofilm-growing cells of C. parapsilosis sensu stricto and C. orthopsilosis exhibited a considerable resistance to all antifungal agents tested. Pseudohyphae were observed in 67.4% and 80% of C. parapsilosis sensu stricto and C. orthopsilosis isolates, respectively. The secretion of phytase (93% versus 100%), aspartic protease (88.4% versus 90%), esterase (20.9% versus 50%) and hemolytic factors (25.6% versus 40%) was detected in C. parapsilosis sensu stricto and C. orthopsilosis isolates, respectively; however, no phospholipase activity was identified. An interesting fact was observed concerning the caseinolytic activity, for which all the producers (53.5%) belonged to C. parapsilosis sensu stricto. Collectively, our results add new data on the epidemiology, antifungal susceptibility and production of potential virulence attributes in clinical isolates of C. parapsilosis complex.
Collapse
Affiliation(s)
- Mariangela Ziccardi
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lucieri O P Souza
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael M Gandra
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Clara M Galdino
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andréa R S Baptista
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Ana Paula F Nunes
- Departamento de Patologia, Programa de Pós-Graduação em Doenças Infecciosas, Universidade Federal do Espírito Santo, Brazil
| | - Mariceli A Ribeiro
- Departamento de Patologia, Programa de Pós-Graduação em Doenças Infecciosas, Universidade Federal do Espírito Santo, Brazil
| | - Marta H Branquinha
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André L S Santos
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
38
|
Ataides FS, Costa CR, Souza LKHE, Fernandes ODL, Jesuino RSA, Silva MDRR. Molecular identification and antifungal susceptibility profiles of Candida parapsilosis complex species isolated from culture collection of clinical samples. Rev Soc Bras Med Trop 2015; 48:454-9. [DOI: 10.1590/0037-8682-0120-2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/08/2015] [Indexed: 11/21/2022] Open
|
39
|
Galán F, García-Agudo L, Guerrero I, Marín P, García-Tapia A, García-Martos P, Rodríguez-Iglesias M. Evaluación de la espectrometría de masas en la identificación de levaduras de interés clínico. Enferm Infecc Microbiol Clin 2015; 33:372-8. [DOI: 10.1016/j.eimc.2014.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/29/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022]
|
40
|
Sena G, Aznar P, García-Agudo L, García-Martos P. Prevalencia de Candida orthopsilosis y Candida metapsilosis en muestras clínicas. Enferm Infecc Microbiol Clin 2015; 33:290-1. [DOI: 10.1016/j.eimc.2014.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 05/26/2014] [Accepted: 06/11/2014] [Indexed: 10/24/2022]
|
41
|
Xiao M, Fan X, Chen SCA, Wang H, Sun ZY, Liao K, Chen SL, Yan Y, Kang M, Hu ZD, Chu YZ, Hu TS, Ni YX, Zou GL, Kong F, Xu YC. Antifungal susceptibilities of Candida glabrata species complex, Candida krusei, Candida parapsilosis species complex and Candida tropicalis causing invasive candidiasis in China: 3 year national surveillance. J Antimicrob Chemother 2014; 70:802-10. [PMID: 25473027 DOI: 10.1093/jac/dku460] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES To define the antifungal susceptibility patterns of the most common non-albicans Candida spp. in China. METHODS We evaluated the susceptibilities to nine antifungal drugs of Candida parapsilosis species complex, Candida tropicalis, Candida glabrata species complex and Candida krusei isolates from patients with invasive candidiasis at 11 hospitals over 3 years. Isolates were identified by MALDI-TOF MS supplemented by DNA sequencing. MICs were determined by Sensititre YeastOne(TM) using current clinical breakpoints/epidemiological cut-off values to assign susceptibility (or WT), and by CLSI M44-A2 disc diffusion for fluconazole and voriconazole. RESULTS Of 1072 isolates, 392 (36.6%) were C. parapsilosis species complex. C. tropicalis, C. glabrata species complex and C. krusei comprised 35.4%, 24.3% and 3.7% of the isolates, respectively. Over 99.3% of the isolates were of WT phenotype to amphotericin B and 5-flucytosine. Susceptibility/WT rates to azoles among C. parapsilosis species complex were ≥97.5%. However, 11.6% and 9.5% of C. tropicalis isolates were non-susceptible to fluconazole and voriconazole, respectively (7.1% were resistant to both). Approximately 14.3% of C. glabrata sensu stricto isolates (n = 258) were fluconazole resistant, and 11.6% of C. glabrata sensu stricto isolates were cross-resistant to fluconazole and voriconazole. All C. krusei isolates were susceptible/WT to voriconazole, posaconazole and itraconazole. Overall, 97.7%-100% of isolates were susceptible to caspofungin, micafungin and anidulafungin, but 2.3% of C. glabrata were non-susceptible to anidulafungin. There was no azole/echinocandin co-resistance. Disc diffusion and Sensititre YeastOne(TM) methods showed >95% categorical agreement for fluconazole and voriconazole. CONCLUSIONS In summary, reduced azole susceptibility was seen among C. tropicalis. Resistance to echinocandins was uncommon.
Collapse
Affiliation(s)
- Meng Xiao
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing, China
| | - Xin Fan
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing, China Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR - Pathology West, Westmead Hospital, University of Sydney, New South Wales, Australia
| | - He Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing, China Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zi-Yong Sun
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Liao
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shu-Lan Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Yan
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Mei Kang
- Laboratory of Clinical Microbiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi-Dong Hu
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin, China
| | - Yun-Zhuo Chu
- Department of Clinical Laboratory, The First Hospital of China Medical University, Shenyang, China
| | - Tie-Shi Hu
- Department of Clinical Laboratory, The People's Hospital of Liaoning Province, Shenyang, China
| | - Yu-Xing Ni
- Department of Clinical Microbiology and Infection Control, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Gui-Ling Zou
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fanrong Kong
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR - Pathology West, Westmead Hospital, University of Sydney, New South Wales, Australia
| | - Ying-Chun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
42
|
Candida parapsilosis Sensu Stricto and the Closely Related Species Candida orthopsilosis and Candida metapsilosis in Vulvovaginal Candidiasis. Mycopathologia 2014; 179:111-8. [DOI: 10.1007/s11046-014-9821-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022]
|
43
|
Chao QT, Lee TF, Teng SH, Peng LY, Chen PH, Teng LJ, Hsueh PR. Comparison of the accuracy of two conventional phenotypic methods and two MALDI-TOF MS systems with that of DNA sequencing analysis for correctly identifying clinically encountered yeasts. PLoS One 2014; 9:e109376. [PMID: 25330370 PMCID: PMC4199611 DOI: 10.1371/journal.pone.0109376] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/03/2014] [Indexed: 01/21/2023] Open
Abstract
We assessed the accuracy of species-level identification of two commercially available matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems (Bruker Biotyper and Vitek MS) and two conventional phenotypic methods (Phoenix 100 YBC and Vitek 2 Yeast ID) with that of rDNA gene sequencing analysis among 200 clinical isolates of commonly encountered yeasts. The correct identification rates of the 200 yeast isolates to species or complex (Candida parapsilosis complex, C. guilliermondii complex and C. rugosa complex) levels by the Bruker Biotyper, Vitek MS (using in vitro devices [IVD] database), Phoenix 100 YBC and Vitek 2 Yeast ID (Sabouraud's dextrose agar) systems were 92.5%, 79.5%, 89%, and 74%, respectively. An additional 72 isolates of C. parapsilosis complex and 18 from the above 200 isolates (30 in each of C. parapsilosis, C. metapsilosis, and C. orthopsilosis) were also evaluated separately. Bruker Biotyper system could accurately identify all C. parapsilosis complex to species level. Using Vitek 2 MS (IVD) system, all C. parapsilosis but none of C. metapsilosis, or C. orthopsilosis could be accurately identified. Among the 89 yeasts misidentified by the Vitek 2 MS (IVD) system, 39 (43.8%), including 27 C. orthopsilosis isolates, could be correctly identified Using the Vitek MS Plus SARAMIS database for research use only. This resulted in an increase in the rate of correct identification of all yeast isolates (87.5%) by Vitek 2 MS. The two species in C. guilliermondii complex (C. guilliermondii and C. fermentati) isolates were correctly identified by cluster analysis of spectra generated by the Bruker Biotyper system. Based on the results obtained in the current study, MALDI-TOF MS systems present a promising alternative for the routine identification of yeast species, including clinically commonly and rarely encountered yeast species and several species belonging to C. parapsilosis complex, C. guilliermondii complex, and C. rugosa complex.
Collapse
Affiliation(s)
- Qiao-Ting Chao
- Departments of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tai-Fen Lee
- Departments of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shih-Hua Teng
- Department of Graduate Institute of Biomedical Sciences, Chang Gung University, Tao-Yuan, Taiwan
- Bruker Taiwan Co., Ltd., Taipei, Taiwan
| | - Li-Yun Peng
- Departments of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ping-Hung Chen
- Departments of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lee-Jene Teng
- Departments of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- Departments of and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
44
|
Constante CC, Monteiro AA, Alves SH, Carneiro LC, Machado MM, Severo LC, Park S, Perlin DS, Pasqualotto AC. Different risk factors for candidemia occur for Candida species belonging to the C. parapsilosis complex. Med Mycol 2014; 52:403-6. [DOI: 10.1093/mmy/myt034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
45
|
Martí-Carrizosa M, Sánchez-Reus F, March F, Coll P. Fungemia in a Spanish hospital: the role of Candida parapsilosis over a 15-year period. ACTA ACUST UNITED AC 2014; 46:454-61. [DOI: 10.3109/00365548.2014.900190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Staniszewska M, Bondaryk M, Zielińska P, Urbańczyk-Lipkowska Z. The in vitro effects of new D186 dendrimer on virulence factors of Candida albicans. J Antibiot (Tokyo) 2014; 67:425-32. [PMID: 24690909 DOI: 10.1038/ja.2014.25] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/06/2014] [Accepted: 02/17/2014] [Indexed: 12/13/2022]
Abstract
The emergence of drug-resistant Candida albicans strains necessitates identifying new antimycotics along with studying their modes of action. The influence of a new rationally designed dendrimer D186 containing N,N-dioctyl tail and four tryptophane residues on inhibition of planktonic cells, aspartic protease SAP5 expression and adhesion to epithelial cells was investigated. In vitro anti-Candida activities were determined against wild types, Δsap mutants and morphogenesis mutants: Δefg1, Δcph1 and Δcph1/Δefg1. MICs of D186 determined with M27-A3 protocol were in the range 2-16 μg ml(-1). Adherence assay of C. albicans to Caco-2 was performed in 24-well plate. Group I (MIC=8 μg ml(-1), inhibition=82.05-100%) was the most frequent followed by Group II (MIC=4 μg ml(-1), inhibition=99.64-100%) and Group III (MIC=2 μg ml(-1), inhibition=96.47-96.98%). SAP5 expression was analyzed using RT-PCR; relative quantification was normalized against ACT1 in cells after 18-h growth on Caco-2 cell line. D186 exhibited more potent inhibition activity (statistically significant P⩽0.05) against Δsap10 and Δsap9/Δsap10 (MIC=2 μg ml(-1)) than the remaining strains tested. Pretreating cells with D186 significantly inhibited adhesion of all Candida strains compared with their non-treated counterparts (P⩽0.05). D186 affected SAP5 expression of all strains suggesting that this gene is controlled by environmental conditions. A hypothesis can be formulated that the hydrophobicity of D186 and presence of four Trp residues favors its accumulation in the membrane causing membrane disruption, especially facilitated in mutants perturbed in the cell wall compositions. The D186 mode of action was attributed to reduced virulence in terms of adhesiveness and pathogenic potential related to SAP5 expression and morphogenesis.
Collapse
Affiliation(s)
- Monika Staniszewska
- National Institute of Public Health-National Institute of Hygiene, Warsaw, Poland
| | - Małgorzata Bondaryk
- National Institute of Public Health-National Institute of Hygiene, Warsaw, Poland
| | - Paulina Zielińska
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
47
|
Risks of "blind" automated identification systems in medical microbiology. J Clin Microbiol 2014; 51:3911. [PMID: 24133053 DOI: 10.1128/jcm.02032-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
48
|
Identification and differentiation of Candida parapsilosis complex species by use of exon-primed intron-crossing PCR. J Clin Microbiol 2014; 52:1758-61. [PMID: 24622093 DOI: 10.1128/jcm.00105-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Candida parapsilosis complex is composed of Candida parapsilosis sensu stricto, Candida orthopsilosis, Candida metapsilosis, and the closely related species Lodderomyces elongisporus. An exon-primed intron-crossing PCR assay was developed here to distinguish the members of the species complex on the basis of the distinct sizes of amplicons, and Candida orthopsilosis and Candida metapsilosis were further discriminated by restriction enzyme analysis.
Collapse
|
49
|
Németh T, Tóth A, Hamari Z, Falus A, Éder K, Vágvölgyi C, Guimaraes AJ, Nosanchuk JD, Gácser A. Transcriptome profile of the murine macrophage cell response to Candida parapsilosis. Fungal Genet Biol 2014; 65:48-56. [PMID: 24530442 DOI: 10.1016/j.fgb.2014.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/17/2014] [Accepted: 01/29/2014] [Indexed: 12/20/2022]
Abstract
Candida parapsilosis is a human fungal pathogen with increasing global significance. Understanding how macrophages respond to C. parapsilosis at the molecular level will facilitate the development of novel therapeutic paradigms. The complex response of murine macrophages to infection with C. parapsilosis was investigated at the level of gene expression using an Agilent mouse microarray. We identified 155 and 511 differentially regulated genes at 3 and 8h post-infection, respectively. Most of the upregulated genes encoded molecules involved in immune response and inflammation, transcription, signaling, apoptosis, cell cycle, electron transport and cell adhesion. Typical of the classically activated macrophages, there was significant upregulation of genes coordinating the production of inflammatory cytokines such as TNF, IL-1 and IL-15. Further, we used both primary murine macrophages and macrophages differentiated from human peripheral mononuclear cells to confirm the upregulation of the TNF-receptor family member TNFRSF9 that is associated with Th1 T-helper cell responses. Additionally, the microarray data indicate significant differences between the response to C. parapsilosis infection and that of C. albicans.
Collapse
Affiliation(s)
- Tibor Németh
- Department of Microbiology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Adél Tóth
- Department of Microbiology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Zsuzsanna Hamari
- Department of Microbiology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - András Falus
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Katalin Éder
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Allan J Guimaraes
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, New York, NY 10461, USA
| | - Joshua D Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, New York, NY 10461, USA
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| |
Collapse
|
50
|
Treviño-Rangel RDJ, Rodríguez-Sánchez IP, Elizondo-Zertuche M, Martínez-Fierro ML, Garza-Veloz I, Romero-Díaz VJ, González JG, González GM. Evaluation of in vivo pathogenicity of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis with different enzymatic profiles in a murine model of disseminated candidiasis. Med Mycol 2014; 52:240-5. [PMID: 24577011 DOI: 10.1093/mmy/myt019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Six isolates of the Candida parapsilosis complex with different enzymatic profiles were used to induce systemic infection in immunocompetent BALB/c mice. Fungal tissue burden was determined on days 2, 5, 10, and 15 post challenge. The highest fungal load irrespective of post-infection day was detected in the kidney, followed by the spleen, lung, and liver, with a tendency for the fungal burden to decrease by day 15 in all groups. Significant differences among the strains were not detected, suggesting that the three species of the "psilosis" group possess a similar pathogenic potential in disseminated candidiasis regardless of their enzymatic profiles.
Collapse
Affiliation(s)
- Rogelio de J Treviño-Rangel
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | | | | | | | | | | | | | | |
Collapse
|