1
|
Birkelbach J, Seyfert CE, Walesch S, Müller R. Harnessing Gram-negative bacteria for novel anti-Gram-negative antibiotics. Microb Biotechnol 2024; 17:e70032. [PMID: 39487848 PMCID: PMC11531245 DOI: 10.1111/1751-7915.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/01/2024] [Indexed: 11/04/2024] Open
Abstract
Natural products have proven themselves as a valuable resource for antibiotics. However, in view of increasing antimicrobial resistance, there is an urgent need for new, structurally diverse agents that have the potential to overcome resistance and treat Gram-negative pathogens in particular. Historically, the search for new antibiotics was strongly focussed on the very successful Actinobacteria. On the other hand, other producer strains have been under-sampled and their potential for the production of bioactive natural products has been underestimated. In this mini-review, we highlight prominent examples of novel anti-Gram negative natural products produced by Gram-negative bacteria that are currently in lead optimisation or preclinical development. Furthermore, we will provide insights into the considerations and strategies behind the discovery of these agents and their putative applications.
Collapse
Affiliation(s)
- Joy Birkelbach
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Saarland University Department of PharmacySaarbrückenGermany
- German Centre for Infection Research (DZIF), Partner Site Hannover‐BraunschweigBraunschweigGermany
| | - Carsten E. Seyfert
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Saarland University Department of PharmacySaarbrückenGermany
- German Centre for Infection Research (DZIF), Partner Site Hannover‐BraunschweigBraunschweigGermany
| | - Sebastian Walesch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Saarland University Department of PharmacySaarbrückenGermany
- German Centre for Infection Research (DZIF), Partner Site Hannover‐BraunschweigBraunschweigGermany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Saarland University Department of PharmacySaarbrückenGermany
- German Centre for Infection Research (DZIF), Partner Site Hannover‐BraunschweigBraunschweigGermany
| |
Collapse
|
2
|
Lindig A, Schwarz J, Hubmann G, Rosenthal K, Lütz S. Bivariate One Strain Many Compounds Designs Expand the Secondary Metabolite Production Space in Corallococcus coralloides. Microorganisms 2023; 11:2592. [PMID: 37894250 PMCID: PMC10609524 DOI: 10.3390/microorganisms11102592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The scarcely investigated myxobacterium Corallococcus coralloides holds a large genome containing many uncharacterized biosynthetic gene clusters (BGCs) that potentially encode the synthesis of entirely new natural products. Despite its promising genomic potential, suitable cultivation conditions have not yet been found to activate the synthesis of new secondary metabolites (SMs). Finding the right cultivation conditions to activate BGCs in the genome remains a major bottleneck, and its full biosynthetic potential has so far not been determined. We therefore applied a bivariate "one strain many compounds" (OSMAC) approach, using a combination of two elicitor changes at once, for the activation of BGCs and concomitant SM production by C. coralloides. The screening was carried out in Duetz-System 24-well plates, applying univariate and bivariate OSMAC conditions. We combined biotic additives and organic solvents with a complex growth medium for univariate conditions and with minimal medium for bivariate conditions. The success in the activation of BGCs was evaluated by determining the number of new mass features detected in the respective extracts. We found synergistic effects in the bivariate OSMAC designs, evidenced by the detection of completely new mass features in the bivariate OSMAC experiments, which were not detected in the univariate OSMAC designs with only one elicitor. Overall, the bivariate OSMAC screening led to 55 new mass features, which were not detected in the univariate OSMAC design. Molecular networks revealed that these new mass features embody potential novel natural compounds and chemical derivatives like the N-acyl fatty amine N-pentyloctadecanamide and possibly sulfur-containing natural products. Hence, the presence of multiple elicitors in the bivariate OSMAC designs successfully activated the biosynthetic potential in C. coralloides. We propose bivariate OSMAC designs with a complex combination of elicitors as a straightforward strategy to robustly expand the SM space of microorganisms with large genomes.
Collapse
Affiliation(s)
- Anton Lindig
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Jenny Schwarz
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Georg Hubmann
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Katrin Rosenthal
- School of Science, Constructor University, 28759 Bremen, Germany;
| | - Stephan Lütz
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| |
Collapse
|
3
|
Wang H, Han Y, Wang X, Jia Y, Zhang Y, Müller R, Huo L. Genome Mining of Myxopeptins Reveals a Class of Lanthipeptide-Derived Linear Dehydroamino Acid-Containing Peptides from Myxococcus sp. MCy9171. ACS Chem Biol 2023; 18:2163-2169. [PMID: 37703191 DOI: 10.1021/acschembio.3c00265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Myxobacteria exhibit a substantial capacity to produce bioactive natural products. The biosynthetic potential of ribosomally synthesized and post-translationally modified peptides (RiPPs) from myxobacteria remains largely underexplored. In our study, we identified a novel lanthipeptide-like biosynthetic pathway, mcy from Myxococcus sp. MCy9171, which was reconstituted in E. coli and in vitro proteolysis. Structural elucidation demonstrated that a series of dehydroamino acids were installed by an orphan McyB dehydratase onto the five McyA core peptides, named myxopeptins. Interestingly, compared with the canonical biosynthetic machinery of class I lanthipeptides, neither Cys residues existed in the diverse core regions, nor any LanC cyclase homologue was encoded in the mcy pathway. Thus, we propose myxopeptins as members of a new subclass of RiPPs, named lanthipeptide-derived linear dehydroamino acid-containing peptides (LDPs), which contain dehydrated amino acids as the class-defining post-translational modifications. Furthermore, sequence similarity network (SSN) analysis revealed the wide distribution of the biosynthetic potential of LDPs in various microbial phyla, implying a co-evolutionary scenario between the precursor peptide and class I lanthipeptide biosynthetic enzymes.
Collapse
Affiliation(s)
- Huimei Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Yu Han
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Xiaotong Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Yujia Jia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Rolf Müller
- Helmholtz International Laboratory, Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8 1, 66123 Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Campus E8 1, 66123 Saarbrücken, Germany
| | - Liujie Huo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
4
|
Kikuchi Y, Kawashima M, Iwatsuki M, Kimishima A, Tsutsumi H, Asami Y, Inahashi Y. Comprehensive analysis of biosynthetic gene clusters in bacteria and discovery of Tumebacillus as a potential producer of natural products. J Antibiot (Tokyo) 2023; 76:316-323. [PMID: 36991235 DOI: 10.1038/s41429-023-00609-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/03/2023] [Accepted: 02/26/2023] [Indexed: 03/30/2023]
Abstract
Limited microbial genera such as Streptomyces have served as sources of natural products (NPs), whereas most others have been less investigated. The vast accumulation of genomic data available in the NCBI database enables us to bioinformatically estimate the ability of other microbial groups to produce NPs. We analyzed 21,052 complete bacterial genome sequences using antiSMASH and compared the average numbers of biosynthetic gene clusters (BGCs) related to polyketides, non-ribosomal peptides, and/or terpenes biosynthesis at the genus level. Our bioinformatic analyses showed that Tumebacillus has 5-15 BGCs and is a promising NP producer. We searched for NPs from the culture broth of Tumebacillus permanentifrigoris JCM 14557T and found two novel compounds (tumebacin with anti-Bacillus activity and tumepyrazine) and identified two known compounds. Our results highlight the diversity of sources of NPs awaiting discovery.
Collapse
|
5
|
de Carvalho LC, de Almeida Junior A, Ribeiro FS, Angolini CFF. Unveiling Microbial Chemical Interactions Based on Metabolomics Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:51-70. [PMID: 37843805 DOI: 10.1007/978-3-031-41741-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Microorganisms are ubiquitous in diverse habitats and studying their chemical interactions with the environment and comprehend its complex relations with both hosts and environment, are crucial for the development of strategies to control microbial diseases. This chapter discusses the importance of studying microorganisms with agricultural benefits, using specialized metabolites as examples. Herein we highlight the challenges and opportunities in utilizing microorganisms as alternatives to synthetic pesticides and fertilizers in agriculture. Genome-guided investigations and improved analytical methodologies are necessary to characterize diverse and complex biomolecules produced by microorganisms. Predicting and isolating bioproducts based on genetic information have become a focus for researchers, aided by tools like antiSMASH, BiG-SCAPE, PRISM, and others. However, translating genomic data into practical applications can be complex. Therefore, integrating genomics, transcriptomics, and metabolomics enhances chemical characterization, aiding in discovering new metabolic pathways and specialized metabolites. Additionally, elicitation is one promising strategy to enhance beneficial metabolite production. Finally, identify and characterize microbial secondary metabolites remain challenging due to their low production, complex chemical structure characterization and different environmental factors necessary for metabolite in vitro production.
Collapse
Affiliation(s)
- Laís Castro de Carvalho
- Mass Spectrometry and Chemical Ecology Laboratory (MC-CELL), Center for Natural and Human Sciences, University of ABC (UFABC), São Paulo, Brazil
| | - Arnaldo de Almeida Junior
- Mass Spectrometry and Chemical Ecology Laboratory (MC-CELL), Center for Natural and Human Sciences, University of ABC (UFABC), São Paulo, Brazil
| | - Fernanda Silva Ribeiro
- Mass Spectrometry and Chemical Ecology Laboratory (MC-CELL), Center for Natural and Human Sciences, University of ABC (UFABC), São Paulo, Brazil
| | - Célio Fernando Figueiredo Angolini
- Mass Spectrometry and Chemical Ecology Laboratory (MC-CELL), Center for Natural and Human Sciences, University of ABC (UFABC), São Paulo, Brazil.
| |
Collapse
|
6
|
Boopathi S, Vashisth R, Mohanty AK, Jia AQ, Sivakumar N, Alharbi NS, Khaled JM, Juliet A, Arockiaraj J. Investigation of interspecies crosstalk between probiotic Bacillus subtilis BR4 and Pseudomonas aeruginosa using metabolomics analysis. Microb Pathog 2022; 166:105542. [PMID: 35439554 DOI: 10.1016/j.micpath.2022.105542] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
Abstract
Pseudomonas aeruginosa (PA) is an opportunistic pathogen that causes high mortality in cystic fibrosis patients. Treatment failures often occur due to the emergence of antibiotic resistance. Inhibition of virulence factors production without suppressing the growth of the pathogens is a potential alternative strategy to control the antibiotic resistance. In order to accomplish, three different interaction studies were performed using Bacillus subtilis BR4, PA and their extracellular contents. Firstly, co-cultivation was performed with different cell density of BR4 or PA. In co-culture setup (F), high cell density of BR4 significantly inhibits the biofilm formation of PA in a growth-independent manner (p < 0.01). To substantiate the biofilm inhibition, LC-MS/MS was performed and metabolic profile of monocultures and cocultures were compared. Multivariate analysis corroborated that metabolic profile of coculture setup (F) is drastically different from other coculture and monoculture setups. To check the effect of extracellular content of PA on BR4, supernatant of PA was extracted with ethyl acetate and different concentration of that extract (PA-EXT) was supplemented with BR4 culture. Exogenous supplementation PA-EXT (40 μg/mL) led to increased biofilm inhibitory activity (p < 0.01) in BR4. Further, to check the effect of extracellular content of BR4, PA was grown in the supernatant of BR4. PA survives in the spent media of BR4 without biofilm formation. Though 50% spent media of BR4 was replaced with fresh media, PA could not produce biofilm. In support of this, LC-MS/MS analysis has revealed that abundance of quorum sensing (QS) signals was reduced in the spent media grown PA than control. Furthermore, BR4 protects zebrafish larvae (Danio rerio) against PA infection and increases their survival rate (p < 0.05). We found that PA-induced oxidative stress and apoptosis were also significantly reduced in the BR4-pretreated larval group than control group. These results clearly indicate that BR4 exerts growth-independent QS inhibition in PA, suggesting that it could be used as a probiotic for future therapeutic interventions.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | | | - Ashok Kumar Mohanty
- Cell Biology and Proteomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132 001, Haryana, India
| | - Ai-Qun Jia
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry Education, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Natesan Sivakumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu, India.
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Annie Juliet
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, University Station A4800, Austin, TX, 78712, USA
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
7
|
Shah AM, Yang W, Mohamed H, Zhang Y, Song Y. Microbes: A Hidden Treasure of Polyunsaturated Fatty Acids. Front Nutr 2022; 9:827837. [PMID: 35369055 PMCID: PMC8968027 DOI: 10.3389/fnut.2022.827837] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 12/26/2022] Open
Abstract
Microbes have gained a lot of attention for their potential in producing polyunsaturated fatty acids (PUFAs). PUFAs are gaining scientific interest due to their important health-promoting effects on higher organisms including humans. The current sources of PUFAs (animal and plant) have associated limitations that have led to increased interest in microbial PUFAs as most reliable alternative source. The focus is on increasing the product value of existing oleaginous microbes or discovering new microbes by implementing new biotechnological strategies in order to compete with other sources. The multidisciplinary approaches, including metabolic engineering, high-throughput screening, tapping new microbial sources, genome-mining as well as co-culturing and elicitation for the production of PUFAs, have been considered and discussed in this review. The usage of agro-industrial wastes as alternative low-cost substrates in fermentation for high-value single-cell oil production has also been discussed. Multidisciplinary approaches combined with new technologies may help to uncover new microbial PUFA sources that may have nutraceutical and biotechnological importance.
Collapse
Affiliation(s)
- Aabid Manzoor Shah
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China
| | - Wu Yang
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China
| | - Hassan Mohamed
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Yingtong Zhang
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuanda Song
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China
| |
Collapse
|
8
|
Saccharopolyspora karakumensis sp. nov., Saccharopolyspora elongata sp. nov., Saccharopolyspora aridisoli sp. nov., Saccharopolyspora terrae sp. nov. and their biotechnological potential revealed by genome analysis. Syst Appl Microbiol 2021; 44:126270. [PMID: 34653842 DOI: 10.1016/j.syapm.2021.126270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/20/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022]
Abstract
Exploration of unexplored habitats for novel actinobacteria with high bioactivity potential holds great promise in the search for novel entities. During the course of isolation of actinobacteria from desert soils, four actinobacteria, designated as 5K548T, 7K502T, 16K309T and 16K404T, were isolated from the Karakum Desert and their bioactivity potential as well as taxonomic provenances were revealed by comprehensive genome analyses. Pairwise sequence analyses of the 16S rRNA genes indicated that the four strains are representatives of putatively novel taxa within the prolific actinobacterial genus Saccharopolyspora. The strains have typical chemotaxonomic characteristics of the genus Saccharopolyspora by having meso-diaminopimelic acid as diagnostic diaminoacid, arabinose, galactose and ribose as whole-cell sugars. Consistent with this assignment, all of the isolates contained phosphatidylcholine in their polar lipid profiles and MK-9(H4) as the predominant menaquinone. The sizes of the genomes of the isolates ranged from 6.0 to 10.2 Mb and the associated G + C contents from 69.6 to 69.7 %. Polyphasic characterizations including determination of overall genome relatedness indices revealed that the strains are representatives of four novel species in the genus Saccharopolyspora. Consequently, isolates 5K548T, 7K502T, 16K404T and 16K309T are proposed as novel Saccharopolyspora species for which the names of Saccharopolyspora karakumensis sp. nov., Saccharopolyspora elongata sp. nov., Saccharopolyspora aridisoli sp. nov. and Saccharopolyspora terrae sp. nov. are proposed, respectively. Comprehensive genome analysis for biosynthetic gene clusters showed that the strains have high potential for novel secondary metabolites. Moreover, the strains harbour many antimicrobial resistance genes providing more evidence for their potentiality for bioactive metabolites.
Collapse
|
9
|
Rouhizohrab N, Mohammadipanah F. Thermostable Alkaline Serine Protease Production by the Soil Myxobacterium of Archangium sp. UTMC 4504. Ind Biotechnol (New Rochelle N Y) 2021. [DOI: 10.1089/ind.2020.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nasim Rouhizohrab
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
El-Sayed ASA, Shindia AA, AbouZeid A, Koura A, Hassanein SE, Ahmed RM. Triggering the biosynthetic machinery of Taxol by Aspergillus flavipes via cocultivation with Bacillus subtilis: proteomic analyses emphasize the chromatin remodeling upon fungal-bacterial interaction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39866-39881. [PMID: 33768456 DOI: 10.1007/s11356-021-13533-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Attenuating the Taxol biosynthesis by fungi with storage and subculturing is the major challenge that limits their further industrial applications. Aspergillus flavipes has been reported as a potent Taxol producer, with plausible increasing to its Taxol yield upon coculturing with the microbiome of Podocarpus gracilior (El-Sayed et al., Process Biochemistry 76:55-67, 2019a; Scientific Reports 9, 2019b; Enzyme and Microbial Technology 131, 2019c); however, the identity of these microbial inducers remains ambiguous. Thus, this study was to assess the potency of individual microbes to trigger the Taxol biosynthesis by A. flavipes and to unravel the differentially expressed protein in response to bacterial interaction. Among the 25 bacterial endophytes of P. gracilior, Bacillus subtilis was the potent isolate enhancing the Taxol yield of A. flavipes by ~1.6-fold. Strikingly, this bacterial elicitor displayed a reliable inhibition to the growth of A. flavipes, so the released antifungal compound by B. subtilis could be the same signals for triggering the expression of A. flavipes Taxol synthesis. The highest Taxol yield by A. flavipes was obtained with the viable cells of B. subtilis, ensuring the pivotality of physical intimate bacterial-fungal interaction. Differential proteome of the cocultures A. flavipes and B. subtilis as well as the axenic A. flavipes was conducted by LC-MS/MS. From the total of 106 identified proteins, 50 proteins were significantly expressed, 47 were upregulated ones, and 59 were downregulated ones for the cocultures normalizing to the axenic one. From the Gene Ontology (GO) and KEGG enrichment analyses, the cellular process, primary metabolic process, and nitrogen compound metabolic process were significantly changed in the coculture normalizing to monoculture of A. flavipes. The molecular function terms (histones H2B, H2A, peptidyl-prolyl cis-trans isomerase, and nucleoside-diphosphate kinase (NDPK)) were the highly significantly expressed proteins of A. flavipes in response to B. subtilis, with strong correlation to triggering of Taxol biosynthesis. The intimate interaction of A. flavipes with B. subtilis strongly modulates the Taxol biosynthetic machinery of A. flavipes by modulating the chromatin remodeling.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Ahmed A Shindia
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Azza AbouZeid
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Alaa Koura
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Sameh E Hassanein
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center, Cairo, Egypt
| | - Rania M Ahmed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
11
|
Lara AC, Corretto E, Kotrbová L, Lorenc F, Petříčková K, Grabic R, Chroňáková A. The Genome Analysis of the Human Lung-Associated Streptomyces sp. TR1341 Revealed the Presence of Beneficial Genes for Opportunistic Colonization of Human Tissues. Microorganisms 2021; 9:1547. [PMID: 34442631 PMCID: PMC8401907 DOI: 10.3390/microorganisms9081547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/17/2021] [Indexed: 12/16/2022] Open
Abstract
Streptomyces sp. TR1341 was isolated from the sputum of a man with a history of lung and kidney tuberculosis, recurrent respiratory infections, and COPD. It produces secondary metabolites associated with cytotoxicity and immune response modulation. In this study, we complement our previous results by identifying the genetic features associated with the production of these secondary metabolites and other characteristics that could benefit the strain during its colonization of human tissues (virulence factors, modification of the host immune response, or the production of siderophores). We performed a comparative phylogenetic analysis to identify the genetic features that are shared by environmental isolates and human respiratory pathogens. The results showed a high genomic similarity of Streptomyces sp. TR1341 to the plant-associated Streptomyces sp. endophyte_N2, inferring a soil origin of the strain. Putative virulence genes, such as mammalian cell entry (mce) genes were not detected in the TR1341's genome. The presence of a type VII secretion system, distinct from the ones found in Mycobacterium species, suggests a different colonization strategy than the one used by other actinomycete lung pathogens. We identified a higher diversity of genes related to iron acquisition and demonstrated that the strain produces ferrioxamine B in vitro. These results indicate that TR1341 may have an advantage in colonizing environments that are low in iron, such as human tissue.
Collapse
Affiliation(s)
- Ana Catalina Lara
- Institute of Soil Biology, Biology Centre Academy of Sciences of The Czech Republic, Na Sádkách 702/7, 37005 České Budějovice, Czech Republic; (A.C.L.); (E.C.); (L.K.); (F.L.)
| | - Erika Corretto
- Institute of Soil Biology, Biology Centre Academy of Sciences of The Czech Republic, Na Sádkách 702/7, 37005 České Budějovice, Czech Republic; (A.C.L.); (E.C.); (L.K.); (F.L.)
| | - Lucie Kotrbová
- Institute of Soil Biology, Biology Centre Academy of Sciences of The Czech Republic, Na Sádkách 702/7, 37005 České Budějovice, Czech Republic; (A.C.L.); (E.C.); (L.K.); (F.L.)
| | - František Lorenc
- Institute of Soil Biology, Biology Centre Academy of Sciences of The Czech Republic, Na Sádkách 702/7, 37005 České Budějovice, Czech Republic; (A.C.L.); (E.C.); (L.K.); (F.L.)
| | - Kateřina Petříčková
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studničkova 7, 12800 Prague 2, Czech Republic;
- Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 37005 České Budějovice, Czech Republic
| | - Roman Grabic
- Faculty of Fisheries and Protection of Waters, University of South Bohemia, Zátiší 728/II, 38925 Vodňany, Czech Republic;
| | - Alica Chroňáková
- Institute of Soil Biology, Biology Centre Academy of Sciences of The Czech Republic, Na Sádkách 702/7, 37005 České Budějovice, Czech Republic; (A.C.L.); (E.C.); (L.K.); (F.L.)
| |
Collapse
|
12
|
Mohamed H, Hassane A, Rawway M, El-Sayed M, Gomaa AER, Abdul-Raouf U, Shah AM, Abdelmotaal H, Song Y. Antibacterial and cytotoxic potency of thermophilic Streptomyces werraensis MI-S.24-3 isolated from an Egyptian extreme environment. Arch Microbiol 2021; 203:4961-4972. [PMID: 34263338 DOI: 10.1007/s00203-021-02487-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022]
Abstract
The need for novel and active antibiotics specially from actinomycetes is essential due to new and drug-resistant pathogens. In this study, 87 actinomycetes were isolated, and 18 strains among them characterized as thermophilic actinomycetes. Further fractionation and preliminary antibacterial activities indicated that one strain, coded as MI-S.24-3, showed good antibacterial activity. Based on the phenotypic, genomic, phylogenetic, and biochemical analyses, MI-S.24-3 was identified as Streptomyces werraensis. Results demonstrated that the ethyl acetate active fraction showed maximum antibacterial activity against Staphylococcus aureus and Escherichia coli with MIC (12.7 ± 0.1 and 18.3 ± 0.2 mg/mL), and MBC (96.5 ± 1.4 and 91.5 ± 0.7 mg/mL), respectively, with determination of time kill kinetics assay. The active fraction showed moderate-to-weak cytotoxic effects against human lung carcinoma (A549 cells), breast cancer cell line (MCF-7), and human cervical carcinoma (HELA cells) with a IC50 of (23.8 ± 1.2, 54 ± 1.8, 96.4 ± 3.2 μg/mL, respectively). Active components were characterised by different chemically volatile, ester, and lactone compounds, determined by GC-MS coupled with daughter ions of (GC-MS/MS). Notably, erucic acid and reynosin identified compounds are rare metabolites produced by Streptomyces werraensis. Our findings demonstrated that the MI-S.24-3 strain could be a potential source for active compounds of biomedical and pharmaceutical interest.
Collapse
Affiliation(s)
- Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Abdallah Hassane
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Mohammed Rawway
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
- Biology Department, College of Science, Jouf University, Sakakah, 2014, Saudi Arabia
| | - Mohamed El-Sayed
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
- Department of Biology, Faculty of Science and Arts, Northern Border University, Rafha, Saudi Arabia
| | - Abd El-Rahman Gomaa
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Usama Abdul-Raouf
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Aabid Manzoor Shah
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Heba Abdelmotaal
- Institute of Microbe and Host Health, Linyi University, Linyi, 276005, China
- Department of Microbiology, Soil, Water, Environment, and Microbiology Research Institute, Agriculture Research Centre, Giza, 12619, Egypt
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
13
|
Sponge-associated sp . RM66 metabolome induction with N-acetylglucosamine: Antibacterial, antifungal and anti-trypanosomal activities. Saudi J Biol Sci 2021; 28:4691-4698. [PMID: 34354456 PMCID: PMC8324951 DOI: 10.1016/j.sjbs.2021.04.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022] Open
Abstract
The marine sponge Amphimedon sp., collected from Hurghada (Egypt) was investigated for its sponge-derived actinomycetes diversity. Nineteen actinomycetes were cultivated and phylogenetically identified using 16S rDNA gene sequencing were carried out. The strains belong to genera Kocuria, Dietzia, Micrococcus, Microbacterium and Streptomyces. Many silent biosynthetic genes clusters were investigated using genome sequencing of actinomycete strains and has revealed in particular the genus Streptomyces that has indicated their exceptional capacity for the secondary metabolites production that not observed under classical cultivation conditions. In this study, the effect of N-acetylglucosamine on the metabolome of Streptomyces sp. RM66 was investigated using three actinomycetes media (ISP2, M1 and MA). In total, twelve extracts were produced using solid and liquid fermentation approaches. Liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS) data were analysed using metabolomics tools to compare natural product production across all crude extracts. Our study highlighted the elicitation effect of N-acetylglucosamine on the secondary metabolite profiles of Streptomyces sp. RM66. These results highlight the of N-acetylglucosamine application as an elicitor to induce the cryptic metabolites and for increasing the chemical diversity. All the twelve extracts were tested for their antibacterial activity was tested against Staphylococcus aureus NCTC 8325, antifungal activity against Candida albicans 5314 (ATCC 90028) and anti-trypanosomal activity against Trypanosoma brucei brucei. Extract St1 showed the most potent one with activities 2.3, 3.2 and 4.7 ug/ml as antibacterial, antifungal and anti-trypanosomal, respectively.
Collapse
|
14
|
Vij R, Hube B, Brunke S. Uncharted territories in the discovery of antifungal and antivirulence natural products from bacteria. Comput Struct Biotechnol J 2021; 19:1244-1252. [PMID: 33680363 PMCID: PMC7905183 DOI: 10.1016/j.csbj.2021.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/26/2022] Open
Abstract
Many fungi can cause deadly diseases in humans, and nearly every human will suffer from some kind of fungal infection in their lives. Only few antifungals are available, and some of these fail to treat intrinsically resistant species and the ever-increasing number of fungal strains that have acquired resistance. In nature, bacteria and fungi display versatile interactions that range from friendly co-existence to predation. The first antifungal drugs, nystatin and amphotericin B, were discovered in bacteria as mediators of such interactions, and bacteria continue to be an important source of antifungals. To learn more about the ecological bacterial-fungal interactions that drive the evolution of natural products and exploit them, we need to identify environments where such interactions are pronounced, and diverse. Here, we systematically analyze historic and recent developments in this field to identify potentially under-investigated niches and resources. We also discuss alternative strategies to treat fungal infections by utilizing the antagonistic potential of bacteria to target fungal stress pathways and virulence factors, and thereby suppress the evolution of antifungal resistance.
Collapse
Affiliation(s)
- Raghav Vij
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Germany
| |
Collapse
|
15
|
Genomic insight into a novel actinobacterium, Actinomadura rubrisoli sp. nov., reveals high potential for bioactive metabolites. Antonie van Leeuwenhoek 2021; 114:195-208. [DOI: 10.1007/s10482-020-01511-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
|
16
|
Hussain A, Hassan QP, Shouche YS. New approaches for antituberculosis leads from Actinobacteria. Drug Discov Today 2020; 25:2335-2342. [PMID: 33069935 DOI: 10.1016/j.drudis.2020.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 09/11/2020] [Accepted: 10/09/2020] [Indexed: 12/31/2022]
Abstract
Bioactive metabolites derived from the phylum Actinobacteria represent many of the existing antimicrobial drugs. Compared with other bacterial pathogens, direct preliminary screening by diffusion assays is a limiting factor against Mycobacterium tuberculosis (Mtb) and different methodologies have been used to improve the search for new molecules. However, the concern remains that most of the previously discovered molecules replicate by conventional procedures. The combination of multidisciplinary approaches with new technologies could advance the discovery of new leads against Mtb like considering the unexplored Actinobacteria jointly with selective and integrative procedures.
Collapse
Affiliation(s)
- Aehtesham Hussain
- National Centre for Microbial Resource (NCMR) - National Centre for Cell Science (NCCS), Pune, Maharashtra 411021, India.
| | - Qazi Parvaiz Hassan
- Microbial Biotechnology Division, CSIR - Indian Institute of Integrative Medicine, Jammu & Kashmir 190005, India
| | - Yogesh S Shouche
- National Centre for Microbial Resource (NCMR) - National Centre for Cell Science (NCCS), Pune, Maharashtra 411021, India
| |
Collapse
|
17
|
Gamaleldin NM, Bakeer W, Sayed AM, Shamikh YI, El-Gendy AO, Hassan HM, Horn H, Abdelmohsen UR, Hozzein WN. Exploration of Chemical Diversity and Antitrypanosomal Activity of Some Red Sea-Derived Actinomycetes Using the OSMAC Approach Supported by LC-MS-Based Metabolomics and Molecular Modelling. Antibiotics (Basel) 2020; 9:E629. [PMID: 32971728 PMCID: PMC7558093 DOI: 10.3390/antibiotics9090629] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022] Open
Abstract
In the present study, we investigated the actinomycetes associated with the Red Sea-derived soft coral Sarcophyton glaucum in terms of biological and chemical diversity. Three strains were cultivated and identified to be members of genera Micromonospora, Streptomyces, and Nocardiopsis; out of them, Micromonospora sp. UR17 was putatively characterized as a new species. In order to explore the chemical diversity of these actinobacteria as far as possible, they were subjected to a series of fermentation experiments under altering conditions, that is, solid and liquid fermentation along with co-fermentation with a mycolic acid-containing strain, namely Nocardia sp. UR23. Each treatment was found to affect these actinomycetes differently in terms of biological activity (i.e., antitrypanosomal activity) and chemical profiles evidenced by LC-HRES-MS-based metabolomics and multivariate analysis. Thereafter, orthogonal projections to latent structures discriminant analysis (OPLS-DA) suggested a number of metabolites to be associated with the antitrypanosomal activity of the active extracts. The subsequent in silico screenings (neural networking-based and docking-based) further supported the OPLS-DA results and prioritized desferrioxamine B (3), bafilomycin D (10), and bafilomycin A1 (11) as possible antitrypanosomal agents. Our approach in this study can be applied as a primary step in the exploration of bioactive natural products, particularly those from actinomycetes.
Collapse
Affiliation(s)
- Noha M. Gamaleldin
- Department of Microbiology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo 11837, Egypt;
- Center for Drug Research and Development, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo 11837, Egypt
| | - Walid Bakeer
- Department of Microbiology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (W.B.); (A.O.E.-G.)
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| | - Yara I. Shamikh
- Department of Microbiology & Immunology, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
- Virology Department, Egyptian Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Ahmed O. El-Gendy
- Department of Microbiology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (W.B.); (A.O.E.-G.)
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
| | - Hannes Horn
- Independent Researcher, 69126 Heidelberg, Germany;
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
| | - Wael N. Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62512, Egypt
| |
Collapse
|
18
|
Actinomycetes from the Red Sea Sponge Coscinoderma mathewsi: Isolation, Diversity, and Potential for Bioactive Compounds Discovery. Microorganisms 2020; 8:microorganisms8050783. [PMID: 32456212 PMCID: PMC7285244 DOI: 10.3390/microorganisms8050783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/26/2022] Open
Abstract
The diversity of actinomycetes associated with the marine sponge Coscinoderma mathewsi collected from Hurghada (Egypt) was studied. Twenty-three actinomycetes were separated and identified based on the 16S rDNA gene sequence analysis. Out of them, three isolates were classified as novel species of the genera Micromonospora, Nocardia, and Gordonia. Genome sequencing of actinomycete strains has revealed many silent biosynthetic gene clusters and has shown their exceptional capacity for the production of secondary metabolites, not observed under classical cultivation conditions. Therefore, the effect of mycolic-acid-containing bacteria or mycolic acid on the biosynthesis of cryptic natural products was investigated. Sponge-derived actinomycete Micromonospora sp. UA17 was co-cultured using liquid fermentation with two mycolic acid-containing actinomycetes (Gordonia sp. UA19 and Nocardia sp. UA 23), or supplemented with pure mycolic acid. LC-HRESIMS data were analyzed to compare natural production across all crude extracts. Micromonospora sp. UA17 was rich with isotetracenone, indolocarbazole, and anthracycline analogs. Some co-culture extracts showed metabolites such as a chlorocardicin, neocopiamycin A, and chicamycin B that were not found in the respective monocultures, suggesting a mycolic acid effect on the induction of cryptic natural product biosynthetic pathways. The antibacterial, antifungal, and antiparasitic activities for the different cultures extracts were also tested.
Collapse
|
19
|
Ay H, Nouioui I, Klenk HP, Cetin D, Igual JM, Sahin N, Isik K. Genome-based classification of Micromonospora craterilacus sp. nov., a novel actinobacterium isolated from Nemrut Lake. Antonie Van Leeuwenhoek 2020; 113:791-801. [PMID: 32060815 DOI: 10.1007/s10482-020-01390-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/28/2020] [Indexed: 11/28/2022]
Abstract
A novel actinobacterial strain, designated NA12T, was isolated from coastal sediment sample of Nemrut Lake, a crater lake in eastern Anatolia, Turkey. The taxonomic position of the strain was established using a polyphasic approach. Cultural and chemotaxonomic characteristics of the strain were consistent with its classification within the family Micromonosporaceae. The 16S rRNA gene sequence analysis of strain NA12T showed that the strain closely related to M. radicis AZ1-13T, M. zingiberis PLAI 1-1T, M. craniella LHW63014T and M. endophytica 202201T with pairwise sequence identity values ranging from 99.4 to 99.3%. Digital DNA-DNA hybridization values between strain NA12T and the closely related type strains were ranged from 41.0 to 18.3% while the average nucleotide identity values were between 87.3 and 86.5%, which are well below the designed cut-off points of 70 and 95%, respectively. The G + C content of genomic DNA was 71.5%. Whole-cell hydrolysates of strain NA12T contained 3-hydroxydiaminopimelic acid and meso-diaminopimelic acid. Cell-wall sugars were composed of arabinose, fucose, glucose, mannose, rhamnose and xylose. The polar lipid profile contained phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol, phosphatidylglycerol, glycophospholipid, amino-phospholipid and two unidentified phospholipids. The predominant menaquinones were MK-9(H6) and MK-9(H4). Major fatty acids were iso-C16:0 and C17:1ω8c. Based upon the consensus of phenotypic and phylogenetic analyses as well as whole genome comparisons, strain NA12T (DSM 100982T = KCTC 39647T) is proposed to represent the type strain of a novel species, Micromonospora craterilacus sp. nov.
Collapse
Affiliation(s)
- Hilal Ay
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Ondokuz Mayis University, Samsun, Turkey.
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Demet Cetin
- Division of Science Education, Department of Mathematics and Science Education, Gazi Faculty of Education, Gazi University, 06500, Ankara, Turkey
| | - José M Igual
- Instituto de Recursos Naturales y Agrobiologia de Salamanca, Consejo Superior de Investigaciones Cientificas (IRNASA-CSIC), Salamanca, Spain
| | - Nevzat Sahin
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Ondokuz Mayis University, Samsun, Turkey
| | - Kamil Isik
- Department of Biology, Faculty of Science and Arts, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
20
|
Zhang F, Braun DR, Rajski SR, DeMaria D, Bugni TS. Enhypyrazinones A and B, Pyrazinone Natural Products from a Marine-Derived Myxobacterium Enhygromyxa sp. Mar Drugs 2019; 17:md17120698. [PMID: 31842310 PMCID: PMC6950740 DOI: 10.3390/md17120698] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 11/16/2022] Open
Abstract
To date, studies describing myxobacterial secondary metabolites have been relatively scarce in comparison to those addressing actinobacterial secondary metabolites. This realization suggests the immense potential of myxobacteria as an intriguing source of secondary metabolites with unusual structural features and a wide array of biological activities. Marine-derived myxobacteria are especially attractive due to their unique biosynthetic gene clusters, although they are more difficult to handle than terrestrial myxobacteria. Here, we report the discovery of two new pyrazinone-type molecules, enhypyrazinones A and B, from a marine-derived myxobacterium Enhygromyxa sp. Their structures were elucidated by HRESIMS and comprehensive NMR data analyses. Compounds 1 and 2, which contain a rare trisubstituted-pyrazinone core, represent a unique class of molecules from Enhygromyxa sp.
Collapse
Affiliation(s)
- Fan Zhang
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Doug R. Braun
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Scott R. Rajski
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Don DeMaria
- Sea Samples, 369 Westshore Drive, Summerland Key, FL 33042, USA
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI 53705, USA
- Correspondence: ; Tel.: +1-608-263-2519
| |
Collapse
|
21
|
Wibowo JT, Kellermann MY, Versluis D, Putra MY, Murniasih T, Mohr KI, Wink J, Engelmann M, Praditya DF, Steinmann E, Schupp PJ. Biotechnological Potential of Bacteria Isolated from the Sea Cucumber Holothuria leucospilota and Stichopus vastus from Lampung, Indonesia. Mar Drugs 2019; 17:E635. [PMID: 31717405 PMCID: PMC6891442 DOI: 10.3390/md17110635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022] Open
Abstract
In order to minimize re-discovery of already known anti-infective compounds, we focused our screening approach on understudied, almost untapped marine environments including marine invertebrates and their associated bacteria. Therefore, two sea cucumber species, Holothuria leucospilota and Stichopus vastus, were collected from Lampung (Indonesia), and 127 bacterial strains were identified by partial 16S rRNA-gene sequencing analysis and compared with the NCBI database. In addition, the overall bacterial diversity from tissue samples of the sea cucumbers H. leucospilota and S. vastus was analyzed using the cultivation-independent Illumina MiSEQ analysis. Selected bacterial isolates were grown to high densities and the extracted biomass was tested against a selection of bacteria and fungi as well as the hepatitis C virus (HCV). Identification of putative bioactive bacterial-derived compounds were performed by analyzing the accurate mass of the precursor/parent ions (MS1) as well as product/daughter ions (MS2) using high resolution mass spectrometry (HRMS) analysis of all active fractions. With this attempt we were able to identify 23 putatively known and two previously unidentified precursor ions. Moreover, through 16S rRNA-gene sequencing we were able to identify putatively novel bacterial species from the phyla Actinobacteria, Proteobacteria and also Firmicutes. Our findings suggest that sea cucumbers like H. leucospilota and S. vastus are promising sources for the isolation of novel bacterial species that produce compounds with potentially high biotechnological potential.
Collapse
Affiliation(s)
- Joko T. Wibowo
- Carl-von-Ossietzky University Oldenburg, Institute for Chemistry and Biology of the Marine Environment (ICBM), Schleusenstraße 1, D-26382 Wilhelmshaven, Germany; (M.Y.K.); (D.V.)
- Research Center for Oceanography LIPI, Jl. Pasir Putih Raya 1, Pademangan, Jakarta Utara 14430, Indonesia; (M.Y.P.); (T.M.)
| | - Matthias Y. Kellermann
- Carl-von-Ossietzky University Oldenburg, Institute for Chemistry and Biology of the Marine Environment (ICBM), Schleusenstraße 1, D-26382 Wilhelmshaven, Germany; (M.Y.K.); (D.V.)
| | - Dennis Versluis
- Carl-von-Ossietzky University Oldenburg, Institute for Chemistry and Biology of the Marine Environment (ICBM), Schleusenstraße 1, D-26382 Wilhelmshaven, Germany; (M.Y.K.); (D.V.)
| | - Masteria Y. Putra
- Research Center for Oceanography LIPI, Jl. Pasir Putih Raya 1, Pademangan, Jakarta Utara 14430, Indonesia; (M.Y.P.); (T.M.)
| | - Tutik Murniasih
- Research Center for Oceanography LIPI, Jl. Pasir Putih Raya 1, Pademangan, Jakarta Utara 14430, Indonesia; (M.Y.P.); (T.M.)
| | - Kathrin I. Mohr
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany; (K.I.M.); (J.W.)
| | - Joachim Wink
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany; (K.I.M.); (J.W.)
| | - Michael Engelmann
- TWINCORE-Centre for Experimental and Clinical Infection Research (Institute of Experimental Virology) Hannover. Feodor-Lynen-Str. 7-9, 30625 Hannover, Germany; (M.E.); (D.F.P.); (E.S.)
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Dimas F. Praditya
- TWINCORE-Centre for Experimental and Clinical Infection Research (Institute of Experimental Virology) Hannover. Feodor-Lynen-Str. 7-9, 30625 Hannover, Germany; (M.E.); (D.F.P.); (E.S.)
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
- Research Center for Biotechnology, Indonesian Institute of Science, Jl. Raya Bogor KM 46, 16911 Cibinong, Indonesia
| | - Eike Steinmann
- TWINCORE-Centre for Experimental and Clinical Infection Research (Institute of Experimental Virology) Hannover. Feodor-Lynen-Str. 7-9, 30625 Hannover, Germany; (M.E.); (D.F.P.); (E.S.)
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Peter J. Schupp
- Carl-von-Ossietzky University Oldenburg, Institute for Chemistry and Biology of the Marine Environment (ICBM), Schleusenstraße 1, D-26382 Wilhelmshaven, Germany; (M.Y.K.); (D.V.)
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstrasse 231, D-26129 Oldenburg, Germany
| |
Collapse
|
22
|
Biosynthesis of Polyketides in Streptomyces. Microorganisms 2019; 7:microorganisms7050124. [PMID: 31064143 PMCID: PMC6560455 DOI: 10.3390/microorganisms7050124] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 12/12/2022] Open
Abstract
Polyketides are a large group of secondary metabolites that have notable variety in their structure and function. Polyketides exhibit a wide range of bioactivities such as antibacterial, antifungal, anticancer, antiviral, immune-suppressing, anti-cholesterol, and anti-inflammatory activity. Naturally, they are found in bacteria, fungi, plants, protists, insects, mollusks, and sponges. Streptomyces is a genus of Gram-positive bacteria that has a filamentous form like fungi. This genus is best known as one of the polyketides producers. Some examples of polyketides produced by Streptomyces are rapamycin, oleandomycin, actinorhodin, daunorubicin, and caprazamycin. Biosynthesis of polyketides involves a group of enzyme activities called polyketide synthases (PKSs). There are three types of PKSs (type I, type II, and type III) in Streptomyces responsible for producing polyketides. This paper focuses on the biosynthesis of polyketides in Streptomyces with three structurally-different types of PKSs.
Collapse
|
23
|
Seyedsayamdost MR. Toward a global picture of bacterial secondary metabolism. J Ind Microbiol Biotechnol 2019; 46:301-311. [PMID: 30684124 DOI: 10.1007/s10295-019-02136-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/02/2019] [Indexed: 12/20/2022]
Abstract
Bacterial metabolism is comprised of primary metabolites, the intracellular molecules of life that enable growth and proliferation, and secondary metabolites, predominantly extracellular molecules that facilitate a microbe's interaction with its environment. While our knowledge of primary metabolism and its web of interconnected intermediates is quantitative and holistic, significant knowledge gaps remain in our understanding of the secondary metabolomes of bacteria. In this Perspective, I discuss the main challenges involved in obtaining a global, comprehensive picture of bacterial secondary metabolomes, specifically in biosynthetically "gifted" microbes. Recent methodological advances that can meet these challenges will be reviewed. Applications of these methods combined with ongoing innovations will enable a detailed picture of global secondary metabolomes, which will in turn shed light onto the biology, chemistry, and enzymology underlying natural products and simultaneously aid drug discovery.
Collapse
Affiliation(s)
- Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
24
|
Hussein EI, Jacob JH, Shakhatreh MAK, Al-Razaq MAA, Juhmani ASF, Cornelison CT. Detection of antibiotic-producing Actinobacteria in the sediment and water of Ma'in thermal springs (Jordan). Germs 2018; 8:191-198. [PMID: 30775338 DOI: 10.18683/germs.2018.1146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/05/2018] [Accepted: 11/11/2018] [Indexed: 11/08/2022]
Abstract
Introduction Detection of new Actinobacteria is significant to discover new antibiotics because development of new antibiotics is connected to the characterization of novel bacterial taxa. This study has focused on the identification and isolation of antibiotic-producing Actinobacteria from the sediment and the water of Ma'in thermal springs (48-59°C) situated in the center area of Jordan. Methods Samples of sediment and water were transferred to glucose yeast malt agar medium and Actinobacteria were cultivated, isolated and identified according to scanning electron microscopy and 16S rRNA gene analysis. Antibacterial activities of the isolates were then tested against different test bacteria by agar well diffusion method. Results Three different species of Actinobacteria were isolated (M1-1, M2-2, M3-2) from sediment samples. Based on 16S rRNA gene analysis, isolate M1-1 was found to have only 90% identity percentage with Nocardiopsis sp., however, isolates M2-2 and M3-2 were found to be closely related Streptomyces sp. (97%) and Nocardioides luteus (99%), respectively. The antibacterial activity showed that strain M1-1 is active against P. aeruginosa ATCC 2785 (inhibition zone, 9 mm). Strain M2-2 was found to be active against S. aureus ATCC 29213 (12 mm), B. cereus ATCC 11778 (11 mm), and E. coli ATCC 25922 (9 mm). In respect to strain M3-2, it was found to be active against S. aureus ATCC 29213 (14 mm) and B. cereus ATCC 11778 (9 mm). There were no actinobacterial isolates obtained from water samples despite their significant diversity revealed by our previous metagenomic analysis, which showed the presence of 13 different species dominated by Arthrobacter (an Actinobacterium belonging to family Actinomycetales). Conclusion There were 17 different Actinobacteria that could be detected in Ma'in thermal springs (13 unculturable species and 3 culturable species). The culturable Actinobacteria were found to have some antimicrobial activity. Further chemical analysis of the bioactive compounds is recommended.
Collapse
Affiliation(s)
- Emad I Hussein
- PhD, Department of Biological Sciences, Yarmouk University, P.O Box 566, Irbid 21163, Irbid, Jordan, Department of Food Science and Human Nutrition, College of Health and Applied Sciences, A'Sharqiyah University, Post Box 42, Ibra 400, Ibra, Sultanate of Oman
| | - Jacob H Jacob
- PhD, Department of Biological Sciences, Al al-Bayt University, P.O.Box 130040, Mafraq 25113, Jordan
| | - Muhamad Ali K Shakhatreh
- PhD, Department of Medical Laboratory Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Irbid, Jordan
| | - Mutaz A Abd Al-Razaq
- PhD, Department of Biological Sciences, Yarmouk University, P.O Box 566 Zip Code 21163, Irbid, Jordan
| | - Abdul-Salam F Juhmani
- MSc, Department of Environmental Science, Ca' Foscari University of Venice, Via Torino 155, 30170 Venice, Mestre, Italy
| | - Christopher T Cornelison
- PhD, Division of Research and Advanced Studies, Kennesaw State University, 365 Cobb Avenue, MD 0111, Kennesaw, GA 30144, USA
| |
Collapse
|
25
|
Mohr KI. Diversity of Myxobacteria-We Only See the Tip of the Iceberg. Microorganisms 2018; 6:E84. [PMID: 30103481 PMCID: PMC6164225 DOI: 10.3390/microorganisms6030084] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 11/20/2022] Open
Abstract
The discovery of new antibiotics is mandatory with regard to the increasing number of resistant pathogens. One approach is the search for new antibiotic producers in nature. Among actinomycetes, Bacillus species, and fungi, myxobacteria have been a rich source for bioactive secondary metabolites for decades. To date, about 600 substances could be described, many of them with antibacterial, antifungal, or cytostatic activity. But, recent cultivation-independent studies on marine, terrestrial, or uncommon habitats unequivocally demonstrate that the number of uncultured myxobacteria is much higher than would be expected from the number of cultivated strains. Although several highly promising myxobacterial taxa have been identified recently, this so-called Great Plate Count Anomaly must be overcome to get broader access to new secondary metabolite producers. In the last years it turned out that especially new species, genera, and families of myxobacteria are promising sources for new bioactive metabolites. Therefore, the cultivation of the hitherto uncultivable ones is our biggest challenge.
Collapse
Affiliation(s)
- Kathrin I Mohr
- Microbial Drugs (MWIS), Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany.
| |
Collapse
|
26
|
Zhang Q, Zhang J, Gavathiotis E. ICBS 2017 in Shanghai-Illuminating Life with Chemical Innovation. ACS Chem Biol 2018; 13:1111-1122. [PMID: 29677443 PMCID: PMC6855916 DOI: 10.1021/acschembio.8b00220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qi Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Albert Einstein College of Medicine, New York 10461, United States
| |
Collapse
|
27
|
Complex molecules, clever solutions – Enzymatic approaches towards natural product and active agent syntheses. Bioorg Med Chem 2018; 26:1285-1303. [DOI: 10.1016/j.bmc.2017.06.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/29/2017] [Accepted: 06/27/2017] [Indexed: 12/31/2022]
|
28
|
Hoffmann T, Krug D, Bozkurt N, Duddela S, Jansen R, Garcia R, Gerth K, Steinmetz H, Müller R. Correlating chemical diversity with taxonomic distance for discovery of natural products in myxobacteria. Nat Commun 2018; 9:803. [PMID: 29476047 PMCID: PMC5824889 DOI: 10.1038/s41467-018-03184-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 01/24/2018] [Indexed: 01/22/2023] Open
Abstract
Some bacterial clades are important sources of novel bioactive natural products. Estimating the magnitude of chemical diversity available from such a resource is complicated by issues including cultivability, isolation bias and limited analytical data sets. Here we perform a systematic metabolite survey of ~2300 bacterial strains of the order Myxococcales, a well-established source of natural products, using mass spectrometry. Our analysis encompasses both known and previously unidentified metabolites detected under laboratory cultivation conditions, thereby enabling large-scale comparison of production profiles in relation to myxobacterial taxonomy. We find a correlation between taxonomic distance and the production of distinct secondary metabolite families, further supporting the idea that the chances of discovering novel metabolites are greater by examining strains from new genera rather than additional representatives within the same genus. In addition, we report the discovery and structure elucidation of rowithocin, a myxobacterial secondary metabolite featuring an uncommon phosphorylated polyketide scaffold. It is thought that the chances for discovery of novel natural products increase by screening rare organisms. Here the authors analyse metabolites produced by over 2300 myxobacterial strains and, indeed, find a correlation between taxonomic distance and production of distinct secondary metabolite families.
Collapse
Affiliation(s)
- Thomas Hoffmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany
| | - Daniel Krug
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany
| | - Nisa Bozkurt
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Srikanth Duddela
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Rolf Jansen
- Helmholtz Centre for Infection Research (HZI), Department of Microbial Drugs, 38124, Braunschweig, Germany
| | - Ronald Garcia
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany
| | - Klaus Gerth
- Helmholtz Centre for Infection Research (HZI), Department of Microbial Drugs, 38124, Braunschweig, Germany
| | - Heinrich Steinmetz
- Helmholtz Centre for Infection Research (HZI), Department of Microbial Drugs, 38124, Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany.
| |
Collapse
|
29
|
Krishna Swaroop D, Ravi Kumar N, Nagender P, Jitender Dev G, Jagadeesh Babu N, Narsaiah B. Selectfluor-Mediated Synthesis of Fluoro Spiro 3(2H)-Furanone Derivatives via Domino Fluorination-Defluorination. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Desireddy Krishna Swaroop
- Fluoroorganic division; CSIR-Indian Institute of Chemical Technology; 500607 Tarnaka, Hyderabad India
| | - Nagiri Ravi Kumar
- Fluoroorganic division; CSIR-Indian Institute of Chemical Technology; 500607 Tarnaka, Hyderabad India
| | - Punna Nagender
- Fluoroorganic division; CSIR-Indian Institute of Chemical Technology; 500607 Tarnaka, Hyderabad India
| | - Gaddameedi Jitender Dev
- Fluoroorganic division; CSIR-Indian Institute of Chemical Technology; 500607 Tarnaka, Hyderabad India
| | - Nanubolu Jagadeesh Babu
- Centre for X-ray Crystallography; CSIR-Indian Institute of Chemical Technology; 500607 Tarnaka, Hyderabad India
| | - Banda Narsaiah
- Fluoroorganic division; CSIR-Indian Institute of Chemical Technology; 500607 Tarnaka, Hyderabad India
| |
Collapse
|
30
|
Surup F, Viehrig K, Rachid S, Plaza A, Maurer CK, Hartmann RW, Müller R. Crocadepsins-Depsipeptides from the Myxobacterium Chondromyces crocatus Found by a Genome Mining Approach. ACS Chem Biol 2018; 13:267-272. [PMID: 29220569 DOI: 10.1021/acschembio.7b00900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Analysis of the genome sequence of the myxobacterium Chondromyces crocatus Cm c5 revealed the presence of numerous cryptic megasynthetase gene clusters, one of which we here assign to two previously unknown chlorinated metabolites by a comparative gene inactivation and secondary metabolomics approach. Structure elucidation of these compounds revealed a unique cyclic depsipeptide skeleton featuring β- and δ-amide bonds of aspartic acid and 3-methyl ornithine moieties, respectively. Insights into their biosynthesis were obtained by targeted gene inactivation and feeding experiments employing isotope-labeled precursors. The compounds were produced ubiquitously by the species Chondromyces crocatus and were found to inhibit the carbon storage regulator-RNA interaction.
Collapse
Affiliation(s)
- Frank Surup
- Helmholtz Center
for Infection Research (HZI), Department Microbial Drugs, Inhoffenstraβe
7, 38124 Braunschweig, Germany
- German Centre for Infection Research Association (DZIF), partner site Hannover-Braunschweig, Inhoffenstraβe 7, 38124 Braunschweig, Germany
| | - Konrad Viehrig
- Helmholtz Institute for Pharmaceutical
Research Saarland (HIPS), Helmholtz Center for Infection Research
and Pharmaceutical Biotechnology, Saarland University, Campus, Building C2.3, 66123 Saarbrücken, Germany
| | - Shwan Rachid
- Helmholtz Institute for Pharmaceutical
Research Saarland (HIPS), Helmholtz Center for Infection Research
and Pharmaceutical Biotechnology, Saarland University, Campus, Building C2.3, 66123 Saarbrücken, Germany
| | - Alberto Plaza
- Helmholtz Institute for Pharmaceutical
Research Saarland (HIPS), Helmholtz Center for Infection Research
and Pharmaceutical Biotechnology, Saarland University, Campus, Building C2.3, 66123 Saarbrücken, Germany
| | - Christine K. Maurer
- Department of Drug Design & Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research Association (DZIF), partner site Hannover-Braunschweig, Inhoffenstraβe 7, 38124 Braunschweig, Germany
| | - Rolf W. Hartmann
- Department of Drug Design & Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research Association (DZIF), partner site Hannover-Braunschweig, Inhoffenstraβe 7, 38124 Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Center
for Infection Research (HZI), Department Microbial Drugs, Inhoffenstraβe
7, 38124 Braunschweig, Germany
- Helmholtz Institute for Pharmaceutical
Research Saarland (HIPS), Helmholtz Center for Infection Research
and Pharmaceutical Biotechnology, Saarland University, Campus, Building C2.3, 66123 Saarbrücken, Germany
- German Centre for Infection Research Association (DZIF), partner site Hannover-Braunschweig, Inhoffenstraβe 7, 38124 Braunschweig, Germany
| |
Collapse
|
31
|
Szamosvári D, Rütschlin S, Böttcher T. From pirates and killers: does metabolite diversity drive bacterial competition? Org Biomol Chem 2018. [DOI: 10.1039/c8ob00150b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article discusses interspecies competition by sets of closely related metabolites with significantly different biological activities.
Collapse
Affiliation(s)
- Dávid Szamosvári
- Department of Chemistry
- Konstanz Research School Chemical Biology
- University of Konstanz
- 78457 Konstanz
- Germany
| | - Sina Rütschlin
- Department of Chemistry
- Konstanz Research School Chemical Biology
- University of Konstanz
- 78457 Konstanz
- Germany
| | - Thomas Böttcher
- Department of Chemistry
- Konstanz Research School Chemical Biology
- University of Konstanz
- 78457 Konstanz
- Germany
| |
Collapse
|
32
|
Yang YJ, Wang Y, Li ZF, Gong Y, Zhang P, Hu WC, Sheng DH, Li YZ. Increasing on-target cleavage efficiency for CRISPR/Cas9-induced large fragment deletion in Myxococcus xanthus. Microb Cell Fact 2017; 16:142. [PMID: 28814300 PMCID: PMC5559782 DOI: 10.1186/s12934-017-0758-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The CRISPR/Cas9 system is a powerful tool for genome editing, in which the sgRNA binds and guides the Cas9 protein for the sequence-specific cleavage. The protocol is employable in different organisms, but is often limited by cell damage due to the endonuclease activity of the introduced Cas9 and the potential off-target DNA cleavage from incorrect guide by the 20 nt spacer. RESULTS In this study, after resolving some critical limits, we have established an efficient CRISPR/Cas9 system for the deletion of large genome fragments related to the biosynthesis of secondary metabolites in Myxococcus xanthus cells. We revealed that the high expression of a codon-optimized cas9 gene in M. xanthus was cytotoxic, and developed a temporally high expression strategy to reduce the cell damage from high expressions of Cas9. We optimized the deletion protocol by using the tRNA-sgRNA-tRNA chimeric structure to ensure correct sgRNA sequence. We found that, in addition to the position-dependent nucleotide preference, the free energy of a 20 nt spacer was a key factor for the deletion efficiency. CONCLUSIONS By using the developed protocol, we achieved the CRISPR/Cas9-induced deletion of large biosynthetic gene clusters for secondary metabolites in M. xanthus DK1622 and its epothilone-producing mutant. The findings and the proposals described in this paper were suggested to be workable in other organisms, for example, other Gram negative bacteria with high GC content.
Collapse
Affiliation(s)
- Ying-jie Yang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 People’s Republic of China
| | - Ye Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 People’s Republic of China
| | - Zhi-feng Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 People’s Republic of China
| | - Ya Gong
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 People’s Republic of China
| | - Peng Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 People’s Republic of China
| | - Wen-chao Hu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 People’s Republic of China
| | - Duo-hong Sheng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 People’s Republic of China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 People’s Republic of China
| |
Collapse
|
33
|
McCluskey K, Barker KB, Barton HA, Boundy-Mills K, Brown DR, Coddington JA, Cook K, Desmeth P, Geiser D, Glaeser JA, Greene S, Kang S, Lomas MW, Melcher U, Miller SE, Nobles DR, Owens KJ, Reichman JH, da Silva M, Wertz J, Whitworth C, Smith D. The U.S. Culture Collection Network Responding to the Requirements of the Nagoya Protocol on Access and Benefit Sharing. mBio 2017; 8:e00982-17. [PMID: 28811341 PMCID: PMC5559631 DOI: 10.1128/mbio.00982-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The U.S. Culture Collection Network held a meeting to share information about how culture collections are responding to the requirements of the recently enacted Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization to the Convention on Biological Diversity (CBD). The meeting included representatives of many culture collections and other biological collections, the U.S. Department of State, U.S. Department of Agriculture, Secretariat of the CBD, interested scientific societies, and collection groups, including Scientific Collections International and the Global Genome Biodiversity Network. The participants learned about the policies of the United States and other countries regarding access to genetic resources, the definition of genetic resources, and the status of historical materials and genetic sequence information. Key topics included what constitutes access and how the CBD Access and Benefit-Sharing Clearing-House can help guide researchers through the process of obtaining Prior Informed Consent on Mutually Agreed Terms. U.S. scientists and their international collaborators are required to follow the regulations of other countries when working with microbes originally isolated outside the United States, and the local regulations required by the Nagoya Protocol vary by the country of origin of the genetic resource. Managers of diverse living collections in the United States described their holdings and their efforts to provide access to genetic resources. This meeting laid the foundation for cooperation in establishing a set of standard operating procedures for U.S. and international culture collections in response to the Nagoya Protocol.
Collapse
Affiliation(s)
- Kevin McCluskey
- Fungal Genetic Stock Center, Department of Plant Pathology, Kansas State University, Manhattan, Kansas, USA
| | - Katharine B Barker
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Hazel A Barton
- Department of Biology, University of Akron, Akron, Ohio, USA
| | - Kyria Boundy-Mills
- Phaff Yeast Culture Collection, Food Science, University of California, Davis, Davis, California, USA
| | - Daniel R Brown
- Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Jonathan A Coddington
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Kevin Cook
- Bloomington Drosophila Stock Center, Department of Biology, Indiana University, Bloomington, Indiana, USA
| | | | - David Geiser
- The Fusarium Research Center, Penn State University, State College, Pennsylvania, USA
| | - Jessie A Glaeser
- U.S. Forest Service, Northern Research Station, Center for Forest Mycology Research, Madison, Wisconsin, USA
| | - Stephanie Greene
- USDA National Laboratory for Genetic Resources Preservation, Fort Collins, Colorado, USA
| | - Seogchan Kang
- Penn State University, State College, Pennsylvania, USA
| | - Michael W Lomas
- National Center for Marine Algae and Microbiota, East Boothbay Harbor, Maine, USA
| | | | | | | | | | | | | | - John Wertz
- E. coli Stock Center, Yale University, New Haven, Connecticut, USA
| | - Cale Whitworth
- Bloomington Drosophila Stock Center, Department of Biology, Indiana University Bloomington, Indiana, USA
| | | |
Collapse
|
34
|
|
35
|
Dashti Y, Grkovic T, Abdelmohsen UR, Hentschel U, Quinn RJ. Actinomycete Metabolome Induction/Suppression with N-Acetylglucosamine. JOURNAL OF NATURAL PRODUCTS 2017; 80:828-836. [PMID: 28355070 DOI: 10.1021/acs.jnatprod.6b00673] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The metabolite profiles of three sponge-derived actinomycetes, namely, Micromonospora sp. RV43, Rhodococcus sp. RV157, and Actinokineospora sp. EG49 were investigated after elicitation with N-acetyl-d-glucosamine. 1H NMR fingerprint methodology was utilized to study the differences in the metabolic profiles of the bacterial extracts before and after elicitation. Our study found that the addition of N-acetyl-d-glucosamine modified the secondary metabolite profiles of the three investigated actinomycete isolates. N-Acetyl-d-glucosamine induced the production of 3-formylindole (11) and guaymasol (12) in Micromonospora sp. RV43, the siderophore bacillibactin 16, and surfactin antibiotic 17 in Rhodococcus sp. RV157 and increased the production of minor metabolites actinosporins E-H (21-24) in Actinokineospora sp. EG49. These results highlight the use of NMR fingerprinting to detect changes in metabolism following addition of N-acetyl-d-glucosamine. N-Acetyl-d-glucosamine was shown to have multiple effects including suppression of metabolites, induction of new metabolites, and increased production of minor compounds.
Collapse
Affiliation(s)
- Yousef Dashti
- Eskitis Institute for Drug Discovery, Griffith University , Brisbane, QLD 4111 Australia
| | - Tanja Grkovic
- Eskitis Institute for Drug Discovery, Griffith University , Brisbane, QLD 4111 Australia
| | - Usama Ramadan Abdelmohsen
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg , Julius-von-Sachs-Platz 3, D-97082 Würzburg, Germany
| | - Ute Hentschel
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg , Julius-von-Sachs-Platz 3, D-97082 Würzburg, Germany
| | - Ronald J Quinn
- Eskitis Institute for Drug Discovery, Griffith University , Brisbane, QLD 4111 Australia
| |
Collapse
|
36
|
Moradi A, Ebrahimipour GH, Mohr KI, Kämpfer P, Glaeser SP, Hennessen F, Gemperlein K, Awal RP, Wolf C, Müller R, Wink J. Racemicystis persica sp. nov., a myxobacterium from soil. Int J Syst Evol Microbiol 2017; 67:472-478. [PMID: 27902273 DOI: 10.1099/ijsem.0.001655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A novel myxobacterium, strain MSr11462T, was isolated in 2015 from a soil sample collected form Kish Island beach, Persian Gulf, Iran. It displayed general myxobacterial features like Gram-negative staining, rod-shaped vegetative cells, gliding on solid surfaces, microbial lytic activity, fruiting-body-like aggregates and myxospore-like structures. The strain was mesophilic, aerobic and showed a chemoheterotrophic mode of nutrition. It was resistant to many antibiotics like gentamycin, polymyxin, fusidic acid and trimethoprim, and the key fatty acids of whole-cell hydrolysates were iso-C15 : 0, C16 : 0, iso-C17 : 0, C18 : 1, iso-C17 : 1 2-OH, C18 : 1 2-OH, iso-C15 : 0 OAG (O-alkylglycerol) and C16 : 1 OAG. The 16S rRNA gene sequence showed highest similarity (98.6 %) to Racemicystis crocea strain MSr9521T (GenBank accession no. KT591707). The phylogenetic analysis based on 16S rRNA gene sequences and matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) spectroscopy data supports a novel species of the family Polyangiaceae and the genus Racemicystis. DNA-DNA hybridization showed only about 50 % similarity between the novel strain and the phylogenetically closest species, Racemicystis. crocea MSr9521T. On the basis of a comprehensive taxonomic study, we propose a novel species, Racemicystis persica sp. nov., for strain MSr11462T (=DSM 103165T=NCCB 100606T).
Collapse
Affiliation(s)
- Azam Moradi
- Department of Microbiology, Faculty of Biological Sciences, Shahid Beheshti University, Tehran, Iran
| | | | - Kathrin I Mohr
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Peter Kämpfer
- Department of Applied Microbiology, Justus Liebig University Gießen, Heinrich-Buff-Ring 26, D-35392 Gießen, Germany
| | - Stefanie P Glaeser
- Department of Applied Microbiology, Justus Liebig University Gießen, Heinrich-Buff-Ring 26, D-35392 Gießen, Germany
| | - Fabienne Hennessen
- Department of Pharmaceutical Biotechnology, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany.,Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarland University, Campus Building E 8 1, 66123 Saarbrücken, Germany
| | - Katja Gemperlein
- Department of Pharmaceutical Biotechnology, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany.,Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarland University, Campus Building E 8 1, 66123 Saarbrücken, Germany
| | - Ram Prasad Awal
- Department of Pharmaceutical Biotechnology, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany.,Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarland University, Campus Building E 8 1, 66123 Saarbrücken, Germany
| | - Corinna Wolf
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Rolf Müller
- Department of Pharmaceutical Biotechnology, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany.,Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarland University, Campus Building E 8 1, 66123 Saarbrücken, Germany
| | - Joachim Wink
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, D-38124 Braunschweig, Germany
| |
Collapse
|
37
|
Disorazoles Block Group A Streptococcal Invasion into Epithelial Cells Via Interference with the Host Factor Ezrin. Cell Chem Biol 2017; 24:159-170. [DOI: 10.1016/j.chembiol.2016.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/07/2016] [Accepted: 12/15/2016] [Indexed: 12/22/2022]
|
38
|
Herrmann J, Fayad AA, Müller R. Natural products from myxobacteria: novel metabolites and bioactivities. Nat Prod Rep 2016; 34:135-160. [PMID: 27907217 DOI: 10.1039/c6np00106h] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: 2011-July 2016Myxobacteria are a rich source for structurally diverse secondary metabolites with intriguing biological activities. Here we report on new natural products that were isolated from myxobacteria in the period of 2011 to July 2016. Some examples of recent advances on modes-of-action are also summarised along with a more detailed overview on five compound classes currently assessed in preclinical studies.
Collapse
Affiliation(s)
- J Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
| | | | | |
Collapse
|
39
|
Walther E, Boldt S, Kage H, Lauterbach T, Martin K, Roth M, Hertweck C, Sauerbrei A, Schmidtke M, Nett M. Zincophorin - biosynthesis in Streptomyces griseus and antibiotic properties. GMS INFECTIOUS DISEASES 2016; 4:Doc08. [PMID: 30671322 PMCID: PMC6301713 DOI: 10.3205/id000026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Zincophorin is a polyketide antibiotic that possesses potent activity against Gram-positive bacteria, including human pathogens. While a number of total syntheses of this highly functionalized natural product were reported since its initial discovery, the genetic basis for the biosynthesis of zincophorin has remained unclear. In this study, the co-linearity inherent to polyketide pathways was used to identify the zincophorin biosynthesis gene cluster in the genome of the natural producer Streptomyces griseus HKI 0741. Interestingly, the same locus is fully conserved in the streptomycin-producing actinomycete S. griseus IFO 13350, suggesting that the latter bacterium is also capable of zincophorin biosynthesis. Biological profiling of zincophorin revealed a dose-dependent inhibition of the Gram-positive bacterium Streptococcus pneumoniae. The antibacterial effect, however, is accompanied by cytotoxicity. Antibiotic and cytotoxic activities were completely abolished upon esterification of the carboxylic acid group in zincophorin.
Collapse
Affiliation(s)
- Elisabeth Walther
- Jena University Hospital, Department of Virology and Antiviral Therapy, Jena, Germany
| | - Sabrina Boldt
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Hirokazu Kage
- Technical University Dortmund, Department of Biochemical and Chemical Engineering, Dortmund, Germany
| | - Tom Lauterbach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Karin Martin
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Martin Roth
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Andreas Sauerbrei
- Jena University Hospital, Department of Virology and Antiviral Therapy, Jena, Germany
| | - Michaela Schmidtke
- Jena University Hospital, Department of Virology and Antiviral Therapy, Jena, Germany
| | - Markus Nett
- Technical University Dortmund, Department of Biochemical and Chemical Engineering, Dortmund, Germany
| |
Collapse
|
40
|
Jeske O, Surup F, Ketteniß M, Rast P, Förster B, Jogler M, Wink J, Jogler C. Developing Techniques for the Utilization of Planctomycetes As Producers of Bioactive Molecules. Front Microbiol 2016; 7:1242. [PMID: 27594849 PMCID: PMC4990742 DOI: 10.3389/fmicb.2016.01242] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/26/2016] [Indexed: 01/21/2023] Open
Abstract
Planctomycetes are conspicuous, ubiquitous, environmentally important bacteria. They can attach to various surfaces in aquatic habitats and form biofilms. Their unique FtsZ-independent budding cell division mechanism is associated with slow growth and doubling times from 6 h up to 1 month. Despite this putative disadvantage in the struggle to colonize surfaces, Planctomycetes are frequently associated with aquatic phototrophic organisms such as diatoms, cyanobacteria or kelp, whereby Planctomycetes can account for up to 50% of the biofilm-forming bacterial population. Consequently, Planctomycetes were postulated to play an important role in carbon utilization, for example as scavengers after phototrophic blooms. However, given their observed slow growth, such findings are surprising since other faster- growing heterotrophs tend to colonize similar ecological niches. Accordingly, Planctomycetes were suspected to produce antibiotics for habitat protection in response to the attachment on phototrophs. Recently, we demonstrated their genomic potential to produce non-ribosomal peptides, polyketides, bacteriocins, and terpenoids that might have antibiotic activities. In this study, we describe the development of a pipeline that consists of tools and procedures to cultivate Planctomycetes for the production of antimicrobial compounds in a chemically defined medium and a procedure to chemically mimic their interaction with other organisms such as for example cyanobacteria. We evaluated and adjusted screening assays to enable the hunt for planctomycetal antibiotics. As proof of principle, we demonstrate antimicrobial activities of planctomycetal extracts from Planctopirus limnophila DSM 3776, Rhodopirellula baltica DSM 10527, and the recently isolated strain Pan216. By combining UV/Vis and high resolution mass spectrometry data from high-performance liquid chromatography fractionations with growth inhibition of indicator strains, we were able to assign the antibiotic activity to candidate peaks related to planctomycetal antimicrobial compounds. The MS analysis points toward the production of novel bioactive molecules with novel structures. Consequently, we developed a large scale cultivation procedure to allow future structural elucidation of such compounds. Our findings might have implications for the discovery of novel antibiotics as Planctomycetes represent a yet untapped resource that could be developed by employing the tools and methods described in this study.
Collapse
Affiliation(s)
- Olga Jeske
- Department of Microbial Cell Biology and Genetics, Leibniz Institute DSMZ, Braunschweig Germany
| | - Frank Surup
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, BraunschweigGermany; German Centre for Infection Research Association, Partner Site Hannover-Braunschweig, BraunschweigGermany
| | - Marcel Ketteniß
- Department of Microbial Cell Biology and Genetics, Leibniz Institute DSMZ, Braunschweig Germany
| | - Patrick Rast
- Department of Microbial Cell Biology and Genetics, Leibniz Institute DSMZ, Braunschweig Germany
| | - Birthe Förster
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, BraunschweigGermany; German Centre for Infection Research Association, Partner Site Hannover-Braunschweig, BraunschweigGermany
| | - Mareike Jogler
- Department of Microbial Cell Biology and Genetics, Leibniz Institute DSMZ, Braunschweig Germany
| | - Joachim Wink
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig Germany
| | - Christian Jogler
- Department of Microbial Cell Biology and Genetics, Leibniz Institute DSMZ, Braunschweig Germany
| |
Collapse
|
41
|
Sugiyama R, Nishimura S, Ozaki T, Asamizu S, Onaka H, Kakeya H. Discovery and Total Synthesis of Streptoaminals: Antimicrobial [5,5]-Spirohemiaminals from the Combined-Culture of Streptomyces nigrescens
and Tsukamurella pulmonis. Angew Chem Int Ed Engl 2016; 55:10278-82. [DOI: 10.1002/anie.201604126] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Ryosuke Sugiyama
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
- Present address; RIKEN Center for Sustainable Resource Science; 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama Kanagawa 230-0045 Japan
| | - Shinichi Nishimura
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Taro Ozaki
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences; The University of Tokyo; Bunkyo-ku Tokyo 113-8657 Japan
| | - Shumpei Asamizu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences; The University of Tokyo; Bunkyo-ku Tokyo 113-8657 Japan
| | - Hiroyasu Onaka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences; The University of Tokyo; Bunkyo-ku Tokyo 113-8657 Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
42
|
Sugiyama R, Nishimura S, Ozaki T, Asamizu S, Onaka H, Kakeya H. Discovery and Total Synthesis of Streptoaminals: Antimicrobial [5,5]-Spirohemiaminals from the Combined-Culture of Streptomyces nigrescens
and Tsukamurella pulmonis. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ryosuke Sugiyama
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
- Present address; RIKEN Center for Sustainable Resource Science; 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama Kanagawa 230-0045 Japan
| | - Shinichi Nishimura
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Taro Ozaki
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences; The University of Tokyo; Bunkyo-ku Tokyo 113-8657 Japan
| | - Shumpei Asamizu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences; The University of Tokyo; Bunkyo-ku Tokyo 113-8657 Japan
| | - Hiroyasu Onaka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences; The University of Tokyo; Bunkyo-ku Tokyo 113-8657 Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
43
|
Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. J Antibiot (Tokyo) 2016; 70:25-40. [PMID: 27381522 DOI: 10.1038/ja.2016.82] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/22/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022]
Abstract
As bacteria and fungi have been found to contain genes encoding enzymes that synthesize a plethora of potential secondary metabolites, interest has grown in the activation of these cryptic pathways. Homologous and heterologous expression of these cryptic secondary metabolite-biosynthetic genes, often silent under ordinary laboratory fermentation conditions, may lead to the discovery of novel secondary metabolites. This review addresses current progress in the activation of these pathways, describing methods for activating silent genes. It especially focuses on genetic manipulation of transcription and translation (ribosome engineering), the utilization of elicitors, metabolism remodeling and co-cultivation. In particular, the principles and technical points of ribosome engineering and the significance of S-adenosylmethionine in bacterial physiology, especially secondary metabolism, are described in detail.
Collapse
|
44
|
Salamanca-Pinzon SG, Khatri Y, Carius Y, Keller L, Müller R, Lancaster CRD, Bernhardt R. Structure-function analysis for the hydroxylation of Δ4 C21-steroids by the myxobacterial CYP260B1. FEBS Lett 2016; 590:1838-51. [DOI: 10.1002/1873-3468.12217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/29/2016] [Accepted: 05/11/2016] [Indexed: 11/08/2022]
Affiliation(s)
| | - Yogan Khatri
- Institute of Biochemistry; Saarland University; Saarbrücken Germany
| | - Yvonne Carius
- Department of Structural Biology; Institute of Biophysics and Center of Human and Molecular Biology (ZHMB); Saarland University; Homburg Germany
| | - Lena Keller
- Department of Microbial Natural Products; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS); Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology; Saarland University; Saarbrücken Germany
| | - Rolf Müller
- Department of Microbial Natural Products; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS); Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology; Saarland University; Saarbrücken Germany
| | - C. Roy D. Lancaster
- Department of Structural Biology; Institute of Biophysics and Center of Human and Molecular Biology (ZHMB); Saarland University; Homburg Germany
| | - Rita Bernhardt
- Institute of Biochemistry; Saarland University; Saarbrücken Germany
| |
Collapse
|
45
|
Beck S, Henß L, Weidner T, Herrmann J, Müller R, Chao YK, Grimm C, Weber C, Sliva K, Schnierle BS. Identification of entry inhibitors of Ebola virus pseudotyped vectors from a myxobacterial compound library. Antiviral Res 2016; 132:85-91. [PMID: 27241689 DOI: 10.1016/j.antiviral.2016.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/11/2016] [Accepted: 05/24/2016] [Indexed: 11/29/2022]
Abstract
Myxobacteria produce secondary metabolites many of which were described to have various biological effects including anti-fungal, anti-bacterial and anti-viral activity. The majority of these metabolites are novel scaffolds with unique modes-of-action and hence might be potential leads for drug discovery. Here, we tested a myxobacterial natural product library for compounds with inhibitory activity against Ebola virus (EBOV). The assay was performed with a surrogate system using Ebola envelope glycoprotein (GP) pseudotyped lentiviral vectors. EBOV specificity was proven by counter-screening with vesicular stomatitis virus G protein pseudotyped vectors. Two compounds were identified that preferentially inhibited EBOV GP mediated cell entry: Chondramides that act on the actin skeleton but might be too toxic and noricumazole A, a potassium channel inhibitor, which might constitute a novel pathway to inhibit Ebola virus cell entry.
Collapse
Affiliation(s)
- Simon Beck
- Paul-Ehrlich-Institut, Department of Virology, Paul-Ehrlich Strasse 51-59, 63225 Langen, Germany
| | - Lisa Henß
- Paul-Ehrlich-Institut, Department of Virology, Paul-Ehrlich Strasse 51-59, 63225 Langen, Germany
| | - Tatjana Weidner
- Paul-Ehrlich-Institut, Department of Virology, Paul-Ehrlich Strasse 51-59, 63225 Langen, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Microbial Natural Products, Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Microbial Natural Products, Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Yu-Kai Chao
- Department of Pharmacy - Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Germany
| | - Christian Grimm
- Department of Pharmacy - Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Germany
| | - Christopher Weber
- Paul-Ehrlich-Institut, Department of Virology, Paul-Ehrlich Strasse 51-59, 63225 Langen, Germany
| | - Katja Sliva
- Paul-Ehrlich-Institut, Department of Virology, Paul-Ehrlich Strasse 51-59, 63225 Langen, Germany
| | - Barbara S Schnierle
- Paul-Ehrlich-Institut, Department of Virology, Paul-Ehrlich Strasse 51-59, 63225 Langen, Germany.
| |
Collapse
|
46
|
An Integrated Metabolomic and Genomic Mining Workflow To Uncover the Biosynthetic Potential of Bacteria. mSystems 2016; 1:mSystems00028-15. [PMID: 27822535 PMCID: PMC5069768 DOI: 10.1128/msystems.00028-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/01/2016] [Indexed: 11/20/2022] Open
Abstract
Microorganisms are a rich source of bioactives; however, chemical identification is a major bottleneck. Strategies that can prioritize the most prolific microbial strains and novel compounds are of great interest. Here, we present an integrated approach to evaluate the biosynthetic richness in bacteria and mine the associated chemical diversity. Thirteen strains closely related to Pseudoalteromonas luteoviolacea isolated from all over the Earth were analyzed using an untargeted metabolomics strategy, and metabolomic profiles were correlated with whole-genome sequences of the strains. We found considerable diversity: only 2% of the chemical features and 7% of the biosynthetic genes were common to all strains, while 30% of all features and 24% of the genes were unique to single strains. The list of chemical features was reduced to 50 discriminating features using a genetic algorithm and support vector machines. Features were dereplicated by tandem mass spectrometry (MS/MS) networking to identify molecular families of the same biosynthetic origin, and the associated pathways were probed using comparative genomics. Most of the discriminating features were related to antibacterial compounds, including the thiomarinols that were reported from P. luteoviolacea here for the first time. By comparative genomics, we identified the biosynthetic cluster responsible for the production of the antibiotic indolmycin, which could not be predicted with standard methods. In conclusion, we present an efficient, integrative strategy for elucidating the chemical richness of a given set of bacteria and link the chemistry to biosynthetic genes. IMPORTANCE We here combine chemical analysis and genomics to probe for new bioactive secondary metabolites based on their pattern of distribution within bacterial species. We demonstrate the usefulness of this combined approach in a group of marine Gram-negative bacteria closely related to Pseudoalteromonas luteoviolacea, which is a species known to produce a broad spectrum of chemicals. The approach allowed us to identify new antibiotics and their associated biosynthetic pathways. Combining chemical analysis and genetics is an efficient "mining" workflow for identifying diverse pharmaceutical candidates in a broad range of microorganisms and therefore of great use in bioprospecting.
Collapse
|
47
|
Maansson M, Vynne NG, Klitgaard A, Nybo JL, Melchiorsen J, Nguyen DD, Sanchez LM, Ziemert N, Dorrestein PC, Andersen MR, Gram L. An Integrated Metabolomic and Genomic Mining Workflow To Uncover the Biosynthetic Potential of Bacteria. mSystems 2016. [PMID: 27822535 DOI: 10.1128/msystems.00038-00016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Microorganisms are a rich source of bioactives; however, chemical identification is a major bottleneck. Strategies that can prioritize the most prolific microbial strains and novel compounds are of great interest. Here, we present an integrated approach to evaluate the biosynthetic richness in bacteria and mine the associated chemical diversity. Thirteen strains closely related to Pseudoalteromonas luteoviolacea isolated from all over the Earth were analyzed using an untargeted metabolomics strategy, and metabolomic profiles were correlated with whole-genome sequences of the strains. We found considerable diversity: only 2% of the chemical features and 7% of the biosynthetic genes were common to all strains, while 30% of all features and 24% of the genes were unique to single strains. The list of chemical features was reduced to 50 discriminating features using a genetic algorithm and support vector machines. Features were dereplicated by tandem mass spectrometry (MS/MS) networking to identify molecular families of the same biosynthetic origin, and the associated pathways were probed using comparative genomics. Most of the discriminating features were related to antibacterial compounds, including the thiomarinols that were reported from P. luteoviolacea here for the first time. By comparative genomics, we identified the biosynthetic cluster responsible for the production of the antibiotic indolmycin, which could not be predicted with standard methods. In conclusion, we present an efficient, integrative strategy for elucidating the chemical richness of a given set of bacteria and link the chemistry to biosynthetic genes. IMPORTANCE We here combine chemical analysis and genomics to probe for new bioactive secondary metabolites based on their pattern of distribution within bacterial species. We demonstrate the usefulness of this combined approach in a group of marine Gram-negative bacteria closely related to Pseudoalteromonas luteoviolacea, which is a species known to produce a broad spectrum of chemicals. The approach allowed us to identify new antibiotics and their associated biosynthetic pathways. Combining chemical analysis and genetics is an efficient "mining" workflow for identifying diverse pharmaceutical candidates in a broad range of microorganisms and therefore of great use in bioprospecting.
Collapse
Affiliation(s)
- Maria Maansson
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Nikolaj G Vynne
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Andreas Klitgaard
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jane L Nybo
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jette Melchiorsen
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Don D Nguyen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Laura M Sanchez
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany; Collaborative Mass Spectrometry Innovation Center, University of California at San Diego, La Jolla, California, USA
| | - Nadine Ziemert
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA; Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Pieter C Dorrestein
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA; Collaborative Mass Spectrometry Innovation Center, University of California at San Diego, La Jolla, California, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, USA
| | - Mikael R Andersen
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lone Gram
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
48
|
Korp J, Vela Gurovic MS, Nett M. Antibiotics from predatory bacteria. Beilstein J Org Chem 2016; 12:594-607. [PMID: 27340451 PMCID: PMC4902038 DOI: 10.3762/bjoc.12.58] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/11/2016] [Indexed: 11/23/2022] Open
Abstract
Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism.
Collapse
Affiliation(s)
- Juliane Korp
- Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute, Beutenbergstr. 11, 07745 Jena, Germany
| | - María S Vela Gurovic
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS) -CONICET- Carrindanga Km 11, Bahía Blanca 8000, Argentina
| | - Markus Nett
- Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute, Beutenbergstr. 11, 07745 Jena, Germany
- Department of Biochemical and Chemical Engineering, Technical Biology, Technical University Dortmund, Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| |
Collapse
|
49
|
Karwehl S, Jansen R, Huch V, Stadler M. Sorazolons, Carbazole Alkaloids from Sorangium cellulosum Strain Soce375. JOURNAL OF NATURAL PRODUCTS 2016; 79:369-375. [PMID: 26866461 DOI: 10.1021/acs.jnatprod.5b00997] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Sorazolons A (1) to E2 (9) were isolated from Sorangium cellulosum strain Soce375. Their molecular structures were elucidated using extensive HRESIMS and NMR analysis. The absolute configuration of sorazolon A (1) was determined by comparison of the experimental CD spectrum with quantum chemical calculated spectra for both enantiomers. Sorazolons D2 (7), E (8), and E2 (9) exhibit a moderate cytotoxic activity against mouse fibroblast cell line L929 with IC50 values between 5.0 μM and 0.09 mM.
Collapse
Affiliation(s)
- Sabrina Karwehl
- Department of Microbial Drugs, Helmholtz Centre for Infection Research , Inhoffenstraße 7, 38124 Braunschweig, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig , Braunschweig, Germany
| | - Rolf Jansen
- Department of Microbial Drugs, Helmholtz Centre for Infection Research , Inhoffenstraße 7, 38124 Braunschweig, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig , Braunschweig, Germany
| | - Volker Huch
- Department of Inorganic Chemistry, Saarland University , Building C 4.1, 66123 Saarbrücken, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research , Inhoffenstraße 7, 38124 Braunschweig, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig , Braunschweig, Germany
| |
Collapse
|
50
|
Picado A, Li S, Dieter RK. A Serendipitous Synthesis of Bis-Heterocyclic Spiro 3(2H)-Furanones. J Org Chem 2016; 81:1391-400. [PMID: 26756271 DOI: 10.1021/acs.joc.5b02350] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
(Z) Enol triflates 6, 11b-d, (E) enol triflate 11e, and phenol triflate 11a, derived from β-keto esters or 2-carboalkoxy phenols, respectively, react with N-Boc 2-lithiopyrrolidine (5a), N-Boc N-methylaminomethyllithium (5b), or 2-lithio-1,3-dithiane (14) to afford 3(2H)-furanones in modest to good yields (38-81%). Product and carbanion reagent studies suggest that the 3(2H)-furanone is formed in a cascade of reactions involving nucleophilic acyl substitution, enolate formation, trifluoromethyl transfer, iminium or sulfenium ion formation, and subsequent ring closure to form the 3(2H)-furanone. The use of 2-lithio-1,3-dithiane affords a cyclic α-keto-S,S,O-orthoester in which the functionality can be selectively manipulated for synthetic applications.
Collapse
Affiliation(s)
- Alfredo Picado
- Hunter Laboratory, Department of Chemistry, Clemson University , Clemson, South Carolina 29634-0973, United States
| | - ShengJian Li
- Hunter Laboratory, Department of Chemistry, Clemson University , Clemson, South Carolina 29634-0973, United States
| | - R Karl Dieter
- Hunter Laboratory, Department of Chemistry, Clemson University , Clemson, South Carolina 29634-0973, United States
| |
Collapse
|