1
|
Martini AM, Alexander SA, Khare A. Mutations in the Staphylococcus aureus Global Regulator CodY confer tolerance to an interspecies redox-active antimicrobial. PLoS Genet 2025; 21:e1011610. [PMID: 40053555 PMCID: PMC11918324 DOI: 10.1371/journal.pgen.1011610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/18/2025] [Accepted: 02/06/2025] [Indexed: 03/09/2025] Open
Abstract
Bacteria often exist in multispecies communities where interactions among different species can modify individual fitness and behavior. Although many competitive interactions have been described, molecular adaptations that can counter this antagonism and preserve or increase fitness remain underexplored. Here, we characterize the adaptation of Staphylococcus aureus to pyocyanin, a redox-active interspecies antimicrobial produced by Pseudomonas aeruginosa, a co-infecting pathogen frequently isolated from wound and chronic lung infections with S. aureus. Using experimental evolution, we identified mutations in a conserved global transcriptional regulator, CodY, that confer tolerance to pyocyanin and thereby enhance survival of S. aureus. A pyocyanin tolerant CodY mutant also had a survival advantage in co-culture with P. aeruginosa, likely through tolerance specifically to pyocyanin. The transcriptional response of the CodY mutant to pyocyanin indicated a two-pronged defensive response compared to the wild type. First, the CodY mutant strongly suppressed metabolism by downregulating core metabolic pathways , especially translation-associated genes, upon exposure to pyocyanin. Metabolic suppression via ATP depletion was sufficient to provide comparable protection against pyocyanin to the wild-type strain. Second, while both the wild-type and CodY mutant strains upregulated oxidative stress response pathways upon pyocyanin exposure, the CodY mutant overexpressed multiple stress response genes compared to the wild type. We determined that catalase overexpression was critical to pyocyanin tolerance as its absence eliminated tolerance in the CodY mutant and overexpression of catalase was sufficient to impart tolerance to the wild-type strain against purified pyocyanin and in co-culture with WT P. aeruginosa. Together, these results suggest that both transcriptional responses of reduced metabolism and an increased oxidative stress response likely contribute to pyocyanin tolerance in the CodY mutant. Our data thus provide new mechanistic insight into adaptation toward interbacterial antagonism via altered regulation that facilitates multifaceted protective cellular responses.
Collapse
Affiliation(s)
- Anthony M. Martini
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara A. Alexander
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Martini AM, Alexander SA, Khare A. Mutations in the Staphylococcus aureus Global Regulator CodY Confer Tolerance to an Interspecies Redox-Active Antimicrobial. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601769. [PMID: 39040146 PMCID: PMC11261909 DOI: 10.1101/2024.07.02.601769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Bacteria often exist in multispecies communities where interactions among different species can modify individual fitness and behavior. Although many competitive interactions have been characterized, molecular adaptations that can counter this antagonism and preserve or increase fitness remain underexplored. Here, we characterize the adaptation of Staphylococcus aureus to pyocyanin, a redox-active interspecies antimicrobial produced by Pseudomonas aeruginosa, a co-infecting pathogen frequently isolated from wound and chronic lung infections with S. aureus. Using experimental evolution, we identified mutations in a conserved global transcriptional regulator, CodY, that confer tolerance to pyocyanin and thereby enhance survival of S. aureus. The transcriptional response of a pyocyanin tolerant CodY mutant to pyocyanin indicated a two-pronged defensive response compared to the wild type. Firstly, the CodY mutant strongly suppressed metabolism, by downregulating pathways associated with core metabolism, especially translation-associated genes, upon exposure to pyocyanin. Metabolic suppression via ATP depletion was sufficient to provide comparable protection against pyocyanin to the wild-type strain. Secondly, while both the wild-type and CodY mutant strains upregulated oxidative stress response pathways, the CodY mutant overexpressed multiple stress response genes compared to the wild type. We determined that catalase overexpression was critical to pyocyanin tolerance as its absence eliminated tolerance in the CodY mutant and overexpression of catalase was sufficient to impart tolerance to the wild-type strain. Together, these results suggest that both transcriptional responses likely contribute to pyocyanin tolerance in the CodY mutant. Our data thus provide new mechanistic insight into adaptation toward interbacterial antagonism via altered regulation that facilitates multifaceted protective cellular responses.
Collapse
Affiliation(s)
- Anthony M. Martini
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sara A. Alexander
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Schwartbeck B, Rumpf CH, Hait RJ, Janssen T, Deiwick S, Schwierzeck V, Mellmann A, Kahl BC. Various mutations in icaR, the repressor of the icaADBC locus, occur in mucoid Staphylococcus aureus isolates recovered from the airways of people with cystic fibrosis. Microbes Infect 2024; 26:105306. [PMID: 38316375 DOI: 10.1016/j.micinf.2024.105306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Staphylococcus aureus is one of the major pathogens isolated from the airways of people with cystic fibrosis (pwCF). Recently, we described a mucoid S. aureus phenotype from respiratory specimens of pwCF, which constitutively overproduced biofilm that consisted of polysaccharide intercellular adhesin (PIA) due to a 5bp-deletion (5bp-del) in the intergenic region of the intercellular adhesin (ica) locus. Since we were not able to identify the 5bp-del in mucoid isolates of two pwCF with long-term S. aureus persistence and in a number of mucoid isolates of pwCF from a prospective multicenter study, these strains were (i) characterized phenotypically, (ii) investigated for biofilm formation, and (iii) molecular typed by spa-sequence typing. To screen for mutations responsible for mucoidy, the ica operon of all mucoid isolates was analyzed by Sanger sequencing. Whole genome sequencing was performed for selected isolates. For all mucoid isolates without the 5 bp-del, various mutations in icaR, which is the transcriptional repressor of the icaADBC operon. Mucoid and non-mucoid strains belonged to the same spa-type. Transformation of PIA-overproducing S. aureus with a vector expressing the intact icaR gene restored the non-mucoid phenotype. Altogether, we demonstrated a new mechanism for the emergence of mucoid S. aureus isolates of pwCF.
Collapse
Affiliation(s)
- Bianca Schwartbeck
- Institute of Medical Microbiology, University Hospital Muenster, Germany
| | - Christine H Rumpf
- Institute of Medical Microbiology, University Hospital Muenster, Germany
| | | | - Timo Janssen
- Institute of Medical Microbiology, University Hospital Muenster, Germany
| | - Susanne Deiwick
- Institute of Medical Microbiology, University Hospital Muenster, Germany
| | | | | | - Barbara C Kahl
- Institute of Medical Microbiology, University Hospital Muenster, Germany.
| |
Collapse
|
4
|
Xu X, Zhang X, Zhang G, Abbasi Tadi D. Prevalence of antibiotic resistance of Staphylococcus aureus in cystic fibrosis infection: a systematic review and meta-analysis. J Glob Antimicrob Resist 2024; 36:419-425. [PMID: 37211214 DOI: 10.1016/j.jgar.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023] Open
Abstract
OBJECTIVES Cystic fibrosis (CF) is a hereditary recessive disease that affects the mucous clearance of the lungs and allows bacteria such as Staphylococcus aureus to settle in the lung and cause infection. This study examined the prevalence of antibiotic resistance of S. aureus in cystic fibrosis infection using a systematic review and meta-analysis. METHODS A comprehensive and systematic search of related articles was conducted through the PubMed, Scopus, and Web of Science databases until March 2022. The weighted pooled resistance rate of antibiotics was analysed with Freeman-Tukey double arcsine transformation in the Stata software version 17.1 using the Metaprop command. RESULTS In this meta-analysis, 25 studies were used based on criteria to evaluate the pattern of S. aureus resistance in CF. Vancomycin and teicoplanin were the most effective options for treatment of CF patients; the highest level of antibiotic resistance observed was to erythromycin and clindamycin. CONCLUSION High levels of resistance to most of the antibiotics studied was observed. The high levels of antibiotic resistance observed are worrisome and indicate the need to monitor antibiotic use.
Collapse
Affiliation(s)
- Xuemei Xu
- Pharmacy department, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine
| | - Xiang Zhang
- Laboratory Department, The Fifth Hospital of Rui'an, Rui'an, China
| | - Guoying Zhang
- Rui'an People's Hospital and the Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
| | | |
Collapse
|
5
|
Ryan H, Ballard E, Stockwell RE, Duplancic C, Thomson RM, Smith K, Bell SC. A systematic review of the clinical impact of small colony variants in patients with cystic fibrosis. BMC Pulm Med 2023; 23:323. [PMID: 37658311 PMCID: PMC10474644 DOI: 10.1186/s12890-023-02611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is a life-limiting disorder that is characterised by respiratory tract inflammation that is mediated by a range of microbial pathogens. Small colony variants (SCVs) of common respiratory pathogens are being increasingly recognised in CF. The aim of this systematic review is to investigate the prevalence of SCVs, clinical characteristics and health outcomes for patients with CF, and laboratory diagnostic features of SCVs compared to non-small colony variants (NCVs) for a range of Gram-positive and Gram-negative respiratory pathogens. METHODS A literature search was conducted (PubMed, Web of Science, Embase and Scopus) in April 2020 to identify articles of interest. Data pertaining to demographic characteristics of participants, diagnostic criteria of SCVs, SCV prevalence and impact on lung function were extracted from included studies for analysis. RESULTS Twenty-five of 673 studies were included in the systematic review. Individuals infected with SCVs of Staphylococcus aureus (S. aureus) were more likely to have had prior use of the broad-spectrum antibiotic trimethoprim sulfamethoxazole (p < 0.001), and the prevalence of SCVs in patients infected with S. aureus was estimated to be 19.3% (95% CI: 13.5% to 25.9%). Additionally, patients infected with SCVs of Gram-negative and Gram-positive pathogens were identified to have a lower forced expiratory volume in one second percentage predicted (-16.8, 95% CI: -23.2 to -10.4) than those infected by NCVs. Gram-positive SCVs were commonly described as small and non-haemolytic, grown on Mannitol salt or blood agar for 24 h at 35°C and confirmed using tube coagulase testing. CONCLUSION The findings of this systematic review demonstrate that SCVs of S. aureus have a high prevalence in the CF community, and that the occurrence of SCVs in Gram-positive and Gram-negative pathogens is linked to poorer respiratory function. Further investigation is necessary to determine the effect of infection by SCVs on the CF population.
Collapse
Affiliation(s)
- Harrigan Ryan
- Centre for Children's Health Research, Faculty of Medicine, The University of Queensland, South Brisbane, QLD, Australia
| | - Emma Ballard
- Statistics Unit, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Rebecca E Stockwell
- Centre for Children's Health Research, Faculty of Medicine, The University of Queensland, South Brisbane, QLD, Australia
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Chermside, QLD, Australia
| | - Christine Duplancic
- Centre for Children's Health Research, Faculty of Medicine, The University of Queensland, South Brisbane, QLD, Australia
| | - Rachel M Thomson
- Respiratory Research Group, Gallipoli Medical Research Foundation, Greenslopes, QLD, Australia
| | - Kimberley Smith
- Centre for Children's Health Research, Faculty of Medicine, The University of Queensland, South Brisbane, QLD, Australia
| | - Scott C Bell
- Centre for Children's Health Research, Faculty of Medicine, The University of Queensland, South Brisbane, QLD, Australia.
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Chermside, QLD, Australia.
- Translational Research Institute, Woolloongabba, QLD, Australia.
| |
Collapse
|
6
|
Millette G, Séguin DL, Isabelle C, Chamberland S, Lucier JF, Rodrigue S, Cantin AM, Malouin F. Staphylococcus aureus Small-Colony Variants from Airways of Adult Cystic Fibrosis Patients as Precursors of Adaptive Antibiotic-Resistant Mutations. Antibiotics (Basel) 2023; 12:1069. [PMID: 37370388 PMCID: PMC10294822 DOI: 10.3390/antibiotics12061069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Prototypic Staphylococcus aureus and their small-colony variants (SCVs) are predominant in cystic fibrosis (CF), but the interdependence of these phenotypes is poorly understood. We characterized S. aureus isolates from adult CF patients over several years. Of 18 S. aureus-positive patients (58%), 13 (72%) were positive for SCVs. Characterization included genotyping, SCCmec types, auxotrophy, biofilm production, antibiotic susceptibilities and tolerance, and resistance acquisition rates. Whole-genome sequencing revealed that several patients were colonized with prototypical and SCV-related clones. Some clonal pairs showed acquisition of aminoglycoside resistance that was not explained by aminoglycoside-modifying enzymes, suggesting a mutation-based process. The characteristics of SCVs that could play a role in resistance acquisition were thus investigated further. For instance, SCV isolates produced more biofilm (p < 0.05) and showed a higher survival rate upon exposure to ciprofloxacin and vancomycin compared to their prototypic associated clones. SCVs also developed spontaneous rifampicin resistance mutations at a higher frequency. Accordingly, a laboratory-derived SCV (ΔhemB) acquired resistance to ciprofloxacin and gentamicin faster than its parent counterpart after serial passages in the presence of sub-inhibitory concentrations of antibiotics. These results suggest a role for SCVs in the establishment of persistent antibiotic-resistant clones in adult CF patients.
Collapse
Affiliation(s)
- Guillaume Millette
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - David Lalonde Séguin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - Charles Isabelle
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - Suzanne Chamberland
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - Jean-François Lucier
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - Sébastien Rodrigue
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - André M. Cantin
- Service de Pneumologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| |
Collapse
|
7
|
Souche A, Vandenesch F, Doléans-Jordheim A, Moreau K. How Staphylococcus aureus and Pseudomonas aeruginosa Hijack the Host Immune Response in the Context of Cystic Fibrosis. Int J Mol Sci 2023; 24:ijms24076609. [PMID: 37047579 PMCID: PMC10094765 DOI: 10.3390/ijms24076609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Cystic fibrosis (CF) is a serious genetic disease that leads to premature death, mainly due to impaired lung function. CF lungs are characterized by ongoing inflammation, impaired immune response, and chronic bacterial colonization. Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) are the two most predominant bacterial agents of these chronic infections. Both can colonize the lungs for years by developing host adaptation strategies. In this review, we examined the mechanisms by which SA and PA adapt to the host immune response. They are able to bypass the physical integrity of airway epithelia, evade recognition, and then modulate host immune cell proliferation. They also modulate the immune response by regulating cytokine production and by counteracting the activity of neutrophils and other immune cells. Inhibition of the immune response benefits not only the species that implements them but also other species present, and we therefore discuss how these mechanisms can promote the establishment of coinfections in CF lungs.
Collapse
Affiliation(s)
- Aubin Souche
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - François Vandenesch
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - Anne Doléans-Jordheim
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - Karen Moreau
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| |
Collapse
|
8
|
Biology and Regulation of Staphylococcal Biofilm. Int J Mol Sci 2023; 24:ijms24065218. [PMID: 36982293 PMCID: PMC10049468 DOI: 10.3390/ijms24065218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Despite continuing progress in medical and surgical procedures, staphylococci remain the major Gram-positive bacterial pathogens that cause a wide spectrum of diseases, especially in patients requiring the utilization of indwelling catheters and prosthetic devices implanted temporarily or for prolonged periods of time. Within the genus, if Staphylococcus aureus and S. epidermidis are prevalent species responsible for infections, several coagulase-negative species which are normal components of our microflora also constitute opportunistic pathogens that are able to infect patients. In such a clinical context, staphylococci producing biofilms show an increased resistance to antimicrobials and host immune defenses. Although the biochemical composition of the biofilm matrix has been extensively studied, the regulation of biofilm formation and the factors contributing to its stability and release are currently still being discovered. This review presents and discusses the composition and some regulation elements of biofilm development and describes its clinical importance. Finally, we summarize the numerous and various recent studies that address attempts to destroy an already-formed biofilm within the clinical context as a potential therapeutic strategy to avoid the removal of infected implant material, a critical event for patient convenience and health care costs.
Collapse
|
9
|
Ribeiro CMP, Higgs MG, Muhlebach MS, Wolfgang MC, Borgatti M, Lampronti I, Cabrini G. Revisiting Host-Pathogen Interactions in Cystic Fibrosis Lungs in the Era of CFTR Modulators. Int J Mol Sci 2023; 24:ijms24055010. [PMID: 36902441 PMCID: PMC10003689 DOI: 10.3390/ijms24055010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) modulators, a new series of therapeutics that correct and potentiate some classes of mutations of the CFTR, have provided a great therapeutic advantage to people with cystic fibrosis (pwCF). The main hindrances of the present CFTR modulators are related to their limitations in reducing chronic lung bacterial infection and inflammation, the main causes of pulmonary tissue damage and progressive respiratory insufficiency, particularly in adults with CF. Here, the most debated issues of the pulmonary bacterial infection and inflammatory processes in pwCF are revisited. Special attention is given to the mechanisms favoring the bacterial infection of pwCF, the progressive adaptation of Pseudomonas aeruginosa and its interplay with Staphylococcus aureus, the cross-talk among bacteria, the bronchial epithelial cells and the phagocytes of the host immune defenses. The most recent findings of the effect of CFTR modulators on bacterial infection and the inflammatory process are also presented to provide critical hints towards the identification of relevant therapeutic targets to overcome the respiratory pathology of pwCF.
Collapse
Affiliation(s)
- Carla M. P. Ribeiro
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (C.M.P.R.); (G.C.)
| | - Matthew G. Higgs
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marianne S. Muhlebach
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew C. Wolfgang
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Giulio Cabrini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (C.M.P.R.); (G.C.)
| |
Collapse
|
10
|
Cogen JD, Hall M, Faino AV, Ambroggio L, Blaschke AJ, Brogan TV, Cotter JM, Gibson RL, Grijalva CG, Hersh AL, Lipsett SC, Shah SS, Shapiro DJ, Neuman MI, Gerber JS. Antibiotics and outcomes of CF pulmonary exacerbations in children infected with MRSA and Pseudomonas aeruginosa. J Cyst Fibros 2023; 22:313-319. [PMID: 35945130 PMCID: PMC11315227 DOI: 10.1016/j.jcf.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Limited data exist to inform antibiotic selection among people with cystic fibrosis (CF) with airway infection by multiple CF-related microorganisms. This study aimed to determine among children with CF co-infected with methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (Pa) if the addition of anti-MRSA antibiotics to antipseudomonal antibiotic treatment for pulmonary exacerbations (PEx) would be associated with improved clinical outcomes compared with antipseudomonal antibiotics alone. METHODS Retrospective cohort study using data from the CF Foundation Patient Registry-Pediatric Health Information System linked dataset. The odds of returning to baseline lung function and having a subsequent PEx requiring intravenous antibiotics were compared between PEx treated with anti-MRSA and antipseudomonal antibiotics and those treated with antipseudomonal antibiotics alone, adjusting for confounding by indication using inverse probability of treatment weighting. RESULTS 943 children with CF co-infected with MRSA and Pa contributed 2,989 PEx for analysis. Of these, 2,331 (78%) PEx were treated with both anti-MRSA and antipseudomonal antibiotics and 658 (22%) PEx were treated with antipseudomonal antibiotics alone. Compared with PEx treated with antipseudomonal antibiotics alone, the addition of anti-MRSA antibiotics to antipseudomonal antibiotic therapy was not associated with a higher odds of returning to ≥90% or ≥100% of baseline lung function or a lower odds of future PEx requiring intravenous antibiotics. CONCLUSIONS Children with CF co-infected with MRSA and Pa may not benefit from the addition of anti-MRSA antibiotics for PEx treatment. Prospective studies evaluating optimal antibiotic selection strategies for PEx treatment are needed to optimize clinical outcomes following PEx treatment.
Collapse
Affiliation(s)
- Jonathan D Cogen
- Division of Pulmonary & Sleep Medicine, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington, United States.
| | - Matthew Hall
- Children's Hospital Association, Lenexa, Kansas, United States
| | - Anna V Faino
- Core for Biostatistics, Epidemiology, and Analytics in Research, Seattle Children's Research Institute, Seattle, Washington, United States
| | - Lilliam Ambroggio
- Sections of Emergency Medicine and Hospital Medicine, Children's Hospital Colorado, Department of Pediatrics, University of Colorado, Denver, Colorado, United States
| | - Anne J Blaschke
- Division of Pediatric Infectious Disease, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Thomas V Brogan
- Division of Critical Care, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington, United States
| | - Jillian M Cotter
- Sections of Emergency Medicine and Hospital Medicine, Children's Hospital Colorado, Department of Pediatrics, University of Colorado, Denver, Colorado, United States
| | - Ronald L Gibson
- Division of Pulmonary & Sleep Medicine, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington, United States
| | - Carlos G Grijalva
- Department of Health Policy, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Adam L Hersh
- Division of Pediatric Infectious Disease, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Susan C Lipsett
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Samir S Shah
- Division of Hospital Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, Canada
| | - Daniel J Shapiro
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Mark I Neuman
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Jeffrey S Gerber
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
11
|
Distribution and Characteristics of Bacteria Isolated from Cystic Fibrosis Patients with Pulmonary Exacerbation. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:5831139. [PMID: 36593975 PMCID: PMC9805393 DOI: 10.1155/2022/5831139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/25/2022]
Abstract
Background Cystic fibrosis (CF) is an inherited recessive disorder characterized by recurrent and persistent pulmonary infections, resulting in lung function deterioration and early mortality. Methods A cross-sectional study was conducted on the bacterial profile and antibiotic resistance pattern of 103 respiratory specimens from CF patients with signs of pulmonary exacerbation. Antibiotic susceptibility testing and biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa isolates were performed by the Kirby-Bauer disc diffusion method and microtiter plate assay, respectively. Molecular typing of S. aureus and P. aeruginosa isolates was carried out by spa typing and repetitive extragenic palindromic element PCR. Results In a total of 129 isolates, the most prevalent organisms were S. aureus (55.3%) and P. aeruginosa (41.7%). Other less prevalent bacterial isolates include coagulase-negative staphylococci, Escherichia coli, klebsiella spp., Enterobacter spp., and Achromobacter xylosoxidans. The highest rate of resistance for S. aureus was observed to azithromycin and erythromycin (80%), ciprofloxacin (52.3%), clindamycin (44.6%) and tetracycline (43%). Twenty percent of S. aureus isolates were methicillin-resistant S. aureus (MRSA) and 47.6% were MDR S. aureus. For P. aeruginosa isolates the highest resistance was to cefepime (38.3%) and levofloxacin (33.3%) and 20% showed MDR phenotype. Conclusion Our study demonstrated a significant decline in the prevalence of P. aeruginosa infections in comparison to previous studies. We found S. aureus to be more prevalent in younger patients, whereas mucoid P. aeruginosa showed a shift in prevalence toward older ages. Molecular typing methods showed great diversity between isolates.
Collapse
|
12
|
Sunman B, Yalcin E, Ozsezen B, Tural DA, Buyuksahin HN, Guzelkas I, Emiralioglu N, Dogru D, Özçelik U, Şener B, Kiper N. Association between early chronic methicillin-susceptible Staphylococcus aureus colonization and lung function in children with cystic fibrosis. Pediatr Pulmonol 2022; 57:2963-2970. [PMID: 35962540 DOI: 10.1002/ppul.26114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/22/2022] [Accepted: 08/11/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Our aim was to determine whether early chronic methicillin-susceptible Staphylococcus aureus (MSSA) colonization in children with cystic fibrosis (CF) is associated at 8 years of age with poorer lung function, poorer nutritional status, and increased exacerbation frequency. METHODS In this retrospective cohort study, a total of 52 children with chronic MSSA colonization were included. Of them, 26 were chronically colonized with MSSA before the age of 4 years (early onset), and 26 were chronically colonized from 4 years to 6 years of age (late-onset). At the age of 8 years, lung function, body mass index (BMI) as an indicator of nutritional status and frequency of pulmonary exacerbations were compared between two groups. RESULTS At 8 years of age, BMI was similar between the early-onset and late-onset groups (15.0 [min-max: 12.9-26.8] vs. 15.7 (min-max: 13.0-24.9), p = 0.327]. Percentage of forced expiratory volume in 1 s (FEV1) and forced expiratory flow between 25% and 75% of vital capacity (FEF25-75) in 8-year-old children were significantly lower in the early onset group compared to the late-onset group (98 [min-max: 44-139] vs. 106.5 [min-max: 82-131], p = 0.047; 84.9 ± 25.5 vs. -102.3 ± 26.3, respectively; p = 0.019], although the percentage of forced vital capacity did not differ significantly between two groups (93.5 [min-max: 45-131] vs. 103 [min-max: 84-119], respectively; p = 0.092). Exacerbation frequency between the ages of 6 and 8 years in the early onset group was higher compared to the late-onset group according to the Poisson regression model [1 (min-max:0-10) vs 0 (min-max:0-4), respectively; p = 0.044]. CONCLUSIONS Early chronic MSSA colonization is associated with poorer lung function and frequent exacerbations in children with CF. However, further studies are needed to reveal the cause-and-effect relationship between early chronic MSSA colonization and pulmonary outcome.
Collapse
Affiliation(s)
- Birce Sunman
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Ebru Yalcin
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Beste Ozsezen
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Dilber A Tural
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Halime N Buyuksahin
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Ismail Guzelkas
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Nagehan Emiralioglu
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Deniz Dogru
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Uğur Özçelik
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Burçin Şener
- Department of Medical Microbiology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Nural Kiper
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| |
Collapse
|
13
|
Saluzzo F, Riberi L, Messore B, Loré NI, Esposito I, Bignamini E, De Rose V. CFTR Modulator Therapies: Potential Impact on Airway Infections in Cystic Fibrosis. Cells 2022; 11:cells11071243. [PMID: 35406809 PMCID: PMC8998122 DOI: 10.3390/cells11071243] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in the gene encoding for the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein, expressed on the apical surface of epithelial cells. CFTR absence/dysfunction results in ion imbalance and airway surface dehydration that severely compromise the CF airway microenvironment, increasing infection susceptibility. Recently, novel therapies aimed at correcting the basic CFTR defect have become available, leading to substantial clinical improvement of CF patients. The restoration or increase of CFTR function affects the airway microenvironment, improving local defence mechanisms. CFTR modulator drugs might therefore affect the development of chronic airway infections and/or improve the status of existing infections in CF. Thus far, however, the full extent of these effects of CFTR-modulators, especially in the long-term remains still unknown. This review aims to provide an overview of current evidence on the potential impact of CFTR modulators on airway infections in CF. Their role in affecting CF microbiology, the susceptibility to infections as well as the potential efficacy of their use in preventing/decreasing the development of chronic lung infections and the recurrent acute exacerbations in CF will be critically analysed.
Collapse
Affiliation(s)
- Francesca Saluzzo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Luca Riberi
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy;
| | - Barbara Messore
- Adult Cystic Fibrosis Centre, Azienda Ospedaliero-Universitaria San Luigi Gonzaga, 10043 Orbassano, Italy;
| | - Nicola Ivan Loré
- WHO Collaborating Centre and TB Supranational Reference Laboratory, Emerging Bacterial Pathogens Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Irene Esposito
- Paediatric Pulmonology Unit, Regina Margherita Hospital AOU Città della Salute e della Scienza, 10126 Torino, Italy; (I.E.); (E.B.)
| | - Elisabetta Bignamini
- Paediatric Pulmonology Unit, Regina Margherita Hospital AOU Città della Salute e della Scienza, 10126 Torino, Italy; (I.E.); (E.B.)
| | - Virginia De Rose
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Correspondence:
| |
Collapse
|
14
|
Montagut EJ, Acosta G, Albericio F, Royo M, Godoy-Tena G, Lacoma A, Prat C, Salvador JP, Marco MP. Direct Quantitative Immunochemical Analysis of Autoinducer Peptide IV for Diagnosing and Stratifying Staphylococcus aureus Infections. ACS Infect Dis 2022; 8:645-656. [PMID: 35175740 PMCID: PMC8922274 DOI: 10.1021/acsinfecdis.1c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An immunochemical strategy to detect and quantify AIP-IV, the quorum sensing (QS) signaling molecule produced by Staphylococcus aureus agr type IV, is reported here for the first time. Theoretical calculations and molecular modeling studies have assisted on the design and synthesis of a suitable peptide hapten (AIPIVS), allowing to obtain high avidity and specific antibodies toward this peptide despite its low molecular weight. The ELISA developed achieves an IC50 value of 2.80 ± 0.17 and an LOD of 0.19 ± 0.06 nM in complex media such as 1/2 Tryptic Soy Broth. Recognition of other S. aureus AIPs (I-III) is negligible (cross-reactivity below 0.001%), regardless of the structural similarities. A pilot study with a set of clinical isolates from patients with airways infection or colonization demonstrates the potential of this ELISA to perform biomedical investigations related to the role of QS in pathogenesis and the association between dysfunctional agr or the agr type with unfavorable clinical outcomes. The AIP-IV levels could be quantified in the low nanomolar range in less than 1 h after inoculating agr IV-genotyped isolates in the culture broth, while those genotyped as I-III did not show any immunoreactivity after a 48 h growth, pointing to the possibility to use this technology for phenotyping S. aureus. The research strategy here reported can be extended to the rest of the AIP types of S. aureus, allowing the development of powerful multiplexed chips or point-of-care (PoC) diagnostic devices to unequivocally identify its presence and its agr type on samples from infected patients.
Collapse
Affiliation(s)
- Enrique-J. Montagut
- Nanobiotechnology for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08750 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid Spain
| | - Gerardo Acosta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid Spain
- Multivalent Systems for Nanomedicine (MS4N), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08750 Barcelona, Spain
| | - Fernando Albericio
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid Spain
- Multivalent Systems for Nanomedicine (MS4N), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08750 Barcelona, Spain
- Department of Organic Chemistry, Faculty of Chemistry, University of Barcelona, 08028 Barcelona, Spain
- School of Chemistry and Physics, University of KwaZulu-Natal, 4000 Durban, South Africa
| | - Miriam Royo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid Spain
- Multivalent Systems for Nanomedicine (MS4N), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08750 Barcelona, Spain
| | - Gerard Godoy-Tena
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d’Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Alicia Lacoma
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d’Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Cristina Prat
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d’Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 Utrecht, the Netherlands
| | - Juan-Pablo Salvador
- Nanobiotechnology for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08750 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid Spain
| | - María-Pilar Marco
- Nanobiotechnology for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08750 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid Spain
| |
Collapse
|
15
|
Guo H, Tong Y, Cheng J, Abbas Z, Li Z, Wang J, Zhou Y, Si D, Zhang R. Biofilm and Small Colony Variants-An Update on Staphylococcus aureus Strategies toward Drug Resistance. Int J Mol Sci 2022; 23:ijms23031241. [PMID: 35163165 PMCID: PMC8835882 DOI: 10.3390/ijms23031241] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Recently, the drawbacks arising from the overuse of antibiotics have drawn growing public attention. Among them, drug-resistance (DR) and even multidrug-resistance (MDR) pose significant challenges in clinical practice. As a representative of a DR or MDR pathogen, Staphylococcus aureus can cause diversity of infections related to different organs, and can survive or adapt to the diverse hostile environments by switching into other phenotypes, including biofilm and small colony variants (SCVs), with altered physiologic or metabolic characteristics. In this review, we briefly describe the development of the DR/MDR as well as the classical mechanisms (accumulation of the resistant genes). Moreover, we use multidimensional scaling analysis to evaluate the MDR relevant hotspots in the recent published reports. Furthermore, we mainly focus on the possible non-classical resistance mechanisms triggered by the two important alternative phenotypes of the S. aureus, biofilm and SCVs, which are fundamentally caused by the different global regulation of the S. aureus population, such as the main quorum-sensing (QS) and agr system and its coordinated regulated factors, such as the SarA family proteins and the alternative sigma factor σB (SigB). Both the biofilm and the SCVs are able to escape from the host immune response, and resist the therapeutic effects of antibiotics through the physical or the biological barriers, and become less sensitive to some antibiotics by the dormant state with the limited metabolisms.
Collapse
|
16
|
Mixed Populations and Co-Infection: Pseudomonas aeruginosa and Staphylococcus aureus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:397-424. [DOI: 10.1007/978-3-031-08491-1_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Pleiotropic Effects of Statins: New Therapeutic Approaches to Chronic, Recurrent Infection by Staphylococcus aureus. Pharmaceutics 2021; 13:pharmaceutics13122047. [PMID: 34959329 PMCID: PMC8706520 DOI: 10.3390/pharmaceutics13122047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 01/01/2023] Open
Abstract
An emergent approach to bacterial infection is the use of host rather than bacterial-directed strategies. This approach has the potential to improve efficacy in especially challenging infection settings, including chronic, recurrent infection due to intracellular pathogens. For nearly two decades, the pleiotropic effects of statin drugs have been examined for therapeutic usefulness beyond the treatment of hypercholesterolemia. Interest originated after retrospective studies reported decreases in the risk of death due to bacteremia or sepsis for those on a statin regimen. Although subsequent clinical trials have yielded mixed results and earlier findings have been questioned for biased study design, in vitro and in vivo studies have provided clear evidence of protective mechanisms that include immunomodulatory effects and the inhibition of host cell invasion. Ultimately, the benefits of statins in an infection setting appear to require attention to the underlying host response and to the timing of the dosage. From this examination of statin efficacy, additional novel host-directed strategies may produce adjunctive therapeutic approaches for the treatment of infection where traditional antimicrobial therapy continues to yield poor outcomes. This review focuses on the opportunistic pathogen, Staphylococcus aureus, as a proof of principle in examining the promise and limitations of statins in recalcitrant infection.
Collapse
|
18
|
Ng RN, Grey LJ, Vaitekenas A, McLean SA, Rudrum JD, Laucirica DR, Poh MWP, Hillas J, Winslow SG, Iszatt JJ, Iosifidis T, Tai AS, Agudelo-Romero P, Chang BJ, Stick SM, Kicic A. Development and validation of a miniaturized bacteriophage host range screening assay against antibiotic resistant Pseudomonas aeruginosa. J Microbiol Methods 2021; 190:106346. [PMID: 34637818 DOI: 10.1016/j.mimet.2021.106346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
Antimicrobial resistance is a current global health crisis, and the increasing emergence of multidrug resistant infections has led to the resurgent interest in bacteriophages as an alternative treatment. Prior to clinical application, phage suitability is assessed, via susceptibility testing and breadth of host range to bacteriophage, however, these are both large-scale manual processes and labor-intensive. The aim of the study was to establish and validate a scaled down methodology for high-throughput screening to reduce procedural footprint. In this paper, we describe a scaled-down adapted methodology that can successfully screen bacteriophages, isolated and purified from wastewater samples. Furthermore, we describe a miniaturized host range assay against clinical Pseudomonas aeruginosa isolates using a spot test (2 μL/ drop) that was found to be both sensitive (94.6%) and specific (94.7%). It also demonstrated a positive predictive value (PPV) of 86.4% and negative predictive value (NPV) of 98%. The breadth of host range of bacteriophages that exhibited lytic activity on P. aeruginosa isolates was corroborated using the scaled down assay. The high correlation achieved in this study confirms miniaturization as the first step in future automation that could test phage diversity and efficacy as antimicrobials.
Collapse
Affiliation(s)
- Renee Nicole Ng
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia; Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Lucinda Jane Grey
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia; Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Andrew Vaitekenas
- Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia; Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Samantha Abagail McLean
- Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Jack Dylan Rudrum
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia; Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Daniel Rodolfo Laucirica
- Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia; Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Matthew Wee-Peng Poh
- Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia; Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Jessica Hillas
- Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Scott Glenn Winslow
- Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Joshua James Iszatt
- Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia; Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Thomas Iosifidis
- Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia; Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, Western Australia, Australia; Center for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Anna Sze Tai
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia; Institute for Respiratory Health, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Patricia Agudelo-Romero
- Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Barbara Jane Chang
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Stephen Michael Stick
- Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Perth, Western Australia, Australia; Center for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Anthony Kicic
- Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia; Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Perth, Western Australia, Australia; Center for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia.
| | -
- Wal-Yan Respiratory Research Center, Telethon Kids Institute, Perth, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Perth, Western Australia, Australia; Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Lavigne JP, Hosny M, Dunyach-Remy C, Boutet-Dubois A, Schuldiner S, Cellier N, Yahiaoui-Martinez A, Molle V, La Scola B, Marchandin H, Sotto A. Long-Term Intrahost Evolution of Staphylococcus aureus Among Diabetic Patients With Foot Infections. Front Microbiol 2021; 12:741406. [PMID: 34552578 PMCID: PMC8452158 DOI: 10.3389/fmicb.2021.741406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/11/2021] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus is one of the main pathogens isolated from diabetic foot infections (DFI). The purpose of this study was to evaluate the importance of the persistence of S. aureus in this environment and the possible modifications of the bacterial genome content over time. Molecular typing of S. aureus isolates cultured from patients with the same DFI over a 7-year study revealed a 25% rate of persistence of this species in 48 patients, with a short median persistence time of 12weeks (range: 4-52weeks). Non-specific clonal complexes were linked to this persistence. During the follow-up, bla genes were acquired in three cases, whereas some virulence markers were lost in all cases after a long period of colonization (21.5weeks). Only one patient (2%) had a long-term persistence of 48weeks. The genome sequencing of a clonal pair of early/late strains isolated in this patient showed mutations in genes encoding bacterial defence and two-component signal transduction systems. Although, this study suggests that the long-term persistence of S. aureus in DFI is a rare event, genomic evolution is observed, highlighting the low adaptive ability of S. aureus to the specific environment and stressful conditions of diabetic foot ulcers. These results provide the basis for better understanding of S. aureus dynamics during persistent colonization in chronic wounds.
Collapse
Affiliation(s)
- Jean-Philippe Lavigne
- VBIC, INSERM U1047, Service de Microbiologie et Hygiène Hospitalière, Université de Montpellier, CHU Nîmes, Nîmes, France
| | - Michel Hosny
- Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France
| | - Catherine Dunyach-Remy
- VBIC, INSERM U1047, Service de Microbiologie et Hygiène Hospitalière, Université de Montpellier, CHU Nîmes, Nîmes, France
| | - Adeline Boutet-Dubois
- VBIC, INSERM U1047, Service de Microbiologie et Hygiène Hospitalière, Université de Montpellier, CHU Nîmes, Nîmes, France
| | - Sophie Schuldiner
- VBIC, INSERM U1047, Service des Maladies Métaboliques et Endocriniennes, Université de Montpellier, CHU Nîmes, Nîmes, France
| | | | - Alex Yahiaoui-Martinez
- VBIC, INSERM U1047, Service de Microbiologie et Hygiène Hospitalière, Université de Montpellier, CHU Nîmes, Nîmes, France
| | - Virginie Molle
- Laboratory of Pathogen Host Interactions, UMR 5235, CNRS, Université de Montpellier, Montpellier, France
| | - Bernard La Scola
- Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France
| | - Hélène Marchandin
- HydroSciences Montpellier, CNRS, IRD, Service de Microbiologie et Hygiène Hospitalière, Université de Montpellier, CHU Nîmes, Nîmes, France
| | - Albert Sotto
- VBIC, INSERM U1047, Service des Maladies Infectieuses et Tropicales, Université de Montpellier, CHU Nîmes, Nîmes, France
| |
Collapse
|
20
|
Rumpf C, Lange J, Schwartbeck B, Kahl BC. Staphylococcus aureus and Cystic Fibrosis-A Close Relationship. What Can We Learn from Sequencing Studies? Pathogens 2021; 10:1177. [PMID: 34578208 PMCID: PMC8466686 DOI: 10.3390/pathogens10091177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/13/2023] Open
Abstract
Staphylococcus aureus is next to Pseudomonas aeruginosa the most isolated pathogen from the airways of cystic fibrosis (CF) patients, who are often infected by a dominant S. aureus clone for extended periods. To be able to persist, the pathogen has to adapt to the hostile niche of the airways to counteract host defence, antibiotic therapy and the competition with coinfecting pathogens. S. aureus is equipped with many virulence factors including adhesins, toxins that are localized on the chromosome, on plasmids or are phage-related. S. aureus is especially versatile and adaptation and evolution of the pathogen occurs by the acquisition of new genes by horizontal gene transfer (HGT), changes in nucleotides (single nucleotide variations, SNVs) that can cause a selective advantage for the bacteria and become fixed in subpopulations. Methicillin-resistant S. aureus are a special threat to CF patients due to the more severe lung disease occurring in infected patients. Today, with decreasing costs for sequencing, more and more studies using S. aureus isolates cultured from CF patients are being published, which use whole genome sequencing (WGS), multilocus sequence typing (MLST) or spa-sequence typing (spa-typing) to follow the population dynamics of S. aureus, elucidate the underlying mechanisms of phenotypic variants, newly acquired resistance or adaptation to the host response in this particular niche. In the first part of this review, an introduction to the genetic make-up and the pathogenesis of S. aureus with respect to CF is provided. The second part presents an overview of recent studies and their findings using genotypic methods such as single or multilocus sequencing and whole genome sequencing, which identify factors contributing to the adaptation of S. aureus and its evolution in the airways of individuals with CF.
Collapse
Affiliation(s)
| | | | | | - Barbara C. Kahl
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (C.R.); (J.L.); (B.S.)
| |
Collapse
|
21
|
Renz A, Dräger A. Curating and comparing 114 strain-specific genome-scale metabolic models of Staphylococcus aureus. NPJ Syst Biol Appl 2021; 7:30. [PMID: 34188046 PMCID: PMC8241996 DOI: 10.1038/s41540-021-00188-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus is a high-priority pathogen causing severe infections with high morbidity and mortality worldwide. Many S. aureus strains are methicillin-resistant (MRSA) or even multi-drug resistant. It is one of the most successful and prominent modern pathogens. An effective fight against S. aureus infections requires novel targets for antimicrobial and antistaphylococcal therapies. Recent advances in whole-genome sequencing and high-throughput techniques facilitate the generation of genome-scale metabolic models (GEMs). Among the multiple applications of GEMs is drug-targeting in pathogens. Hence, comprehensive and predictive metabolic reconstructions of S. aureus could facilitate the identification of novel targets for antimicrobial therapies. This review aims at giving an overview of all available GEMs of multiple S. aureus strains. We downloaded all 114 available GEMs of S. aureus for further analysis. The scope of each model was evaluated, including the number of reactions, metabolites, and genes. Furthermore, all models were quality-controlled using MEMOTE, an open-source application with standardized metabolic tests. Growth capabilities and model similarities were examined. This review should lead as a guide for choosing the appropriate GEM for a given research question. With the information about the availability, the format, and the strengths and potentials of each model, one can either choose an existing model or combine several models to create models with even higher predictive values. This facilitates model-driven discoveries of novel antimicrobial targets to fight multi-drug resistant S. aureus strains.
Collapse
Affiliation(s)
- Alina Renz
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany.
- Department of Computer Science, University of Tübingen, Tübingen, Germany.
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany.
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.
| |
Collapse
|
22
|
Association of Diverse Staphylococcus aureus Populations with Pseudomonas aeruginosa Coinfection and Inflammation in Cystic Fibrosis Airway Infection. mSphere 2021; 6:e0035821. [PMID: 34160233 PMCID: PMC8265651 DOI: 10.1128/msphere.00358-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Staphylococcus aureus is one of the most common pathogens isolated from the airways of cystic fibrosis (CF) patients and often persists for extended periods. There is limited knowledge about the diversity of S. aureus in CF. We hypothesized that increased diversity of S. aureus would impact CF lung disease. Therefore, we conducted a 1-year observational prospective study with 14 patients with long-term S. aureus infection. From every sputum, 40 S. aureus isolates were chosen and characterized in terms of phenotypic appearance (size, hemolysis, mucoidy, and pigmentation), important virulence traits such as nuclease activity, biofilm formation, and molecular typing by spa sequence typing. Data about coinfection with Pseudomonas aeruginosa and clinical parameters such as lung function, exacerbation, and inflammatory markers in blood (C-reactive protein [CRP], interleukin 6 [IL-6], and S100A8/9 [calprotectin]) were collected. From 58 visits of 14 patients, 2,319 S. aureus isolates were distinguished into 32 phenotypes (PTs) and 50 spa types. The Simpson diversity index (SDI) was used to calculate the phenotypic and genotypic diversity, revealing a high diversity of PTs ranging from 0.19 to 0.87 among patients, while the diversity of spa types of isolates was less pronounced. The SDI of PTs was positively associated with P. aeruginosa coinfection and inflammatory parameters, with IL-6 being the most sensitive parameter. Also, coinfection with P. aeruginosa was associated with mucoid S. aureus and S. aureus with high nuclease activity. Our analyses showed that in CF patients with long-term S. aureus airway infection, a highly diverse and dynamic S. aureus population was present and associated with P. aeruginosa coinfection and inflammation. IMPORTANCE Staphylococcus aureus can persist for extended periods in the airways of people with cystic fibrosis (CF) in spite of antibiotic therapy and high numbers of neutrophils, which fail to eradicate this pathogen. Therefore, S. aureus needs to adapt to this hostile niche. There is only limited knowledge about the diversity of S. aureus in respiratory specimens. We conducted a 1-year prospective study with 14 patients with long-term S. aureus infection and investigated 40 S. aureus isolates from every sputum in terms of phenotypic appearance, nuclease activity, biofilm formation, and molecular typing. Data about coinfection with Pseudomonas aeruginosa and clinical parameters such as lung function, exacerbation, and inflammatory markers in blood were collected. Thirty-two phenotypes (PTs) and 50 spa types were distinguished. Our analyses revealed that in CF patients with long-term S. aureus airway infection, a highly diverse and dynamic S. aureus population was associated with P. aeruginosa coinfection and inflammation.
Collapse
|
23
|
Sader HS, Duncan LR, Mendes RE. Antimicrobial activity of dalbavancin and comparators against Staphylococcus aureus causing pneumonia in patients with and without cystic fibrosis. Int J Infect Dis 2021; 107:69-71. [PMID: 33878463 DOI: 10.1016/j.ijid.2021.04.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
The activities of dalbavancin and comparator agents were evaluated against Staphylococcus aureus isolated from the lower respiratory tract of cystic fibrosis (CF) and non-CF patients with pneumonia. Bacterial isolates (n = 357) were collected from CF patients in 36 medical centers worldwide (2018-2019) and susceptibility tested using reference broth microdilution. Susceptibility results from these isolates were compared with those for 725 S. aureus isolates consecutively collected from non-CF patients with pneumonia from the same medical centers over the same period. Only isolates determined to be the probable cause of pneumonia were included in the study. Susceptibility profiles were very similar among isolates from CF and non-CF patients. Dalbavancin exhibited potent activity (MIC50/90, 0.03/0.03 mg/L) and complete coverage (100.0% susceptibility) against isolates from CF and non-CF patients. Ceftaroline (MIC50/90, 0.25/1 mg/L) was active against 97.8% and 98.1% of isolates from CF and non-CF patients, respectively. Oxacillin resistance (MRSA) rates were 27.7% among CF and 28.7% among non-CF patients. Among MRSA isolates from CF/non-CF patients (n = 99/208), susceptibility to ceftaroline, clindamycin, levofloxacin, and tetracycline were 91.9%/93.3%, 58.6%/64.4%, 40.4%/29.3%, and 83.8%/89.4%, respectively. Dalbavancin demonstrated high potency against S. aureus from CF and non-CF patients and may represent a valuable treatment option for CF patients with MRSA pulmonary infection.
Collapse
|
24
|
Hyperinflammation and airway surface liquid dehydration in cystic fibrosis: purinergic system as therapeutic target. Inflamm Res 2021; 70:633-649. [PMID: 33904934 DOI: 10.1007/s00011-021-01464-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE AND DESIGN The exacerbate inflammatory response contributes to the progressive loss of lung function in cystic fibrosis (CF), a genetic disease that affects the osmotic balance of mucus and mucociliary clearance, resulting in a microenvironment that favors infection and inflammation. The purinergic system, an extracellular signaling pathway characterized by nucleotides, enzymes and receptors, may have a protective role in the disease, through its action in airway surface liquid (ASL) and anti-inflammatory response. MATERIALS AND METHODS To make up this review, studies covering topics of CF, inflammation, ASL and purinergic system were selected from the main medical databases, such as Pubmed and ScienceDirect. CONCLUSION We propose several ways to modulate the purinergic system as a potential therapy for CF, like inhibition of P2X7, activation of P2Y2, A2A and A2B receptors and blocking of adenosine deaminase. Among them, we postulate that the most suitable strategy is to block the action of adenosine deaminase, which culminates in the increase of Ado levels that presents anti-inflammatory actions and improves mucociliary clearance. Furthermore, it is possible to maintain the physiological levels of ATP to control the hydration of ASL. These therapies could correct the main mechanisms that contribute to the progression of CF.
Collapse
|
25
|
Fischer AJ, Singh SB, LaMarche MM, Maakestad LJ, Kienenberger ZE, Peña TA, Stoltz DA, Limoli DH. Sustained Coinfections with Staphylococcus aureus and Pseudomonas aeruginosa in Cystic Fibrosis. Am J Respir Crit Care Med 2021; 203:328-338. [PMID: 32750253 DOI: 10.1164/rccm.202004-1322oc] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rationale: Staphylococcus aureus and Pseudomonas aeruginosa often infect the airways in cystic fibrosis (CF). Because registry studies show higher prevalence of P. aeruginosa versus S. aureus in older patients with CF, a common assumption is that P. aeruginosa replaces S. aureus over time. In vitro, P. aeruginosa can outgrow and kill S. aureus. However, it is unknown how rapidly P. aeruginosa replaces S. aureus in patients with CF.Methods: We studied a longitudinal cohort of children and adults with CF who had quantitative sputum cultures. We determined the abundance of P. aeruginosa and S. aureus in cfu/ml. We determined the duration and persistence of infections and measured longitudinal changes in culture positivity and abundance for each organism.Measurements and Main Results: Between 2004 and 2017, 134 patients had ≥10 quantitative cultures, with median observation time of 10.15 years. One hundred twenty-four patients had at least one positive culture for P. aeruginosa, and 123 had at least one positive culture for S. aureus. Both species had median abundance of >106 cfu/ml. Culture abundance was stable over time for both organisms. There was an increase in the prevalence of S. aureus/P. aeruginosa coinfection but no decrease in S. aureus prevalence within individuals over time.Conclusions: S. aureus and P. aeruginosa are abundant in CF sputum cultures. Contrary to common assumption, we found no pattern of replacement of S. aureus by P. aeruginosa. Many patients with CF have durable long-term coinfection with these organisms. New strategies are needed to prevent and treat these infections.
Collapse
Affiliation(s)
| | | | | | | | | | - Tahuanty A Peña
- Stead Family Department of Pediatrics.,Department of Internal Medicine, and
| | | | - Dominique H Limoli
- Department of Immunology and Microbiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
26
|
Birk SE, Mazzoni C, Mobasharah Javed M, Borre Hansen M, Krogh Johansen H, Anders Juul Haagensen J, Molin S, Hagner Nielsen L, Boisen A. Co-delivery of ciprofloxacin and colistin using microcontainers for bacterial biofilm treatment. Int J Pharm 2021; 599:120420. [PMID: 33647404 DOI: 10.1016/j.ijpharm.2021.120420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 10/22/2022]
Abstract
In many infected patients, bacterial biofilms represent a mode of growth that significantly enhances the tolerance to antimicrobials, leaving the patients with difficult-to-cure infections. Therefore, there is a growing need for effective treatment strategies to combat biofilm infections. In this work, reservoir-based microdevices, also known as microcontainers (MCs), are co-loaded with two antibiotics: ciprofloxacin hydrochloride (CIP) and colistin sulfate (COL), targeting both metabolically active and dormant subpopulations of the biofilm. We assess the effect of the two drugs in a time-kill study of planktonic P. aeruginosa and find that co-loaded MCs are superior to monotherapy, resulting in complete killing of the entire population. Biofilm consortia of P. aeruginosa grown in flow chambers were not fully eradicated. However, antibiotics in MCs work significantly faster than simple perfusion of antibiotics (62.5 ± 8.3% versus 10.6 ± 10.1% after 5 h) in biofilm consortia, showing the potential of the MC-based treatment to minimize the use of antimicrobials in future therapies.
Collapse
Affiliation(s)
- Stine Egebro Birk
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kongens Lyngby, Denmark.
| | - Chiara Mazzoni
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kongens Lyngby, Denmark
| | - Madeeha Mobasharah Javed
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kongens Lyngby, Denmark
| | - Morten Borre Hansen
- Novo Nordisk Foundation Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, Produktionstorvet 423, 2800 Kongens Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Section 9301 Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs Vej 4A, Copenhagen Ø 2100, Denmark; Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N 2200, Denmark
| | - Janus Anders Juul Haagensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Søren Molin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Line Hagner Nielsen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kongens Lyngby, Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
27
|
Yusuf E. Not all that glitters is gold, and not all that is sticky is Pseudomonas aeruginosa. Clin Microbiol Infect 2020; 27:993-994. [PMID: 33253939 DOI: 10.1016/j.cmi.2020.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Erlangga Yusuf
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
28
|
Evans MD, Sammelson R, McDowell S. Differential effects of cotreatment of the antibiotic rifampin with host-directed therapeutics in reducing intracellular Staphylococcus aureus infection. PeerJ 2020; 8:e10330. [PMID: 33240647 PMCID: PMC7664464 DOI: 10.7717/peerj.10330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/19/2020] [Indexed: 11/20/2022] Open
Abstract
Background Chronic infection by Staphylococcus aureus drives pathogenesis in important clinical settings, such as recurrent pulmonary infection in cystic fibrosis and relapsing infection in osteomyelitis. Treatment options for intracellular S. aureus infection are limited. Rifampin, a lipophilic antibiotic, readily penetrates host cell membranes, yet monotherapy is associated with rapid antibiotic resistance and development of severe adverse events. Antibiotic cotreatment can reduce this progression, yet efficacy diminishes as antibiotic resistance develops. ML141 and simvastatin inhibit S. aureus invasion through host-directed rather than bactericidal mechanisms. Objective To determine whether cotreatment of ML141 or of simvastatin with rifampin would enhance rifampin efficacy. Methods Assays to assess host cell invasion, host cell viability, host cell membrane permeability, and bactericidal activity were performed using the human embryonic kidney (HEK) 293-A cell line infected with S. aureus (29213) and treated with vehicle control, simvastatin, ML141, rifampin, or cotreatment of simvastatin or ML141 with rifampin. Results We found cotreatment of ML141 with rifampin reduced intracellular infection nearly 85% when compared to the no treatment control. This decrease more than doubled the average 40% reduction in response to rifampin monotherapy. In contrast, cotreatment of simvastatin with rifampin failed to improve rifampin efficacy. Also, in contrast to ML141, simvastatin increased propidium iodide (PI) positive cells, from an average of 10% in control HEK 293-A cells to nearly 20% in simvastatin-treated cells, indicating an increase in host cell membrane permeability. The simvastatin-induced increase was reversed to control levels by cotreatment of simvastatin with rifampin. Conclusion Taken together, rifampin efficacy is increased through host-directed inhibition of S. aureus invasion by ML141, while efficacy is not increased by simvastatin. Considerations regarding novel therapeutic approaches may be dependent on underlying differences in pharmacology.
Collapse
Affiliation(s)
- Melissa D Evans
- Department of Biology, Ball State University, Muncie, IN, United States of America
| | - Robert Sammelson
- Department of Chemistry, Ball State University, Muncie, IN, United States of America
| | - Susan McDowell
- Department of Biology, Ball State University, Muncie, IN, United States of America
| |
Collapse
|
29
|
Palma Medina LM, Becker AK, Michalik S, Surmann K, Hildebrandt P, Gesell Salazar M, Mekonnen SA, Kaderali L, Völker U, van Dijl JM. Interaction of Staphylococcus aureus and Host Cells upon Infection of Bronchial Epithelium during Different Stages of Regeneration. ACS Infect Dis 2020; 6:2279-2290. [PMID: 32579327 PMCID: PMC7432605 DOI: 10.1021/acsinfecdis.0c00403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
The
primary barrier that protects our lungs against infection by
pathogens is a tightly sealed layer of epithelial cells. When the
integrity of this barrier is disrupted as a consequence of chronic
pulmonary diseases or viral insults, bacterial pathogens will gain
access to underlying tissues. A major pathogen that can take advantage
of such conditions is Staphylococcus aureus, thereby
causing severe pneumonia. In this study, we investigated how S. aureus responds to different conditions of the human
epithelium, especially nonpolarization and fibrogenesis during regeneration
using an in vitro infection model. The infective
process was monitored by quantification of the epithelial cell and
bacterial populations, fluorescence microscopy, and mass spectrometry.
The results uncover differences in bacterial internalization and population
dynamics that correlate with the outcome of infection. Protein profiling
reveals that, irrespective of the polarization state of the epithelial
cells, the invading bacteria mount similar responses to adapt to the
intracellular milieu. Remarkably, a bacterial adaptation that was
associated with the regeneration state of the epithelial cells concerned
the early upregulation of proteins controlled by the redox-responsive
regulator Rex when bacteria were confronted with a polarized cell
layer. This is indicative of the modulation of the bacterial cytoplasmic
redox state to maintain homeostasis early during infection even before
internalization. Our present observations provide a deeper insight
into how S. aureus can take advantage of a breached
epithelial barrier and show that infected epithelial cells have limited
ability to respond adequately to staphylococcal insults.
Collapse
Affiliation(s)
- Laura M. Palma Medina
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, 9700 RB Groningen, The Netherlands
| | - Ann-Kristin Becker
- Institute of Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Kristin Surmann
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Petra Hildebrandt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Solomon A. Mekonnen
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, 9700 RB Groningen, The Netherlands
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, 9700 RB Groningen, The Netherlands
| |
Collapse
|
30
|
Bernardy EE, Petit RA, Raghuram V, Alexander AM, Read TD, Goldberg JB. Genotypic and Phenotypic Diversity of Staphylococcus aureus Isolates from Cystic Fibrosis Patient Lung Infections and Their Interactions with Pseudomonas aeruginosa. mBio 2020; 11. [PMID: 32576671 DOI: 10.31234/osf.io/9whp4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Staphylococcus aureus has recently overtaken Pseudomonas aeruginosa as the most commonly recognized bacterial pathogen that infects the respiratory tracts of individuals with the genetic disease cystic fibrosis (CF) in the United States. Most studies of S. aureus in CF patient lung infections have focused on a few isolates, often exclusively laboratory-adapted strains, and how they are killed by P. aeruginosa Less is known about the diversity of S. aureus CF patient lung isolates in terms of both their virulence and their interaction with P. aeruginosa To begin to address this gap, we recently sequenced 64 clinical S. aureus isolates and a reference isolate, JE2. Here, we analyzed the antibiotic resistance genotypes, sequence types, clonal complexes, spa types, agr types, and presence/absence of other known virulence factor genes of these isolates. We hypothesized that virulence phenotypes of S. aureus, namely, toxin production and the mucoid phenotype, would be lost in these isolates due to adaptation in the CF patient lung. In contrast to these expectations, we found that most isolates can lyse both rabbit and sheep blood (67.7%) and produce polysaccharide (69.2%), suggesting that these phenotypes were not lost during adaptation to the CF lung. We also identified three distinct phenotypic groups of S. aureus based on their survival in the presence of nonmucoid P. aeruginosa laboratory strain PAO1 and its mucoid derivative. Altogether, our work provides greater insight into the diversity of S. aureus isolates from CF patients, specifically the distribution of important virulence factors and their interaction with P. aeruginosa, all of which have implications in patient health.IMPORTANCEStaphylococcus aureus is now the most frequently detected recognized pathogen in the lungs of individuals who have cystic fibrosis (CF) in the United States, followed closely by Pseudomonas aeruginosa When these pathogens are found to coinfect the CF lung, patients have a significantly worse prognosis. While P. aeruginosa has been rigorously studied in the context of bacterial pathogenesis in CF, less is known about S. aureus Here, we present an in-depth study of 64 S. aureus clinical isolates from CF patients, for which we investigated genetic diversity utilizing whole-genome sequencing, virulence phenotypes, and interactions with P. aeruginosa We found that S. aureus isolated from CF lungs are phylogenetically diverse; most retain known virulence factors and vary in their interactions with P. aeruginosa (i.e., they range from being highly sensitive to P. aeruginosa to completely tolerant to it). Deepening our understanding of how S. aureus responds to its environment and other microbes in the CF lung will enable future development of effective treatments and preventative measures against these formidable infections.
Collapse
Affiliation(s)
- Eryn E Bernardy
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Emory-Children's Center for Cystic Fibrosis Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Robert A Petit
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
| | - Vishnu Raghuram
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Ashley M Alexander
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Timothy D Read
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Emory-Children's Center for Cystic Fibrosis Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
31
|
Bernardy EE, Petit RA, Raghuram V, Alexander AM, Read TD, Goldberg JB. Genotypic and Phenotypic Diversity of Staphylococcus aureus Isolates from Cystic Fibrosis Patient Lung Infections and Their Interactions with Pseudomonas aeruginosa. mBio 2020; 11:mBio.00735-20. [PMID: 32576671 PMCID: PMC7315118 DOI: 10.1128/mbio.00735-20] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Staphylococcus aureus has recently overtaken Pseudomonas aeruginosa as the most commonly recognized bacterial pathogen that infects the respiratory tracts of individuals with the genetic disease cystic fibrosis (CF) in the United States. Most studies of S. aureus in CF patient lung infections have focused on a few isolates, often exclusively laboratory-adapted strains, and how they are killed by P. aeruginosa Less is known about the diversity of S. aureus CF patient lung isolates in terms of both their virulence and their interaction with P. aeruginosa To begin to address this gap, we recently sequenced 64 clinical S. aureus isolates and a reference isolate, JE2. Here, we analyzed the antibiotic resistance genotypes, sequence types, clonal complexes, spa types, agr types, and presence/absence of other known virulence factor genes of these isolates. We hypothesized that virulence phenotypes of S. aureus, namely, toxin production and the mucoid phenotype, would be lost in these isolates due to adaptation in the CF patient lung. In contrast to these expectations, we found that most isolates can lyse both rabbit and sheep blood (67.7%) and produce polysaccharide (69.2%), suggesting that these phenotypes were not lost during adaptation to the CF lung. We also identified three distinct phenotypic groups of S. aureus based on their survival in the presence of nonmucoid P. aeruginosa laboratory strain PAO1 and its mucoid derivative. Altogether, our work provides greater insight into the diversity of S. aureus isolates from CF patients, specifically the distribution of important virulence factors and their interaction with P. aeruginosa, all of which have implications in patient health.IMPORTANCEStaphylococcus aureus is now the most frequently detected recognized pathogen in the lungs of individuals who have cystic fibrosis (CF) in the United States, followed closely by Pseudomonas aeruginosa When these pathogens are found to coinfect the CF lung, patients have a significantly worse prognosis. While P. aeruginosa has been rigorously studied in the context of bacterial pathogenesis in CF, less is known about S. aureus Here, we present an in-depth study of 64 S. aureus clinical isolates from CF patients, for which we investigated genetic diversity utilizing whole-genome sequencing, virulence phenotypes, and interactions with P. aeruginosa We found that S. aureus isolated from CF lungs are phylogenetically diverse; most retain known virulence factors and vary in their interactions with P. aeruginosa (i.e., they range from being highly sensitive to P. aeruginosa to completely tolerant to it). Deepening our understanding of how S. aureus responds to its environment and other microbes in the CF lung will enable future development of effective treatments and preventative measures against these formidable infections.
Collapse
Affiliation(s)
- Eryn E Bernardy
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Emory-Children's Center for Cystic Fibrosis Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Robert A Petit
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
| | - Vishnu Raghuram
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Ashley M Alexander
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Timothy D Read
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Emory-Children's Center for Cystic Fibrosis Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
32
|
Treffon J, Fotiadis SA, van Alen S, Becker K, Kahl BC. The Virulence Potential of Livestock-Associated Methicillin-Resistant Staphylococcus aureus Cultured from the Airways of Cystic Fibrosis Patients. Toxins (Basel) 2020; 12:E360. [PMID: 32486247 PMCID: PMC7354617 DOI: 10.3390/toxins12060360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 01/25/2023] Open
Abstract
Staphylococcus aureus is one of the most common pathogens that infects the airways of patients with cystic fibrosis (CF) and contributes to respiratory failure. Recently, livestock-associated methicillin-resistant S. aureus (LA-MRSA), usually cultured in farm animals, were detected in CF airways. Although some of these strains are able to establish severe infections in humans, there is limited knowledge about the role of LA-MRSA virulence in CF lung disease. To address this issue, we analyzed LA-MRSA, hospital-associated (HA-) MRSA and methicillin-susceptible S.aureus (MSSA) clinical isolates recovered early in the course of airway infection and several years after persistence in this hostile environment from pulmonary specimens of nine CF patients regarding important virulence traits such as their hemolytic activity, biofilm formation, invasion in airway epithelial cells, cytotoxicity, and antibiotic susceptibility. We detected that CF LA-MRSA isolates were resistant to tetracycline, more hemolytic and cytotoxic than HA-MRSA, and more invasive than MSSA. Despite the residence in the animal host, LA-MRSA still represent a serious threat to humans, as such clones possess a virulence potential similar or even higher than that of HA-MRSA. Furthermore, we confirmed that S. aureus individually adapts to the airways of CF patients, which eventually impedes the success of antistaphylococcal therapy of airway infections in CF.
Collapse
Affiliation(s)
- Janina Treffon
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.T.); (S.A.F.); (S.v.A.); (K.B.)
- Institute of Hygiene, University Hospital Münster, 48149 Münster, Germany
| | - Sarah Ann Fotiadis
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.T.); (S.A.F.); (S.v.A.); (K.B.)
| | - Sarah van Alen
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.T.); (S.A.F.); (S.v.A.); (K.B.)
- Business Unit Pain, Grünenthal GmbH, 52222 Stolberg, Germany
| | - Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.T.); (S.A.F.); (S.v.A.); (K.B.)
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Barbara C. Kahl
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.T.); (S.A.F.); (S.v.A.); (K.B.)
| |
Collapse
|
33
|
Tuchscherr L, Löffler B, Proctor RA. Persistence of Staphylococcus aureus: Multiple Metabolic Pathways Impact the Expression of Virulence Factors in Small-Colony Variants (SCVs). Front Microbiol 2020; 11:1028. [PMID: 32508801 PMCID: PMC7253646 DOI: 10.3389/fmicb.2020.01028] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/27/2020] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus is able to survive within host cells by switching its phenotype to the small-colony variant (SCV) phenotype. The emergence of SCVs is associated with the development of persistent infections, which may be both chronic and recurrent. This slow-growing subpopulation of S. aureus forms small colonies on solid-medium agar, is induced within host cells, presents a non-homogenous genetic background, has reduced expression of virulence factors and presents a variable phenotype (stable or unstable). While virtually all SCVs isolated from clinical specimens can revert to the parental state with rapid growth, the stable SCVs recovered in clinical specimens have been found to contain specific mutations in metabolic pathways. In contrast, other non-stable SCVs are originated from regulatory mechanisms involving global regulators (e.g., sigB, sarA, and agr) or other non-defined mutations. One major characteristic of SCVs was the observation that SCVs were recovered from five patients with infections that could persist for decades. In these five cases, the SCVs had defects in electron transport. This linked persistent infections with SCVs. The term "persistent infection" is a clinical term wherein bacteria remain in the host for prolonged periods of time, sometimes with recurrent infection, despite apparently active antibiotics. These terms were described in vitro where bacteria remain viable in liquid culture medium in the presence of antibiotics. These bacteria are called "persisters". While SCVs can be persisters in liquid culture, not all persisters are SCVs. One mechanism associated with the metabolically variant SCVs is the reduced production of virulence factors. SCVs have consistently shown reduced levels of RNAIII, a product of the accessory gene regulatory (agrBDCA) locus that controls a quorum-sensing system and regulates the expression of a large number of virulence genes. Reduced Agr acitivity is associated with enhanced survival of SCVs within host cells. In this review, we examine the impact of the SCVs with altered metabolic pathways on agr, and we draw distinctions with other types of SCVs that emerge within mammalian cells with prolonged infection.
Collapse
Affiliation(s)
- Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Richard A Proctor
- Departments of Medical Microbiology/Immunology and Medicine, University of Wisconsin Medical School, Madison, WI, United States
| |
Collapse
|
34
|
Lee J, Zilm PS, Kidd SP. Novel Research Models for Staphylococcus aureus Small Colony Variants (SCV) Development: Co-pathogenesis and Growth Rate. Front Microbiol 2020; 11:321. [PMID: 32184775 PMCID: PMC7058586 DOI: 10.3389/fmicb.2020.00321] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/13/2020] [Indexed: 01/08/2023] Open
Abstract
Staphylococcus aureus remains a great burden on the healthcare system. Despite prescribed treatments often seemingly to be successful, S. aureus can survive and cause a relapsing infection which cannot be cleared. These infections are in part due to quasi-dormant sub-population which is tolerant to antibiotics and able to evade the host immune response. These include Small Colony Variants (SCVs). Because SCVs readily revert to non-SCV cell types under laboratory conditions, the characterization of SCVs has been problematic. This mini-review covers the phenotypic and genetic changes in stable SCVs including the selection of SCVs by and interactions with other bacterial species.
Collapse
Affiliation(s)
- James Lee
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia.,Research Centre for Infectious Diseases, Adelaide, SA, Australia.,Australian Centre for Antimicrobial Resistance Ecology, Adelaide, SA, Australia
| | - Peter S Zilm
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Stephen P Kidd
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia.,Research Centre for Infectious Diseases, Adelaide, SA, Australia.,Australian Centre for Antimicrobial Resistance Ecology, Adelaide, SA, Australia
| |
Collapse
|
35
|
Westphal C, Görlich D, Kampmeier S, Herzog S, Braun N, Hitschke C, Mellmann A, Peters G, Kahl BC. Antibiotic Treatment and Age Are Associated With Staphylococcus aureus Carriage Profiles During Persistence in the Airways of Cystic Fibrosis Patients. Front Microbiol 2020; 11:230. [PMID: 32174894 PMCID: PMC7055462 DOI: 10.3389/fmicb.2020.00230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/31/2020] [Indexed: 01/14/2023] Open
Abstract
Background Staphylococcus aureus is one of the most isolated pathogens from the airways of cystic fibrosis (CF) patients. There is a lack of information about the clonal nature of S. aureus cultured from CF patients and their impact on disease. We hypothesized that patients would differ in their clinical status depending on S. aureus clonal carriage profiles during persistence. Methods During a 21-months prospective observational multicenter study (Junge et al., 2016), 3893 S. aureus isolates (nose, oropharynx, and sputa) were cultured from 183 CF patients (16 German centers, 1 Austrian center) and subjected to spa-sequence typing to assess clonality. Data were associated to lung function, age, gender, and antibiotic treatment by multivariate regression analysis. Results Two hundred and sixty-five different spa-types were determined with eight prevalent spa-types (isolated from more than 10 patients): t084, t091, t008, t015, t002 t012, t364, and t056. We observed different carriage profiles of spa-types during the study period: patients being positive with a prevalent spa-type, only one, a dominant or related spa-type/s. Patients with more antibiotic cycles were more likely to be positive for only one spa-type (p = 0.005), while older patients were more likely to have related (p = 0.006), or dominant spa-types (p = 0.026). Two percent of isolates were identified as methicillin-resistant S. aureus (MRSA) and evidence of transmission of clones within centers was low. Conclusion There was a significant association of antibiotic therapy and age on S. aureus carriage profiles in CF patients indicating that antibiotic therapy prevents acquisition of new clones, while during aging of patients with persisting S. aureus, dominant clones were selected and mutations in the spa-repeat region accumulated.
Collapse
Affiliation(s)
- Corinna Westphal
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University Hospital Münster, Münster, Germany
| | | | - Susann Herzog
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Nadja Braun
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Carina Hitschke
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | | | - Georg Peters
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Barbara C Kahl
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | | |
Collapse
|
36
|
Treffon J, Chaves-Moreno D, Niemann S, Pieper DH, Vogl T, Roth J, Kahl BC. Importance of superoxide dismutases A and M for protection of Staphylococcus aureus in the oxidative stressful environment of cystic fibrosis airways. Cell Microbiol 2020; 22:e13158. [PMID: 31895486 DOI: 10.1111/cmi.13158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Abstract
Staphylococcus aureus is one of the earliest pathogens that persists the airways of cystic fibrosis (CF) patients and contributes to increased inflammation and decreased lung function. In contrast to other staphylococci, S. aureus possesses two superoxide dismutases (SODs), SodA and SodM, with SodM being unique to S. aureus. Both SODs arm S. aureus for its fight against oxidative stress, a by-product of inflammatory reactions. Despite complex investigations, it is still unclear if both enzymes are crucial for the special pathogenicity of S. aureus. To investigate the role of both SODs during staphylococcal persistence in CF airways, we analysed survival and gene expression of S. aureus CF isolates and laboratory strains in different CF-related in vitro and ex vivo settings. Bacteria located in inflammatory and oxidised CF sputum transcribed high levels of sodA and sodM. Especially expression values of sodM were remarkably higher in CF sputum than in bacterial in vitro cultures. Interestingly, also S. aureus located in airway epithelial cells expressed elevated transcript numbers of both SODs, indicating that S. aureus is exposed to oxidative stress at various sites within CF airways. Both enzymes promoted survival of S. aureus during polymorphonuclear leukocyte killing and seem to act compensatory, thereby giving evidence that the interwoven interaction of SodA and SodM contributes to S. aureus virulence and facilitates S. aureus persistence within CF airways.
Collapse
Affiliation(s)
- Janina Treffon
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Diego Chaves-Moreno
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Dietmar Helmut Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas Vogl
- Institute of Immunology, University Hospital Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University Hospital Münster, Münster, Germany
| | - Barbara C Kahl
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
37
|
Miah KM, Hyde SC, Gill DR. Emerging gene therapies for cystic fibrosis. Expert Rev Respir Med 2019; 13:709-725. [PMID: 31215818 DOI: 10.1080/17476348.2019.1634547] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/18/2019] [Indexed: 01/06/2023]
Abstract
Introduction: Cystic fibrosis (CF) remains a life-threatening genetic disease, with few clinically effective treatment options. Gene therapy and gene editing strategies offer the potential for a one-time CF cure, irrespective of the CFTR mutation class. Areas covered: We review emerging gene therapies and gene delivery strategies for the treatment of CF particularly viral and non-viral approaches with potential to treat CF. Expert opinion: It was initially anticipated that the challenge of developing a gene therapy for CF lung disease would be met relatively easily. Following early proof-of-concept clinical studies, CF gene therapy has entered a new era with innovative vector designs, approaches to subvert the humoral immune system and increase gene delivery and gene correction efficiencies. Developments include integrating adenoviral vectors, rapamycin-loaded nanoparticles, and lung-tropic lentiviral vectors. The characterization of novel cell types in the lung epithelium, including pulmonary ionocytes, may also encourage cell type-specific targeting for CF correction. We anticipate preclinical studies to further validate these strategies, which should pave the way for clinical trials. We also expect gene editing efficiencies to improve to clinically translatable levels, given advancements in viral and non-viral vectors. Overall, gene delivery technologies look more convincing in producing an effective CF gene therapy.
Collapse
Affiliation(s)
- Kamran M Miah
- a Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford , Oxford , UK
| | - Stephen C Hyde
- a Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford , Oxford , UK
| | - Deborah R Gill
- a Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford , Oxford , UK
| |
Collapse
|
38
|
Azarian T, Ridgway JP, Yin Z, David MZ. Long-Term Intrahost Evolution of Methicillin Resistant Staphylococcus aureus Among Cystic Fibrosis Patients With Respiratory Carriage. Front Genet 2019; 10:546. [PMID: 31244886 PMCID: PMC6581716 DOI: 10.3389/fgene.2019.00546] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/22/2019] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus aureus is the most commonly identified airway colonizer of cystic fibrosis (CF) patients, and infections with methicillin-resistant S. aureus (MRSA) are associated with poor outcomes. Yet, little is known about the intrahost evolution of S. aureus among CF patients. We investigated convergent evolution and adaptation of MRSA among four CF patients with long-term respiratory carriage. For each patient, we performed whole-genome sequencing on an average of 21 isolates (range: 19–23) carried for a mean of 1,403 days (range: 903–1,679), including 25 pairs of isolates collected on the same day. We assessed intrahost diversity, population structure, evolutionary history, evidence of switched intergenic regions (IGRs), and signatures of adaptation in the context of patient age, antibiotic treatment, and co-colonizing microbes. Phylogenetic analysis delineated distinct multilocus sequence type ST5 (n = 3) and ST72 (n = 1) clonal populations in addition to sporadic, non-clonal isolates, and uncovered a putative transmission event. Variation in antibiotic resistance was observed within clonal populations, even among isolates collected on the same day. Rates of molecular evolution ranged from 2.21 to 8.64 nucleotide polymorphisms per year, and lineage ages were consistent with acquisition of colonization in early childhood followed by subsequent persistence of multiple sub-populations. Selection analysis of 1,622 core genes present in all four clonal populations (n = 79) found 11 genes variable in three subjects – most notably, ATP-dependent protease clpX, 2-oxoglutarate dehydrogenase odhA, fmtC, and transcription-repair coupling factor mfd. Only one gene, staphylococcal protein A (spa), was found to have evidence of gene-wide diversifying selection. We identified three instances of intrahost IGR switching events, two of which flanked genes related to quorum sensing. The complex microbial ecology of the CF airway poses challenges for management. We illustrate appreciable intrahost diversity as well as persistence of a dominant lineage. We also show that intrahost adaptation is a continual process, despite purifying selective pressure, and provide targets that should be investigated further for their function in CF adaptation.
Collapse
Affiliation(s)
- Taj Azarian
- College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Jessica P Ridgway
- Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Zachary Yin
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Z David
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
39
|
Polaquini CR, Morão LG, Nazaré AC, Torrezan GS, Dilarri G, Cavalca LB, Campos DL, Silva IC, Pereira JA, Scheffers DJ, Duque C, Pavan FR, Ferreira H, Regasini LO. Antibacterial activity of 3,3'-dihydroxycurcumin (DHC) is associated with membrane perturbation. Bioorg Chem 2019; 90:103031. [PMID: 31238181 DOI: 10.1016/j.bioorg.2019.103031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
Abstract
Curcumin is a plant diphenylheptanoid and has been investigated for its antibacterial activity. However, the therapeutic uses of this compound are limited due to its chemical instability. In this work, we evaluated the antimicrobial activity of diphenylheptanoids derived from curcumin against Gram-positive and Gram-negative bacteria, and also against Mycobacterium tuberculosis in terms of MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) values. 3,3'-Dihydroxycurcumin (DHC) displayed activity against Enterococcus faecalis, Staphylococcus aureus and M. tuberculosis, demonstrating MIC values of 78 and 156 µg/mL. In addition, DHC was more stable than curcumin in acetate buffer (pH 5.0) and phosphate buffer (pH 7.4) for 24 h at 37 °C. We proposed that membrane and the cell division protein FtsZ could be the targets for DHC due to that fact that curcumin exhibits this mode of antibacterial action. Fluorescence microscopy of Bacillus subtilis stained with SYTO9 and propidium iodide fluorophores indicated that DHC has the ability to perturb the bacterial membrane. On the other hand, DHC showed a weak inhibition of the GTPase activity of B. subtilis FtsZ. Toxicity assay using human cells indicated that DHC has moderate capacity to reduce viability of liver cells (HepG2 line) and lung cells (MRC-5 and A549 lines) when compared with doxorubicin. Alkaline comet assay indicated that DHC was not able to induce DNA damage in A549 cell line. These results indicated that DHC is promising compound with antibacterial and antitubercular activities.
Collapse
Affiliation(s)
- Carlos R Polaquini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil
| | - Luana G Morão
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil
| | - Ana C Nazaré
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil
| | - Guilherme S Torrezan
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil
| | - Guilherme Dilarri
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil
| | - Lúcia B Cavalca
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil; Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747, the Netherlands
| | - Débora L Campos
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, Brazil
| | - Isabel C Silva
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil; Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, Brazil
| | - Jessé A Pereira
- Department of Pediatric Dentistry and Public Health, School of Dentistry, São Paulo State University (Unesp), Araçatuba 16015-050, Brazil
| | - Dirk-Jan Scheffers
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747, the Netherlands
| | - Cristiane Duque
- Department of Pediatric Dentistry and Public Health, School of Dentistry, São Paulo State University (Unesp), Araçatuba 16015-050, Brazil
| | - Fernando R Pavan
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, Brazil
| | - Henrique Ferreira
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil.
| | - Luis O Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil.
| |
Collapse
|
40
|
Scott JE, O'Toole GA. The Yin and Yang of Streptococcus Lung Infections in Cystic Fibrosis: a Model for Studying Polymicrobial Interactions. J Bacteriol 2019; 201:e00115-19. [PMID: 30885933 PMCID: PMC6509657 DOI: 10.1128/jb.00115-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The streptococci are increasingly recognized as a core component of the cystic fibrosis (CF) lung microbiome, yet the role that they play in CF lung disease is unclear. The presence of the Streptococcus milleri group (SMG; also known as the anginosus group streptococci [AGS]) correlates with exacerbation when these microbes are the predominant species in the lung. In contrast, microbiome studies have indicated that an increased relative abundance of streptococci in the lung, including members of the oral microflora, correlates with impacts on lung disease less severe than those caused by other CF-associated microflora, indicating a complex role for this genus in the context of CF. Recent findings suggest that streptococci in the CF lung microenvironment may influence the growth and/or virulence of other CF pathogens, as evidenced by increased virulence factor production by Pseudomonas aeruginosa when grown in coculture with oral streptococci. Conversely, the presence of P. aeruginosa can enhance the growth of streptococci, including members of the SMG, a phenomenon that could be exacerbated by the fact that streptococci are not susceptible to some of the frontline antibiotics used to treat P. aeruginosa infections. Collectively, these studies indicate the necessity for further investigation into the role of streptococci in the CF airway to determine how these microbes, alone or via interactions with other CF-associated pathogens, might influence CF lung disease, for better or for worse. We also propose that the interactions of streptococci with other CF pathogens is an ideal model to study clinically relevant microbial interactions.
Collapse
Affiliation(s)
- Jessie E Scott
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
41
|
Limoli DH, Hoffman LR. Help, hinder, hide and harm: what can we learn from the interactions between Pseudomonas aeruginosa and Staphylococcus aureus during respiratory infections? Thorax 2019; 74:684-692. [PMID: 30777898 PMCID: PMC6585302 DOI: 10.1136/thoraxjnl-2018-212616] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/15/2022]
Abstract
Recent studies of human respiratory secretions using culture-independent techniques have found a surprisingly diverse array of microbes. Interactions among these community members can profoundly impact microbial survival, persistence and antibiotic susceptibility and, consequently, disease progression. Studies of polymicrobial interactions in the human microbiota have shown that the taxonomic and structural compositions, and resulting behaviours, of microbial communities differ substantially from those of the individual constituent species and in ways of clinical importance. These studies primarily involved oral and gastrointestinal microbiomes. While the field of polymicrobial respiratory disease is relatively young, early findings suggest that respiratory tract microbiota members also compete and cooperate in ways that may influence disease outcomes. Ongoing efforts therefore focus on how these findings can inform more 'enlightened', rational approaches to combat respiratory infections. Among the most common respiratory diseases involving polymicrobial infections are cystic fibrosis (CF), non-CF bronchiectasis, COPD and ventilator-associated pneumonia. While respiratory microbiota can be diverse, two of the most common and best-studied members are Staphylococcus aureus and Pseudomonas aeruginosa, which exhibit a range of competitive and cooperative interactions. Here, we review the state of research on pulmonary coinfection with these pathogens, including their prevalence, combined and independent associations with patient outcomes, and mechanisms of those interactions that could influence lung health. Because P. aeruginosa-S. aureus coinfection is common and well studied in CF, this disease serves as the paradigm for our discussions on these two organisms and inform our recommendations for future studies of polymicrobial interactions in pulmonary disease.
Collapse
Affiliation(s)
- Dominique Hope Limoli
- Microbiology and Immunology, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, Iowa, USA
| | - Lucas R Hoffman
- Departments of Pediatrics and Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
42
|
Massip-Copiz MM, Santa-Coloma TA. Extracellular pH and lung infections in cystic fibrosis. Eur J Cell Biol 2018; 97:402-410. [PMID: 29933921 DOI: 10.1016/j.ejcb.2018.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/01/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by CFTR mutations. It is characterized by high NaCl concentration in sweat and the production of a thick and sticky mucus, occluding secretory ducts, intestine and airways, accompanied by chronic inflammation and infections of the lungs. This causes a progressive and lethal decline in lung function. Therefore, finding the mechanisms driving the high susceptibility to lung infections has been a key issue. For decades the prevalent hypothesis was that a reduced airway surface liquid (ASL) volume and composition, and the consequent increased mucus concentration (dehydration), create an environment favoring infections. However, a few years ago, in a pig model of CF, the Na+/K+ concentrations and the ASL volume were found intact. Immediately a different hypothesis arose, postulating a reduced ASL pH as the cause for the increased susceptibility to infections, due to a diminished bicarbonate secretion through CFTR. Noteworthy, a recent report found normal ASL pH values in CF children and in cultured primary airway cells, challenging the ASL pH hypothesis. On the other hand, recent evidences revitalized the hypothesis of a reduced ASL secretion. Thus, the role of the ASL pH in the CF is still a controversial matter. In this review we discuss the basis that sustain the role of CFTR in modulating the extracellular pH, and the recent results sustaining the different points of view. Finding the mechanisms of CFTR signaling that determine the susceptibility to infections is crucial to understand the pathophysiology of CF and related lung diseases.
Collapse
Affiliation(s)
- María Macarena Massip-Copiz
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED UCA-CONICET), The National Scientific and Technical Research Council (CONICET), and School of Medical Sciences, The Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina
| | - Tomás Antonio Santa-Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED UCA-CONICET), The National Scientific and Technical Research Council (CONICET), and School of Medical Sciences, The Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina.
| |
Collapse
|