1
|
Morishita H, Kawai K, Egami Y, Honda K, Araki N. Live-cell imaging and CLEM reveal the existence of ACTN4-dependent ruffle-edge lamellipodia acting as a novel mode of cell migration. Exp Cell Res 2024; 442:114232. [PMID: 39222868 DOI: 10.1016/j.yexcr.2024.114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
α-Actinin-4 (ACTN4) expression levels are correlated with the invasive and metastatic potential of cancer cells; however, the underlying mechanism remains unclear. Here, we identified ACTN4-localized ruffle-edge lamellipodia using live-cell imaging and correlative light and electron microscopy (CLEM). BSC-1 cells expressing EGFP-ACTN4 showed that ACTN4 was most abundant in the leading edges of lamellipodia, although it was also present in stress fibers and focal adhesions. ACTN4 localization in lamellipodia was markedly diminished by phosphoinositide 3-kinase inhibition, whereas its localization in stress fibers and focal adhesions remained. Furthermore, overexpression of ACTN4, but not ACTN1, promoted lamellipodial formation. Live-cell analysis demonstrated that ACTN4-enriched lamellipodia are highly dynamic and associated with cell migration. CLEM revealed that ACTN4-enriched lamellipodia exhibit a characteristic morphology of multilayered ruffle-edges that differs from canonical flat lamellipodia. Similar ruffle-edge lamellipodia were observed in A549 and MDA-MB-231 invasive cancer cells. ACTN4 knockdown suppressed the formation of ruffle-edge lamellipodia and cell migration during wound healing in A549 monolayer cultures. Additionally, membrane-type 1 matrix metalloproteinase was observed in the membrane ruffles, suggesting that ruffle-edge lamellipodia have the ability to degrade the extracellular matrix and may contribute to active cell migration/invasion in certain cancer cell types.
Collapse
Affiliation(s)
- Haruka Morishita
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Kagawa, 761-0793, Miki, Japan
| | - Katsuhisa Kawai
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Kagawa, 761-0793, Miki, Japan
| | - Youhei Egami
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Kagawa, 761-0793, Miki, Japan
| | - Kazufumi Honda
- Department of Bioregulation, Graduate of Medicine, Nippon Medical School, Sendagi, Bunkyo-ku, 113-8602, Tokyo, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Kagawa, 761-0793, Miki, Japan.
| |
Collapse
|
2
|
Cong Y, Cai G, Ding C, Zhang H, Chen J, Luo S, Liu J. Disulfidptosis-related signature elucidates the prognostic, immunologic, and therapeutic characteristics in ovarian cancer. Front Genet 2024; 15:1378907. [PMID: 38694875 PMCID: PMC11061395 DOI: 10.3389/fgene.2024.1378907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Ovarian cancer (OC) is the deadliest malignancy in gynecology, but the mechanism of its initiation and progression is poorly elucidated. Disulfidptosis is a novel discovered type of regulatory cell death. This study aimed to develop a novel disulfidptosis-related prognostic signature (DRPS) for OC and explore the effects and potential treatment by disulfidptosis-related risk stratification. Methods The disulfidptosis-related genes were first analyzed in bulk RNA-Seq and a prognostic nomogram was developed and validated by LASSO algorithm and multivariate cox regression. Then we systematically assessed the clinicopathological and mutational characteristics, pathway enrichment analysis, immune cell infiltration, single-cell-level expression, and drug sensitivity according to DRPS. Results The DRPS was established with 6 genes (MYL6, PDLIM1, ACTN4, FLNB, SLC7A11, and CD2AP) and the corresponding prognostic nomogram was constructed based on the DRPS, FIGO stage, grade, and residual disease. Stratified by the risk score derived from DRPS, patients in high-risk group tended to have worse prognosis, lower level of disulfidptosis, activated oncogenic pathways, inhibitory tumor immune microenvironment, and higher sensitivity to specific drugs including epirubicin, stauroporine, navitoclax, and tamoxifen. Single-cell transcriptomic analysis revealed the expression level of genes in the DRPS significantly varied in different cell types between tumor and normal tissues. The protein-level expression of genes in the DRPS was validated by the immunohistochemical staining analysis. Conclusion In this study, the DRPS and corresponding prognostic nomogram for OC were developed, which was important for OC prognostic assessment, tumor microenvironment modification, drug sensitivity prediction, and exploration of potential mechanisms in tumor development.
Collapse
Affiliation(s)
- Yunyan Cong
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Guangyao Cai
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Chengcheng Ding
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Han Zhang
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Jieping Chen
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Shiwei Luo
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Jihong Liu
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| |
Collapse
|
3
|
Golmohammadi M, Zamanian MY, Jalal SM, Noraldeen SAM, Ramírez‐Coronel AA, Oudaha KH, Obaid RF, Almulla AF, Bazmandegan G, Kamiab Z. A comprehensive review on Ellagic acid in breast cancer treatment: From cellular effects to molecular mechanisms of action. Food Sci Nutr 2023; 11:7458-7468. [PMID: 38107139 PMCID: PMC10724635 DOI: 10.1002/fsn3.3699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 10/16/2023] Open
Abstract
Globally, breast cancer (BC) is the leading cause of cancer-related deaths in women. Hence, developing a therapeutic plan to overcome the disease is crucial. Numerous factors such as endogenous hormones and environmental factors may play a role in the pathophysiology of BC. Regarding the multi-modality treatment of BC, natural compounds like ellagic acid (EA) received has received increased interest in antitumor efficacy with lower adverse effects. Based on the results of this comprehensive review, EA has multiple effects on BC cells including (1) suppresses the growth of BC cells by arresting the cell cycle in the G0/G1 phase, (2) suppresses migration, invasion, and metastatic, (3) stimulates apoptosis in MCF-7 cells via TGF-β/Smad3 signaling axis, (4) inhibits CDK6 that is important in cell cycle regulation, (5) binds to ACTN4 and induces its degradation via the ubiquitin-proteasome pathway, inducing decreased cell motility and invasion in BC cells, (6) inhibits the PI3K/AKT pathway, and (7) inhibits angiogenesis-associated activities including proliferation (reduces VEGFR-2 tyrosine kinase activity). In conclusion, EA exhibits anticancer activity through various molecular mechanisms that influence key cellular processes like apoptosis, cell cycle, angiogenesis, and metastasis in BC. However, further researches are essential to fully elucidate its molecular targets and implications for clinical applications.
Collapse
Affiliation(s)
| | - Mohammad Yasin Zamanian
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | | | | | - Andrés Alexis Ramírez‐Coronel
- Research Group in Educational StatisticsNational University of Education (UNAE)AzoguesEcuador
- Epidemiology and Biostatistics Research GroupCES UniversityMedellínColombia
| | - Khulood H. Oudaha
- Pharmaceutical Chemistry Department, College of PharmacyAl‐Ayen UniversityThi‐OarIraq
| | - Rasha Fadhel Obaid
- Department of Biomedical EngineeringAl‐Mustaqbal University CollegeBabylonIraq
| | - Abbas F. Almulla
- Department of Medical Laboratory Technology, College of Medical TechnologyIslamic UniversityNajafIraq
| | - Gholamreza Bazmandegan
- Physiology‐Pharmacology Research Center, Research Institute of Basic Medical SciencesRafsanjan University of Medical SciencesRafsanjanIran
- Department of Physiology and Pharmacology, School of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| | - Zahra Kamiab
- Clinical Research Development Unit, Ali‐Ibn Abi‐Talib HospitalRafsanjan University of Medical SciencesRafsanjanIran
- Department of Community Medicine, School of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| |
Collapse
|
4
|
Kingsley C, Kourtidis A. Critical roles of adherens junctions in diseases of the oral mucosa. Tissue Barriers 2023; 11:2084320. [PMID: 35659464 PMCID: PMC10161952 DOI: 10.1080/21688370.2022.2084320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022] Open
Abstract
The oral cavity is directly exposed to a variety of environmental stimuli and contains a diverse microbiome that continuously interacts with the oral epithelium. Therefore, establishment and maintenance of the barrier function of the oral mucosa is of paramount importance for its function and for the body's overall health. The adherens junction is a cell-cell adhesion complex that is essential for epithelial barrier function. Although a considerable body of work has associated barrier disruption with oral diseases, the molecular underpinnings of these associations have not been equally investigated. This is critical, since adherens junction components also possess significant signaling roles in the cell, in addition to their architectural ones. Here, we summarize current knowledge involving adherens junction components in oral pathologies, such as cancer and oral pathogen-related diseases, while we also discuss gaps in the knowledge and opportunities for future investigation of the relationship between adherens junctions and oral diseases.
Collapse
Affiliation(s)
- Christina Kingsley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
5
|
Noro R, Honda K, Nagashima K, Motoi N, Kunugi S, Matsubayashi J, Takeuchi S, Shiraishi H, Okano T, Kashiro A, Meng X, Yoshida Y, Watanabe S, Usuda J, Inoue T, Wilber H, Ikeda N, Seike M, Gemma A, Kubota K. ACTN4 gene amplification is a predictive biomarker for adjuvant chemotherapy with UFT in stage I lung adenocarcinomas. Cancer Sci 2021; 113:1002-1009. [PMID: 34845792 PMCID: PMC8898703 DOI: 10.1111/cas.15228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/27/2022] Open
Abstract
Although adjuvant tegafur/uracil (UFT) is recommended for patients with completely resected stage I non‐small‐cell lung cancer (NSCLC) in Japan, only one‐third of cases has received adjuvant chemotherapy (ADJ) according to real‐world data. Therefore, robust predictive biomarkers for selecting ADJ or observation (OBS) without ADJ are needed. Patients who underwent complete resection of stage I lung adenocarcinoma with or without adjuvant UFT were enrolled. The status of ACTN4 gene amplification was analyzed by FISH. Statistical analyses to determine whether the status of ACTN4 gene amplification affected recurrence‐free survival (RFS) were carried out. Formalin‐fixed, paraffin‐embedded samples from 1136 lung adenocarcinomas were submitted for analysis of ACTN4 gene amplification. Ninety‐nine (8.9%) of 1114 cases were positive for ACTN4 gene amplification. In the subgroup analysis of patients aged 65 years or older, the ADJ group had better RFS than the OBS group in the ACTN4‐positive cohort (hazard ratio [HR], 0.084, 95% confidence interval [CI], 0.009‐0.806; P = .032). The difference in RFS between the ADJ group and the OBS group was not significant in ACTN4‐negative cases (all ages: HR, 1.214; 95% CI, 0.848‐1.738; P = .289). Analyses of ACTN4 gene amplification contributed to the decision regarding postoperative ADJ for stage I lung adenocarcinomas, preventing recurrence, improving the quality of medical care, preventing the unnecessary side‐effects of ADJ, and saving medical costs.
Collapse
Affiliation(s)
- Rintaro Noro
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kazufumi Honda
- Department of Biomarkers for Early Detection of Cancer, National Cancer Center Research Institute, Tokyo, Japan.,Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kengo Nagashima
- Research Center for Medical and Health Data Science, Keio University Hospital, Tokyo, Japan
| | - Noriko Motoi
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan.,Department of Pathology, Saitama Cancer Center, Saitama, Japan
| | - Shinobu Kunugi
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Jun Matsubayashi
- Department of Anatomical Pathology, Tokyo Medical University, Tokyo, Japan
| | - Susumu Takeuchi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.,Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | - Hideaki Shiraishi
- Department of Biomarkers for Early Detection of Cancer, National Cancer Center Research Institute, Tokyo, Japan
| | - Tetsuya Okano
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.,Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | - Ayumi Kashiro
- Department of Biomarkers for Early Detection of Cancer, National Cancer Center Research Institute, Tokyo, Japan.,Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Xue Meng
- Department of Biomarkers for Early Detection of Cancer, National Cancer Center Research Institute, Tokyo, Japan.,Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yukihiro Yoshida
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Shunichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Jitsuo Usuda
- Department of Thoracic Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Tatsuya Inoue
- Department of Thoracic Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Huang Wilber
- Abnova, 9th Floor, No. 108, Jhouzih Street, Neihu District, Taipei City, 114, Taiwan
| | - Norihiko Ikeda
- Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kaoru Kubota
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
6
|
Honda K. Development of biomarkers for predicting recurrence by determining the metastatic ability of cancer cells. J NIPPON MED SCH 2021; 89:24-32. [PMID: 34526453 DOI: 10.1272/jnms.jnms.2022_89-118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adjuvant chemotherapy has been carried out for patients with cancer who underwent curative resection, but it is basically not needed for patients without micro-metastatic lesions who undergo a perfectly curative surgical operation. The patients who need adjuvant chemotherapy are defined as those whose micro-metastases cannot be detected by imaging modalities in the other sites of the resective areas, despite curative resection for the primary sites. If biomarkers to efficiently evaluate the metastatic potential of each patient could be developed, we may be able to provide personalized adjuvant chemotherapy in the clinical setting. Actinin-4 (ACTN4, gene name ACTN4) is an actin-bundling protein that we identified in 1998 as a novel molecule involved in cancer invasion and metastasis. Protein overexpression of actinin-4 in cancer cells leads to the invasive phenotype, and patients with gene amplification of ACTN4 have a worse prognosis than patients with a normal copy number in some cancers, including pancreas, lung, and salivary gland cancers. In this review, the biological roles of actinin-4 for cancer invasion and metastasis are summarized, and the potential usefulness of actinin-4 as a biomarker for evaluation of metastatic ability is examined.
Collapse
Affiliation(s)
- Kazufumi Honda
- Department of Bioregulation, Institution for Advanced Medical Science, Nippon Medical School
| |
Collapse
|
7
|
Liang L, Liang X, Jiang P, Zhou L, Zhong L, Wang M, Lin S, Guo Z, Yu J, Yang C, Chen Y, Zhuo C, Chen P, Wang Y. Metastasis suppressor 1 interacts with α-actinin 4 to affect its localization and regulate formation of membrane ruffling. Cytoskeleton (Hoboken) 2021; 78:337-348. [PMID: 34435464 DOI: 10.1002/cm.21686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 01/21/2023]
Abstract
Membrane ruffling plays an important role in the directed cell migration and escape of tumor cells from the monolayer. Metastasis suppressor 1 (MTSS1), also known as missing in metastasis, has been implicated in cell morphology, motility, metastasis, and development. Here, the dynamic interaction proteins associated with MTSS1 and involved in membrane ruffling were determined by cross-linking and mass spectrometry analysis. We identified α-actinin 4 (ACTN4) as an interacting protein and confirmed a direct interaction between MTSS1 and ACTN4. Moreover, co-expression of MTSS1 in fibroblasts recruited cytoplasmic ACTN4 to the cell periphery, at which point ruffling became thick and rigid. In MCF-7 cells, MTSS1 knockdown did not show an obvious effect on the cell shape or the distribution of endogenous ACTN4; however, ACTN4 overexpression transformed cell morphology from an epidermal- to a fibroblast-like shape, and further MTSS1 depletion significantly increased the ratio of fibroblast cells exhibiting prominent ruffling. Furthermore, biochemical data suggested that MTSS1 cross-linking with ACTN4 induced the formation of actin fiber bundles into more organized structures in vitro. These data indicated that MTSS1 might recruit cytoplasmic ACTN4 to the cell periphery and regulate cytoskeleton dynamics to restrict its performance in membrane ruffling.
Collapse
Affiliation(s)
- Lijun Liang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiaoping Liang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Peng Jiang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lu Zhou
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Luanluan Zhong
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Mei Wang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shuyun Lin
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhen Guo
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Juan Yu
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Changcheng Yang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yu Chen
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chengjie Zhuo
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ping Chen
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ying Wang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
8
|
Hiraga C, Yamamoto S, Hashimoto S, Kasahara M, Minamisawa T, Matsumura S, Katakura A, Yajima Y, Nomura T, Shiba K. Pentapartite fractionation of particles in oral fluids by differential centrifugation. Sci Rep 2021; 11:3326. [PMID: 33558596 PMCID: PMC7870959 DOI: 10.1038/s41598-021-82451-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/18/2021] [Indexed: 12/30/2022] Open
Abstract
Oral fluids (OFs) contain small extracellular vesicles (sEVs or exosomes) that carry disease-associated diagnostic molecules. However, cells generate extracellular vesicles (EVs) other than sEVs, so the EV population is quite heterogeneous. Furthermore, molecules not packaged in EVs can also serve as diagnostic markers. For these reasons, developing a complete picture of particulate matter in the oral cavity is important before focusing on specific subtypes of EVs. Here, we used differential centrifugation to fractionate human OFs from healthy volunteers and patients with oral squamous cell carcinoma into 5 fractions, and we characterized the particles, nucleic acids, and proteins in each fraction. Canonical exosome markers, including CD63, CD9, CD133, and HSP70, were found in all fractions, whereas CD81 and AQP5 were enriched in the 160K fraction, with non-negligible amounts in the 2K fraction. The 2K fraction also contained its characteristic markers that included short derivatives of EGFR and E-cadherin, as well as an autophagosome marker, LC3, and large multi-layered vesicles were observed by electronic microscopy. Most of the DNA and RNA was recovered from the 0.3K and 2K fractions, with some in the 160K fraction. These results can provide guideline information for development of purpose-designed OF-based diagnostic systems.
Collapse
Affiliation(s)
- Chiho Hiraga
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Ariake 3-8-31, Koto-ku, Tokyo, 135-8550, Japan
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Tokyo Dental College, 5-11-13 Sugano, Ichikawa, Chiba, 272-8513, Japan
| | - Satoshi Yamamoto
- Department of Pharmacology, Tokyo Dental College, 2-1-14 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Sadamitsu Hashimoto
- Laboratory of Biology, Tokyo Dental College, 2-9-7 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Masataka Kasahara
- Department of Pharmacology, Tokyo Dental College, 2-1-14 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Tamiko Minamisawa
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Ariake 3-8-31, Koto-ku, Tokyo, 135-8550, Japan
| | - Sachiko Matsumura
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Ariake 3-8-31, Koto-ku, Tokyo, 135-8550, Japan
| | - Akira Katakura
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Yasutomo Yajima
- Department of Oral Implantology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Takeshi Nomura
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Tokyo Dental College, 5-11-13 Sugano, Ichikawa, Chiba, 272-8513, Japan
| | - Kiyotaka Shiba
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Ariake 3-8-31, Koto-ku, Tokyo, 135-8550, Japan.
| |
Collapse
|
9
|
Parajón E, Surcel A, Robinson DN. The mechanobiome: a goldmine for cancer therapeutics. Am J Physiol Cell Physiol 2020; 320:C306-C323. [PMID: 33175572 DOI: 10.1152/ajpcell.00409.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer progression is dependent on heightened mechanical adaptation, both for the cells' ability to change shape and to interact with varying mechanical environments. This type of adaptation is dependent on mechanoresponsive proteins that sense and respond to mechanical stress, as well as their regulators. Mechanoresponsive proteins are part of the mechanobiome, which is the larger network that constitutes the cell's mechanical systems that are also highly integrated with many other cellular systems, such as gene expression, metabolism, and signaling. Despite the altered expression patterns of key mechanobiome proteins across many different cancer types, pharmaceutical targeting of these proteins has been overlooked. Here, we review the biochemistry of key mechanoresponsive proteins, specifically nonmuscle myosin II, α-actinins, and filamins, as well as the partnering proteins 14-3-3 and CLP36. We also examined a wide range of data sets to assess how gene and protein expression levels of these proteins are altered across many different cancer types. Finally, we determined the potential of targeting these proteins to mitigate invasion or metastasis and suggest that the mechanobiome is a goldmine of opportunity for anticancer drug discovery and development.
Collapse
Affiliation(s)
- Eleana Parajón
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexandra Surcel
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Matsuzaki Y, Watabe Y, Enatsu K, Shigematsu S, Shibahara T. Actinin-4 Expression Predicts Poor Disease-free Survival and Correlates with Delayed Lymph Node Metastasis in Patients with Completely Resected Oral Squamous Cell Carcinoma. THE BULLETIN OF TOKYO DENTAL COLLEGE 2020; 61:179-186. [PMID: 32801264 DOI: 10.2209/tdcpublication.2019-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Oral squamous cell carcinoma is generally characterized by poor prognosis, and biomarkers are needed for development and selection of therapy. The purpose of this study was to assess expression of actinin-4, which has been implicated in cancer invasion and metastasis, to determine its viability as a prognostic indicator in oral squamous cell carcinoma. Clinical factors and tumor samples immunohistochemically stained for actinin-4 were retrospectively investigated in 55 patients who underwent curative surgery for oral squamous cell carcinoma. Overall survival and disease-free survival were estimated by Kaplan-Meier analysis. Significant differences were detected using the Pearson's chi-square and Fisher's exact tests. Univariate and multivariate analyses were performed with the Cox regression model. No association was found between expression of actinin-4 and clinical factors, including age or sex, or histopathological factors, including vascular invasion, lymphatic invasion, stage, mode of invasion, or histological atypicality. Expression of actinin-4 showed a positive correlation with delayed cervical lymph node metastasis. Disease-free survival was significantly lower in patients who were positive for expression of actinin-4 (p=0.010); overall survival showed no difference between patients with or without expression of actinin-4, however. The results revealed that actinin-4 was an independent prognostic factor for disease-free survival. Expression of actinin-4 showed a 73% sensitivity and 68% specificity for prediction of delayed cervical lymph node metastasis. In conclusion, actinin-4 may potentially be a useful biomarker for prediction of delayed cervical lymph node metastasis.
Collapse
Affiliation(s)
- Yusuke Matsuzaki
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College.,Department of Dentistry and Oral Surgery, Tokyo Metropolitan Tama Medical Center
| | - Yukio Watabe
- Department of Dentistry and Oral Surgery, Tokyo Metropolitan Tama Medical Center
| | - Kazuaki Enatsu
- Department of Pathology, Tokyo Metropolitan Tama Medical Center
| | - Shiro Shigematsu
- Department of Dentistry and Oral Surgery, Tokyo Metropolitan Tama Medical Center
| | | |
Collapse
|
11
|
Sugano T, Yoshida M, Masuda M, Ono M, Tamura K, Kinoshita T, Tsuda H, Honda K, Gemma A, Yamada T. Prognostic impact of ACTN4 gene copy number alteration in hormone receptor-positive, HER2-negative, node-negative invasive breast carcinoma. Br J Cancer 2020; 122:1811-1817. [PMID: 32265507 PMCID: PMC7283275 DOI: 10.1038/s41416-020-0821-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 01/08/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Most patients with hormone receptor (HR)-positive, human epidermal growth factor receptor type 2 (HER2)-negative breast cancer can be cured by surgery and endocrine therapy, but a significant proportion suffer recurrences. Actinin-4 is associated with cancer invasion and metastasis, and its genetic alteration may be used for breast cancer prognostication. METHODS The copy number of the actinin-4 (ACTN4) gene was determined by fluorescence in situ hybridisation (FISH) in two independent cohorts totalling 597 patients (336 from Japan and 261 from the USA) with HR-positive, HER2-negative, node-negative breast cancer. RESULTS In the Japanese cohort, multivariate analysis revealed that a copy number increase (CNI) of ACTN4 was an independent factor associated with high risks of recurrence (P = 0.01; hazard ratio (HR), 2.95) and breast cancer death (P = 0.014; HR, 4.27). The prognostic significance of ACTN4 CNI was validated in the US cohort, where it was the sole prognostic factor significantly associated with high risks of recurrence (P = 0.04; HR, 2.73) and death (P = 0.016; HR, 4.01). CONCLUSIONS Copy number analysis of a single gene, ACTN4, can identify early-stage luminal breast cancer patients with a distinct outcome. Such high-risk patients may benefit from adjuvant chemotherapy.
Collapse
Affiliation(s)
- Teppei Sugano
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8602, Japan.
| | - Masayuki Yoshida
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Mari Masuda
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Makiko Ono
- Department of Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Kenji Tamura
- Departments of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Takayuki Kinoshita
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College, Saitama, 359-8513, Japan
| | - Kazufumi Honda
- Department of Biomarkers for Early Detection of Cancer, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Tesshi Yamada
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| |
Collapse
|
12
|
Tentler D, Lomert E, Novitskaya K, Barlev NA. Role of ACTN4 in Tumorigenesis, Metastasis, and EMT. Cells 2019; 8:cells8111427. [PMID: 31766144 PMCID: PMC6912194 DOI: 10.3390/cells8111427] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 12/11/2022] Open
Abstract
The actin-binding protein ACTN4 belongs to a family of actin-binding proteins and is a non-muscle alpha-actinin that has long been associated with cancer development. Numerous clinical studies showed that changes in ACTN4 gene expression are correlated with aggressiveness, invasion, and metastasis in certain tumors. Amplification of the 19q chromosomal region where the gene is located has also been reported. Experimental manipulations with ACTN4 expression further confirmed its involvement in cell proliferation, motility, and epithelial-mesenchymal transition (EMT). However, both clinical and experimental data suggest that the effects of ACTN4 up- or down-regulation may vary a lot between different types of tumors. Functional studies demonstrated its engagement in a number of cytoplasmic and nuclear processes, ranging from cytoskeleton reorganization to regulation of different signaling pathways. Such a variety of functions may be the reason behind cell type and cell line specific responses. Herein, we will review research progress and controversies regarding the prognostic and functional significance of ACTN4 for tumorigenesis.
Collapse
Affiliation(s)
- Dmitri Tentler
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 Saint Petersburg, Russia; (E.L.); (K.N.); (N.A.B.)
- Correspondence: or ; Tel.: +7-921-406-2058
| | - Ekaterina Lomert
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 Saint Petersburg, Russia; (E.L.); (K.N.); (N.A.B.)
| | - Ksenia Novitskaya
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 Saint Petersburg, Russia; (E.L.); (K.N.); (N.A.B.)
| | - Nikolai A. Barlev
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 Saint Petersburg, Russia; (E.L.); (K.N.); (N.A.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Moscow, Russia
| |
Collapse
|
13
|
Klingler-Hoffmann M, Mittal P, Hoffmann P. The Emerging Role of Cytoskeletal Proteins as Reliable Biomarkers. Proteomics 2019; 19:e1800483. [PMID: 31525818 DOI: 10.1002/pmic.201800483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/12/2019] [Indexed: 12/26/2022]
Abstract
Cytoskeletal proteins are essential building blocks of cells. More than 100 cytoskeletal and cytoskeleton-associated proteins are known and for some, their function and regulation are understood in great detail. Apart from cell shape and support, they facilitate many processes such as intracellular signaling and transport, and cancer related processes such as proliferation, migration, and invasion. During the last decade, comparative proteomic studies have identified cytoskeletal proteins as in vitro markers for tumor progression and metastasis. Here, these results are summarized and a number of unrelated studies are highlighted, identifying the same cytoskeletal proteins as potential biomarkers. These findings might indicate that the abundance of these potential markers of tumor progression is associated with the biological outcome and are independent of the cancer origin. This correlates well with recently published results from the Cancer Genome Atlas, indicating that cancers show remarkable similarities in their analyzed molecular information, independent of their organ of origin. It is postulated that the quantification of cytoskeletal proteins in healthy tissues, tumors, in adjacent tissues, and in stroma, is a great source of molecular information, which might not only be used to classify tumors, but more importantly to predict patients' outcome or even best treatment choices.
Collapse
Affiliation(s)
- Manuela Klingler-Hoffmann
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, 5095, Australia
| | - Parul Mittal
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, 5005, Australia
| | - Peter Hoffmann
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, 5095, Australia
| |
Collapse
|
14
|
Shoji H, Miura N, Ueno H, Honda K. Measurement of copy number of ACTN4 to optimize the therapeutic strategy for locally advanced pancreatic cancer. Pancreatology 2018; 18:624-629. [PMID: 29921500 DOI: 10.1016/j.pan.2018.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/10/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022]
Abstract
The standard therapeutic strategy recommended for locally advanced pancreatic cancer (LAPC) is typically chemotherapy or chemoradiotherapy (CRT). Although the clinical benefit of chemotherapy alone versus CRT for LAPC has been compared in a number of clinical trials, the optimal therapy for LAPC remains unclear. Moreover, the clinical benefit derived from treatment in each clinical trial is a matter of controversy, and the superiority of one treatment over another has yet to be definitively demonstrated. The poor outcomes seen among patients with LAPC owe largely to the emergence of metastatic disease; therefore, accurately evaluating occult distant metastasis before choosing a therapeutic strategy could be expected to help stratify patients with LAPC into the most appropriate treatment regimen, namely local control or systemic therapy. In 1998, we identified the actinin-4 gene (ACTN4) as an actin-binding protein and showed its molecular mechanisms had clinical implications for cancer metastasis. We also identified ACTN4 gene amplification in pancreatic, ovarian, and salivary gland cancer, and demonstrated its utility as a strong prognostic biomarker for stage I lung adenocarcinoma in patients who had never received chemotherapy. Moreover, we recently reported that ACTN4 gene amplification could be a useful biomarker for predicting the efficacy of CRT for LAPC. In the present review, we summarize current knowledge regarding therapeutic strategies for LAPC and discuss the potential development of personalized medicine using ACTN4 measurement for patients with LAPC.
Collapse
Affiliation(s)
- Hirokazu Shoji
- Department of Biomarker for Early Detection of Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Nami Miura
- Department of Biomarker for Early Detection of Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hideki Ueno
- Hepatobiliary and Pancreatic Oncology Division, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Kazufumi Honda
- Department of Biomarker for Early Detection of Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Japan Agency for Medical Research and Development: AMED-CREST, AMED, Tokyo, 100-0004, Japan.
| |
Collapse
|
15
|
Sakamoto H, Yamashita K, Okamoto K, Kadowaki T, Sakai E, Umeda M, Tsukuba T. Transcription factor EB influences invasion and migration in oral squamous cell carcinomas. Oral Dis 2018; 24:741-748. [PMID: 29316035 DOI: 10.1111/odi.12826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/25/2017] [Accepted: 01/03/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis and plays an important role in various cancers. However, the function of TFEB in oral squamous cell carcinomas has not been examined. The aim of this study was to elucidate the role of TFEB in oral squamous cell carcinomas. MATERIALS AND METHODS Expression levels of TFEB were examined in six different human oral squamous carcinoma cells: HSC2, HSC3, HSC4, SAS, OSC20, and SCC25. Knockdown of TFEB using small interfering RNA in HSC2 and HSC4 cells was performed. Cell morphology was observed by immunofluorescence microscopy. Cell proliferation, invasion, and adhesion were analyzed. RESULTS Expression levels of TFEB were high in HSC2, moderate in HSC4 and SCC25, and low in HSC3 and OSC20 cells. Knockdown of TFEB did not affect proliferation of HSC2 and HSC4 cells, but did induced enlargement of lysosomes and endosomes in HSC4 cells. TFEB silencing reduced invasion and migration of these HSC cell squamous carcinoma cells; however, increased cell adhesion was also observed. CONCLUSION TFEB knockdown reduces invasion and migration of cancer cells, likely through lysosomal regulation. Taken together, TFEB influences cell invasion and migration of oral squamous cell carcinomas.
Collapse
Affiliation(s)
- H Sakamoto
- Department of Dental Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - K Yamashita
- Department of Dental Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - K Okamoto
- Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - T Kadowaki
- Division of Frontier Life Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - E Sakai
- Department of Dental Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - M Umeda
- Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - T Tsukuba
- Department of Dental Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
16
|
Berania I, Cardin GB, Clément I, Guertin L, Ayad T, Bissada E, Nguyen-Tan PF, Filion E, Guilmette J, Gologan O, Soulieres D, Rodier F, Wong P, Christopoulos A. Four PTEN-targeting co-expressed miRNAs and ACTN4- targeting miR-548b are independent prognostic biomarkers in human squamous cell carcinoma of the oral tongue. Int J Cancer 2017; 141:2318-2328. [PMID: 28779483 DOI: 10.1002/ijc.30915] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/31/2017] [Accepted: 07/10/2017] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to determine the prognostic value and oncogenic pathways associated to miRNA expression in squamous cell carcinoma of the oral tongue and to link these miRNA candidates with potential gene targets. We performed a miRNA screening within our institutional cohort (n = 58 patients) and reported five prognostic targets including a cluster of four co-expressed miRNAs (miR-18a, miR-92a, miR-103, and miR-205). Multivariate analysis showed that expression of miR-548b (p = 0.007) and miR-18a (p = 0.004, representative of co-expressed miRNAs) are independent prognostic markers for squamous cell carcinoma of the oral tongue. These findings were validated in The Cancer Genome Atlas (TCGA) cohort (n = 131) for both miRNAs (miR-548b: p = 0.027; miR-18a: p = 0.001). Bioinformatics analysis identified PTEN and ACTN4 as direct targets of the four co-expressed miRNAs and miR-548b, respectively. Correlations between the five identified miRNAs and their respective targeted genes were validated in the two merged cohorts and were concordantly significant (miR-18a/PTEN: p < 0.0001; miR-92a/PTEN: p = 0.0008; miR-103/PTEN: p = 0.008; miR-203/PTEN: p = 0.019; miR-548b/ACTN4: p = 0.009).
Collapse
Affiliation(s)
- Ilyes Berania
- CRCHUM and Institut du cancer de Montréal, Montreal, QC, Canada.,Otolaryngology-Head and Neck Surgery Service, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | | | | | - Louis Guertin
- Otolaryngology-Head and Neck Surgery Service, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Tareck Ayad
- Otolaryngology-Head and Neck Surgery Service, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Eric Bissada
- Otolaryngology-Head and Neck Surgery Service, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Phuc Felix Nguyen-Tan
- Department of Radiation Oncology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Edith Filion
- Department of Radiation Oncology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Julie Guilmette
- Department of Pathology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.,Department of Pathology, Massachusetts General Hospital/Massachusetts Eye and Ear Infirmary, Boston, MA
| | - Olguta Gologan
- Department of Pathology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Denis Soulieres
- Department of Medicine, Service of Hemato-Oncology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Francis Rodier
- CRCHUM and Institut du cancer de Montréal, Montreal, QC, Canada.,Département de radiologie, radio-oncologie et medicine nucléaire, Université de Montréal, Montreal, QC, Canada
| | - Philip Wong
- CRCHUM and Institut du cancer de Montréal, Montreal, QC, Canada.,Department of Radiation Oncology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Apostolos Christopoulos
- CRCHUM and Institut du cancer de Montréal, Montreal, QC, Canada.,Otolaryngology-Head and Neck Surgery Service, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
17
|
Kakuya T, Mori T, Yoshimoto S, Watabe Y, Miura N, Shoji H, Onidani K, Shibahara T, Honda K. Prognostic significance of gene amplification of ACTN4 in stage I and II oral tongue cancer. Int J Oral Maxillofac Surg 2017; 46:968-976. [PMID: 28385383 DOI: 10.1016/j.ijom.2017.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 01/26/2017] [Accepted: 03/02/2017] [Indexed: 02/08/2023]
Abstract
Despite complete resection of the early stage of oral tongue cancer by partial glossectomy, late cervical lymph node metastasis is frequently observed. Gene amplification of ACTN4 (protein name: actinin-4) is closely associated with the metastatic potential of various cancers. This retrospective study was performed to demonstrate the potential usefulness of ACTN4 gene amplification as a prognostic biomarker in patients with stage I/II oral tongue cancer. Fifty-four patients with stage I/II oral tongue cancer were enrolled retrospectively, in accordance with the reporting recommendations for tumour marker prognostic studies (REMARK) guidelines. The copy number of ACTN4 and the protein expression of actinin-4 were evaluated by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC), respectively. The overall survival time of patients with gene amplification of ACTN4 was significantly shorter than that of patients without gene amplification (P=0.0010, log-rank test). Gene amplification of ACTN4 was a significant independent risk factor for death in patients with stage I/II oral tongue cancer (hazard ratio 6.08, 95% confidence interval 1.66-22.27). Gene amplification of ACTN4 is a potential prognostic biomarker for overall survival in oral tongue cancer.
Collapse
Affiliation(s)
- T Kakuya
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan; Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Chiba, Japan
| | - T Mori
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - S Yoshimoto
- Department of Head and Neck Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Y Watabe
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Chiba, Japan
| | - N Miura
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan
| | - H Shoji
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan
| | - K Onidani
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan
| | - T Shibahara
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Chiba, Japan
| | - K Honda
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan; Japan Agency for Medical Research and Development (AMED) CREST, Tokyo, Japan.
| |
Collapse
|
18
|
Yamashita K, Iwatake M, Okamoto K, Yamada SI, Umeda M, Tsukuba T. Cathepsin K modulates invasion, migration and adhesion of oral squamous cell carcinomas in vitro. Oral Dis 2017; 23:518-525. [PMID: 28117540 DOI: 10.1111/odi.12643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/27/2016] [Accepted: 01/03/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Cathepsin K was initially discovered as an osteoclast-specific cysteine proteinase, but the enzyme is also expressed in various cancers including oral squamous cell carcinomas. This study aimed to clarify the function of cathepsin K in oral squamous cell carcinomas. MATERIALS AND METHODS Expression levels of cathepsin K were examined in six types of cell carcinomas. Carcinomas overexpressing cathepsin K were constructed. Effects of cathepsin K overexpression and treatment with odanacatib, a specific cathepsin K inhibitor, on cell invasion, migration and adhesion were analysed. RESULTS Different levels of cathepsin K were expressed in carcinomas. Cathepsin K was predominantly localised in lysosomes. Cathepsin K overexpression impaired the proliferation of carcinomas. Invasion analysis showed that cathepsin K overexpression enhanced invasion and migration of carcinomas, whereas inhibition of cathepsin K by odanacatib caused the opposite effects in carcinomas. Cathepsin K overexpression also increased cell adhesion and slightly increased surface expression of the adhesion receptor CD29/integrin β1 . CONCLUSIONS The enhanced invasion of carcinomas resulting from cathepsin K overexpression is probably due to the increased cell migration and adhesion. Thus, cathepsin K is implicated not only in protein degradation but also in invasion, migration and adhesion of oral squamous cell carcinomas.
Collapse
Affiliation(s)
- K Yamashita
- Department of Dental Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - M Iwatake
- Department of Dental Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - K Okamoto
- Department of Dental Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - S-I Yamada
- Department of Dentistry and Oral Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - M Umeda
- Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - T Tsukuba
- Department of Dental Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
19
|
Procházková I, Lenčo J, Fučíková A, Dresler J, Čápková L, Hrstka R, Nenutil R, Bouchal P. Targeted proteomics driven verification of biomarker candidates associated with breast cancer aggressiveness. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:488-498. [PMID: 28216224 DOI: 10.1016/j.bbapap.2017.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/07/2017] [Accepted: 02/15/2017] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most common and molecularly relatively well characterized malignant disease in women, however, its progression to metastatic cancer remains lethal for 78% of patients 5years after diagnosis. Novel markers could identify the high risk patients and their verification using quantitative methods is essential to overcome genetic, inter-tumor and intra-tumor variability and translate novel findings into cancer diagnosis and treatment. We recently identified 13 proteins associated with estrogen receptor, tumor grade and lymph node status, the key factors of breast cancer aggressiveness, using untargeted proteomics. Here we verified these findings in the same set of 96 tumors using targeted proteomics based on selected reaction monitoring with mTRAQ labeling (mTRAQ-SRM), transcriptomics and immunohistochemistry and validated in 5 independent sets of 715 patients using transcriptomics. We confirmed: (i) positive association of anterior gradient protein 2 homolog (AGR2) and periostin (POSTN) and negative association of annexin A1 (ANXA1) with estrogen receptor status; (ii) positive association of stathmin (STMN1), cofilin-1 (COF1), plasminogen activator inhibitor 1 RNA-binding protein (PAIRBP1) and negative associations of thrombospondin-2 (TSP2) and POSTN levels with tumor grade; and (iii) positive association of POSTN, alpha-actinin-4 (ACTN4) and STMN1 with lymph node status. This study highlights a panel of gene products that can contribute to breast cancer aggressiveness and metastasis, the understanding of which is important for development of more precise breast cancer treatment.
Collapse
Affiliation(s)
- Iva Procházková
- Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Zluty kopec 7, 65653 Brno, Czech Republic; Masaryk University, Faculty of Science, Department of Biochemistry, Kotlarska 2, 61137 Brno, Czech Republic
| | - Juraj Lenčo
- University of Defence, Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, Trebesska 1575, 50001 Hradec Kralove, Czech Republic
| | - Alena Fučíková
- University of Defence, Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, Trebesska 1575, 50001 Hradec Kralove, Czech Republic
| | - Jiří Dresler
- University of Defence, Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; Military Health Institute, Tychonova 1, 160 00 Prague, Czech Republic
| | - Lenka Čápková
- Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Zluty kopec 7, 65653 Brno, Czech Republic; Masaryk University, Faculty of Science, Department of Biochemistry, Kotlarska 2, 61137 Brno, Czech Republic
| | - Roman Hrstka
- Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Rudolf Nenutil
- Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Pavel Bouchal
- Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Zluty kopec 7, 65653 Brno, Czech Republic; Masaryk University, Faculty of Science, Department of Biochemistry, Kotlarska 2, 61137 Brno, Czech Republic.
| |
Collapse
|
20
|
Skp2 Regulates the Expression of MMP-2 and MMP-9, and Enhances the Invasion Potential of Oral Squamous Cell Carcinoma. Pathol Oncol Res 2016; 22:625-32. [PMID: 26874697 DOI: 10.1007/s12253-016-0049-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/09/2016] [Indexed: 12/14/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant tumor of the head and neck regions and accounts for more than 90 % of cancers in the oral cavity. S-phase kinase-associated protein-2 (Skp2) is a member of the F-box protein family and the substrate recognition subunit of the Skp1-Cullin-F box protein E3 ubiquitin ligase complex. Skp2 is oncogenic and overexpressed in human cancers. The aims of the present study were to determine the clinicopathological significance of Skp2 in OSCC and clarify its function in OSCC cell lines in vitro. Multiple methods including immunohistochemical staining, RT-PCR, western blotting, migration and invasion assays, and siRNA transfection were employed in order to investigate the clinicopathological significance and molecular function of Skp2 in OSCC. The overexpression of Skp2 was more frequent in OSCC than in the normal oral epithelium. It was also more frequently detected in cancers with higher grades according to the T classification, N classification, and pattern of invasion. The high-Skp2 expression group had a significantly poorer prognosis, at 30.1 %, than that of the low-expression group, at 63.0 %. The downregulation of Skp2 decreased migration and invasion potentials in HSC3 cells. Moreover, the suppression of Skp2 reduced the enzyme activities of MMP-2 and MMP-9 via Sp1. Skp2 may be a prognostic factor in OSCC patients, and may also play crucial roles in the migration and invasion potentials of OSCC cells.
Collapse
|
21
|
Honda K. The biological role of actinin-4 (ACTN4) in malignant phenotypes of cancer. Cell Biosci 2015; 5:41. [PMID: 26288717 PMCID: PMC4539665 DOI: 10.1186/s13578-015-0031-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/02/2015] [Indexed: 12/16/2022] Open
Abstract
Invasion and metastasis are malignant phenotypes in cancer that lead to patient death. Cell motility is involved in these processes. In 1998, we identified overexpression of the actin-bundling protein actinin-4 in several types of cancer. Protein expression of actinin-4 is closely associated with the invasive phenotypes of cancers. Actinin-4 is predominantly expressed in the cellular protrusions that stimulate the invasive phenotype in cancer cells and is essential for formation of cellular protrusions such as filopodia and lamellipodia. ACTN4 (gene name encoding actinin-4 protein) is located on human chromosome 19q. ACTN4 amplification is frequently observed in patients with carcinomas of the pancreas, ovary, lung, and salivary gland, and patients with ACTN4 amplifications have worse outcomes than patients without amplification. In addition, nuclear distribution of actinin-4 is frequently observed in small cell lung, breast, and ovarian cancer. Actinin-4, when expressed in cancer cell nuclei, functions as a transcriptional co-activator. In this review, we summarize recent developments regarding the biological roles of actinin-4 in cancer invasion.
Collapse
Affiliation(s)
- Kazufumi Honda
- Department of Chemotherapy and Clinical Research, National Cancer Center Research Institute, 5-1-1 Tsukiji Chuoku, Tokyo, 104-0045 Japan ; AMED-CREST AMED, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda, Tokyo, 100-0004 Japan
| |
Collapse
|
22
|
Alpha-Actinin 4 Is Associated with Cancer Cell Motility and Is a Potential Biomarker in Non–Small Cell Lung Cancer. J Thorac Oncol 2015; 10:286-301. [DOI: 10.1097/jto.0000000000000396] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Van Raemdonck GAA, Tjalma WAA, Coen EP, Depuydt CE, Van Ostade XWM. Identification of protein biomarkers for cervical cancer using human cervicovaginal fluid. PLoS One 2014; 9:e106488. [PMID: 25215525 PMCID: PMC4162552 DOI: 10.1371/journal.pone.0106488] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/01/2014] [Indexed: 11/19/2022] Open
Abstract
Objectives Cervicovaginal fluid (CVF) can be considered as a potential source of biomarkers for diseases of the lower female reproductive tract. The fluid can easily be collected, thereby offering new opportunities such as the development of self tests. Our objective was to identify a CVF protein biomarker for cervical cancer or its precancerous state. Methods A differential proteomics study was set up using CVF samples from healthy and precancerous women. Label-free spectral counting was applied to quantify protein abundances. Results The proteome analysis revealed 16 candidate biomarkers of which alpha-actinin-4 (p = 0.001) and pyruvate kinase isozyme M1/M2 (p = 0.014) were most promising. Verification of alpha-actinin-4 by ELISA (n = 28) showed that this candidate biomarker discriminated between samples from healthy and both low-risk and high-risk HPV-infected women (p = 0.009). Additional analysis of longitudinal samples (n = 29) showed that alpha-actinin-4 levels correlated with virus persistence and clearing, with a discrimination of approximately 18 pg/ml. Conclusions Our results show that CVF is an excellent source of protein biomarkers for detection of lower female genital tract pathologies and that alpha-actinin-4 derived from CVF is a promising candidate biomarker for the precancerous state of cervical cancer. Further studies regarding sensitivity and specificity of this biomarker will demonstrate its utility for improving current screening programs and/or its use for a cervical cancer self-diagnosis test.
Collapse
Affiliation(s)
- Geert A. A. Van Raemdonck
- Laboratory for Protein Science, Proteomics and Epigenetic Signaling (PPES) and Centre for Proteomics and Mass spectrometry (CeProMa), University of Antwerp, Wilrijk, Belgium
| | - Wiebren A. A. Tjalma
- Department of Gynaecology and Gynaecologic Oncology, University Hospital Antwerp, Edegem, Belgium
| | - Edmond P. Coen
- Laboratory for Protein Science, Proteomics and Epigenetic Signaling (PPES) and Centre for Proteomics and Mass spectrometry (CeProMa), University of Antwerp, Wilrijk, Belgium
| | - Christophe E. Depuydt
- Department of Molecular Diagnostics, Algemeen Medisch Laboratorium bvba, Sonic Healthcare Benelux, Antwerpen, Belgium
| | - Xaveer W. M. Van Ostade
- Laboratory for Protein Science, Proteomics and Epigenetic Signaling (PPES) and Centre for Proteomics and Mass spectrometry (CeProMa), University of Antwerp, Wilrijk, Belgium
- * E-mail:
| |
Collapse
|
24
|
Abstract
α-Actinins are a major class of actin filament cross-linking proteins expressed in virtually all cells. In muscle, actinins cross-link thin filaments from adjacent sarcomeres. In non-muscle cells, different actinin isoforms play analogous roles in cross-linking actin filaments and anchoring them to structures such as cell-cell and cell-matrix junctions. Although actinins have long been known to play roles in cytokinesis, cell adhesion and cell migration, recent studies have provided further mechanistic insights into these functions. Roles for actinins in synaptic plasticity and membrane trafficking events have emerged more recently, as has a 'non-canonical' function for actinins in transcriptional regulation in the nucleus. In the present paper we review recent advances in our understanding of these diverse cell biological functions of actinins in non-muscle cells, as well as their roles in cancer and in genetic disorders affecting platelet and kidney physiology. We also make two proposals with regard to the actinin nomenclature. First, we argue that naming actinin isoforms according to their expression patterns is problematic and we suggest a more precise nomenclature system. Secondly, we suggest that the α in α-actinin is superfluous and can be omitted.
Collapse
|
25
|
Watabe Y, Mori T, Yoshimoto S, Nomura T, Shibahara T, Yamada T, Honda K. Copy number increase of ACTN4 is a prognostic indicator in salivary gland carcinoma. Cancer Med 2014; 3:613-22. [PMID: 24574362 PMCID: PMC4101752 DOI: 10.1002/cam4.214] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/23/2014] [Accepted: 01/28/2014] [Indexed: 12/23/2022] Open
Abstract
Copy number increase (CNI) of ACTN4 has been associated with poor prognosis and metastatic phenotypes in various human carcinomas. To identify a novel prognostic factor for salivary gland carcinoma, we investigated the copy number of ACTN4. We evaluated DNA copy number of ACTN4 in 58 patients with salivary gland carcinoma by using fluorescent in situ hybridization (FISH). CNI of ACTN4 was recognized in 14 of 58 patients (24.1%) with salivary gland carcinoma. The cases with CNI of ACTN4 were closely associated with histological grade (P = 0.047) and vascular invasion (P = 0.033). The patients with CNI of ACTN4 had a significantly worse prognosis than the patients with normal copy number of ACTN4 (P = 0.0005 log-rank test). Univariate analysis by the Cox proportional hazards model showed that histological grade, vascular invasion, and CNI of ACTN4 were independent risk factors for cancer death. Vascular invasion (hazard ratio [HR]: 7.46; 95% confidence interval [CI]: 1.98–28.06) and CNI of ACTN4 (HR: 3.23; 95% CI: 1.08–9.68) remained as risk factors for cancer death in multivariate analysis. Thus, CNI of ACTN4 is a novel indicator for an unfavorable outcome in patients with salivary gland carcinoma.
Collapse
Affiliation(s)
- Yukio Watabe
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, 104-0045, Japan; Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Chiba, 261-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Salo S, Bitu C, Merkku K, Nyberg P, Bello IO, Vuoristo J, Sutinen M, Vähänikkilä H, Costea DE, Kauppila JH, Kauppila J, Lehenkari P, Dayan D, Vered M, Risteli J, Salo T. Human bone marrow mesenchymal stem cells induce collagen production and tongue cancer invasion. PLoS One 2013; 8:e77692. [PMID: 24204919 PMCID: PMC3804615 DOI: 10.1371/journal.pone.0077692] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/02/2013] [Indexed: 01/05/2023] Open
Abstract
Tumor microenvironment (TME) is an active player in carcinogenesis and changes in its composition modify cancer growth. Carcinoma-associated fibroblasts, bone marrow-derived multipotent mesenchymal stem cells (BMMSCs), and inflammatory cells can all affect the composition of TME leading to changes in proliferation, invasion and metastasis formation of carcinoma cells. In this study, we confirmed an interaction between BMMSCs and oral tongue squamous cell carcinoma (OTSCC) cells by analyzing the invasion progression and gene expression pattern. In a 3-dimensional myoma organotypic invasion model the presence of BMMSCs inhibited the proliferation but increased the invasion of OTSCC cells. Furthermore, the signals originating from OTSCC cells up-regulated the expression of inflammatory chemokines by BMMSCs, whereas BMMSC products induced the expression of known invasion linked molecules by carcinoma cells. Particularly, after the cell-cell interactions, the chemokine CCL5 was abundantly secreted from BMMSCs and a function blocking antibody against CCL5 inhibited BMMSC enhanced cancer invasion area. However, CCL5 blocking antibody did not inhibit the depth of invasion. Additionally, after exposure to BMMSCs, the expression of type I collagen mRNA in OTSCC cells was markedly up-regulated. Interestingly, also high expression of type I collagen N-terminal propeptide (PINP) in vivo correlated with the cancer-specific mortality of OTSCC patients, whereas there was no association between cancer tissue CCL5 levels and the clinical parameters. In conclusion, our results suggest that the interaction between BMMSC and carcinoma cells induce cytokine and matrix molecule expression, of which high level of type I collagen production correlates with the prognosis of OTSCC patients.
Collapse
Affiliation(s)
- Sirpa Salo
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Noro R, Honda K, Tsuta K, Ishii G, Maeshima AM, Miura N, Furuta K, Shibata T, Tsuda H, Ochiai A, Sakuma T, Nishijima N, Gemma A, Asamura H, Nagai K, Yamada T. Distinct outcome of stage I lung adenocarcinoma with ACTN4 cell motility gene amplification. Ann Oncol 2013; 24:2594-2600. [PMID: 23899839 DOI: 10.1093/annonc/mdt293] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Even if detected at an early stage, a substantial number of lung cancers relapse after curative surgery. However, no method for distinguishing such tumors has yet been established. PATIENTS AND METHODS The copy number of the actinin-4 (ACTN4) gene was determined by fluorescence in situ hybridization on tissue microarrays comprising 543 surgically resected adenocarcinomas of the lung. RESULTS Amplification (an increase in the copy number by ≥ 2.0 fold) of the ACTN4 gene was detected in two of seven lung adenocarcinoma cell lines and 79 (15%) of 543 cases of pathological stage I-IV lung adenocarcinoma. Multivariate analysis revealed that ACTN4 gene amplification was the most significant independent factor associated with an extremely high risk of death (hazard ratio, 6.78; P = 9.48 × 10(-5), Cox regression analysis) among 290 patients with stage I lung adenocarcinoma. The prognostic significance of ACTN gene amplification was further validated in three independent cohorts totaling 1033 patients. CONCLUSIONS Amplification of the ACTN4 gene defines a small but substantial subset of patients with stage I lung adenocarcinoma showing a distinct outcome. Such patients require intensive medical attention and might benefit from postoperative adjuvant chemotherapy.
Collapse
Affiliation(s)
- R Noro
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo; Department of Internal Medicine, Division of Pulmonary Medicine, Infectious Diseases and Oncology, Nippon Medical School, Tokyo
| | - K Honda
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo
| | - K Tsuta
- Pathology and Clinical Laboratory Division, National Cancer Center Hospital, Tokyo
| | - G Ishii
- Department of Pathology, Research Center for Innovative Oncology, National Cancer Center Research Institute, Tokyo
| | - A M Maeshima
- Pathology and Clinical Laboratory Division, National Cancer Center Hospital, Tokyo
| | - N Miura
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo
| | - K Furuta
- Division of Clinical Laboratories, National Cancer Center Hospital, Tokyo
| | - T Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo
| | - H Tsuda
- Pathology and Clinical Laboratory Division, National Cancer Center Hospital, Tokyo
| | - A Ochiai
- Department of Pathology, Research Center for Innovative Oncology, National Cancer Center Research Institute, Tokyo
| | - T Sakuma
- Mitsui Knowledge Industry, Tokyo
| | - N Nishijima
- Department of Internal Medicine, Division of Pulmonary Medicine, Infectious Diseases and Oncology, Nippon Medical School, Tokyo
| | - A Gemma
- Department of Internal Medicine, Division of Pulmonary Medicine, Infectious Diseases and Oncology, Nippon Medical School, Tokyo
| | - H Asamura
- Division of Thoracic Surgery, National Cancer Center Hospital, Tokyo
| | - K Nagai
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - T Yamada
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo.
| |
Collapse
|
28
|
Chan D, Tsoi MYT, Liu CD, Chan SH, Law SYK, Chan KW, Chan YP, Gopalan V, Lam AKY, Tang JCO. Oncogene GAEC1 regulates CAPN10 expression which predicts survival in esophageal squamous cell carcinoma. World J Gastroenterol 2013; 19:2772-2780. [PMID: 23687414 PMCID: PMC3653151 DOI: 10.3748/wjg.v19.i18.2772] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 11/03/2012] [Accepted: 02/06/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify the downstream regulated genes of GAEC1 oncogene in esophageal squamous cell carcinoma and their clinicopathological significance.
METHODS: The anti-proliferative effect of knocking down the expression of GAEC1 oncogene was studied by using the RNA interference (RNAi) approach through transfecting the GAEC1-overexpressed esophageal carcinoma cell line KYSE150 with the pSilencer vector cloned with a GAEC1-targeted sequence, followed by MTS cell proliferation assay and cell cycle analysis using flow cytometry. RNA was then extracted from the parental, pSilencer-GAEC1-targeted sequence transfected and pSilencer negative control vector transfected KYSE150 cells for further analysis of different patterns in gene expression. Genes differentially expressed with suppressed GAEC1 expression were then determined using Human Genome U133 Plus 2.0 cDNA microarray analysis by comparing with the parental cells and normalized with the pSilencer negative control vector transfected cells. The most prominently regulated genes were then studied by immunohistochemical staining using tissue microarrays to determine their clinicopathological correlations in esophageal squamous cell carcinoma by statistical analyses.
RESULTS: The RNAi approach of knocking down gene expression showed the effective suppression of GAEC1 expression in esophageal squamous cell carcinoma cell line KYSE150 that resulted in the inhibition of cell proliferation and increase of apoptotic population. cDNA microarray analysis for identifying differentially expressed genes detected the greatest levels of downregulation of calpain 10 (CAPN10) and upregulation of trinucleotide repeat containing 6C (TNRC6C) transcripts when GAEC1 expression was suppressed. At the tissue level, the high level expression of calpain 10 protein was significantly associated with longer patient survival (month) of esophageal squamous cell carcinoma compared to the patients with low level of calpain 10 expression (37.73 ± 16.33 vs 12.62 ± 12.44, P = 0.032). No significant correction was observed among the TNRC6C protein expression level and the clinocopathologcial features of esophageal squamous cell carcinoma.
CONCLUSION: GAEC1 regulates the expression of CAPN10 and TNRC6C downstream. Calpain 10 expression is a potential prognostic marker in patients with esophageal squamous cell carcinoma.
Collapse
|
29
|
Abstract
Alpha-actinins (ACTNs) were originally identified as cytoskeletal proteins which cross-link filamentous actin to establish cytoskeletal architect that protects cells from mechanical stress and controls cell movement. Notably, unlike other ACTNs, alpha-actinin 4 (ACTN4) displays unique characteristics in signaling transduction, nuclear translocation, and gene expression regulation. Initial reports indicated that ACTN4 is part of the breast cancer cell motile apparatus and is highly expressed in the nucleus. These results imply that ACTN4 plays a role in breast cancer tumorigenesis. While several observations in breast cancer and other cancers support this hypothesis, little direct evidence links the tumorigenic phenotype with ACTN4-mediated pathological mechanisms. Recently, several studies have demonstrated that in addition to its role in coordinating cytoskeleton, ACTN4 interacts with signaling mediators, chromatin remodeling factors, and transcription factors including nuclear receptors. Thus, ACTN4 functions as a versatile promoter for breast cancer tumorigenesis and appears to be an ideal drug target for future therapeutic development.
Collapse
Affiliation(s)
- Kuo-Sheng Hsu
- Department of Biochemistry, School of Medicine, Case Western Reserve University-CWRU, The Comprehensive Cancer Center of CWRU, Cleveland, Ohio, USA
| | | |
Collapse
|
30
|
Hamill KJ, Hopkinson SB, Skalli O, Jones JCR. Actinin-4 in keratinocytes regulates motility via an effect on lamellipodia stability and matrix adhesions. FASEB J 2012; 27:546-56. [PMID: 23085994 DOI: 10.1096/fj.12-217406] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During wound repair, epidermal cells at the edge of an injury establish front-rear polarity through orchestrated changes in their cytoskeleton and adhesion structures. The polarity and directed migration of such cells is determined by the assembly, extension, and stabilization of a lamellipodium. Actinin-4 associates with lamellipodia and has been implicated in regulating lamellipodial structure, function and assembly. To study the functions of actinin-4 in human keratinocytes, we used shRNA to generate knockdown cells and compared their motility behavior and matrix adhesion assembly to scrambled shRNA treated control keratinocytes. Actinin-4 knockdown keratinocytes lack polarity, assemble multiple lamellipodia with a 2× increased area over controls, display reduced activity of the actin remodeling protein cofilin, and fail to migrate in a directional manner. This motility defect is rescued by plating knockdown cells on preformed laminin-332 matrix. In actinin-4-knockdown keratinocytes, focal contact area is increased by 25%, and hemidesmosome proteins are mislocalized. Specifically, α6β4 integrin localizes to large lamellipodial extensions, displays reduced dynamics, and fails to recruit its bullous pemphigoid antigen binding partners. Together, our data indicate a role for actinin-4 in regulating the steering mechanism of keratinocytes via profound effects on their matrix adhesion sites.
Collapse
Affiliation(s)
- Kevin J Hamill
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
31
|
Stevenson RP, Veltman D, Machesky LM. Actin-bundling proteins in cancer progression at a glance. J Cell Sci 2012; 125:1073-9. [PMID: 22492983 DOI: 10.1242/jcs.093799] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Richard P Stevenson
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Rd, Bearsden, Glasgow G61 1BD, UK
| | | | | |
Collapse
|
32
|
Yamamoto S, Tsuda H, Honda K, Takano M, Tamai S, Imoto I, Inazawa J, Yamada T, Matsubara O. ACTN4 gene amplification and actinin-4 protein overexpression drive tumour development and histological progression in a high-grade subset of ovarian clear-cell adenocarcinomas. Histopathology 2012; 60:1073-83. [PMID: 22348389 DOI: 10.1111/j.1365-2559.2011.04163.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS Actinin-4, encoded by the ACTN4 gene located on chromosome 19q13.2, enhances cell motility by bundling the actin cytoskeleton. We assessed how ACTN4/actinin-4 alterations contribute to the tumorigenesis of ovarian clear-cell adenocarcinomas (CCAs). METHODS AND RESULTS Fluorescence in-situ hybridization analysis demonstrated that ACTN4 amplification (≥4 ACTN4 copies in ≥40% of cells) occurred in 27 (33%) of 81 CCAs and genomic gains of ACTN4 were associated strongly with immunohistochemical actinin-4 overexpression, poorly differentiated tumour histology and shorter patient survival (all P < 0.05). From the 27 ACTN4-amplified CCAs, 23 tumours with adjacent putative precursor lesions were selected and examined for ACTN4/actinin-4 alterations with respect to their intratumoral heterogeneity. In this selected cohort, none of the precursors lacking cytological atypia exhibited gains of ACTN4 or actinin-4 overexpression; 50% of the atypical endometrioses and 75% of the borderline CCAFs showed low-level gains of ACTN4 and actinin-4 overexpression, respectively. In 12 of 23 ACTN4-amplified CCAs, intratumoral heterogeneity for ACTN4 alterations was documented in carcinomatous components; the better differentiated carcinoma components exhibited fewer alterations than those with poorly differentiated histology. CONCLUSION Accumulative genomic gains of ACTN4, causing actinin-4 protein overexpression, drive the development and progression of ovarian CCAs with high-grade histology.
Collapse
Affiliation(s)
- Sohei Yamamoto
- Department of Basic Pathology, National Defense Medical College, Saitama, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Analysis of differentially expressed proteins in colorectal cancer using hydroxyapatite column and SDS-PAGE. Appl Biochem Biotechnol 2011; 165:1211-24. [PMID: 21863284 DOI: 10.1007/s12010-011-9339-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 08/10/2011] [Indexed: 12/18/2022]
Abstract
Limitation on two dimensional (2D) gel electrophoresis technique causes some proteins to be under presented, especially the extreme acidic, basic, or membrane proteins. To overcome the limitation of 2D electrophoresis, an analysis method was developed for identification of differentially expressed proteins in normal and cancerous colonic tissues using self-pack hydroxyapatite (HA) column. Normal and cancerous colon tissues were homogenized and proteins were extracted using sodium phosphate buffer at pH 6.8. Protein concentration was determined and the proteins were loaded unto the HA column. HA column reduced the complexity of proteins mixture by fractionating the proteins according to their ionic strength. Further protein separation was accomplished by a simple and cost effective sodium dodecyl sulfate-polyacrylamide gel electrophoresis method. The protein bands were subjected to in-gel digestion and protein analysis was performed using electrospray ionization (ESI) ion trap mass spectrometer. There were 17 upregulated proteins and seven downregulated proteins detected with significant differential expression. Some of these proteins were low abundant proteins or proteins with extreme pH that were usually under presented in 2D gel analysis. We have identified brain mitochondrial carrier protein 1, T-cell surface glycoprotein CD1a, SOSS complex subunit B2, and Protein Jade 1 which were previously not detected in 2D gel analysis method.
Collapse
|
34
|
Yamada SI, Yanamoto S, Kawasaki G, Rokutanda S, Yonezawa H, Kawakita A, Nemoto TK. Overexpression of CRKII increases migration and invasive potential in oral squamous cell carcinoma. Cancer Lett 2011; 303:84-91. [PMID: 21339045 DOI: 10.1016/j.canlet.2011.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 12/14/2010] [Accepted: 01/05/2011] [Indexed: 11/29/2022]
Abstract
CT10 regulator of kinase (CRK) was originally identified as an oncogene product of v-CRK in a CT10 chicken retrovirus system. Overexpression of CRKII has been reported in several human cancers. CRKII regulates cell migration, morphogenesis, invasion, phagocytosis, and survival; however, the underlying mechanisms are not well understood. In the present study, we evaluated the possibility of CRKII as an appropriate molecular target for cancer gene therapy. The expression of CRKII in 71 primary oral squamous cell carcinomas and 10 normal oral mucosal specimens was determined immunohistochemically, and the correlation of CRKII overexpression with clinicopathological factors was evaluated. Overexpression of CRKII was detected in 41 of 70 oral squamous cell carcinomas, the frequency being more significant than in normal oral mucosa. In addition, CRKII overexpression was more frequent in higher-grade cancers according to the T classification, N classification, and invasive pattern. Moreover, RNAi-mediated suppression of CRKII expression reduced the migration and invasion potential of an oral squamous cell carcinoma cell line, OSC20. Downregulation of CRKII expression also reduced the expression of Dock180, p130Cas, and Rac1, and the actin-associated scaffolding protein cortactin. These results indicate that the overexpression of CRKII is tightly associated with an aggressive phenotype of oral squamous cell carcinoma. Therefore, we propose that CRKII could be a potential molecular target of gene therapy by RNAi-targeting in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Shin-Ichi Yamada
- Department of Oral and Maxillofacial Surgery, Unit of Translational Medicine, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Japan.
| | | | | | | | | | | | | |
Collapse
|