1
|
Xin ZZ, Zhu ZQ, Chen JY, Xu YL, Zhang XT, Zhang JY. Insights into the differential molecular response of non-germinated and germinated spores of Ameson portunus in vitro by comparative transcriptome analysis. J Invertebr Pathol 2024; 203:108066. [PMID: 38246321 DOI: 10.1016/j.jip.2024.108066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Ameson portunus, the recently discovered causative agent of "toothpaste disease" of pond-cultured swimming crabs in China has caused enormous economic losses in aquaculture. Understanding the process of spore germination is helpful to elucidate the molecular mechanism of its invasion of host cells. Here, we obtained mature and germinating spores by isolation and purification and in vitro stimulation, respectively. Then, non-germinated and germinated spores were subjected to the comparative transcriptomic analysis to disclose differential molecular responses of these two stages. The highest germination rate, i.e., 71.45 %, was achieved in 0.01 mol/L KOH germination solution. There were 9,609 significantly differentially expressed genes (DEGs), with 685 up-regulated and 8,924 down-regulated DEGs. The up-regulated genes were significantly enriched in ribosome pathway, and the down-regulated genes were significantly enriched in various metabolic pathways, including carbohydrate metabolism, amino acid metabolism and other metabolism. The results suggested that spores require various carbohydrates and amino acids as energy to support their life activities during germination and synthesize large amounts of ribosomal proteins to provide sites for DNA replication, transcription, translation and protein synthesis of the spores of A. portunus within the host cells. Functional genes related to spore germination, such as protein phosphatase CheZ and aquaporin, were also analyzed. The analysis of transcriptome data and identification of functional genes will help to understand the process of spore germination and invasion.
Collapse
Affiliation(s)
- Zhao-Zhe Xin
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266237, China.
| | - Zhi-Qiang Zhu
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266237, China.
| | - Jiu-Yang Chen
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266237, China.
| | - Ya-Li Xu
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266237, China.
| | - Xin-Tong Zhang
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266237, China.
| | - Jin-Yong Zhang
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266237, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.
| |
Collapse
|
2
|
Ma M, Ling M, Huang Q, Xu Y, Yang X, Kyei B, Wang Q, Tang X, Shen Z, Zhang Y, Zhao G. Functional characterization of Nosema bombycis (microsporidia) trehalase 3. Parasitol Res 2023; 123:59. [PMID: 38112902 DOI: 10.1007/s00436-023-08082-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
Nosema bombycis, an obligate intracellular parasite, is a single-celled eukaryote known to infect various tissues of silkworms, leading to the manifestation of pebrine. Trehalase, a glycosidase responsible for catalyzing the hydrolysis of trehalose into two glucose molecules, assumes a crucial role in thermal stress tolerance, dehydration, desiccation stress, and asexual development. Despite its recognized importance in these processes, the specific role of trehalase in N. bombycis remains uncertain. This investigation focused on exploring the functions of trehalase 3 in N. bombycis (NbTre3). Immunofluorescence analysis of mature (dormant) spores indicated that NbTre3 primarily localizes to the spore membrane or spore wall, suggesting a potential involvement in spore germination. Reverse transcription-quantitative polymerase chain reaction results indicated that the transcriptional level of NbTre3 peaked at 6 h post N. bombycis infection, potentially contributing to energy storage for proliferation. Throughout the life cycle of N. bombycis within the host cell, NbTre3 was detected in sporoplasm during the proliferative stage rather than the sporulation stage. RNA interference experiments revealed a substantial decrease in the relative transcriptional level of NbTre3, accompanied by a certain reduction in the relative transcriptional level of Nb16S rRNA. These outcomes suggest that NbTre3 may play a role in the proliferation of N. bombycis. The application of the His pull-down technique identified 28 proteins interacting with NbTre3, predominantly originating from the host silkworm. This finding implies that NbTre3 may participate in the metabolism of the host cell, potentially utilizing the host cell's energy resources.
Collapse
Affiliation(s)
- Mingzhen Ma
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Min Ling
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Qilong Huang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Yijie Xu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Xu Yang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Bismark Kyei
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Qiang Wang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
- The Key Laboratory of Genetic Improvement of Silkworm and Mulberry of Agricultural Ministry, Zhenjiang, Jiangsu Province, China
| | - Xudong Tang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
- The Key Laboratory of Genetic Improvement of Silkworm and Mulberry of Agricultural Ministry, Zhenjiang, Jiangsu Province, China
| | - Zhongyuan Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
- The Key Laboratory of Genetic Improvement of Silkworm and Mulberry of Agricultural Ministry, Zhenjiang, Jiangsu Province, China
| | - Yiling Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China.
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China.
- The Key Laboratory of Genetic Improvement of Silkworm and Mulberry of Agricultural Ministry, Zhenjiang, Jiangsu Province, China.
| | - Guodong Zhao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
- The Key Laboratory of Genetic Improvement of Silkworm and Mulberry of Agricultural Ministry, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
3
|
Dou Y, Zhang L, Shen H, Zhang S, Cao X, Qiao Y, Jiang G, Cheng J, Wan X, Fan X, Li H, Wang L, Shi W, Qin Y, Sun X. Comparative transcriptome analysis of non-germinated and germinated spores of Enterocytozoon hepatopenaei (EHP) in vitro. J Invertebr Pathol 2023; 197:107900. [PMID: 36806462 DOI: 10.1016/j.jip.2023.107900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Enterocytozoon hepatopenaei (EHP), an obligate intracellular parasite classified as microsporidia, is an emerging pathogen with a significant impact on the global shrimp aquaculture industry. The understanding of how microsporidia germinate has been a key factor in exploring its infection process. However, the germination process of EHP was rarely reported. To gain insight into the germination process, we conducted a high-throughput sequencing analysis of purified EHP spores that had undergone in vitro germination treatment. This analysis revealed 137 differentially expressed genes, with 84 up-regulated and 53 down-regulated genes. While the functions of some of the genes remain unknown, this study provides important data on the transcriptomic changes before and after EHP germination, which can aid in further studies on the EHP infection mechanism.
Collapse
Affiliation(s)
- Yabin Dou
- Shanghai Ocean University, Shanghai 201306, China
| | | | - Hui Shen
- Shanghai Ocean University, Shanghai 201306, China; Nanjing Normal University, Nanjing 210023, China; Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; Jiangsu Ocean University, Lianyungang 222005, China.
| | - Sheng Zhang
- Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaohui Cao
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Yi Qiao
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China.
| | - Ge Jiang
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Jie Cheng
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Xihe Wan
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Xianping Fan
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Hui Li
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Libao Wang
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Wenjun Shi
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Yali Qin
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Xiaoman Sun
- Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
4
|
Wang R, Li Q, Liu F, Dang X, Sun Q, Sheng X, Hu M, Bao J, Chen J, Pan G, Zhou Z. Maturation of subtilisin-like protease NbSLP1 from microsporidia Nosema bombycis. Front Cell Infect Microbiol 2022; 12:897509. [PMID: 36046739 PMCID: PMC9421246 DOI: 10.3389/fcimb.2022.897509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022] Open
Abstract
Microsporidia are obligate intracellular parasites and possess a unique way of invading hosts, namely germination. Microsporidia are able to infect almost all animal cells by germination. During the process, the polar tube extrudes from the spores within, thus injecting infectious sporoplasm into the host cells. Previous studies indicated that subtilisin-like protease 1 (NbSLP1) of microsporidia Nosema bombycis were located at the polar cap of germinated spores where the polar tube extrusion. We hypothesized that NbSLP1 is an essential player in the germination process. Normally, SLP need to be activated by autoproteolysis under conditions. In this study, we found that the signal peptide of NbSLP1 affected the activation of protease, two self-cleavage sites were involved in NbSLP1 maturation between Ala104Asp105 and Ala124Asp125 respectively. Mutants at catalytic triad of NbSLP1 confirmed the decreasing of autoproteolysis. This study demonstrates that intramolecular proteolysis is required for NbSLP1 maturation. The protease undergoes a series of sequential N-terminal cleavage events to generate the mature enzyme. Like other subtilisin-like enzymes, catalytic triad of NbSLP1 are significant for the self-activation of NbSLP1. In conclusion, clarifying the maturation of NbSLP1 will be valuable for understanding the polar tube ejection mechanism of germination.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Qingyan Li
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Fangyan Liu
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Xiaoqun Dang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Quan Sun
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Xiaotian Sheng
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Mingyu Hu
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Jialing Bao
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Jie Chen
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China.,College of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
5
|
Wei J, Fei Z, Pan G, Weiss LM, Zhou Z. Current Therapy and Therapeutic Targets for Microsporidiosis. Front Microbiol 2022; 13:835390. [PMID: 35356517 PMCID: PMC8959712 DOI: 10.3389/fmicb.2022.835390] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Microsporidia are obligate intracellular, spore-forming parasitic fungi which are grouped with the Cryptomycota. They are both opportunistic pathogens in humans and emerging veterinary pathogens. In humans, they cause chronic diarrhea in immune-compromised patients and infection is associated with increased mortality. Besides their role in pébrine in sericulture, which was described in 1865, the prevalence and severity of microsporidiosis in beekeeping and aquaculture has increased markedly in recent decades. Therapy for these pathogens in medicine, veterinary, and agriculture has become a recent focus of attention. Currently, there are only a few commercially available antimicrosporidial drugs. New therapeutic agents are needed for these infections and this is an active area of investigation. In this article we provide a comprehensive summary of the current as well as several promising new agents for the treatment of microsporidiosis including: albendazole, fumagillin, nikkomycin, orlistat, synthetic polyamines, and quinolones. Therapeutic targets which could be utilized for the design of new drugs are also discussed including: tubulin, type 2 methionine aminopeptidase, polyamines, chitin synthases, topoisomerase IV, triosephosphate isomerase, and lipase. We also summarize reports on the utility of complementary and alternative medicine strategies including herbal extracts, propolis, and probiotics. This review should help facilitate drug development for combating microsporidiosis.
Collapse
Affiliation(s)
- Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Zhihui Fei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
6
|
Jaroenlak P, Usmani M, Ekiert DC, Bhabha G. Mechanics of Microsporidian Polar Tube Firing. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:215-245. [PMID: 35544005 DOI: 10.1007/978-3-030-93306-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As obligate intracellular parasites with reduced genomes, microsporidia must infect host cells in order to replicate and cause disease. They can initiate infection by utilizing a harpoon-like invasion organelle called the polar tube (PT). The PT is both visually and functionally a striking organelle and is a characteristic feature of the microsporidian phylum. Outside the host, microsporidia exist as transmissible, single-celled spores. Inside each spore, the PT is arranged as a tight coil. Upon germination, the PT undergoes a large conformational change into a long, linear tube and acts as a tunnel for the delivery of infectious cargo from the spore to a host cell. The firing process is extremely rapid, occurring on a millisecond timescale, and the emergent tube may be as long as 20 times the size of the spore body. In this chapter, we discuss what is known about the structure of the PT, the mechanics of the PT firing process, and how it enables movement of material from the spore body.
Collapse
Affiliation(s)
- Pattana Jaroenlak
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Mahrukh Usmani
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
- Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Han B, Takvorian PM, Weiss LM. Invasion of Host Cells by Microsporidia. Front Microbiol 2020; 11:172. [PMID: 32132983 PMCID: PMC7040029 DOI: 10.3389/fmicb.2020.00172] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
Microsporidia are found worldwide and both vertebrates and invertebrates can serve as hosts for these organisms. While microsporidiosis in humans can occur in both immune competent and immune compromised hosts, it has most often been seen in the immune suppressed population, e.g., patients with advanced HIV infection, patients who have had organ transplantation, those undergoing chemotherapy, or patients using other immune suppressive agents. Infection can be associated with either focal infection in a specific organ (e.g., keratoconjunctivitis, cerebritis, or hepatitis) or with disseminated disease. The most common presentation of microsporidiosis being gastrointestinal infection with chronic diarrhea and wasting syndrome. In the setting of advanced HIV infection or other cases of profound immune deficiency microsporidiosis can be extremely debilitating and carries a significant mortality risk. Microsporidia are transmitted as spores which invade host cells by a specialized invasion apparatus the polar tube (PT). This review summarizes recent studies that have provided information on the composition of the spore wall and PT, as well as insights into the mechanism of invasion and interaction of the PT and spore wall with host cells during infection.
Collapse
Affiliation(s)
- Bing Han
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Peter M. Takvorian
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Biological Sciences, Rutgers University, Newark, NJ, United States
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
8
|
Functional characterization of an aquaporin from a microsporidium, Nosema bombycis. PLoS One 2017; 12:e0181703. [PMID: 28749993 PMCID: PMC5531513 DOI: 10.1371/journal.pone.0181703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/04/2017] [Indexed: 11/19/2022] Open
Abstract
Microsporidia are a diverse group of eukaryotic organisms, capable of causing parasitic infections in both vertebrates and invertebrates. During the germination process, there is an increase in the osmotic pressure of microsporidian spores. As part of this study, we cloned a homologous aquaporin gene in Nosema bombycis, and named it Nosema bombycis aquaporin (NbAQP). Sequence analysis revealed that the NbAQP contains an open reading frame with a length of 750 bp and encodes a polypeptide of 249 amino acids. Amino acid sequence homology was greater than 50% that of five aquaporins from other microsporidian species. Indirect immunofluorescence (IFA) and immunogold electron microscopy showed NbAQP to be located predominantly in the spore wall of N. bombycis spores. The results of qRT-PCR analysis revealed that NbAQP expression remained high 0 h after inoculation and decreased sharply to 24 h, increased gradually from 2 days and peaked at 6 days. After expression of NbAQP in Xenopus laevis oocytes, it was observed that NbAQP can promote rapid penetration of water into oocytes. The associated permeation rate was 2–3 times that of the water-injected and uninjected oocytes. Antibody blocking experiments showed that the inhibition rate of spore germination was approximately 28% after antibody blocking. The difference in germination rate between the control group and the NbAQP group was significant (P < 0.05). This study shows for the first time that N. bombycis contains functional water channel proteins and provides a platform suitable for further research into the mechanisms underlying the regulation of NbAQP protein expression. Further study of NbAQP and their inhibitors may have significance for prevention of microsporidiosis.
Collapse
|
9
|
Liu H, Li M, He X, Cai S, He X, Lu X. Transcriptome sequencing and characterization of ungerminated and germinated spores of Nosema bombycis. Acta Biochim Biophys Sin (Shanghai) 2016; 48:246-56. [PMID: 26837419 DOI: 10.1093/abbs/gmv140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/21/2015] [Indexed: 12/23/2022] Open
Abstract
Nosema bombycis is an obligate intracellular parasitic fungus that utilizes a distinctive mechanism to infect Bombyx mori. Germination, an indispensible process through which microsporidia infect the host cells, is regarded as a key developmental turning point for microsporidia from dormant state to reproduction state. Thus, elucidating the transcriptome changes before and after germination is crucial for parasite control. However, the molecular basis of germination of microsporidia remains unknown. To investigate this germination process, the transcriptome of N. bombycis ungerminated spores and germinated spores were sequenced and analyzed. More than 60 million high-quality transcript reads were generated from these two groups using RNA-Seq technology. After assembly, 2756 and 2690 unigenes were identified, respectively, and subsequently annotated based on known proteins. After analysis of differentially expressed genes, 66 genes were identified to be differentially expressed (P ≤ 0.05) between these two groups. A protein phosphatase-associated gene was first identified to be significantly up-regulated as determined by RNA-Seq and immunoblot analysis, indicating that dephosphorylation might potentially contribute to microsporidia germination. The DEGs that encode proteins involved in glycometabolism, spore wall proteins and ricin B lectin of N. bombycis were also analyzed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed genes responsible for some specific biological functions and processes. The datasets generated in this study provide a basic characterization of the transcriptome changes in N. bombycis during germination. The analysis of transcriptome data and identification of certain functional genes which are robust candidate genes related to germination will help to provide a deep understanding of spore germination and invasion.
Collapse
Affiliation(s)
- Han Liu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingqian Li
- Tongde Hospital of Zhejiang Province, Hangzhou 310058, China
| | - Xinyi He
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shunfeng Cai
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiangkang He
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xingmeng Lu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Development of a strategy for the identification of surface proteins in the pathogenic microsporidian Nosema bombycis. Parasitology 2015; 142:865-78. [DOI: 10.1017/s0031182015000190] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYParasite–host interactions mediated by cell surface proteins have been implicated as a critical step in infections caused by the microsporidian Nosema bombycis. Such cell surface proteins are considered as promising diagnostic markers and targets for drug development. However, little research has specifically addressed surface proteome identification in microsporidia due to technical barriers. Here, a combined strategy was developed to separate and identify the surface proteins of N. bombycis. Briefly, following (1) biotinylation of the spore surface, (2) extraction of total proteins with an optimized method and (3) streptavidin affinity purification of biotinylated proteins, 22 proteins were identified based on LC-MS/MS analysis. Among them, 5 proteins were confirmed to be localized on the surface of N. bombycis. A total of 8 proteins were identified as hypothetical extracellular proteins, whereas 7 other hypothetical proteins had no available function annotation. Furthermore, a protein with a molecular weight of 18·5 kDa was localized on the spore surface by western blotting and immunofluorescence analysis, even though it was predicted to be a nuclear protein by bioinformatics. Collectively, our work provides an effective strategy for isolating microsporidian surface protein components for both drug target identification and further diagnostic research on microsporidian disease control.
Collapse
|
11
|
Nehls U, Dietz S. Fungal aquaporins: cellular functions and ecophysiological perspectives. Appl Microbiol Biotechnol 2014; 98:8835-51. [PMID: 25213914 DOI: 10.1007/s00253-014-6049-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/13/2014] [Accepted: 08/15/2014] [Indexed: 12/21/2022]
Abstract
Three aspects have to be taken into consideration when discussing cellular water and solute permeability of fungal cells: cell wall properties, membrane permeability, and transport through proteinaceous pores (the main focus of this review). Yet, characterized major intrinsic proteins (MIPs) can be grouped into three functional categories: (mainly) water transporting aquaporins, aquaglyceroporins that confer preferentially solute permeability (e.g., glycerol and ammonia), and bifunctional aquaglyceroporins that can facilitate efficient water and solute transfer. Two ancestor proteins, a water (orthodox aquaporin) and a solute facilitator (aquaglyceroporin), are supposed to give rise to today's MIPs. Based on primary sequences of fungal MIPs, orthodox aquaporins/X-intrinsic proteins (XIPs) and FPS1-like/Yfl054-like/other aquaglyceroporins are supposed to be respective sister groups. However, at least within the fungal kingdom, no easy functional conclusion can be drawn from the phylogenetic position of a given protein within the MIP pedigree. In consequence, ecophysiological prediction of MIP relevance is not feasible without detailed functional analysis of the respective protein and expression studies. To illuminate the diverse MIP implications in fungal lifestyle, our current knowledge about protein function in two organisms, baker's yeast and the Basidiomycotic Laccaria bicolor, an ectomycorrhizal model fungus, was exemplarily summarized in this review. MIP function has been investigated in such a depth in Saccharomyces cerevisiae that a system-wide view is possible. Yeast lifestyle, however, is special in many circumstances. Therefore, L. bicolor as filamentous Basidiomycete was added and allows insight into a very different way of life. Special emphasis was laid in this review onto ecophysiological interpretation of MIP function.
Collapse
Affiliation(s)
- Uwe Nehls
- Botany, University of Bremen, Leobenerstr. 2, 28359, Bremen, Germany,
| | | |
Collapse
|
12
|
Videira M, Velasco M, Matos P, Clemente SCDS, Sanches O, Santos P, Matos E. Hepatic steatosis associated with microsporidiosis in teleost fishes from Marajó Island, Brazil. AN ACAD BRAS CIENC 2014; 86:1347-50. [PMID: 25211110 DOI: 10.1590/0001-3765201420130147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 11/26/2013] [Indexed: 11/21/2022] Open
Abstract
A total of 40 specimens of the teleost fish Gobioides grahamae Palmer & Wheeler, 1955 were obtained from the municipality of Salvaterra on Marajó Island in the Brazilian state of Pará. Their livers were removed and processed for light microscopy. Overall, 90% of the specimens presented some degree of steatosis of the liver, which was invariably associated with the presence of Microsporidium sp. The present study confirms the occurrence of steatosis in G. grahamae associated with parasitic infections by Microsporidium. The findings indicate that the condition of otherwise healthy fishes in their natural environment may be affected negatively by parasites.
Collapse
Affiliation(s)
- Marcela Videira
- Laboratório de Morfofisiologia e Sanidade Animal, Universidade do Estado do Amapá/UEAP, Macapá, AP, Brasil
| | - Michele Velasco
- Laboratório de Pesquisa Carlos Azevedo, Universidade Federal Rural da Amazônia/UFRA, Belém, PA, Brasil
| | - Patrícia Matos
- Laboratório de Pesquisa Edilson Matos, Universidade Federal do Pará/UFPA, Belém, PA, Brasil
| | | | - Osimar Sanches
- Laboratório de Patologia Animal, Universidade do Oeste Paulista/UNOESTE, Presidente Prudente, SP, Brasil
| | - Patrícia Santos
- Laboratório de Pesquisa Carlos Azevedo, Universidade Federal Rural da Amazônia/UFRA, Belém, PA, Brasil
| | - Edilson Matos
- Laboratório de Pesquisa Carlos Azevedo, Universidade Federal Rural da Amazônia/UFRA, Belém, PA, Brasil
| |
Collapse
|
13
|
Verma RK, Prabh ND, Sankararamakrishnan R. New subfamilies of major intrinsic proteins in fungi suggest novel transport properties in fungal channels: implications for the host-fungal interactions. BMC Evol Biol 2014; 14:173. [PMID: 25112373 PMCID: PMC4236510 DOI: 10.1186/s12862-014-0173-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/24/2014] [Indexed: 12/18/2022] Open
Abstract
Background Aquaporins (AQPs) and aquaglyceroporins (AQGPs) belong to the superfamily of Major Intrinsic Proteins (MIPs) and are involved in the transport of water and neutral solutes across the membranes. MIP channels play significant role in plant-fungi symbiotic relationship and are believed to be important in host-pathogen interactions in human fungal diseases. In plants, at least five major MIP subfamilies have been identified. Fungal MIP subfamilies include orthodox aquaporins and five subgroups within aquaglyceroporins. XIP subfamily is common to both plants and fungi. In this study, we have investigated the extent of diversity in fungal MIPs and explored further evolutionary relationships with the plant MIP counterparts. Results We have extensively analyzed the available fungal genomes and examined nearly 400 fungal MIPs. Phylogenetic analysis and homology modeling exhibit the existence of a new MIP cluster distinct from any of the known fungal MIP subfamilies. All members of this cluster are found in microsporidia which are unicellular fungal parasites. Members of this family are small in size, charged and have hydrophobic residues in the aromatic/arginine selectivity filter and these features are shared by small and basic intrinsic proteins (SIPs), one of the plant MIP subfamilies. We have also found two new subfamilies (δ and γ2) within the AQGP group. Fungal AQGPs are the most diverse and possess the largest number of subgroups. We have also identified distinguishing features in loops E and D in the newly identified subfamilies indicating their possible role in channel transport and gating. Conclusions Fungal SIP-like MIP family is distinct from any of the known fungal MIP families including orthodox aquaporins and aquaglyceroporins. After XIPs, this is the second MIP subfamily from fungi that may have possible evolutionary link with a plant MIP subfamily. AQGPs in fungi are more diverse and possess the largest number of subgroups. The aromatic/arginine selectivity filter of SIP-like fungal MIPs and the δ AQGPs are unique, hydrophobic in nature and are likely to transport novel hydrophobic solutes. They can be attractive targets for developing anti-fungal drugs. The evolutionary pattern shared with their plant counterparts indicates possible involvement of new fungal MIPs in plant-fungi symbiosis and host-pathogen interactions.
Collapse
|
14
|
Dean P, Major P, Nakjang S, Hirt RP, Embley TM. Transport proteins of parasitic protists and their role in nutrient salvage. FRONTIERS IN PLANT SCIENCE 2014; 5:153. [PMID: 24808897 PMCID: PMC4010794 DOI: 10.3389/fpls.2014.00153] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 04/01/2014] [Indexed: 05/02/2023]
Abstract
The loss of key biosynthetic pathways is a common feature of important parasitic protists, making them heavily dependent on scavenging nutrients from their hosts. This is often mediated by specialized transporter proteins that ensure the nutritional requirements of the parasite are met. Over the past decade, the completion of several parasite genome projects has facilitated the identification of parasite transporter proteins. This has been complemented by functional characterization of individual transporters along with investigations into their importance for parasite survival. In this review, we summarize the current knowledge on transporters from parasitic protists and highlight commonalities and differences in the transporter repertoires of different parasitic species, with particular focus on characterized transporters that act at the host-pathogen interface.
Collapse
Affiliation(s)
- Paul Dean
- *Correspondence: Paul Dean and T. Martin Embley, The Medical School, Institute for Cell and Molecular Biosciences, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK e-mail: ;
| | | | | | | | - T. Martin Embley
- *Correspondence: Paul Dean and T. Martin Embley, The Medical School, Institute for Cell and Molecular Biosciences, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK e-mail: ;
| |
Collapse
|
15
|
Abstract
Parasitism, aptly defined as one of the 'living-together' strategies (Trager, 1986), presents a dynamic system in which the parasite and its host are under evolutionary pressure to evolve new and specific adaptations, thus enabling the coexistence of the two closely interacting partners. Microsporidia are very frequently encountered obligatory intracellular protistan parasites that can infect both animals and some protists and are a consummate example of various aspects of the 'living-together' strategy. Microsporidia, relatives of fungi in the superkingdom Opisthokonta, belong to the relatively small group of parasites for which the host cell cytoplasm is the site of both reproduction and maturation. The structural and physiological reduction of their vegetative stage, together with the manipulation of host cell physiology, enables microsporidia to live in the cytosolic environment for most of their life cycle in a way resembling endocytobionts. The ability to form structurally complex spores and the invention and assembly of a unique injection mechanism enable microsporidia to disperse within host tissues and between host organisms, resulting in long-lasting infections. Microsporidia have adapted their genomes to the intracellular way of life, evolved strategies how to obtain nutrients directly from the host and how to manipulate not only the infected cells, but also the hosts themselves. The enormous variability of host organisms and their tissues provide microsporidian parasites a virtually limitless terrain for diversification and ecological expansion. This review attempts to present a general overview of microsporidia, emphasising some less known and/or more recently discovered facets of their biology.
Collapse
|
16
|
Abstract
In yeast, the presence of orthodox aquaporins has been first recognized in Saccharomyces cerevisiae, in which two genes (AQY1 and AQY2) were shown to be related to mammal and plant water channels. The present review summarizes the putative orthodox aquaporin protein sequences found in available genomes of yeast and filamentous fungi. Among the 28 yeast genomes sequenced, most species present only one orthodox aquaporin, and no aquaporins were found in eight yeast species. Alignment of amino acid sequences reveals a very diverse group. Similarity values vary from 99% among species within the Saccharomyces genus to 34% between ScAqy1 and the aquaporin from Debaryomyces hansenii. All of the fungal aquaporins possess the known characteristic sequences, and residues involved in the water channel pore are highly conserved. Advances in the establishment of the structure are reviewed in relation to the mechanisms of selectivity, conductance and gating. In particular, the involvement of the protein cytosolic N-terminus as a channel blocker preventing water flow is addressed. Methodologies used in the evaluation of aquaporin activity frequently involve the measurement of fast volume changes. Particular attention is paid to data analysis to obtain accurate membrane water permeability parameters. Although the presence of aquaporins clearly enhances membrane water permeability, the relevance of these ubiquitous water channels in yeast performance remains obscure.
Collapse
|
17
|
Texier C, Vidau C, Viguès B, El Alaoui H, Delbac F. Microsporidia: a model for minimal parasite–host interactions. Curr Opin Microbiol 2010; 13:443-9. [DOI: 10.1016/j.mib.2010.05.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 05/04/2010] [Accepted: 05/06/2010] [Indexed: 12/21/2022]
|
18
|
Abstract
Microsporidia are intracellular parasites of all major animal lineages and have a described diversity of over 1200 species and an actual diversity that is estimated to be much higher. They are important pathogens of mammals, and are now one of the most common infections among immunocompromised humans. Although related to fungi, microsporidia are atypical in genomic biology, cell structure and infection mechanism. Host cell infection involves the rapid expulsion of a polar tube from a dormant spore to pierce the host cell membrane and allow the direct transfer of the spore contents into the host cell cytoplasm. This intimate relationship between parasite and host is unique. It allows the microsporidia to be highly exploitative of the host cell environment and cause such diverse effects as the induction of hypertrophied cells to harbour prolific spore development, host sex ratio distortion and host cell organelle and microtubule reorganization. Genome sequencing has revealed that microsporidia have achieved this high level of parasite sophistication with radically reduced proteomes and with many typical eukaryotic pathways pared-down to what appear to be minimal functional units. These traits make microsporidia intriguing model systems for understanding the extremes of reductive parasite evolution and host cell manipulation.
Collapse
Affiliation(s)
- Bryony A P Williams
- Centre for Eukaryotic Evolutionary Microbiology, School of Biosciences, Stocker Road, University of Exeter, Exeter, Devon EX4 4QD, UK.
| |
Collapse
|
19
|
Shao HB, Chu LY, Shao HB, Chu LY, Shao MA, Zhao CX. Advances in functional regulation mechanisms of plant aquaporins: Their diversity, gene expression, localization, structure and roles in plant soil-water relations (Review). Mol Membr Biol 2009; 25:179-91. [DOI: 10.1080/09687680801914508] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Zhao CX, Shao HB, Chu LY. Aquaporin structure–function relationships: Water flow through plant living cells. Colloids Surf B Biointerfaces 2008; 62:163-72. [DOI: 10.1016/j.colsurfb.2007.10.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 10/08/2007] [Accepted: 10/28/2007] [Indexed: 11/25/2022]
|
21
|
Affiliation(s)
- Frédéric Delbac
- Equipe Parasitologie Moléculaire et Cellulaire, LBP, UMR CNRS 6023, Université Blaise Pascal, 24 Avenue des Landais 63177 Aubière, France.
| | | |
Collapse
|
22
|
Zhang F, Lu X, Kumar VS, Zhu H, Chen H, Chen Z, Hong J. Effects of a novel anti-exospore monoclonal antibody on microsporidialNosema bombycisgermination and reproductionin vitro. Parasitology 2007; 134:1551-8. [PMID: 17577423 DOI: 10.1017/s0031182007002934] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYA monoclonal antibody (mAb) 3C2, against an exospore protein of the microsporidiumNosema bombycis(N. bombycis) was prepared, and its effects on microsporidial germination and reproductionin vitrowere studied. MAb 3C2 was effective in inhibiting the germination and subsequent infection ofBombyx moricells compared to the control mAb. The antigen was isolated by 2-dimensional gel electrophoresis. Immunoblotting revealed it to be an 84 kDa protein corresponding to pI (7·2) on the 2-D gel. The present results suggest that the antibodies can be used for diagnostic purposes and for developing new therapeutic strategies in controlling microsporidian diseases.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Protozoan/immunology
- Antibodies, Protozoan/pharmacology
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/immunology
- Cells, Cultured
- Female
- Mice
- Mice, Inbred BALB C
- Nosema/drug effects
- Nosema/growth & development
- Nosema/physiology
- Reproduction/drug effects
- Reproduction/physiology
- Spores, Protozoan/drug effects
- Spores, Protozoan/immunology
- Spores, Protozoan/physiology
- Time Factors
Collapse
Affiliation(s)
- F Zhang
- Laboratory of Invertebrate Pathology, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Ghosh K, Takvorian PM, McBride SM, Cali A, Weiss LM. Heterologous Expression of an Encephalitozoon cuniculi Aquaporin in Xenopus Oocytes. J Eukaryot Microbiol 2006; 53 Suppl 1:S72-3. [PMID: 17169073 DOI: 10.1111/j.1550-7408.2006.00178.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Kaya Ghosh
- Department of Pathology, Division of Tropical Medicine and Parasitology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
24
|
Beitz E. Aquaporin Water and Solute Channels from Malaria Parasites and Other Pathogenic Protozoa. ChemMedChem 2006; 1:587-92. [PMID: 16892397 DOI: 10.1002/cmdc.200500105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eric Beitz
- Department of Pharmaceutical Chemistry, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|