1
|
Hosseini SA, Matini M, Bahmanzadeh M, Aslani R, Foroughi-Parvar F. Trichomoniasis in Men: A Neglected Factor in Male Infertility? Acta Parasitol 2025; 70:44. [PMID: 39853517 DOI: 10.1007/s11686-024-00984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/07/2024] [Indexed: 01/26/2025]
Abstract
PURPOSE This study is aimed to detect the frequency of trichomoniasis, a sexually transmitted infection caused by an anaerobic protozoan Trichomonas vaginalis, in men referred to the Fertility and Infertility Research Center Hamadan University of Medical Sciences. METHODS In this cross-sectional study, a group of 197 male volunteers who sought medical attention for issues related to infertility participated. The urine and semen samples were collected in sterile conditions. Both urine and semen sediment were promptly examined under a microscopy to detect the presence of motile trophozoites. Subsequently, 50 µl of urine sediment were inoculated into the Dorset culture medium, whereas 50 µl of semen sediment were inoculated into the Diamond culture (TYI-S-33) and incubated at 35.5oC. Finally, the processed urine samples were used for molecular analysis. RESULTS The investigated subjects had an average age ranging from 36 to 40 years. There were 181 volunteers with fertility issues, outnumbering the 16 individuals with normal fertility. Spermogram analysis showed that 48% of participants had non-motile or progressive sperms, and 48% had abnormalities in sperm morphology. T. vaginalis was not detected through microscopic assessment, but PCR and sequence analysis revealed one case in a 33-year-old infertile individual, who had only 0.3% normal sperm with 19% motility. The isolated T.vaginalis was found to have the G genotype based on the sequencing analysis. CONCLUSION Trichomoniasis in males was considered unimportant, with the belief that it would improve on its own. This study suggests that parasites can be considered as one of the male infertility factors, however, the impact is not fully understood. This investigation confirmed the effectiveness of molecular techniques in detecting trichomoniasis in males.
Collapse
Affiliation(s)
- Seyed Ali Hosseini
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, P.O. Box: 65157838736, Hamadan, Iran
| | - Mohammad Matini
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, P.O. Box: 65157838736, Hamadan, Iran
| | - Maryam Bahmanzadeh
- Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Aslani
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, P.O. Box: 65157838736, Hamadan, Iran
| | - Faeze Foroughi-Parvar
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, P.O. Box: 65157838736, Hamadan, Iran.
| |
Collapse
|
2
|
Rivero MB, Alonso AM, Abdala ME, Luque ME, Carranza PG, Coceres VM, Rivero FD. Comparative membrane proteomic analysis of Tritrichomonas foetus isolates. Sci Rep 2024; 14:17033. [PMID: 39043862 PMCID: PMC11266394 DOI: 10.1038/s41598-024-67827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Tritrichomonas foetus is a flagellated and anaerobic parasite able to infect cattle and felines. Despite its prevalence, there is no effective standardized or legal treatment for T. foetus-infected cattle; the vaccination still has limited success in mitigating infections and reducing abortion risk; and nowadays, the diagnosis of T. foetus presents important limitations in terms of sensitivity and specificity in bovines. Here, we characterize the plasma membrane proteome of T. foetus and identify proteins that are represented in different isolates of this protozoan. Additionally, we performed a bioinformatic analysis that revealed the antigenicity potential of some of those proteins. This analysis is the first study to identify common proteins at the plasma membrane of different T. foetus isolates that could be targets for alternative diagnostic or vaccine techniques in the future.
Collapse
Affiliation(s)
- Maria B Rivero
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina
- Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina
| | - Andrés M Alonso
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, B7130IWA, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Buenos Aires, Argentina
| | - Maria E Abdala
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina
- Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina
- Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, Argentina
| | - Melchor E Luque
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina
- Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina
- Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, Argentina
| | - Pedro G Carranza
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina
- Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina
- Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, Argentina
| | - Veronica M Coceres
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, B7130IWA, Chascomús, Argentina.
- Escuela de Bio y Nanotecnologías (UNSAM), Buenos Aires, Argentina.
| | - Fernando D Rivero
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina.
- Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina.
- Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, Argentina.
| |
Collapse
|
3
|
Martinez-Hernandez F, Sanchez-Aguillon F, Martinez-Ocaña J, Gonzalez-Arenas NR, Romero-Valdovinos M, Lopez-Escamilla E, Maravilla P, Villalobos G. Genetic Variability of the Internal Transcribed Spacer and Pyruvate:Ferredoxin Oxidoreductase Partial Gene of Trichomonas vaginalis from Female Patients. Microorganisms 2023; 11:2240. [PMID: 37764084 PMCID: PMC10537638 DOI: 10.3390/microorganisms11092240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
In the present study, we evaluated the genetic variability of the internal transcribed spacer (ITS) region and the pyruvate:ferredoxin oxidoreductase (pfor) A gene of Trichomonas vaginalis from female patients and its possible implications in the host-parasite relationship. Phylogenetic and genetics of populations analyses were performed by analyzing sequences of the ITS region and partial pfor A gene of clinical samples with T. vaginalis, as previously documented. Alignments of protein sequences and prediction of three-dimensional structure were also performed. Although no correlation between the main clinical characteristics of the samples and the results of phylogeny was found, a median-joining analysis of ITS haplotypes showed two main clusters. Also, pfor A, due to its phylogenetic divergence, could be used as a marker to confirm the genus and species of trichomonads. Alignment of protein sequences and prediction of three-dimensional structure showed that PFOR A had a highly conserved structure with two synonymous mutations in the PFOR domain, substituting a V for a G or a S for a P. Our results suggest that the role of genetic variability of PFOR and ITS may not be significant in the symptomatology of this pathogen; however, their utility as genus and species markers in trichomonads is promising.
Collapse
Affiliation(s)
- Fernando Martinez-Hernandez
- Departamento de Ecologia de Agentes Patogenos, Hospital General “Dr. Manuel Gea Gonzalez”, Mexico City 14080, Mexico; (F.M.-H.); (J.M.-O.); (N.R.G.-A.); (E.L.-E.)
| | - Fabiola Sanchez-Aguillon
- Laboratorio de Investigación del Departamento de Biologia Molecular e Histocompatibilidad, Hospital General “Dr. Manuel Gea Gonzalez”, Mexico City 14080, Mexico;
| | - Joel Martinez-Ocaña
- Departamento de Ecologia de Agentes Patogenos, Hospital General “Dr. Manuel Gea Gonzalez”, Mexico City 14080, Mexico; (F.M.-H.); (J.M.-O.); (N.R.G.-A.); (E.L.-E.)
| | - Nelly Raquel Gonzalez-Arenas
- Departamento de Ecologia de Agentes Patogenos, Hospital General “Dr. Manuel Gea Gonzalez”, Mexico City 14080, Mexico; (F.M.-H.); (J.M.-O.); (N.R.G.-A.); (E.L.-E.)
| | - Mirza Romero-Valdovinos
- Laboratorio de Patogenos Emergentes, Departamento de Biologia Molecular e Histocompatibilidad, Hospital General “Dr. Manuel Gea Gonzalez”, Mexico City 14080, Mexico;
| | - Eduardo Lopez-Escamilla
- Departamento de Ecologia de Agentes Patogenos, Hospital General “Dr. Manuel Gea Gonzalez”, Mexico City 14080, Mexico; (F.M.-H.); (J.M.-O.); (N.R.G.-A.); (E.L.-E.)
| | - Pablo Maravilla
- Departamento de Ecologia de Agentes Patogenos, Hospital General “Dr. Manuel Gea Gonzalez”, Mexico City 14080, Mexico; (F.M.-H.); (J.M.-O.); (N.R.G.-A.); (E.L.-E.)
| | - Guiehdani Villalobos
- Departamento de Ecologia de Agentes Patogenos, Hospital General “Dr. Manuel Gea Gonzalez”, Mexico City 14080, Mexico; (F.M.-H.); (J.M.-O.); (N.R.G.-A.); (E.L.-E.)
- Laboratorio de Biologia Molecular del Departamento de Produccion Agricola y Animal, Universidad Autonoma Metropolitana, Mexico City 04960, Mexico
| |
Collapse
|
4
|
Prevalence and Genotype of Trichomonas vaginalis among Men in Xinxiang City, Henan Province, China. J Trop Med 2023; 2023:4119956. [PMID: 36895425 PMCID: PMC9991476 DOI: 10.1155/2023/4119956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 03/05/2023] Open
Abstract
Trichomonas vaginalis (T. vaginalis) could cause trichomoniasis through sexual transmission, which was globally distributed. In this study, the prevalence and phylogenetic analyses of T. vaginalis among men in Xinxiang were conducted. From October 2018 to December 2019, a total of 634 male clinical samples were collected, including 254 samples of semen, 43 samples of prostate fluid, and 337 samples of urine. These samples were examined by nested PCR and a total of 32 (5.05%) T. vaginalis-positive samples were detected. Among these samples, the positive rates of T. vaginalis in semen, prostate fluid, and urine were 7.87% (20/254), 4.65% (2/43), and 2.97% (10/337), respectively. Three actin genes were successfully isolated and sequenced from the 32 positive DNA samples, and the analysis of the sequence and phylogenetic tree showed that the three actin gene sequences exhibited 99.7%-100% homology to the published actin gene sequence (EU076580) in NCBI, and the T. vaginalis strains in the three positive samples were identified as genotype E. Our results demonstrate a notable genotype of T. vaginalis in the male population and provide insight into the performance of these genetic markers in the molecular epidemiology of trichomoniasis. However, further studies are needed to research the association between the genotype and the pathogenicity of T. vaginalis.
Collapse
|
5
|
In Vitro Antiprotozoal Effects of Nano-chitosan on Plasmodium falciparum, Giardia lamblia and Trichomonas vaginalis. Acta Parasitol 2021; 66:39-52. [PMID: 32666158 DOI: 10.1007/s11686-020-00255-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/09/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Treatment of parasitic infections with conventional drugs is associated with high toxicity, and undesirable side effects require cogent substitutions. Nanotechnology has provided novel approaches to synthesize nano-drugs to improve efficient antipathetic treatment. PURPOSE Nano-chitosan as a nontoxic antimicrobial agent was examined against three most prevalent protozoa in humans, Plasmodium falciparum, Giardia lamblia and Trichomonas vaginalis. METHODS Chitosan extracted from Penicillium fungi was converted to nanoparticles to maximize its therapeutic properties. Safety of nano-chitosan was examined by determining its hemolytic property and toxicity on PC12 cells. The studied parasites were identified with RFLP-PCR and cultivation in relevant media. Characteristics of nano-chitosan as an useful and valuable curative compound was evaluated by FTIR, DLS and SEM. Dose dependent anti-parasitic effect of nano-chitosan was evaluated. RESULTS The highest anti-parasitic activity of the nano-chitosan was observed at 50 μg/mL by which growth rates of cultivated P. falciparum, T. vaginalis and G. lamblia were inhibited by 59.5%, 99.4%, and 31.3%, respectively. The study demonstrated that nano-chitosan with the least toxicity, low side effects, and substantial efficacy deserved to be considered as an anti-parasitic nano-compound. CONCLUSION Nano-chitosan significantly inhibited protozoan growth in vitro promising to explore its use to combat parasitic infections. Further investigations covering extended sample size, in vivo experiments and optimizing the concentration used may lead to efficient treatment of protozoan diseases.
Collapse
|
6
|
Genotypic Variation in Trichomonas vaginalis Detected in South African Pregnant Women. Infect Dis Obstet Gynecol 2020; 2020:1687427. [PMID: 32831547 PMCID: PMC7426786 DOI: 10.1155/2020/1687427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/25/2020] [Accepted: 07/14/2020] [Indexed: 11/17/2022] Open
Abstract
Background Trichomonas vaginalis is the causative agent of trichomoniasis. The genetic characterisation of T. vaginalis isolates reveals significant genetic diversity in this organism. Data on the prevalence of different genotypes of T. vaginalis in South African populations is lacking. This study investigated the diversity of T. vaginalis in a pregnant population in South Africa. Methods In this study, 362 pregnant women from the King Edward VIII Hospital in Durban, South Africa, provided vaginal swabs to be tested for the presence of T. vaginalis. T. vaginalis was detected using the TaqMan assay using commercially available primers and probes specific for this protozoan (Pr04646256_s1). The actin gene from T. vaginalis was amplified with gene-specific primers. The actin amplicons were digested with HindII, MseI, and RsaI, and the banding patterns were compared across the three digests for assignment of genotypes. Phylogenetic analysis was conducted using MEGA. Results The prevalence of T. vaginalis in the study population was 12.9% (47/362). Genotype G was the most frequent genotype in our study population. Genotypes H and I were detected in one sample each. According to the multiple sequence alignments and phylogenetic analysis, a level of diversity was observed across and within genotypes. Four different single-nucleotide changes in the actin gene were detected. Sample TV358 (H genotype) contained a single amino acid substitution from glutamine to lysine. Sample TV184 (G genotype) contained a single amino acid substitution from glutamic acid to arginine. Sample TV357 (G genotype) contained two amino acid substitutions, arginine to leucine and glycine to aspartic acid. Conclusion Three different genotypes were observed in the pregnant population. Diversity was observed across and within genotypes. The observed diversity can be challenging for future vaccine design and development of antigen-based rapid diagnostic tests for trichomoniasis.
Collapse
|
7
|
Genetic Diversity of Trichomonas Vaginalis Clinical Isolates According to Restriction Fragment Length Polymorphism Analysis of the 60-kDa Proteinase Gene. Acta Parasitol 2019; 64:300-307. [PMID: 31165993 DOI: 10.2478/s11686-019-00065-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/02/2019] [Indexed: 01/31/2023]
Abstract
INTRODUCCTION Trichomonas vaginalis is a highly prevalent parasitic that causes the sexually transmitted disease trichomoniasis with some serious health complications. More understanding about genetic features of the parasite can be helpful in the study of the pathogenesis, epidemiology of the infection and drug susceptibility. For this end, we conducted analysis of a fragment (23 kDa) of the p60 of T. vaginalis gene. MATERIAL AND METHODS The restriction fragment length polymorphism (RFLP) methods was used. RESULT AND DISCUSSION RFLP analysis showed the difference between T. vaginalis isolates from symptomatic and asymptomatic patients, suggesting a relation between the genetic identity of the isolates and their clinical manifestations.
Collapse
|
8
|
Masha SC, Cools P, Crucitti T, Sanders EJ, Vaneechoutte M. Molecular typing of Trichomonas vaginalis isolates by actin gene sequence analysis and carriage of T. vaginalis viruses. Parasit Vectors 2017; 10:537. [PMID: 29084570 PMCID: PMC5663105 DOI: 10.1186/s13071-017-2496-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/23/2017] [Indexed: 11/15/2022] Open
Abstract
Background The protozoan parasite Trichomonas vaginalis is the most common non-viral, sexually transmitted pathogen. Although T. vaginalis is highly prevalent among women in Kenya, there is lack of data regarding genetic diversity of isolates currently in circulation in Kenya. Methods Typing was performed on 22 clinical isolates of T. vaginalis collected from women attending the antenatal care clinic at Kilifi County Hospital, Kenya, in 2015. Genotyping followed a previously proposed restriction fragment length polymorphism (RFLP) scheme, which involved in silico cleavage of the amplified actin gene by HindII, MseI and RsaI restriction enzymes. Phylogenetic analysis of all the sequences was performed to confirm the results obtained by RFLP-analysis and to assess the diversity within the RFLP genotypes. Additionally, we determined carriage of the four different types of Trichomonas vaginalis viruses (TVVs) by polymerase chain reaction. Results In silico RFLP-analysis revealed five actin genotypes; 50.0% of the isolates were of actin genotype E, 27.3% of actin genotype N, 13.6% of actin genotype G and 4.5% of actin genotypes I and P. Phylogenetic analysis was in agreement with the RFLP-analysis, with the different actin genotypes clustering together. Prevalence of TVVs was 43.5% (95% confidence interval, CI: 23.2–65.5). TVV1 was the most prevalent, present in 39.1% of the strains and 90% of the T. vaginalis isolates which harbored TVVs had more than one type of TVV. None of the isolates of actin genotype E harbored any TVV. Conclusion The presence of five actin genotypes in our study suggests notable diversity among T. vaginalis isolates occurring among pregnant women in Kilifi, Kenya. Isolates of the most prevalent actin genotype E lacked TVVs. We found no association between T. vaginalis genotype, carriage of TVVs and symptoms. Further studies with higher number of strains should be conducted in order to corroborate these results. Electronic supplementary material The online version of this article (10.1186/s13071-017-2496-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simon C Masha
- Centre for Geographic Medicine Research - Coast, Kenya Medical Research Institute (KEMRI), P.O. Box 230-80108, Kilifi, Kenya. .,Laboratory Bacteriology Research, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan, 185 9000, Ghent, Belgium. .,Department of Biological Sciences, Faculty of Pure and Applied Sciences, Pwani University, P.O. BOX 195-80108, Kilifi, Kenya.
| | - Piet Cools
- Laboratory Bacteriology Research, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan, 185 9000, Ghent, Belgium
| | - Tania Crucitti
- HIV/STI Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerpen, Belgium
| | - Eduard J Sanders
- Centre for Geographic Medicine Research - Coast, Kenya Medical Research Institute (KEMRI), P.O. Box 230-80108, Kilifi, Kenya
| | - Mario Vaneechoutte
- Laboratory Bacteriology Research, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan, 185 9000, Ghent, Belgium
| |
Collapse
|
9
|
Carrillo-Ávila JA, Serrano-García ML, Fernández-Parra J, Sorlózano-Puerto A, Navarro-Marí JM, Stensvold CR, Gutiérrez-Fernández J. Prevalence and genetic diversity of Trichomonas vaginalis in the general population of Granada and co-infections with Gardnerella vaginalis and Candida species. J Med Microbiol 2017; 66:1436-1442. [PMID: 28972465 DOI: 10.1099/jmm.0.000603] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Purulent or exudative genitourinary infections are a frequent cause of consultation in primary and specialized healthcare. The objectives of this study were: to determine the prevalence of Trichomonas vaginalis and co-infections with Candida spp. and Gardnerella vaginalis in vaginal secretion; and to use multilocus sequence typing (MLST) to analyse the genetic diversity of T. vaginalis strains. METHODOLOGY The samples were submitted for analysis (n=5230) to a third-level hospital in Granada (Southern Spain) between 2011 and 2014; eight T. vaginalis strains isolated during 2015 were randomly selected for MLST analysis. Culture and nucleic acid hybridization techniques were used to detect microorganisms in the samples. RESULTS The prevalence of T. vaginalis was 2.4 % between 2011 and 2014, being higher during the first few months of both 2011 and 2012. Among samples positive for T. vaginalis, co-infection with G. vaginalis was detected in 29 samples and co-infection with Candida spp. in 6, while co-infection with all three pathogens was observed in 3 samples. The only statistically significant between-year difference in co-infection rates was observed for T. vaginalis with G. vaginalis due to an elevated rate in 2011. MLST analysis results demonstrated a high genetic variability among strains circulating in our setting. CONCLUSION These findings emphasize the need for the routine application of diagnostic procedures to avoid the spread of this sexually transmitted infection.
Collapse
Affiliation(s)
| | | | - Jorge Fernández-Parra
- Department of Obstetrics and Gynaecology, Virgen de las Nieves University Hospital -ibs Granada, Granada, Spain
| | | | - José María Navarro-Marí
- Microbiology Laboratory, Virgen de las Nieves University Hospital -ibs Granada, Granada, Spain
| | - C Rune Stensvold
- Department of Microbiology and Infection, Statens Serum Institut, Copenhagen, Denmark
| | - Jose Gutiérrez-Fernández
- Microbiology Laboratory, Virgen de las Nieves University Hospital -ibs Granada, Granada, Spain.,Department of Microbiology, University of Granada-ibs Granada, Granada, Spain
| |
Collapse
|
10
|
Hawksworth J, Levy M, Smale C, Cheung D, Whittle A, Longhurst D, Muir P, Gibson W. Population structure and genetic diversity of the parasite Trichomonas vaginalis in Bristol, UK. INFECTION GENETICS AND EVOLUTION 2015; 34:36-43. [DOI: 10.1016/j.meegid.2015.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 10/23/2022]
|
11
|
Abstract
Recent advances in genetic characterisation of Trichomonas vaginalis isolates show that the extensive clinical variability in trichomoniasis and its disease sequelae are matched by significant genetic diversity in the organism itself, suggesting a connection between the genetic identity of isolates and their clinical manifestations. Indeed, a high degree of genetic heterogeneity in T vaginalis isolates has been observed using multiple genotyping techniques. A unique two-type population structure that is both local and global in distribution has been identified, and there is evidence of recombination within each group, although sexual recombination between the groups appears to be constrained. There is conflicting evidence in these studies for correlations between T vaginalis genetic identity and clinical presentation, metronidazole susceptibility, and the presence of T vaginalis virus, underscoring the need for adoption of a common standard for genotyping the parasite. Moving forward, microsatellite genotyping and multilocus sequence typing are the most robust techniques for future investigations of T vaginalis genotype-phenotype associations.
Collapse
Affiliation(s)
- John C Meade
- Department of Microbiology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | |
Collapse
|
12
|
Conrad MD, Bradic M, Warring SD, Gorman AW, Carlton JM. Getting trichy: tools and approaches to interrogating Trichomonas vaginalis in a post-genome world. Trends Parasitol 2012; 29:17-25. [PMID: 23219217 DOI: 10.1016/j.pt.2012.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/29/2012] [Accepted: 10/29/2012] [Indexed: 11/28/2022]
Abstract
Trichomonas vaginalis is a parasite of the urogenital tract in men and women, with a worldwide presence and significant implications for global public health. T. vaginalis research entered the age of genomics with the publication of the first genome sequence in 2007, but subsequent utilization of other 'omics' technologies and methods has been slow. Here, we review some of the tools and approaches available to interrogate T. vaginalis biology, with an emphasis on recent advances and current limitations, and draw attention to areas where further efforts are needed to examine effectively the complex and intriguing biology of the parasite.
Collapse
Affiliation(s)
- Melissa D Conrad
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | | | |
Collapse
|
13
|
Genetic Characterization of Trichomonas vaginalis Isolates by Use of Multilocus Sequence Typing. J Clin Microbiol 2012; 50:3293-300. [DOI: 10.1128/jcm.00643-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
14
|
Meza-Cervantez P, González-Robles A, Cárdenas-Guerra RE, Ortega-López J, Saavedra E, Pineda E, Arroyo R. Pyruvate : ferredoxin oxidoreductase (PFO) is a surface-associated cell-binding protein in Trichomonas vaginalis and is involved in trichomonal adherence to host cells. Microbiology (Reading) 2011; 157:3469-3482. [DOI: 10.1099/mic.0.053033-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Trichomonas vaginalis 120 kDa protein adhesin (AP120) is induced under iron-rich conditions and has sequence homology with pyruvate : ferredoxin oxidoreductase A (PFO A), a hydrogenosomal enzyme that is absent in humans. This homology raises the possibility that, like AP120, PFO might be localized to the parasite surface and participate in cytoadherence. Here, the cellular localization and function of PFO that was expressed under various iron concentrations was investigated using a polyclonal antibody generated against the 50 kDa recombinant C-terminal region of PFO A (anti-PFO50). In Western blot assays, this antibody recognized a 120 kDa protein band in total protein extracts, and proteins with affinity to the surface of HeLa cells from parasites grown under iron-rich conditions. In addition to localization that is typical of hydrogenosomal proteins, PFOs that were expressed under iron-rich conditions were found to localize at the surface. This localization was demonstrated using immunofluorescence and co-localization assays, as well as immunogold transmission electron microscopy. In addition to describing its enzyme activity, we describe a novel function in trichomonal host interaction for the PFO localized on the parasite surface. The anti-PFO50 antibody reduced the levels of T. vaginalis adherence to HeLa cell monolayers in a concentration-dependent manner. Thus, T. vaginalis PFO is an example of a surface-associated cell-binding protein that lacks enzyme activity and that is involved in cytoadherence. Additionally, PFO behaves like AP120 in parasites grown under iron-rich conditions. Therefore, these data suggest that AP120 and PFO A are encoded by the same gene, namely pfo a.
Collapse
Affiliation(s)
- Patricia Meza-Cervantez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México DF, Mexico
| | - Arturo González-Robles
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México DF, Mexico
| | - Rosa Elena Cárdenas-Guerra
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México DF, Mexico
| | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México DF, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México DF, Mexico
| | - Erika Pineda
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México DF, Mexico
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México DF, Mexico
| |
Collapse
|
15
|
Prokopi M, Chatzitheodorou T, Ackers JP, Clark CG. A preliminary investigation of microsatellite-based genotyping in Trichomonas vaginalis. Trans R Soc Trop Med Hyg 2011; 105:479-81. [PMID: 21700304 DOI: 10.1016/j.trstmh.2011.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 05/10/2011] [Accepted: 05/10/2011] [Indexed: 11/26/2022] Open
Abstract
The genetic epidemiology of Trichomonas vaginalis is poorly understood at present. The recent release of the organism's genome sequence opens the way to investigation of polymorphic markers allowing strain identification. We here report a preliminary analysis of microsatellite loci in T. vaginalis and show that this approach holds promise for future studies of infection transmission and organism diversity.
Collapse
Affiliation(s)
- Marianna Prokopi
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | | | | | |
Collapse
|
16
|
Double-stranded RNA viral infection of Trichomonas vaginalis and correlation with genetic polymorphism of isolates. Exp Parasitol 2011; 127:593-9. [DOI: 10.1016/j.exppara.2010.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 09/03/2010] [Accepted: 09/18/2010] [Indexed: 11/20/2022]
|
17
|
Conrad M, Zubacova Z, Dunn LA, Upcroft J, Sullivan SA, Tachezy J, Carlton JM. Microsatellite polymorphism in the sexually transmitted human pathogen Trichomonas vaginalis indicates a genetically diverse parasite. Mol Biochem Parasitol 2011; 175:30-8. [PMID: 20813140 PMCID: PMC2974001 DOI: 10.1016/j.molbiopara.2010.08.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 08/19/2010] [Accepted: 08/23/2010] [Indexed: 10/19/2022]
Abstract
Given the growing appreciation of serious health sequelae from widespread Trichomonas vaginalis infection, new tools are needed to study the parasite's genetic diversity. To this end we have identified and characterized a panel of 21 microsatellites and six single-copy genes from the T. vaginalis genome, using seven laboratory strains of diverse origin. We have (1) adapted our microsatellite typing method to incorporate affordable fluorescent labeling, (2) determined that the microsatellite loci remain stable in parasites continuously cultured for up to 17 months, and (3) evaluated microsatellite marker coverage of the six chromosomes that comprise the T. vaginalis genome, using fluorescent in situ hybridization (FISH). We have used the markers to show that T. vaginalis is a genetically diverse parasite in a population of commonly used laboratory strains. In addition, we have used phylogenetic methods to infer evolutionary relationships from our markers in order to validate their utility in future population analyses. Our panel is the first series of robust polymorphic genetic markers for T. vaginalis that can be used to classify and monitor lab strains, as well as provide a means to measure the genetic diversity and population structure of extant and future T. vaginalis isolates.
Collapse
Affiliation(s)
- Melissa Conrad
- Department of Medical Parasitology, New York University Langone Medical Center, New York, NY 10010, USA
| | - Zuzana Zubacova
- Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicná 7, Prague 128 44, Czech Republic
| | - Linda A. Dunn
- Queensland Institute of Medical Research, Brisbane, QLD, 4006, Australia
| | - Jacqui Upcroft
- Queensland Institute of Medical Research, Brisbane, QLD, 4006, Australia
| | - Steven A. Sullivan
- Department of Medical Parasitology, New York University Langone Medical Center, New York, NY 10010, USA
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicná 7, Prague 128 44, Czech Republic
| | - Jane M. Carlton
- Department of Medical Parasitology, New York University Langone Medical Center, New York, NY 10010, USA
| |
Collapse
|
18
|
Zubáčová Z, Krylov V, Tachezy J. Fluorescence in situ hybridization (FISH) mapping of single copy genes on Trichomonas vaginalis chromosomes. Mol Biochem Parasitol 2010; 176:135-7. [PMID: 21195113 DOI: 10.1016/j.molbiopara.2010.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 12/23/2022]
Abstract
The highly repetitive nature of the Trichomonas vaginalis genome and massive expansion of various gene families has caused difficulties in genome assembly and has hampered genome mapping. Here, we adapted fluorescence in situ hybridization (FISH) for T. vaginalis, which is sensitive enough to detect single copy genes on metaphase chromosomes. Sensitivity of conventional FISH, which did not allow single copy gene detection in T. vaginalis, was increased by means of tyramide signal amplification. Two selected single copy genes, coding for serine palmitoyltransferase and tryptophanase, were mapped to chromosome I and II, respectively, and thus could be used as chromosome markers. This established protocol provides an amenable tool for the physical mapping of the T. vaginalis genome and other essential applications, such as development of genetic markers for T. vaginalis genotyping.
Collapse
Affiliation(s)
- Zuzana Zubáčová
- Charles University in Prague, Faculty of Science, Department of Parasitology, Vinicna 7, 12844 Prague, Czech Republic
| | | | | |
Collapse
|
19
|
Cui J, Das S, Smith TF, Samuelson J. Trichomonas transmembrane cyclases result from massive gene duplication and concomitant development of pseudogenes. PLoS Negl Trop Dis 2010; 4:e782. [PMID: 20689771 PMCID: PMC2914791 DOI: 10.1371/journal.pntd.0000782] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 07/02/2010] [Indexed: 01/04/2023] Open
Abstract
Background Trichomonas vaginalis has an unusually large genome (∼160 Mb) encoding ∼60,000 proteins. With the goal of beginning to understand why some Trichomonas genes are present in so many copies, we characterized here a family of ∼123 Trichomonas genes that encode transmembrane adenylyl cyclases (TMACs). Methodology/Principal Findings The large family of TMACs genes is the result of recent duplications of a small set of ancestral genes that appear to be unique to trichomonads. Duplicated TMAC genes are not closely associated with repetitive elements, and duplications of flanking sequences are rare. However, there is evidence for TMAC gene replacements by homologous recombination. A high percentage of TMAC genes (∼46%) are pseudogenes, as they contain stop codons and/or frame shifts, or the genes are truncated. Numerous stop codons present in the genome project G3 strain are not present in orthologous genes of two other Trichomonas strains (S1 and B7RC2). Each TMAC is composed of a series of N-terminal transmembrane helices and a single C-terminal cyclase domain that has adenylyl cyclase activity. Multiple TMAC genes are transcribed by Trichomonas cloned by limiting dilution. Conclusions/Significance We conclude that one reason for the unusually large genome of Trichomonas is the presence of unstable families of genes such as those encoding TMACs that are undergoing massive gene duplication and concomitant development of pseudogenes. Trichomonas vaginalis is the only medically important protist (single-cell eukaryote) that is sexually transmitted. The ∼160-Mb Trichomonas genome contains more predicted protein-encoding genes (∼60,000) than the human genome. To begin to understand why there are so many copies of some genes, we chose here to study a large family of genes encoding unique transmembrane cyclases. Our most important results include the following. More than 100 transmembrane cyclase genes do not result from chromosomal duplications, because for the most part only the coding regions of the genes, rather than flanking sequences, are duplicated. Almost half of the transmembrane cyclase genes are pseudogenes, and these pseudogenes are polymorphic among laboratory strains of Trichomonas. Messenger RNAs for numerous transmembrane cyclases are expressed simultaneously, and representative cyclase domains have adenylyl cyclase activity. In summary, the large family of Trichomonas genes encoding transmembrane adenylyl cyclases results from massive gene duplication and concomitant development of pseudogenes.
Collapse
Affiliation(s)
- Jike Cui
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Bioinformatics, Boston University, Boston, Massachusetts, United States of America
| | - Suchismita Das
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Temple F. Smith
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
20
|
Wright JM, Dunn LA, Kazimierczuk Z, Burgess AG, Krauer KG, Upcroft P, Upcroft JA. Susceptibility in vitro of clinically metronidazole-resistant Trichomonas vaginalis to nitazoxanide, toyocamycin, and 2-fluoro-2′-deoxyadenosine. Parasitol Res 2010; 107:847-53. [DOI: 10.1007/s00436-010-1938-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 05/26/2010] [Indexed: 11/28/2022]
|
21
|
de Miguel N, Lustig G, Twu O, Chattopadhyay A, Wohlschlegel JA, Johnson PJ. Proteome analysis of the surface of Trichomonas vaginalis reveals novel proteins and strain-dependent differential expression. Mol Cell Proteomics 2010; 9:1554-66. [PMID: 20467041 DOI: 10.1074/mcp.m000022-mcp201] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The identification of surface proteins on the plasma membrane of pathogens is of fundamental importance in understanding host-pathogen interactions. Surface proteins of the extracellular parasite Trichomonas are implicated in the initial adherence to mucosal tissue and are likely to play a critical role in the long term survival of this pathogen in the urogenital tract. In this study, we used cell surface biotinylation and multidimensional protein identification technology to identify the surface proteome of six strains of Trichomonas vaginalis with differing adherence capacities to vaginal epithelial cells. A combined total of 411 proteins were identified, and of these, 11 were found to be more abundant in adherent strains relative to less adherent parasites. The mRNA levels of five differentially expressed proteins selected for quantitative RT-PCR analysis mirrored their observed protein levels, confirming their up-regulation in highly adherent strains. As proof of principle and to investigate a possible role in pathogenesis for differentially expressed proteins, gain of function experiments were performed using two novel proteins that were among the most highly expressed surface proteins in adherent strains. Overexpression of either of these proteins, TVAG_244130 or TVAG_166850, in a relatively non-adherent strain increased attachment of transfected parasites to vaginal epithelial cells approximately 2.2-fold. These data support a role in adhesion for these abundant surface proteins. Our analyses demonstrate that comprehensive profiling of the cell surface proteome of different parasite strains is an effective approach to identify potential new adhesion factors as well as other surface molecules that may participate in establishing and maintaining infection by this extracellular pathogen.
Collapse
Affiliation(s)
- Natalia de Miguel
- Department of Microbiology, University of California, Los Angeles, California 90095-1489, USA
| | | | | | | | | | | |
Collapse
|
22
|
Upcroft JA, Dunn LA, Wal T, Tabrizi S, Delgadillo-Correa MG, Johnson PJ, Garland S, Siba P, Upcroft P. Metronidazole resistance in Trichomonas vaginalis from highland women in Papua New Guinea. Sex Health 2010; 6:334-8. [PMID: 19917203 DOI: 10.1071/sh09011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 05/21/2009] [Indexed: 11/23/2022]
Abstract
BACKGROUND The prevalence of the sexually transmissible protozoan parasite Trichomonas vaginalis in the highlands of Papua New Guinea (PNG) has been reported to be as high as 46% and although not previously studied in Papua New Guinea, clinical resistance against metronidazole (Mz), the drug most commonly used to treat trichomoniasis, is well documented worldwide. This study was primarily aimed at assessing resistance to Mz in T. vaginalis strains from the Goroka region. METHODS Consenting patients presenting at the Goroka Base Hospital Sexually Transmitted Diseases (STD) Clinic and local women were asked to provide two vaginal swabs: one for culturing of the parasite; and one for polymerase chain reaction detection of T. vaginalis, Chlamydia trachomatis and Neisseria gonorrhoeae. T. vaginalis isolates were assayed for Mz susceptibility and a selection was genotyped. RESULTS The prevalence of T. vaginalis was determined to be 32.9% by culture and polymerase chain reaction of swabs among 82 local women and patients from the STD clinic. An unexpectedly high level of in vitro Mz resistance was determined with 17.4% of isolates displaying unexpectedly high resistance to Mz. The ability to identify isolates of T. vaginalis by genotyping was confirmed and the results revealed a more homogeneous T. vaginalis population in Papua New Guinea compared with isolates from elsewhere. CONCLUSION T. vaginalis is highly prevalent in the Goroka region and in vitro Mz resistance data suggest that clinical resistance may become an issue.
Collapse
Affiliation(s)
- Jacqueline A Upcroft
- Queensland Institute of Medical Research, The Bancroft Centre, 300 Herston Road, Brisbane, Qld 4006, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Dunn LA, Andrews KT, McCarthy JS, Wright JM, Skinner-Adams TS, Upcroft P, Upcroft JA. The activity of protease inhibitors against Giardia duodenalis and metronidazole-resistant Trichomonas vaginalis. Int J Antimicrob Agents 2006; 29:98-102. [PMID: 17137752 DOI: 10.1016/j.ijantimicag.2006.08.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 08/04/2006] [Accepted: 08/04/2006] [Indexed: 11/28/2022]
Abstract
Antiretroviral protease inhibitors were assessed in vitro for their activity against Giardia duodenalis and Trichomonas vaginalis. Kaletra (a co-formulation of ritonavir and lopinavir) was the most effective overall, with 50% effective drug concentrations (EC(50)) of 1.1-2.7 microM (ritonavir concentration) against G. duodenalis and 6.8-8 microM against metronidazole-sensitive and clinically metronidazole-resistant T. vaginalis. Minimal inhibitory concentrations were 2-2.5 microM and 10-50 microM for G. duodenalis and T. vaginalis, respectively. Within the range of human plasma concentrations for ritonavir, only G. duodenalis was inhibited. Lopinavir alone was less inhibitory than ritonavir but was associated with a blockage in cytokinesis of G. duodenalis trophozoites. Saquinavir was not effective. These findings are significant considering the association between human immunodeficiency virus and T. vaginalis, and between G. duodenalis and homosexual behaviour.
Collapse
Affiliation(s)
- Linda A Dunn
- Molecular Genetics Laboratory, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Qld 4006, Australia.
| | | | | | | | | | | | | |
Collapse
|