1
|
Sharma G, Badruddeen, Akhtar J, Khan MI, Ahmad M, Sharma PK. "Methyl jasmonate: bridging plant defense mechanisms and human therapeutics". NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03752-x. [PMID: 39847055 DOI: 10.1007/s00210-024-03752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
A volatile organic substance produced from jasmonic acid, methyl jasmonate (MJ/MeJA), is an important plant hormone involved in stress responses and plant defense. Apart from its role in plants, MJ has garnered significant attention because of its pharmacological effects and possible therapeutic use in human health. This thorough analysis looks into the many biological actions of MJ, such as its antioxidant, anti-inflammatory, and anti-cancer effects. The underlying mechanism of these actions is examined, emphasizing MJ's ability to modulate important signaling pathways, cause cancer cells to undergo apoptosis, and boost immunological responses. Furthermore, MJ's capacity to manage long-term illnesses like cancer and neurological conditions like Parkinson's and Alzheimer's is examined. Preclinical and clinical research are beginning to provide evidence that MJ may be a useful medicinal drug. Nevertheless, more research is needed to fully understand its mode of action, enhance its administration methods, and evaluate its efficacy and safety in humans. This review highlights MJ's therapeutic promise and supports earlier research into its pharmacological capabilities and possible medical applications. This abstract highlights methyl jasmonate's pharmacological effects and therapeutic potential by providing a concise overview of the main topics covered in a thorough review.
Collapse
Affiliation(s)
- Garima Sharma
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India
| | - Badruddeen
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India.
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India
| | - Mohammad Irfan Khan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India
| | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India
| | - Prakash Kumar Sharma
- Department of Anesthesiology, Hind Institute of Medical Sciences, Safedabad, Lucknow, U.P., 225001, India
| |
Collapse
|
2
|
Palmer-Young EC, Schwarz RS, Chen Y, Evans JD. Punch in the gut: Parasite tolerance of phytochemicals reflects host diet. Environ Microbiol 2022; 24:1805-1817. [PMID: 35315572 DOI: 10.1111/1462-2920.15981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 11/30/2022]
Abstract
Gut parasites of plant-eating insects are exposed to antimicrobial phytochemicals that can reduce infection. Trypanosomatid gut parasites infect insects of diverse nutritional ecologies as well as mammals and plants, raising the question of how host diet-associated phytochemicals shape parasite evolution and host specificity. To test the hypothesis that phytochemical tolerance of trypanosomatids reflects the chemical ecology of their hosts, we compared related parasites from honey bees and mosquitoes-hosts that differ in phytochemical consumption-and contrasted our results with previous studies on phylogenetically related, human-parasitic Leishmania. We identified one bacterial and ten plant-derived substances with known antileishmanial activity that also inhibited honey bee parasites associated with colony collapse. Bee parasites exhibited greater tolerance of chrysin-a flavonoid found in nectar, pollen, and plant resin-derived propolis. In contrast, mosquito parasites were more tolerant of cinnamic acid-a product of lignin decomposition present in woody debris-rich larval habitats. Parasites from both hosts tolerated many compounds that inhibit Leishmania, hinting at possible trade-offs between phytochemical tolerance and mammalian infection. Our results implicate the phytochemistry of host diets as a potential driver of insect-trypanosomatid associations, and identify compounds that could be incorporated into colony diets or floral landscapes to ameliorate infection in bees. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Ryan S Schwarz
- Department of Biology, Fort Lewis College, Durango, CO, USA
| | | | - Jay D Evans
- USDA-ARS Bee Research Lab, Beltsville, MD, USA
| |
Collapse
|
3
|
Aluko OM, Iroegbu JD, Ijomone OM, Umukoro S. Methyl Jasmonate: Behavioral and Molecular Implications in Neurological Disorders. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:220-232. [PMID: 33888651 PMCID: PMC8077066 DOI: 10.9758/cpn.2021.19.2.220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/04/2023]
Abstract
Methyl jasmonate (MJ) is a derivative of the jasmonate family which is found in most tropical regions of the world and present in many fruits and vegetables such as grapevines, tomato, rice, and sugarcane. MJ is a cyclopentanone phytohormone that plays a vital role in defense against stress and pathogens in plants. This has led to its isolation from plants for studies in animals. Many of these studies have been carried out to evaluate its therapeutic effects on behavioral and neurochemical functions. It has however been proposed to have beneficial potential over a wide range of neurological disorders. Hence, this review aims to provide an overview of the neuroprotective properties of MJ and its probable mechanisms of ameliorating neurological disorders. The information used for this review was sourced from research articles and scientific databases using 'methyl jasmonate', 'behavior', 'neuroprotection', 'neurodegenerative diseases', and 'mechanisms' as search words. The review highlights its influences on behavioral patterns of anxiety, aggression, depression, memory, psychotic, and stress. The molecular mechanisms such as modulation of the antioxidant defense, inflammatory biomarkers, neurotransmitter regulation, and neuronal regeneration, underlying its actions in managing neurodegenerative diseases like Alzheimer's and Parkinson's diseases are also discussed. This review, therefore, provides a detailed evaluation of methyl jasmonate as a potential neuroprotective compound with the ability to modify behavioral and molecular biomarkers underlying neurological disorders. Hence, MJ could be modeled as a guided treatment for the management of brain diseases.
Collapse
Affiliation(s)
- Oritoke Modupe Aluko
- Department of Physiology, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Pharmacology and Therapeutics, University of Ibadan, Ibadan, Nigeria
| | - Joy Dubem Iroegbu
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Omamuyovwi Meashack Ijomone
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Solomon Umukoro
- Department of Pharmacology and Therapeutics, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
4
|
Sun D, Zhang L, Yu Q, Zhang J, Li P, Zhang Y, Xing X, Ding L, Fang W, Chen F, Song A. Integrated Signals of Jasmonates, Sugars, Cytokinins and Auxin Influence the Initial Growth of the Second Buds of Chrysanthemum after Decapitation. BIOLOGY 2021; 10:biology10050440. [PMID: 34065759 PMCID: PMC8156878 DOI: 10.3390/biology10050440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022]
Abstract
Decapitation is common in horticulture for altering plant architecture. The decapitation of chrysanthemum plants breaks apical dominance and leads to more flowers on lateral branches, resulting in landscape flowers with good coverage. We performed both third- and second-generation transcriptome sequencing of the second buds of chrysanthemum. This third-generation transcriptome is the first sequenced third-generation transcriptome of chrysanthemum, revealing alternative splicing events, lncRNAs, and transcription factors. Aside from the classic hormones, the expression of jasmonate-related genes changed because of this process. Sugars also played an important role in this process, with upregulated expression of sucrose transport-related and TPS genes. We constructed a model of the initial growth of the second buds after decapitation. Auxin export and sugar influx activated the growth of these buds, while the JA-Ile caused by wounding inhibited the expression of CycD genes from 0 h to 6 h. After wound recovery, cytokinins accumulated in the second buds and might have induced ARR12 expression to upregulate CycD gene expression from 6 h to 48 h, together with sugars. Therefore, jasmonates, cytokinins, sugars, and auxin work together to determine the fate of the buds of plants with short internodes, such as chrysanthemum.
Collapse
Affiliation(s)
- Daojin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.S.); (L.Z.); (Q.Y.); (J.Z.); (Y.Z.); (X.X.); (L.D.); (W.F.); (F.C.)
| | - Luyao Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.S.); (L.Z.); (Q.Y.); (J.Z.); (Y.Z.); (X.X.); (L.D.); (W.F.); (F.C.)
| | - Qi Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.S.); (L.Z.); (Q.Y.); (J.Z.); (Y.Z.); (X.X.); (L.D.); (W.F.); (F.C.)
| | - Jiali Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.S.); (L.Z.); (Q.Y.); (J.Z.); (Y.Z.); (X.X.); (L.D.); (W.F.); (F.C.)
| | - Peiling Li
- Henan Key Laboratory of Tea Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang 464000, China;
| | - Yu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.S.); (L.Z.); (Q.Y.); (J.Z.); (Y.Z.); (X.X.); (L.D.); (W.F.); (F.C.)
| | - Xiaojuan Xing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.S.); (L.Z.); (Q.Y.); (J.Z.); (Y.Z.); (X.X.); (L.D.); (W.F.); (F.C.)
| | - Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.S.); (L.Z.); (Q.Y.); (J.Z.); (Y.Z.); (X.X.); (L.D.); (W.F.); (F.C.)
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.S.); (L.Z.); (Q.Y.); (J.Z.); (Y.Z.); (X.X.); (L.D.); (W.F.); (F.C.)
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.S.); (L.Z.); (Q.Y.); (J.Z.); (Y.Z.); (X.X.); (L.D.); (W.F.); (F.C.)
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (D.S.); (L.Z.); (Q.Y.); (J.Z.); (Y.Z.); (X.X.); (L.D.); (W.F.); (F.C.)
- Correspondence:
| |
Collapse
|
5
|
Friedman M, Tam CC, Kim JH, Escobar S, Gong S, Liu M, Mao XY, Do C, Kuang I, Boateng K, Ha J, Tran M, Alluri S, Le T, Leong R, Cheng LW, Land KM. Anti-Parasitic Activity of Cherry Tomato Peel Powders. Foods 2021; 10:230. [PMID: 33498638 PMCID: PMC7912415 DOI: 10.3390/foods10020230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Trichomoniasis in humans, caused by the protozoal parasite Trichomonas vaginalis, is the most common non-viral sexually transmitted disease, while Tritrichomonas foetus causes trichomonosis, an infection of the gastrointestinal tract and diarrhea in farm animals and domesticated cats. As part of an effort to determine the inhibitory effects of plant-based extracts and pure compounds, seven commercially available cherry tomato varieties were hand-peeled, freeze-dried, and pounded into powders. The anti-trichomonad inhibitory activities of these peel powders at 0.02% concentration determined using an in vitro cell assay varied widely from 0.0% to 66.7% against T. vaginalis G3 (human); from 0.9% to 66.8% for T. foetus C1 (feline); and from 0.0% to 81.3% for T. foetus D1 (bovine). The organic Solanum lycopersicum var. cerasiforme (D) peels were the most active against all three trichomonads, inhibiting 52.2% (G3), 66.8% (C1), and 81.3% (D1). Additional assays showed that none of the powders inhibited the growth of foodborne pathogenic bacteria, pathogenic fungi, or non-pathogenic lactobacilli. Tomato peel and pomace powders with high content of described biologically active compounds could serve as functional food and feed additives that might help overcome adverse effects of wide-ranging diseases and complement the treatment of parasites with the anti-trichomonad drug metronidazole.
Collapse
Affiliation(s)
- Mendel Friedman
- Healthy Processed Foods Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA
| | - Christina C. Tam
- Foodborne Toxins Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (C.C.T.); (J.H.K.); (L.W.C.)
| | - Jong H. Kim
- Foodborne Toxins Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (C.C.T.); (J.H.K.); (L.W.C.)
| | - Sydney Escobar
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (S.E.); (S.G.); (M.L.); (X.Y.M.); (C.D.); (I.K.); (K.B.); (J.H.); (M.T.); (S.A.); (T.L.); (R.L.); (K.M.L.)
| | - Steven Gong
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (S.E.); (S.G.); (M.L.); (X.Y.M.); (C.D.); (I.K.); (K.B.); (J.H.); (M.T.); (S.A.); (T.L.); (R.L.); (K.M.L.)
| | - Max Liu
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (S.E.); (S.G.); (M.L.); (X.Y.M.); (C.D.); (I.K.); (K.B.); (J.H.); (M.T.); (S.A.); (T.L.); (R.L.); (K.M.L.)
| | - Xuan Yu Mao
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (S.E.); (S.G.); (M.L.); (X.Y.M.); (C.D.); (I.K.); (K.B.); (J.H.); (M.T.); (S.A.); (T.L.); (R.L.); (K.M.L.)
| | - Cindy Do
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (S.E.); (S.G.); (M.L.); (X.Y.M.); (C.D.); (I.K.); (K.B.); (J.H.); (M.T.); (S.A.); (T.L.); (R.L.); (K.M.L.)
| | - Irene Kuang
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (S.E.); (S.G.); (M.L.); (X.Y.M.); (C.D.); (I.K.); (K.B.); (J.H.); (M.T.); (S.A.); (T.L.); (R.L.); (K.M.L.)
| | - Kelvin Boateng
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (S.E.); (S.G.); (M.L.); (X.Y.M.); (C.D.); (I.K.); (K.B.); (J.H.); (M.T.); (S.A.); (T.L.); (R.L.); (K.M.L.)
| | - Janica Ha
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (S.E.); (S.G.); (M.L.); (X.Y.M.); (C.D.); (I.K.); (K.B.); (J.H.); (M.T.); (S.A.); (T.L.); (R.L.); (K.M.L.)
| | - Megan Tran
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (S.E.); (S.G.); (M.L.); (X.Y.M.); (C.D.); (I.K.); (K.B.); (J.H.); (M.T.); (S.A.); (T.L.); (R.L.); (K.M.L.)
| | - Srimanth Alluri
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (S.E.); (S.G.); (M.L.); (X.Y.M.); (C.D.); (I.K.); (K.B.); (J.H.); (M.T.); (S.A.); (T.L.); (R.L.); (K.M.L.)
| | - Tam Le
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (S.E.); (S.G.); (M.L.); (X.Y.M.); (C.D.); (I.K.); (K.B.); (J.H.); (M.T.); (S.A.); (T.L.); (R.L.); (K.M.L.)
| | - Ryan Leong
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (S.E.); (S.G.); (M.L.); (X.Y.M.); (C.D.); (I.K.); (K.B.); (J.H.); (M.T.); (S.A.); (T.L.); (R.L.); (K.M.L.)
| | - Luisa W. Cheng
- Foodborne Toxins Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (C.C.T.); (J.H.K.); (L.W.C.)
| | - Kirkwood M. Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA; (S.E.); (S.G.); (M.L.); (X.Y.M.); (C.D.); (I.K.); (K.B.); (J.H.); (M.T.); (S.A.); (T.L.); (R.L.); (K.M.L.)
| |
Collapse
|
6
|
Friedman M, Tam CC, Cheng LW, Land KM. Anti-trichomonad activities of different compounds from foods, marine products, and medicinal plants: a review. BMC Complement Med Ther 2020; 20:271. [PMID: 32907567 PMCID: PMC7479404 DOI: 10.1186/s12906-020-03061-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Human trichomoniasis, caused by the pathogenic parasitic protozoan Trichomonas vaginalis, is the most common non-viral sexually transmitted disease that contributes to reproductive morbidity in affected women and possibly to prostate cancer in men. Tritrichomonas foetus strains cause the disease trichomoniasis in farm animals (cattle, bulls, pigs) and diarrhea in domestic animals (cats and dogs). Because some T. vaginalis strains have become resistant to the widely used drug metronidazole, there is a need to develop alternative treatments, based on safe natural products that have the potential to replace and/or enhance the activity of lower doses of metronidazole. To help meet this need, this overview collates and interprets worldwide reported studies on the efficacy of structurally different classes of food, marine, and medicinal plant extracts and some of their bioactive pure compounds against T. vaginalis and T. foetus in vitro and in infected mice and women. Active food extracts include potato peels and their glycoalkaloids α-chaconine and α-solanine, caffeic and chlorogenic acids, and quercetin; the tomato glycoalkaloid α-tomatine; theaflavin-rich black tea extracts and bioactive theaflavins; plant essential oils and their compounds (+)-α-bisabolol and eugenol; the grape skin compound resveratrol; the kidney bean lectin, marine extracts from algae, seaweeds, and fungi and compounds that are derived from fungi; medicinal extracts and about 30 isolated pure compounds. Also covered are the inactivation of drug-resistant T. vaginalis and T. foetus strains by sensitized light; anti-trichomonad effects in mice and women; beneficial effects of probiotics in women; and mechanisms that govern cell death. The summarized findings will hopefully stimulate additional research, including molecular-mechanism-guided inactivations and human clinical studies, that will help ameliorate adverse effects of pathogenic protozoa.
Collapse
Affiliation(s)
- Mendel Friedman
- United States Department of Agriculture, Healthy Processed Foods Research Unit, Agricultural Research Service, Albany, CA, 94710, USA.
| | - Christina C Tam
- United States Department of Agriculture, Foodborne Toxins Detection and Prevention Research Unit, Agricultural Research Service, Albany, California, 94710, USA
| | - Luisa W Cheng
- United States Department of Agriculture, Foodborne Toxins Detection and Prevention Research Unit, Agricultural Research Service, Albany, California, 94710, USA
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA, 95211, USA
| |
Collapse
|
7
|
Küng E, Fürnkranz U, Walochnik J. Chemotherapeutic options for the treatment of human trichomoniasis. Int J Antimicrob Agents 2018; 53:116-127. [PMID: 30612993 DOI: 10.1016/j.ijantimicag.2018.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/11/2018] [Accepted: 10/20/2018] [Indexed: 01/08/2023]
Abstract
Trichomonas vaginalis is the causative agent of the most common non-viral sexually transmitted disease worldwide. The infection may be associated with severe complications, including infertility, preterm labour, cancer and an increased risk of human immunodeficiency virus (HIV) transmission. Treatment remains almost exclusively based on 5-nitroimidazoles, but resistance is on the rise. This article provides an overview of clinically evaluated systemic and topical treatment options for human trichomoniasis and summarises the current state of knowledge on various herbal, semisynthetic and synthetic compounds evaluated for their anti-Trichomonas efficacy in vitro.
Collapse
Affiliation(s)
- Erik Küng
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - Ursula Fürnkranz
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria.
| |
Collapse
|
8
|
Trichomonas vaginalis Macrophage Migration Inhibitory Factor Mediates Parasite Survival during Nutrient Stress. mBio 2018; 9:mBio.00910-18. [PMID: 29946046 PMCID: PMC6020296 DOI: 10.1128/mbio.00910-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Trichomonas vaginalis is responsible for the most prevalent non-viral sexually transmitted disease worldwide, and yet the mechanisms used by this parasite to establish and maintain infection are poorly understood. We previously identified a T. vaginalis homologue (TvMIF) of a human cytokine, human macrophage migration inhibitory factor (huMIF). TvMIF mimics huMIF’s role in increasing cell growth and inhibiting apoptosis in human host cells. To interrogate a role of TvMIF in parasite survival during infection, we asked whether overexpression of TvMIF (TvMIF-OE) confers an advantage to the parasite under nutrient stress conditions by comparing the survival of TvMIF-OE parasites to that of empty vector (EV) parasites. We found that under conditions of serum starvation, overexpression of TvMIF resulted in increased parasite survival. Serum-starved parasites secrete 2.5-fold more intrinsic TvMIF than unstarved parasites, stimulating autocrine and paracrine signaling. Similarly, we observed that addition of recombinant TvMIF increased the survival of the parasites in the absence of serum. Recombinant huMIF likewise increased the parasite survival in the absence of serum, indicating that the parasite may use this host survival factor to resist its own death. Moreover, TvMIF-OE parasites were found to undergo significantly less apoptosis and reactive oxygen species (ROS) generation under conditions of serum starvation, consistent with increased survival being the result of blocking ROS-induced apoptosis. These studies demonstrated that a parasitic MIF enhances survival under adverse conditions and defined TvMIF and huMIF as conserved survival factors that exhibit cross talk in host-pathogen interactions. Macrophage migration inhibitory factor (MIF) is a conserved protein found in most eukaryotes which has been well characterized in mammals but poorly studied in other eukaryotes. The limited analyses of MIF proteins found in unicellular eukaryotes have focused exclusively on the effect of parasitic MIF on the mammalian host. This was the first study to assess the function of a parasite MIF in parasite biology. We demonstrate that the Trichomonas vaginalis MIF functions to suppress cell death induced by apoptosis, thereby enhancing parasite survival under adverse conditions. Our research reveals a conserved survival mechanism, shared by a parasite and its host, and indicates a role for a conserved protein in mediating cross talk in host-pathogen interactions.
Collapse
|
9
|
Bala V, Chhonker YS. Recent developments in anti-Trichomonas research: An update review. Eur J Med Chem 2017; 143:232-243. [PMID: 29175675 DOI: 10.1016/j.ejmech.2017.11.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022]
Abstract
Trichomonas vaginalis is a major non-viral sexually-transmitted infection resulted into serious obstetrical and gynecological troubles. The increasing resistance to nitroimidazole therapy and recurrence makes it crucial to develop new drugs against trichomoniasis. Over the past few years, a large number of research articles highlighting the synthetic and natural product research to combat Trichomonas vaginalis have been published. Electronic databases were searched to collect all data from the year 2006 through June 2017 for anti-Trichomonas activity potential of synthetic and natural products. This review article put together the synthetic and natural product research to find out an effective metronidazole alternative to cure trichomoniasis.
Collapse
Affiliation(s)
- Veenu Bala
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, 313001, India.
| | - Yashpal S Chhonker
- College of Pharmacy, Department of Pharmacy Practice, University of Nebraska Medical Centre, Omaha, USA.
| |
Collapse
|
10
|
Mehriardestani M, Aliahmadi A, Toliat T, Rahimi R. Medicinal plants and their isolated compounds showing anti- Trichomonas vaginalis - activity. Biomed Pharmacother 2017; 88:885-893. [DOI: 10.1016/j.biopha.2017.01.149] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/19/2017] [Accepted: 01/26/2017] [Indexed: 12/16/2022] Open
|
11
|
Novel insights into the molecular events linking to cell death induced by tetracycline in the amitochondriate protozoan Trichomonas vaginalis. Antimicrob Agents Chemother 2015; 59:6891-903. [PMID: 26303799 DOI: 10.1128/aac.01779-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/14/2015] [Indexed: 11/20/2022] Open
Abstract
Trichomonas vaginalis colonizes the human urogenital tract and causes trichomoniasis, the most common nonviral sexually transmitted disease. Currently, 5-nitroimidazoles are the only recommended drugs for treating trichomoniasis. However, increased resistance of the parasite to 5-nitroimidazoles has emerged as a highly problematic public health issue. Hence, it is essential to identify alternative chemotherapeutic agents against refractory trichomoniasis. Tetracycline (TET) is a broad-spectrum antibiotic with activity against several protozoan parasites, but the mode of action of TET in parasites remains poorly understood. The in vitro effect of TET on the growth of T. vaginalis was examined, and the mode of cell death was verified by various apoptosis-related assays. Next-generation sequencing-based RNA sequencing (RNA-seq) was employed to elucidate the transcriptome of T. vaginalis in response to TET. We show that TET has a cytotoxic effect on both metronidazole (MTZ)-sensitive and -resistant T. vaginalis isolates, inducing some features resembling apoptosis. RNA-seq data reveal that TET significantly alters the transcriptome via activation of specific pathways, such as aminoacyl-tRNA synthetases and carbohydrate metabolism. Functional analyses demonstrate that TET disrupts the hydrogenosomal membrane potential and antioxidant system, which concomitantly elicits a metabolic shift toward glycolysis, suggesting that the hydrogenosomal function is impaired and triggers cell death. Collectively, we provide in vitro evidence that TET is a potential alternative therapeutic choice for treating MTZ-resistant T. vaginalis. The in-depth transcriptomic signatures in T. vaginalis upon TET treatment presented here will shed light on the signaling pathways linking to cell death in amitochondriate organisms.
Collapse
|
12
|
Vieira PDB, Giordani RB, Macedo AJ, Tasca T. Natural and synthetic compound anti-Trichomonas vaginalis: an update review. Parasitol Res 2015; 114:1249-61. [PMID: 25786392 DOI: 10.1007/s00436-015-4340-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/22/2015] [Indexed: 12/01/2022]
Abstract
Trichomonas vaginalis is a flagellate protozoan that causes trichomonosis, a sexually transmitted disease of worldwide importance. However, the infection has long received much less attention than other parasitic and sexually transmitted diseases. This negligence leads to poor diagnosis and underestimated prevalence values, and consequently, it has been associated to increasing acquisition and transmission of HIV, pregnancy outcomes, infertility, pelvic inflammatory disease, and cervical and prostate cancer. In view of increased resistance to drugs belonging to the nitroimidazole class, new treatment alternatives are urgently needed. Natural products provide an immeasurable wealth of active molecules, and a great number of new drugs have been originated from these compounds. In addition, new synthetic products or derivatives from old drugs also provide an alternative to treat trichomonosis. Albeit many studies have been performed with natural products against T. vaginalis, none of them progressed to clinical trials. Overall, inadequate financial investments are made, and no alternative treatment for trichomonosis has been discovered; meanwhile, hundreds of thousands of people will remain infected and suffering the serious consequences of this nonviral STD. Thus, it is highlighted that clinical trials for better understanding the potential in vitro are necessary and urgent in order to furnish a new therapeutic alternative for trichomonosis treatment. The current review attempts to give an overview on the potential of natural and synthetic products as antitrichomonal.
Collapse
Affiliation(s)
- Patrícia de Brum Vieira
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90610-000, RS, Brasil
| | | | | | | |
Collapse
|
13
|
Ghasemi Pirbalouti A, Sajjadi SE, Parang K. A review (research and patents) on jasmonic acid and its derivatives. Arch Pharm (Weinheim) 2014; 347:229-239. [PMID: 24470216 DOI: 10.1002/ardp.201300287] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 01/03/2023]
Abstract
In medicinal chemistry there is a growing interest in using small molecules, including plant stress hormones. Jasmonic acid (JA) and its volatile methyl ester (MJ), collectively termed jasmonates, are lipid-derived cyclopentanone compounds that occur ubiquitously and exclusively in the plant kingdom. This review covers the synthesis, usage, and biological activities of JA and its derivatives. A brief overview of the available information on JA and its features is given, followed by a detailed review of JA and its derivatives as drugs and prodrugs; the properties in plants and the synthesis in recent patents are described. This review shows the direction of long-term drug/nutraceutical safety trials and provides insights for future research in this area. Research on JA continues to be of major interest. Recent innovations offer hope for the development of new therapeutics in related fields. It is anticipated that several analogs can be advanced to preclinical and clinical studies.
Collapse
Affiliation(s)
- Abdollah Ghasemi Pirbalouti
- Department of Medicinal Plants, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; Medicinal Plants Program, Stockbridge School of Agriculture, College of Natural Science, Massachusetts University, Amherst, MA, USA
| | | | | |
Collapse
|
14
|
Seña AC, Bachmann LH, Hobbs MM. Persistent and recurrentTrichomonas vaginalisinfections: epidemiology, treatment and management considerations. Expert Rev Anti Infect Ther 2014; 12:673-85. [DOI: 10.1586/14787210.2014.887440] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Muñoz C, Pérez M, Orrego PR, Osorio L, Gutiérrez B, Sagua H, Castillo JL, Martínez-Oyanedel J, Arroyo R, Meza-Cervantez P, da Silveira JF, Midlej V, Benchimol M, Cordero E, Morales P, Araya JE, González J. A protein phosphatase 1 gamma (PP1γ) of the human protozoan parasite Trichomonas vaginalis is involved in proliferation and cell attachment to the host cell. Int J Parasitol 2012; 42:715-27. [PMID: 22713760 DOI: 10.1016/j.ijpara.2012.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/16/2012] [Accepted: 03/16/2012] [Indexed: 02/07/2023]
Abstract
In this work, evidence for a critical role of Trichomonas vaginalis protein phosphatase 1 gamma (TvPP1γ) in proliferation and attachment of the parasite to the mammalian cell is provided. Firstly, proliferation and attachment of T. vaginalis parasites to HeLa cells was blocked by calyculin A (CA), a potent PP1 inhibitor. Secondly, it was demonstrated that the enzyme activity of native and recombinant TvPP1γ proteins was inhibited by CA. Thirdly, reverse genetic studies confirmed that antisense oligonucleotides targeted to PP1γ but not PP1α or β inhibited proliferation and attachment of trichomonads CA-treated parasites underwent cytoskeletal modifications, including a lack of axostyle typical labelling, suggesting that cytoskeletal phosphorylation could be regulated by a CA-sensitive phosphatase where the role of PP1γ could not be ruled out. Analysis of subcellular distribution of TvPP1γ by cell fractionation and electron microscopy demonstrated the association between TvPP1γ and the cytoskeleton. The expression of adhesins, AP120 and AP65, at the cell surface was also inhibited by CA. The concomitant inhibition of expression of adhesins and changes in the cytoskeleton in CA-treated parasites suggest a specific role for PP1γ -dependent dephosphorylation in the early stages of the host-parasite interaction. Molecular modelling of TvPP1γ showed the conservation of residues critical for maintaining proper folding into the gross structure common to PP1 proteins. Taken together, these results suggest that TvPP1γ could be considered a potential novel drug target for treatment of trichomoniasis.
Collapse
Affiliation(s)
- Christian Muñoz
- Department of Medical Technology, University of Antofagasta, Antofagasta, P.O. Box 170, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gavin AS, Faggion SA, Hernandes C, Lourenço MV, França SDC, Beleboni RO. Nematocidal effects of natural phytoregulators jasmonic acid and methyl-jasmonate against Pratylenchus zeae and Helicotylenchus spp. Nat Prod Res 2012; 27:1041-8. [PMID: 22587493 DOI: 10.1080/14786419.2012.686910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The aim of this study was to evaluate the nematocidal effects of natural phytoregulators jasmonic acid (JA) and methyl-jasmonate (MJ) against plant parasitic nematodes Pratylenchus zeae (Graham) (Pratylenchidae) and Helicotylenchus spp. (Hoplolaimidae). Both JA and MJ promoted elevated percentages of mortality in P. zeae and Helicotylenchus spp. after 12 and 24 h of nematodes exposition at different concentrations of jasmonates. Considering the potential use of jasmonates as biofertiliser added now for their nematocidal effects, our results are of relevance in terms of biotechnological application.
Collapse
Affiliation(s)
- Amanda Salomão Gavin
- Department of Biotechnology, University of Ribeirão Preto, Av. Costabile Romano, 2201 Ribeirão Preto-SP (14096-900), Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Giordani RB, Vieira PDB, Weizenmann M, Rosemberg DB, Souza AP, Bonorino C, De Carli GA, Bogo MR, Zuanazzi JA, Tasca T. Lycorine induces cell death in the amitochondriate parasite, Trichomonas vaginalis, via an alternative non-apoptotic death pathway. PHYTOCHEMISTRY 2011; 72:645-650. [PMID: 21324496 DOI: 10.1016/j.phytochem.2011.01.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 01/07/2011] [Accepted: 01/12/2011] [Indexed: 05/30/2023]
Abstract
In this study, the mechanism of action of the pro-apoptotic alkaloid lycorine on an amitochondriate cell, the parasite Trichomonas vaginalis, was investigated. The cytotoxicity of lycorine against T. vaginalis was studied from 2.5 to 1000μM and several important ultrastructural alterations were observed by electron microscopy. Lycorine arrested the T. vaginalis cell cycle, although no hallmarks of apoptosis, such as apoptotic bodies, were observed. Consequently, the underlying mechanism of action fails to completely fulfill the criteria for apoptosis. However, some similarities to paraptotic cell death were observed.
Collapse
Affiliation(s)
- Raquel Brandt Giordani
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Umukoro S, Olugbemide AS. Antinociceptive effects of methyl jasmonate in experimental animals. J Nat Med 2011; 65:466-70. [DOI: 10.1007/s11418-011-0520-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/06/2011] [Indexed: 10/18/2022]
|
19
|
Giordani RB, Vieira PDB, Weizenmann M, Rosemberg DB, Souza AP, Bonorino C, De Carli GA, Bogo MR, Zuanazzi JA, Tasca T. Candimine-induced cell death of the amitochondriate parasite Trichomonas vaginalis. JOURNAL OF NATURAL PRODUCTS 2010; 73:2019-2023. [PMID: 21105684 DOI: 10.1021/np100449g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Candimine (1), an alkaloid from the bulbs of Hippeastrum morelianum, was found to be cytotoxic for the amitochondriate parasite Trichomonas vaginalis. Candimine (1) induced cell death with an unprecedented group of effects that failed to fulfill the criteria for apoptosis and apoptosis-like death already reported in trichomonads. Arrest of the parasite cell cycle, and morphologic and ultrastructural alterations, including marked cytoplasmic vacuolization, were induced by 1. The present findings suggest some similarities to paraptotic cell death, described for multicellular organisms. This study contributes to both a better understanding of the biological effects of 1 and T. vaginalis cell biology.
Collapse
Affiliation(s)
- Raquel B Giordani
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Park C, Jin CY, Kim GY, Cheong J, Jung JH, Yoo YH, Choi YH. A methyl jasmonate derivative, J-7, induces apoptosis in human hepatocarcinoma Hep3B cells in vitro. Toxicol In Vitro 2010; 24:1920-6. [PMID: 20696234 DOI: 10.1016/j.tiv.2010.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 06/07/2010] [Accepted: 08/02/2010] [Indexed: 01/28/2023]
Abstract
The pro-apoptotic activity of J-7, a synthetic methyl jasmonate derivative, on the Hep3B human hepatocarcinoma cell line was investigated. Treatment of Hep3B cells with J-7 resulted in growth inhibition and the induction of apoptosis as measured by trypan blue-excluding cells, MTT assay, nuclear staining, DNA fragmentation, and flow cytometry analysis. The increased apoptotic events in Hep3B cells caused by J-7 were associated with the alteration in the ratio of Bax/Bcl-2 protein expression. J-7 treatment induced the expression of death receptor-related proteins such as death receptor 5, which triggered the activation of caspase-8 and the down-regulation of the whole Bid expression. In addition, the apoptosis induction by J-7 was correlated with the activation of caspase-9 and caspase-3, down-regulation IAP family proteins such as XIAP and cIAP-1, and concomitant degradation of poly (ADP-ribose) polymerase. However, the cytotoxic and apoptotic effects induced by J-7 were significantly inhibited by z-DEVD-fmk, a caspase-3 inhibitor, which demonstrates the important role that caspase-3 plays in the process. Furthermore, blocking the extracellular signal-regulated protein kinase and c-Jun N-terminal kinase pathways showed increased apoptosis and the activation of caspases in J-7-induced apoptosis. The results indicated that J-7 induces the apoptosis of Hep3B cells through a signaling cascade of death-receptor-mediated extrinsic as well as mitochondria-mediated intrinsic caspase pathways, which are associated with the activation of the mitogen-activated protein kinases signal pathway.
Collapse
Affiliation(s)
- Cheol Park
- Blue-Bio Industry Regional Innovation Center, Dongeui University, Busan 614-714, South Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Vilela R, Menna-Barreto RFS, Benchimol M. Methyl jasmonate induces cell death and loss of hydrogenosomal membrane potential in Trichomonas vaginalis. Parasitol Int 2010; 59:387-93. [PMID: 20483382 DOI: 10.1016/j.parint.2010.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/25/2010] [Accepted: 05/11/2010] [Indexed: 11/26/2022]
Abstract
Trichomonas vaginalis is an important human parasite of the urogenital tract. Jasmonates are a group of small lipids that are produced in plants and function as stress hormones. Naturally occurring methyl jasmonate (MJ) has been used to treat several types of cancer cells and it is cytotoxic to protistan parasites. It has been suggested that mitochondria are the target organelles of jasmonates. Here, we tested this drug against T. vaginalis. Although metronidazole has been the drug of choice for trichomoniasis, side effects from this treatment are common, and nausea and dizziness have been reported in up to 12% of patients. In addition, there has been increased recognition of resistance to metronidazole. We demonstrate here using flow cytometry, JC-1 and scanning and transmission electron microscopy that MJ induced the cell death of T. vaginalis parasites. Our results are discussed with previous findings published by others.
Collapse
Affiliation(s)
- R Vilela
- Universidade Santa Ursula, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
22
|
Signaling mechanisms of apoptosis-like programmed cell death in unicellular eukaryotes. Comp Biochem Physiol B Biochem Mol Biol 2010; 155:341-53. [DOI: 10.1016/j.cbpb.2010.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 01/19/2010] [Accepted: 01/23/2010] [Indexed: 11/18/2022]
|
23
|
Cohen S, Flescher E. Methyl jasmonate: a plant stress hormone as an anti-cancer drug. PHYTOCHEMISTRY 2009; 70:1600-9. [PMID: 19660769 DOI: 10.1016/j.phytochem.2009.06.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 06/01/2009] [Accepted: 06/04/2009] [Indexed: 05/20/2023]
Abstract
Jasmonates act as signal transduction intermediates when plants are subjected to environmental stresses such as UV radiation, osmotic shock and heat. In the past few years several groups have reported that jasmonates exhibit anti-cancer activity in vitro and in vivo and induce growth inhibition in cancer cells, while leaving the non-transformed cells intact. Recently, jasmonates were also discovered to have cytotoxic effects towards metastatic melanoma both in vitro and in vivo. Three mechanisms of action have been proposed to explain this anti-cancer activity. The bio-energetic mechanism - jasmonates induce severe ATP depletion in cancer cells via mitochondrial perturbation. Furthermore, methyl jasmonate (MJ) has the ability to detach hexokinase from the mitochondria. Second, jasmonates induce re-differentiation in human myeloid leukemia cells via mitogen-activated protein kinase (MAPK) activity and were found to act similar to the cytokinin isopentenyladenine (IPA). Third, jasmonates induce apoptosis in lung carcinoma cells via the generation of hydrogen peroxide, and pro-apoptotic proteins of the Bcl-2 family. Combination of MJ with the glycolysis inhibitor 2-deoxy-d-glucose (2DG) and with four conventional chemotherapeutic drugs resulted in super-additive cytotoxic effects on several types of cancer cells. Finally, jasmonates have the ability to induce death in spite of drug-resistance conferred by either p53 mutation or P-glycoprotein (P-gp) over-expression. In summary, the jasmonates are anti-cancer agents that exhibit selective cytotoxicity towards cancer cells, and thus present hope for the development of cancer therapeutics.
Collapse
Affiliation(s)
- Sharon Cohen
- Department of Clinical Microbiology and Immunology, Sacker Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | |
Collapse
|
24
|
Pan CY, Chen JY, Lin TL, Lin CH. In vitro activities of three synthetic peptides derived from epinecidin-1 and an anti-lipopolysaccharide factor against Propionibacterium acnes, Candida albicans, and Trichomonas vaginalis. Peptides 2009; 30:1058-68. [PMID: 19463737 DOI: 10.1016/j.peptides.2009.02.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 02/06/2009] [Accepted: 02/06/2009] [Indexed: 10/21/2022]
Abstract
The synthetic epinecidin-1(22-42) peptide was derived from positions 22-42 of Epinephelus coioides epinecidin-1. The synthetic SALF(55-76) cyclic peptide (csSALF(55-76)) and SALF(55-76) linear peptide (lsSALF(55-76)) contained sequences from positions 55 to 76 of the Penaeus monodon anti-lipopolysaccharide factor (ALF), respectively. We studied the in vitro activities of epinecidin-1(22-42), csSALF(55-76), and lsSALF(55-76) against Propionibacterium acnes, Candida albicans, and Trichomonas vaginalis. The minimum inhibitory concentrations (MICs) of epinecidin-1(22-42) for the test pathogen strains ranged 12.5-200 microg/ml, those of csSALF(55-76) ranged 100-200 microg/ml, and those of lsSALF(55-76) ranged 25-200 microg/ml. epinecidin-1(22-42) exhibited cytotoxicity towards P. acnes, C. albicans, and T. vaginalis (one strain of which was a metronidazole-resistant strain, while the other strain was not), suggesting that epinecidin-1 functions like a lytic peptide. Similar cytotoxicity was identified against T. vaginalis treated with the csSALF(55-76) and lsSALF(55-76) peptides. The antimicrobial activities of these peptides were confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), a viable cell count assay, and flow cytometric analysis. TEM and SEM examinations of T. vaginalis treated with these three peptides showed that severe swelling preceded cell death and breakage of the outer membrane, and the intracellular inclusion was found to have effluxed extracellularly. This phenomenon was also found with epinecidin-1(22-42) treatment of P. acnes and C. albicans. Our results suggest that the epinecidin-1(22-42), csSALF(55-76), and lsSALF(55-76) peptides may be good candidates for treating trichomoniasis, and epinecidin-1(22-42) may have potential as a drug supporting therapy for acne and candidiasis.
Collapse
Affiliation(s)
- Chieh-Yu Pan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | | | | | | |
Collapse
|