1
|
Seitzman GD, Keenan JD, Lietman TM, Ruder K, Zhong L, Chen C, Liu Y, Yu D, Abraham T, Hinterwirth A, Doan T. Human Conjunctival Transcriptome in Acanthamoeba Keratitis: An Exploratory Study. Cornea 2024; 43:1272-1277. [PMID: 38771726 PMCID: PMC11371541 DOI: 10.1097/ico.0000000000003545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/26/2024] [Indexed: 05/23/2024]
Abstract
PURPOSE The purpose of this study was to identify conjunctival transcriptome differences in patients with Acanthamoeba keratitis compared with keratitis with no known associated pathogen. METHODS The host conjunctival transcriptome of 9 patients with Acanthamoeba keratitis (AK) is compared with the host conjunctival transcriptome of 13 patients with pathogen-free keratitis. Culture and/or confocal confirmed Acanthamoeba in 8 of 9 participants with AK who underwent metagenomic RNA sequencing as the likely pathogen. Cultures were negative in all 13 cases where metagenomic RNA sequencing did not identify a pathogen. RESULTS Transcriptome analysis identified 36 genes differently expressed between patients with AK and patients with presumed sterile, or pathogen-free, keratitis. Gene enrichment analysis revealed that some of these genes participate in several biologic pathways important for cellular signaling, ion transport and homeostasis, glucose transport, and mitochondrial metabolism. Notable relatively differentially expressed genes with potential relevance to Acanthamoeba infection included CPS1 , SLC35B4 , STEAP2 , ATP2B2 , NMNAT3 , and AKAP12 . CONCLUSIONS This research suggests that the local transcriptome in Acanthamoeba keratitis may be sufficiently robust to be detected in the conjunctiva and that corneas infected with Acanthamoeba may be distinguished from the inflamed cornea where no pathogen was identified. Given the low sensitivity for corneal cultures, identification of differentially expressed genes may serve as a suggestive transcriptional signature allowing for a complementary diagnostic technique to identify this blinding parasite. Knowledge of differentially expressed genes may also direct investigation of disease pathophysiology and suggest novel pathways for therapeutic targets.
Collapse
Affiliation(s)
- Gerami D Seitzman
- Francis I. Proctor Foundation, University of California, San Francisco, California; and
- Department of Ophthalmology, University of California, San Francisco, California
| | - Jeremy D Keenan
- Francis I. Proctor Foundation, University of California, San Francisco, California; and
- Department of Ophthalmology, University of California, San Francisco, California
| | - Thomas M Lietman
- Francis I. Proctor Foundation, University of California, San Francisco, California; and
- Department of Ophthalmology, University of California, San Francisco, California
| | - Kevin Ruder
- Francis I. Proctor Foundation, University of California, San Francisco, California; and
| | - Lina Zhong
- Francis I. Proctor Foundation, University of California, San Francisco, California; and
| | - Cindi Chen
- Francis I. Proctor Foundation, University of California, San Francisco, California; and
| | - YuHeng Liu
- Francis I. Proctor Foundation, University of California, San Francisco, California; and
| | - Danny Yu
- Francis I. Proctor Foundation, University of California, San Francisco, California; and
| | - Thomas Abraham
- Francis I. Proctor Foundation, University of California, San Francisco, California; and
| | - Armin Hinterwirth
- Francis I. Proctor Foundation, University of California, San Francisco, California; and
| | - Thuy Doan
- Francis I. Proctor Foundation, University of California, San Francisco, California; and
- Department of Ophthalmology, University of California, San Francisco, California
| |
Collapse
|
2
|
Liu Q, Jiang W, Chen Y, Zhang M, Geng X, Wang Q. Study on Circulating Antigens in Serum of Mice With Experimental Acute Toxoplasmosis. Front Microbiol 2021; 11:612252. [PMID: 33537014 PMCID: PMC7848078 DOI: 10.3389/fmicb.2020.612252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous apicomplexan protozoan parasite that can infect all warm-blooded animals, causing toxoplasmosis. Thus, efficient diagnosis methods for acute T. gondii infection are essential for its management. Circulating antigens (CAgs) are reliable diagnostic indicators of acute infection. In this study, we established a mouse model of acute T. gondii infection and explored new potential diagnostic factors. CAgs levels peaked 60 h after T. gondii inoculation and 31 CAgs were identified by immunoprecipitation-liquid chromatography-tandem mass spectrometry, among which RuvB-like helicase (TgRuvBL1), ribonuclease (TgRNaseH1), and ribosomal protein RPS2 (TgRPS2) were selected for prokaryotic expression. Polyclonal antibodies against these three proteins were prepared. Results from indirect enzyme-linked immunosorbent assay indicated that anti-rTgRuvBL1, anti-rTgRNase H1, and anti-rTgRPS2 mouse sera were recognized by natural excretory-secretory antigens from T. gondii tachyzoites. Moreover, immunofluorescence assays revealed that TgRuvBL1 was localized in the nucleus, while TgRNase H1 and TgRPS2 were in the apical end. Western blotting data confirmed the presence of the three proteins in the sera of the infected mice. Moreover, mice immunized with rTgRuvBL1 (10.0 ± 0.30 days), TgRNaseH1 (9.67 ± 0.14 days), or rTgRPS2 (11.5 ± 0.34 days) had slightly longer lifespan when challenged with a virulent T. gondii RH strain. Altogether, these findings indicate that these three proteins can potentially be diagnostic candidates for acute toxoplasmosis. However, they hold poor protective potential against highly virulent T. gondii infection.
Collapse
Affiliation(s)
- Qi Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wei Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Manyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiaoling Geng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Quan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
3
|
Zhuo X, Du K, Ding H, Lou D, Zheng B, Lu S. A Carbamoyl Phosphate Synthetase II (CPSII) Deletion Mutant of Toxoplasma gondii Induces Partial Protective Immunity in Mice. Front Microbiol 2021; 11:616688. [PMID: 33519775 PMCID: PMC7840960 DOI: 10.3389/fmicb.2020.616688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite. T. gondii primarily infection in pregnant women may result in fetal abortion, and infection in immunosuppressed population may result in toxoplasmosis. Carbamoyl phosphate synthetase II (CPSII) is a key enzyme in the de novo pyrimidine-biosynthesis pathway, and has a crucial role in parasite replication. We generated a mutant with complete deletion of CPSII via clustered regularly interspaced short palindromic repeats (CRISPR)/cas9 in type-1 RH strain of T. gondii. We tested the intracellular proliferation of this mutant and found that it showed significantly reduced replication in vitro, though CPSII deletion did not completely stop the parasite growth. The immune responses induced by the infection of RHΔCPSII tachyzoites in mice were evaluated. During infection in mice, the RHΔCPSII mutant displayed notable defects in replication and virulence, and significantly enhanced the survival of mice compared with survival of RH-infected mice. We tracked parasite propagation from ascitic fluid in mice infected with the RHΔCPSII mutant, and few tachyzoites were observed at early infection. We also observed that the RHΔCPSII mutant induced greater accumulation of neutrophils. The mutant induced a higher level of T-helper type-1 cytokines [interferon (IFN)-γ, interleukin (IL)-12]. The mRNA levels of signal transducer and activator of transcription cellular transcription factor 1 and IFN regulatory factor 8 were significantly higher in the RHΔCPSII mutant-infected group. Together, these data suggest that CPSII is crucial for parasite growth, and that strains lack the de novo pyrimidine biosynthesis pathway and salvage pathway may become a promising live attenuated vaccine to prevent infection with T. gondii.
Collapse
Affiliation(s)
- Xunhui Zhuo
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Hangzhou Medical College, Hangzhou, China
| | - Kaige Du
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Hangzhou Medical College, Hangzhou, China.,Department of Immunity and Biochemistry, Institute of Parasitic Disease, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Haojie Ding
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Hangzhou Medical College, Hangzhou, China
| | - Di Lou
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Hangzhou Medical College, Hangzhou, China
| | - Bin Zheng
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Hangzhou Medical College, Hangzhou, China
| | - Shaohong Lu
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
4
|
Xia N, Yang J, Ye S, Zhang L, Zhou Y, Zhao J, David Sibley L, Shen B. Functional analysis of Toxoplasma lactate dehydrogenases suggests critical roles of lactate fermentation for parasite growth in vivo. Cell Microbiol 2017; 20. [PMID: 29028143 DOI: 10.1111/cmi.12794] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/25/2017] [Accepted: 10/04/2017] [Indexed: 12/20/2022]
Abstract
Glycolysis was thought to be the major pathway of energy supply in both fast-replicating tachyzoites and slowly growing bradyzoites of Toxoplasma gondii. However, its biological significance has not been clearly verified. The genome of T. gondii encodes two lactate dehydrogenases (LDHs), which are differentially expressed in tachyzoites and bradyzoites. In this study, we knocked out the two LDH genes individually and in combination and found that neither gene was required for tachyzoite growth in vitro under standard growth conditions. However, during infection in mice, Δldh1 and Δldh1 Δldh2 mutants were unable to propagate and displayed significant virulence attenuation and cyst formation defects. LDH2 only played minor roles in these processes. To further elucidate the mechanisms underlying the critical requirement of LDH in vivo, we found that Δldh1 Δldh2 mutants replicated significantly more slowly than wild-type parasites when cultured under conditions with physiological levels of oxygen (3%). In addition, Δldh1 Δldh2 mutants were more susceptible to the oxidative phosphorylation inhibitor oligomycin A. Together these results suggest that lactate fermentation is critical for parasite growth under physiological conditions, likely because energy production from oxidative phosphorylation is insufficient when oxygen is limited and lactate fermentation becomes a key supplementation.
Collapse
Affiliation(s)
- Ningbo Xia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jichao Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shu Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lihong Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanqin Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Key Laboratory of Preventive Medicine in Hubei Province, Wuhan, Hubei, China
| | - Laurence David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Medicine in Hubei Province, Wuhan, Hubei, China
| |
Collapse
|
5
|
Wang Q, Heizer E, Rosa BA, Wildman SA, Janetka JW, Mitreva M. Characterization of parasite-specific indels and their proposed relevance for selective anthelminthic drug targeting. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2016; 39:201-211. [PMID: 26829384 PMCID: PMC4789095 DOI: 10.1016/j.meegid.2016.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/29/2015] [Accepted: 01/28/2016] [Indexed: 01/18/2023]
Abstract
Insertions and deletions (indels) are important sequence variants that are considered as phylogenetic markers that reflect evolutionary adaptations in different species. In an effort to systematically study indels specific to the phylum Nematoda and their structural impact on the proteins bearing them, we examined over 340,000 polypeptides from 21 nematode species spanning the phylum, compared them to non-nematodes and identified indels unique to nematode proteins in more than 3000 protein families. Examination of the amino acid composition revealed uneven usage of amino acids for insertions and deletions. The amino acid composition and cost, along with the secondary structure constitution of the indels, were analyzed in the context of their biological pathway associations. Species-specific indels could enable indel-based targeting for drug design in pathogens/parasites. Therefore, we screened the spatial locations of the indels in the parasite's protein 3D structures, determined the location of the indel and identified potential unique drug targeting sites. These indels could be confirmed by RNA-Seq data. Examples are presented illustrating the close proximity of some indels to established small-molecule binding pockets that can potentially facilitate selective targeting to the parasites and bypassing their host, thus reducing or eliminating the toxicity of the potential drugs. This study presents an approach for understanding the adaptation of pathogens/parasites at a molecular level, and outlines a strategy to identify such nematode-selective targets that remain essential to the organism. With further experimental characterization and validation, it opens a possible channel for the development of novel treatments with high target specificity, addressing both host toxicity and resistance concerns.
Collapse
Affiliation(s)
- Qi Wang
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Esley Heizer
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Bruce A Rosa
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Scott A Wildman
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO, USA
| | - Makedonka Mitreva
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA; Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Nonreplicating, cyst-defective type II Toxoplasma gondii vaccine strains stimulate protective immunity against acute and chronic infection. Infect Immun 2015; 83:2148-55. [PMID: 25776745 DOI: 10.1128/iai.02756-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 03/06/2015] [Indexed: 01/08/2023] Open
Abstract
Live attenuated vaccine strains, such as type I nonreplicating uracil auxotroph mutants, are highly effective in eliciting lifelong immunity to virulent acute infection by Toxoplasma gondii. However, it is currently unknown whether vaccine-elicited immunity can provide protection against acute infection and also prevent chronic infection. To address this problem, we developed nonreverting, nonreplicating, live attenuated uracil auxotroph vaccine strains in the type II Δku80 genetic background by targeting the deletion of the orotidine 5'-monophosphate decarboxylase (OMPDC) and uridine phosphorylase (UP) genes. Deletion of OMPDC induced a severe uracil auxotrophy with loss of replication, loss of virulence in mice, and loss of the ability to develop cysts and chronic infection. Vaccination of mice using type II Δku80 Δompdc mutants stimulated a fully protective CD8(+) T cell-dependent immunity that prevented acute infection by type I and type II strains of T. gondii, and this vaccination also severely reduced or prevented cyst formation after type II challenge infection. Nonreverting, nonreplicating, and non-cyst-forming Δompdc mutants provide new tools to examine protective immune responses elicited by vaccination with a live attenuated type II vaccine.
Collapse
|
7
|
Peek J, Castiglione G, Shi T, Christendat D. Isolation and molecular characterization of the shikimate dehydrogenase domain from the Toxoplasma gondii AROM complex. Mol Biochem Parasitol 2014; 194:16-9. [PMID: 24731949 DOI: 10.1016/j.molbiopara.2014.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 03/24/2014] [Accepted: 04/03/2014] [Indexed: 11/15/2022]
Abstract
The apicomplexan parasite Toxoplasma gondii, the etiologic agent of toxoplasmosis, is estimated to infect 10-80% of different human populations. T. gondii encodes a large pentafunctional polypeptide known as the AROM complex which catalyzes five reactions in the shikimate pathway, a metabolic pathway required for the biosynthesis of the aromatic amino acids and a promising target for anti-parasitic agents. Here, we present the isolation, cloning and kinetic characterization of the shikimate dehydrogenase domain (TgSDH) from the T. gondii AROM complex. Recombinant TgSDH catalyzed the NADP(+)-dependent oxidation of shikimate in the absence of the remaining AROM domains and was sensitive to inhibition by a previously identified SDH inhibitor. Analysis of the TgSDH amino acid sequence revealed a number of novel insertions not found in SDH homologs from other organisms. Nevertheless, a three-dimensional structural model of TgSDH predicts a high level of conservation in the 'core' structure of the enzyme.
Collapse
Affiliation(s)
- James Peek
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Gianni Castiglione
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Thomas Shi
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Dinesh Christendat
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada M5S 3B2.
| |
Collapse
|
8
|
Hortua Triana MA, Huynh MH, Garavito MF, Fox BA, Bzik DJ, Carruthers VB, Löffler M, Zimmermann BH. Biochemical and molecular characterization of the pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase from Toxoplasma gondii. Mol Biochem Parasitol 2012; 184:71-81. [PMID: 22580100 DOI: 10.1016/j.molbiopara.2012.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 01/27/2023]
Abstract
The pyrimidine biosynthesis pathway in the protozoan pathogen Toxoplasma gondii is essential for parasite growth during infection. To investigate the properties of dihydroorotate dehydrogenase (TgDHOD), the fourth enzyme in the T. gondii pyrimidine pathway, we expressed and purified recombinant TgDHOD. TgDHOD exhibited a specific activity of 84U/mg, a k(cat) of 89s(-1), a K(m)=60μM for l-dihydroorotate, and a K(m)=29μM for decylubiquinone (Q(D)). Quinones lacking or having short isoprenoid side chains yielded lower k(cat)s than Q(D). As expected, fumarate was a poor electron acceptor for this family 2 DHOD. The IC(50)s determined for A77-1726, the active derivative of the human DHOD inhibitor leflunomide, and related compounds MD249 and MD209 were, 91μM, 96μM, and 60μM, respectively. The enzyme was not significantly affected by brequinar or TTFA, known inhibitors of human DHOD, or by atovaquone. DSM190, a known inhibitor of Plasmodium falciparum DHOD, was a poor inhibitor of TgDHOD. TgDHOD exhibits a lengthy 157-residue N-terminal extension, consistent with a potential organellar targeting signal. We constructed C-terminally c-myc tagged TgDHODs to examine subcellular localization of TgDHOD in transgenic parasites expressing the tagged protein. Using both exogenous and endogenous expression strategies, anti-myc fluorescence signal colocalized with antibodies against the mitochondrial marker ATPase. These findings demonstrate that TgDHOD is associated with the parasite's mitochondrion, revealing this organelle as the site of orotate production in T. gondii. The TgDHOD gene appears to be essential because while gene tagging was successful at the TgDHOD gene locus, attempts to delete the TgDHOD gene were not successful in the KU80 background. Collectively, our study suggests that TgDHOD is an excellent target for the development of anti-Toxoplasma drugs.
Collapse
|
9
|
Type II Toxoplasma gondii KU80 knockout strains enable functional analysis of genes required for cyst development and latent infection. EUKARYOTIC CELL 2011; 10:1193-206. [PMID: 21531875 DOI: 10.1128/ec.00297-10] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Type II Toxoplasma gondii KU80 knockouts (Δku80) deficient in nonhomologous end joining were developed to delete the dominant pathway mediating random integration of targeting episomes. Gene targeting frequency in the type II Δku80 Δhxgprt strain measured at the orotate (OPRT) and the uracil (UPRT) phosphoribosyltransferase loci was highly efficient. To assess the potential of the type II Δku80 Δhxgprt strain to examine gene function affecting cyst biology and latent stages of infection, we targeted the deletion of four parasite antigen genes (GRA4, GRA6, ROP7, and tgd057) that encode characterized CD8(+) T cell epitopes that elicit corresponding antigen-specific CD8(+) T cell populations associated with control of infection. Cyst development in these type II mutant strains was not found to be strictly dependent on antigen-specific CD8(+) T cell host responses. In contrast, a significant biological role was revealed for the dense granule proteins GRA4 and GRA6 in cyst development since brain tissue cyst burdens were drastically reduced specifically in mutant strains with GRA4 and/or GRA6 deleted. Complementation of the Δgra4 and Δgra6 mutant strains using a functional allele of the deleted GRA coding region placed under the control of the endogenous UPRT locus was found to significantly restore brain cyst burdens. These results reveal that GRA proteins play a functional role in establishing cyst burdens and latent infection. Collectively, our results suggest that a type II Δku80 Δhxgprt genetic background enables a higher-throughput functional analysis of the parasite genome to reveal fundamental aspects of parasite biology controlling virulence, pathogenesis, and transmission.
Collapse
|
10
|
Avirulent uracil auxotrophs based on disruption of orotidine-5'-monophosphate decarboxylase elicit protective immunity to Toxoplasma gondii. Infect Immun 2010; 78:3744-52. [PMID: 20605980 DOI: 10.1128/iai.00287-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The orotidine-5'-monophosphate decarboxylase (OMPDC) gene, encoding the final enzyme of the de novo pyrimidine biosynthesis pathway, was deleted using Toxoplasma gondii KU80 knockouts to develop an avirulent nonreverting pyrimidine auxotroph strain. Additionally, to functionally address the role of the pyrimidine salvage pathway, the uridine phosphorylase (UP) salvage activity was knocked out and a double knockout of UP and OMPDC was also constructed. The nonreverting DeltaOMPDC, DeltaUP, and DeltaOMPDC DeltaUP knockout strains were evaluated for pyrimidine auxotrophy, for attenuation of virulence, and for their ability to elicit potent immunity to reinfection. The DeltaUP knockout strain was replication competent and virulent. In contrast, the DeltaOMPDC and DeltaOMPDC DeltaUP strains were uracil auxotrophs that rapidly lost their viability during pyrimidine starvation. Replication of the DeltaOMPDC strain but not the DeltaOMPDC DeltaUP strain was also partially rescued in vitro with uridine or cytidine supplementation. Compared to their hypervirulent parental type I strain, the DeltaOMPDC and DeltaOMPDC DeltaUP knockout strains exhibited extreme attenuation in murine virulence (approximately 8 logs). Genetic complementation of the DeltaOMPDC strain using a functional OMPDC allele restored normal replication and type I parental strain virulence phenotypes. A single immunization of mice with either the live critically attenuated DeltaOMPDC strain or the DeltaOMPDC DeltaUP knockout strain effectively induced potent protective immunity to lethal challenge infection. The avirulent nonreverting DeltaOMPDC and DeltaOMPDC DeltaUP strains provide new tools for the dissection of the host response to infection and are promising candidates for safe and effective Th1 vaccine platforms that can be easily genetically engineered.
Collapse
|
11
|
Efficient gene replacements in Toxoplasma gondii strains deficient for nonhomologous end joining. EUKARYOTIC CELL 2009; 8:520-9. [PMID: 19218423 DOI: 10.1128/ec.00357-08] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A high frequency of nonhomologous recombination has hampered gene targeting approaches in the model apicomplexan parasite Toxoplasma gondii. To address whether the nonhomologous end-joining (NHEJ) DNA repair pathway could be disrupted in this obligate intracellular parasite, putative KU proteins were identified and a predicted KU80 gene was deleted. The efficiency of gene targeting via double-crossover homologous recombination at several genetic loci was found to be greater than 97% of the total transformants in KU80 knockouts. Gene replacement efficiency was markedly increased (300- to 400-fold) in KU80 knockouts compared to wild-type strains. Target DNA flanks of only approximately 500 bp were found to be sufficient for efficient gene replacements in KU80 knockouts. KU80 knockouts stably retained a normal growth rate in vitro and the high virulence phenotype of type I strains but exhibited an increased sensitivity to double-strand DNA breaks induced by treatment with phleomycin or gamma-irradiation. Collectively, these results revealed that a significant KU-dependent NHEJ DNA repair pathway is present in Toxoplasma gondii. Integration essentially occurs only at the homologous targeted sites in the KU80 knockout background, making this genetic background an efficient host for gene targeting to speed postgenome functional analysis and genetic dissection of parasite biology.
Collapse
|