1
|
Role of dense granule antigen 7 in vertical transmission of Neospora caninum in C57BL/6 mice infected during early pregnancy. Parasitol Int 2022; 89:102576. [PMID: 35301119 DOI: 10.1016/j.parint.2022.102576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/21/2022]
Abstract
Neosporosis is a parasitic disease affecting the health of dogs and cattle worldwide. It is caused by Neospora caninum, an obligate intracellular apicomplexan parasite. Dogs are its definitive host, it mostly infects livestock animals, especially cattle that acts as intermediate host. It is necessary to have well-established models of abortion and vertical transmission in experimental animals, in order to determine basic control measures for the N. caninum infection. We evaluated the role of N. caninum dense granule antigen 7 (NcGRA7) in the vertical transmission of N. caninum using the C57BL/6 pregnant mouse model. We inoculated mice on day 3.5 of pregnancy with parental Nc-1 or NcGRA7-deficient parasites (NcGRA7KO). Post-mortem analyses were performed on day 30 after birth and the surviving pups were kept until day 30 postpartum. The number of parasites in the brain tissues of offspring from NcGRA7KO-infected dams was significantly lower than that of the Nc-1-infected dams under two infection doses (1 × 106 and 1 × 105 tachyzoites/mouse). The vertical transmission rates in the NcGRA7KO-infected group were significantly lower than those of the Nc1-infected group. To understand the mechanism by which the lack of NcGRA7 decreases the vertical transmission, pregnant mice were sacrificed on day 13.5 of pregnancy (10 days after infection), although parasite DNA was detected in the placentas, no significant difference was found between the two parasite lines. Histopathological analysis revealed a greater inflammatory response in the placentas from NcGRA7KO-infected dams than in those from the parental strain. This finding correlates with upregulated chemokine mRNA expression for CCL2, CCL8, and CXCL9 in the placentas from the NcGRA7KO-infected mice. In conclusion, these results suggest that loss of NcGRA7 triggers an inflammatory response in the placenta, resulting in decreased vertical transmission of N. caninum.
Collapse
|
2
|
Sánchez-Sánchez R, Ferre I, Re M, Pérez-Arroyo B, Cleofé-Resta D, García VH, Díaz MP, Ferrer LM, Ruiz H, Vallejo-García R, Benavides J, Hulverson MA, Choi R, Whitman GR, Hemphill A, Van Voorhis WC, Ortega-Mora LM. A short-term treatment with BKI-1294 does not protect foetuses from sheep experimentally infected with Neospora caninum tachyzoites during pregnancy. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 17:176-185. [PMID: 34655903 PMCID: PMC8526916 DOI: 10.1016/j.ijpddr.2021.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 01/17/2023]
Abstract
The Neospora caninum Calcium-dependent protein kinase 1 (NcCDPK1) inhibitor BKI-1294 had demonstrated excellent efficacy in a pregnant mouse model of neosporosis, and was also highly efficacious in a pregnant sheep model of toxoplasmosis. In this work, we present the efficacy of BKI-1294 treatment (dosed 5 times orally every 48 h) starting 48 h after intravenous infection of sheep with 105 Nc-Spain7 tachyzoites at mid-pregnancy. In the dams, BKI-1294 plasma concentrations were above the IC50 for N. caninum for 12-15 days. In treated sheep, when they were compared to untreated ones, we observed a minor increase in rectal temperature, higher IFNγ levels after blood stimulation in vitro, and a minor increase of IgG levels against N. caninum soluble antigens through day 28 post-infection. Additionally, the anti-NcSAG1 and anti-NcSAG4 IgGs were lower in treated dams on days 21 and 42 post-infection. However, BKI-1294 did not protect against abortion (87% foetal mortality in both infected groups, treated and untreated) and did not reduce transplacental transmission, parasite load or lesions in placentomes and foetal brain. The lack of foetal protection was likely caused by short systemic exposure in the dams and suboptimal foetal exposure to this parasitostatic drug, which was unable to reduce replication of the likely established N. caninum tachyzoites in the foetus at the moment of treatment. New BKIs with a very low plasma clearance and good ability to cross the blood-brain and placental barriers need to be developed.
Collapse
Affiliation(s)
- Roberto Sánchez-Sánchez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain
| | - Ignacio Ferre
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain
| | - Michela Re
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain; Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain
| | - Bárbara Pérez-Arroyo
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain
| | - Darío Cleofé-Resta
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain
| | - Victor Herrero García
- Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain
| | - Manuel Pizarro Díaz
- Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain
| | - Luis Miguel Ferrer
- Departamento de Patología Animal, Facultad de Veterinaria, C/ Miguel Servet 177, 50013, Zaragoza, Spain
| | - Hector Ruiz
- Departamento de Patología Animal, Facultad de Veterinaria, C/ Miguel Servet 177, 50013, Zaragoza, Spain
| | | | - Julio Benavides
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain
| | - Matthew A Hulverson
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, 98109-4766, Seattle, WA, USA
| | - Ryan Choi
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, 98109-4766, Seattle, WA, USA
| | - Grant R Whitman
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, 98109-4766, Seattle, WA, USA
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012, Berne, Switzerland
| | - Wesley C Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, 98109-4766, Seattle, WA, USA
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain.
| |
Collapse
|
3
|
Elsheikha HM, Alkurashi M, Palfreman S, Castellanos M, Kong K, Ning E, Elsaied NA, Geraki K, MacNaughtan W. Impact of Neospora caninum Infection on the Bioenergetics and Transcriptome of Cerebrovascular Endothelial Cells. Pathogens 2020; 9:pathogens9090710. [PMID: 32872199 PMCID: PMC7559149 DOI: 10.3390/pathogens9090710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/03/2022] Open
Abstract
In this work, the effects of the protozoan Neospora caninum on the bioenergetics, chemical composition, and elemental content of human brain microvascular endothelial cells (hBMECs) were investigated. We showed that N. caninum can impair cell mitochondrial (Mt) function and causes an arrest in host cell cycling at S and G2 phases. These adverse effects were also associated with altered expression of genes involved in Mt energy metabolism, suggesting Mt dysfunction caused by N. caninum infection. Fourier Transform Infrared (FTIR) spectroscopy analysis of hBMECs revealed alterations in the FTIR bands as a function of infection, where infected cells showed alterations in the absorption bands of lipid (2924 cm−1), amide I protein (1649 cm−1), amide II protein (1537 cm−1), nucleic acids and carbohydrates (1092 cm−1, 1047 cm−1, and 939 cm−1). By using quantitative synchrotron radiation X-ray fluorescence (μSR-XRF) imaging and quantification of the trace elements Zn, Cu and Fe, we detected an increase in the levels of Zn and Cu from 3 to 24 h post infection (hpi) in infected cells compared to control cells, but there were no changes in the level of Fe. We also used Affymetrix array technology to investigate the global alteration in gene expression of hBMECs and rat brain microvascular endothelial cells (rBMVECs) in response to N. caninum infection at 24 hpi. The result of transcriptome profiling identified differentially expressed genes involved mainly in immune response, lipid metabolism and apoptosis. These data further our understanding of the molecular events that shape the interaction between N. caninum and blood-brain-barrier endothelial cells.
Collapse
Affiliation(s)
- Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK; (M.A.); (S.P.); (N.A.E.)
- Correspondence: ; Tel.: +44-0115-951-6445
| | - Mamdowh Alkurashi
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK; (M.A.); (S.P.); (N.A.E.)
- Animal Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Suzy Palfreman
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK; (M.A.); (S.P.); (N.A.E.)
| | - Marcos Castellanos
- Nottingham Arabidopsis Stock Centre, Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK;
| | - Kenny Kong
- School of Physics and Astronomy, University Park, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Evita Ning
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, UK;
| | - Nashwa A. Elsaied
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK; (M.A.); (S.P.); (N.A.E.)
| | | | - William MacNaughtan
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK;
| |
Collapse
|
4
|
Fereig RM, Nishikawa Y. From Signaling Pathways to Distinct Immune Responses: Key Factors for Establishing or Combating Neospora caninum Infection in Different Susceptible Hosts. Pathogens 2020; 9:E384. [PMID: 32429367 PMCID: PMC7281608 DOI: 10.3390/pathogens9050384] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
: Neospora caninum is an intracellular protozoan parasite affecting numerous animal species. It induces significant economic losses because of abortion and neonatal abnormalities in cattle. In case of infection, the parasite secretes numerous arsenals to establish a successful infection in the host cell. In the same context but for a different purpose, the host resorts to different strategies to eliminate the invading parasite. During this battle, numerous key factors from both parasite and host sides are produced and interact for the maintaining and vanishing of the infection, respectively. Although several reviews have highlighted the role of different compartments of the immune system against N. caninum infection, each one of them has mostly targeted specific points related to the immune component and animal host. Thus, in the current review, we will focus on effector molecules derived from the host cell or the parasite using a comprehensive survey method from previous reports. According to our knowledge, this is the first review that highlights and discusses immune response at the host cell-parasite molecular interface against N. caninum infection in different susceptible hosts.
Collapse
Affiliation(s)
- Ragab M. Fereig
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan;
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan;
| |
Collapse
|
5
|
Barros PDSC, Mota CM, Miranda VDS, Ferreira FB, Ramos ELP, Santana SS, Costa LF, Marques Pajuaba ACA, Roberto Mineo J, Mineo TWP. Inducible Nitric Oxide Synthase is required for parasite restriction and inflammatory modulation during Neospora caninum infection. Vet Parasitol 2019; 276:108990. [PMID: 31775103 DOI: 10.1016/j.vetpar.2019.108990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 01/06/2023]
Abstract
Neospora caninum infection is an important cause of neuromuscular disease in dogs and abortion in cattle, leading to significant economic losses in beef and dairy industries. The protective immunity against apicomplexan parasites, specifically Toxoplasma gondii and N. caninum, is typically achieved by inducing an IL-12-driven Th1 immune response. IL-12 stimulates IFN-γ production, which activates Inducible Nitric Oxide Synthase (iNOS) and promotes consequent Nitric Oxide (NO) synthesis, classically described as one of the main effector mechanisms for parasite elimination. Here, we aimed to evaluate the role played by iNOS during N. caninum infection. Our results show that N. caninum infection in C57BL/6 wild type (WT) mice induce NO production in vivo and in vitro. In agreement, iNOS deficient mice, as well as WT mice treated with iNOS inhibitor aminoguanidine, succumbed during acute infection with a dose lethal to 50 % of the WT mice, and presented significant increase in parasite load when submitted to sub-lethal infection protocols. Interestingly, the lack of control of parasite proliferation observed in iNOS-/- mice was associated with notable CNS inflammation and increased production of the main systemic proinflammatory cytokines (IL-12, IFN-γ, IL-6, TNF and IL-17A). Taken together, our findings show that iNOS plays an important role in restricting N. caninum replication, while also modulates the inflammatory process induced by the infection.
Collapse
Affiliation(s)
- Patrício da Silva Cardoso Barros
- Laboratório De Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Departamento De Imunologia, Instituto De Ciências Biomédicas, Universidade Federal De Uberlândia, Av. Pará, 1720 - Bloco 4C, Campus Umuarama - 38.400-902, Uberlândia, MG, Brazil
| | - Caroline Martins Mota
- Laboratório De Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Departamento De Imunologia, Instituto De Ciências Biomédicas, Universidade Federal De Uberlândia, Av. Pará, 1720 - Bloco 4C, Campus Umuarama - 38.400-902, Uberlândia, MG, Brazil
| | - Vanessa Dos Santos Miranda
- Laboratório De Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Departamento De Imunologia, Instituto De Ciências Biomédicas, Universidade Federal De Uberlândia, Av. Pará, 1720 - Bloco 4C, Campus Umuarama - 38.400-902, Uberlândia, MG, Brazil
| | - Flávia Batista Ferreira
- Laboratório De Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Departamento De Imunologia, Instituto De Ciências Biomédicas, Universidade Federal De Uberlândia, Av. Pará, 1720 - Bloco 4C, Campus Umuarama - 38.400-902, Uberlândia, MG, Brazil
| | - Eliézer Lucas Pires Ramos
- Laboratório De Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Departamento De Imunologia, Instituto De Ciências Biomédicas, Universidade Federal De Uberlândia, Av. Pará, 1720 - Bloco 4C, Campus Umuarama - 38.400-902, Uberlândia, MG, Brazil
| | - Silas Silva Santana
- Laboratório De Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Departamento De Imunologia, Instituto De Ciências Biomédicas, Universidade Federal De Uberlândia, Av. Pará, 1720 - Bloco 4C, Campus Umuarama - 38.400-902, Uberlândia, MG, Brazil
| | - Lourenço Faria Costa
- Laboratório De Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Departamento De Imunologia, Instituto De Ciências Biomédicas, Universidade Federal De Uberlândia, Av. Pará, 1720 - Bloco 4C, Campus Umuarama - 38.400-902, Uberlândia, MG, Brazil
| | - Ana Cláudia Arantes Marques Pajuaba
- Laboratório De Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Departamento De Imunologia, Instituto De Ciências Biomédicas, Universidade Federal De Uberlândia, Av. Pará, 1720 - Bloco 4C, Campus Umuarama - 38.400-902, Uberlândia, MG, Brazil
| | - José Roberto Mineo
- Laboratório De Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Departamento De Imunologia, Instituto De Ciências Biomédicas, Universidade Federal De Uberlândia, Av. Pará, 1720 - Bloco 4C, Campus Umuarama - 38.400-902, Uberlândia, MG, Brazil
| | - Tiago Wilson Patriarca Mineo
- Laboratório De Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Departamento De Imunologia, Instituto De Ciências Biomédicas, Universidade Federal De Uberlândia, Av. Pará, 1720 - Bloco 4C, Campus Umuarama - 38.400-902, Uberlândia, MG, Brazil.
| |
Collapse
|
6
|
García-Sánchez M, Jiménez-Pelayo L, Horcajo P, Regidor-Cerrillo J, Collantes-Fernández E, Ortega-Mora LM. Gene Expression Profiling of Neospora caninum in Bovine Macrophages Reveals Differences Between Isolates Associated With Key Parasite Functions. Front Cell Infect Microbiol 2019; 9:354. [PMID: 31681630 PMCID: PMC6803445 DOI: 10.3389/fcimb.2019.00354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Intraspecific differences in biological traits between Neospora caninum isolates have been widely described and associated with variations in virulence. However, the molecular basis underlying these differences has been poorly studied. We demonstrated previously that Nc-Spain7 and Nc-Spain1H, high- and low-virulence isolates, respectively, show different invasion, proliferation and survival capabilities in bovine macrophages (boMØs), a key cell in the immune response against Neospora, and modulate the cell immune response in different ways. Here, we demonstrate that these differences are related to specific tachyzoite gene expression profiles. Specifically, the low-virulence Nc-Spain1H isolate showed enhanced expression of genes encoding for surface antigens and genes related to the bradyzoite stage. Among the primary up-regulated genes in Nc-Spain7, genes involved in parasite growth and redox homeostasis are particularly noteworthy because of their correlation with the enhanced proliferation and survival rates of Nc-Spain7 in boMØs relative to Nc-Spain1H. Genes potentially implicated in induction of proinflammatory immune responses were found to be up-regulated in the low-virulence isolate, whereas the high-virulence isolate showed enhanced expression of genes that may be involved in immune evasion. These results represent a further step in understanding the parasite effector molecules that may be associated to virulence and thus to disease traits as abortion and transmission.
Collapse
Affiliation(s)
- Marta García-Sánchez
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Laura Jiménez-Pelayo
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Pilar Horcajo
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Javier Regidor-Cerrillo
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain.,Saluvet-Innova, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Esther Collantes-Fernández
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Luis Miguel Ortega-Mora
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
7
|
García-Sánchez M, Jiménez-Pelayo L, Horcajo P, Regidor-Cerrillo J, Ólafsson EB, Bhandage AK, Barragan A, Werling D, Ortega-Mora LM, Collantes-Fernández E. Differential Responses of Bovine Monocyte-Derived Macrophages to Infection by Neospora caninum Isolates of High and Low Virulence. Front Immunol 2019; 10:915. [PMID: 31114577 PMCID: PMC6503000 DOI: 10.3389/fimmu.2019.00915] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
Neospora caninum, a protozoan parasite closely related to Toxoplasma gondii, represents one of the main causes of abortion in cattle. Macrophages (MØs) are mediators of the innate immune response against infection and likely one of the first cells encountered by the parasite during the host infection process. In this study, we investigated in vitro how high or low virulent isolates of N. caninum (Nc-Spain7 and Nc-Spain1H, respectively) interact with bovine monocyte-derived MØs and the influence of the isolate virulence on the subsequent cellular response. Both isolates actively invaded, survived and replicated in the MØs. However, Nc-Spain7 showed a higher invasion rate and a replication significantly faster, following an exponential growth model, whereas Nc-Spain1H presented a delayed replication and a lower growth rate without an exponential pattern. N. caninum infection induced a hypermigratory phenotype in bovine MØs that was characterized by enhanced motility and transmigration in vitro and was accompanied by morphological changes and abrogated extracellular matrix degradation. A significantly higher hypermotility was observed with the highly virulent isolate Nc-Spain7. Nc-Spain1H-infected MØs showed elevated reactive oxygen species (ROS) production and IL12p40 expression, which also resulted in increased IFN-γ release by lymphocytes, compared to cells infected with Nc-Spain7. Furthermore, IL-10 was upregulated in MØs infected with both isolates. Infected MØs exhibited lower expression of MHC Class II, CD86, and CD1b molecules than uninfected MØs, with non-significant differences between isolates. This work characterizes for the first time N. caninum replication in bovine monocyte-derived MØs and details isolate-dependent differences in host cell responses to the parasite.
Collapse
Affiliation(s)
- Marta García-Sánchez
- SALUVET, Animal Health Department, Complutense University of Madrid, Madrid, Spain
| | - Laura Jiménez-Pelayo
- SALUVET, Animal Health Department, Complutense University of Madrid, Madrid, Spain
| | - Pilar Horcajo
- SALUVET, Animal Health Department, Complutense University of Madrid, Madrid, Spain
| | | | - Einar B. Ólafsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Amol K. Bhandage
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, North Mymms, United Kingdom
| | | | | |
Collapse
|
8
|
Wang X, Gong P, Zhang X, Li S, Lu X, Zhao C, Yu Q, Wei Z, Yang Y, Liu Q, Yang Z, Li J, Zhang X. NLRP3 Inflammasome Participates in Host Response to Neospora caninum Infection. Front Immunol 2018; 9:1791. [PMID: 30105037 PMCID: PMC6077289 DOI: 10.3389/fimmu.2018.01791] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 07/19/2018] [Indexed: 02/01/2023] Open
Abstract
Neospora caninum is an intracellular protozoan parasite closely related to Toxoplasma gondii that mainly infects canids as the definitive host and cattle as the intermediate host, resulting in abortion in cattle and leading to financial losses worldwide. Commercial vaccines or drugs are not available for the prevention and treatment of bovine neosporosis. Knowledge about the hallmarks of the immune response to this infection could form the basis of important prevention strategies. The innate immune system first responds to invading parasite and subsequently initiates the appropriate adaptive immune response against this parasite. Upon infection, activation of host pattern-recognition receptors expressed by immune cells triggers the innate immune response. Toll-like receptors, NOD-like receptors, and C-type lectin receptors play key roles in recognizing protozoan parasite. Therefore, we aimed to explore the role of the NLRP3 inflammasome during the acute period of N. caninum infection. In vitro results showed that N. caninum infection of murine bone marrow-derived macrophages activated the NLRP3 inflammasome, accompanied by the release of IL-1β and IL-18, cleavage of caspase-1, and induction of cell death. K+ efflux induced by N. caninum infection participated in the activation of the inflammasome. Infection of mice deficient in NLRP3, ASC, and caspase-1/11 resulted in decreased production of IL-18 and reduced IFN-γ in serum. Elevated numbers of monocytes/macrophages and neutrophils were found at the initial infection site, but they failed to limit N. caninum replication. These findings suggest that the NLRP3 inflammasome is involved in the host response to N. caninum infection at the acute stage and plays an important role in limiting parasite growth, and it may enhance Th1 response by inducing production of IFN-γ. These findings may help devise protocols for controlling neosporosis.
Collapse
Affiliation(s)
- Xiaocen Wang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Pengtao Gong
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xu Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shan Li
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiangyun Lu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Chunyan Zhao
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Qile Yu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhengkai Wei
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yongjun Yang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Qun Liu
- National Animal Protozoa Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhengtao Yang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Jianhua Li
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xichen Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Bovine macrophage-derived extracellular traps act as early effectors against the abortive parasite Neospora caninum. Vet Parasitol 2018; 258:1-7. [DOI: 10.1016/j.vetpar.2018.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 12/23/2022]
|
10
|
Yang Z, Wei Z, Hermosilla C, Taubert A, He X, Wang X, Gong P, Li J, Zhang X. Caprine Monocytes Release Extracellular Traps against Neospora caninum In Vitro. Front Immunol 2018; 8:2016. [PMID: 29403487 DOI: 10.3389/fimmu.2017.02016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/29/2017] [Indexed: 12/23/2022] Open
Abstract
Neospora caninum is an obligate intracellular apicomplexan parasite that causes reproductive loss and severe economic losses in dairy and goat industry. In the present study, we aim to investigate the effects of N. caninum tachyzoites on the release of extracellular traps (ETs) in caprine monocytes and furthermore elucidated parts of its molecular mechanisms. N. caninum tachyzoite-induced monocytes-derived ETs formation was detected by scanning electron microscopy. H3 and myeloperoxidase (MPO) within monocyte-ETs structures were examined using laser scanning confocal microscopy analyses. The results showed that N. caninum tachyzoites were not only able to trigger ETs formation in caprine monocytes, but also that monocyte-released ETs were capable of entrapping viable tachyzoites. Histones and MPO were found to be decorating the DNA within the monocytes derived-ETs structures thus proving the classical components of ETs. Furthermore, inhibitors of NADPH oxidase-, MPO-, ERK 1/2-, or p38 MAPK-signaling pathway significantly decreased N. caninum tachyzoite-triggered caprine monocyte-derived ETosis. This is the first report of ETs release extruded from caprine monocytes after N. caninum exposure and thus showing that this early innate immune effector mechanism might be relevant during the acute phase of caprine neosporosis.
Collapse
Affiliation(s)
- Zhengtao Yang
- College of Basic Medical Sciences, Jilin University, Changchun, China.,College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhengkai Wei
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Carlos Hermosilla
- Faculty of Veterinary Medicine, Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Faculty of Veterinary Medicine, Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Xuexiu He
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaocen Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengtao Gong
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xichen Zhang
- College of Basic Medical Sciences, Jilin University, Changchun, China.,College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
11
|
Characteristic pro-inflammatory cytokines and host defence cathelicidin peptide produced by human monocyte-derived macrophages infected withNeospora caninum. Parasitology 2017; 145:871-884. [DOI: 10.1017/s0031182017002104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractNeospora caninumis a coccidian intracellular protozoan capable of infecting a wide range of mammals, although severe disease is mostly reported in dogs and cattle. Innate defences triggered by monocytes/macrophages are key in the pathogenesis of neosporosis, as these cells are first-line defenders against intracellular infections. The aim of this study was to characterize infection and innate responses in macrophages infected withN. caninumusing a well-known cell model to study macrophage functions (human monocyte THP-1 cells). Intracellular invasion of live tachyzoites occurred as fast as 4 h (confirmed with immunofluorescence microscopy usingN. caninum-specific antibodies). Macrophages infected byN. caninumhad increased expression of pro-inflammatory cytokines (TNFα, IL-1β, IL-8, IFNγ). Interestingly,N. caninuminduced expression of host-defence peptides (cathelicidins), a mechanism of defence never reported forN. caninuminfection in macrophages. The expression of cytokines and cathelicidins in macrophages invaded byN. caninumwas mediated by mitogen-activated protein kinase (MEK 1/2). Secretion of such innate factors fromN. caninum-infected macrophages reduced parasite internalization and promoted the secretion of pro-inflammatory cytokines in naïve macrophages. We concluded that rapid invasion of macrophages byN. caninumtriggered protective innate defence mechanisms against intracellular pathogens.
Collapse
|
12
|
Nishikawa Y. Towards a preventive strategy for neosporosis: challenges and future perspectives for vaccine development against infection with Neospora caninum. J Vet Med Sci 2017; 79:1374-1380. [PMID: 28690279 PMCID: PMC5573824 DOI: 10.1292/jvms.17-0285] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Neosporosis is caused by the intracellular protozoan parasite Neospora
caninum. This major disease-causing pathogen is responsible for inducing
abortion in cattle, and these adverse events occur sporadically all over the world,
including Japan. Currently, there are no vaccines on the market against infection with
N. caninum. Because live and attenuated vaccines against N.
caninum have had safety and effectiveness issues, development of a
next-generation vaccine is urgently required. To develop a vaccine against neosporosis, my
laboratory has been focused on the following: 1) understanding the host immune responses
against Neospora infection, 2) identifying vaccine antigens and 3)
developing an effective antigen-delivery system. The research strategy taken in my
laboratory will have strong potential to progress current understanding of the
pathogenesis of N. caninum infection and promote development of a novel
subunit vaccine based on the specific vaccine antigen with an antigen-delivery system for
controlling neosporosis.
Collapse
Affiliation(s)
- Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
13
|
Wang X, Gong P, Zhang X, Wang J, Tai L, Wang X, Wei Z, Yang Y, Yang Z, Li J, Zhang X. NLRP3 inflammasome activation in murine macrophages caused by Neospora caninum infection. Parasit Vectors 2017; 10:266. [PMID: 28558839 PMCID: PMC5450200 DOI: 10.1186/s13071-017-2197-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 05/15/2017] [Indexed: 11/23/2022] Open
Abstract
Background Neospora caninum is an intracellular parasite that causes significant economic losses in cattle industry. Understanding the host resistance mechanisms in the innate immune response to neosporosis could facilitate the exploration of approaches for controlling N. caninum infection. The NLR inflammasome is a multiprotein platform in the cell cytoplasm and plays critical roles in the host response against microbes. Methods Neospora caninum-infected wild-type (WT) macrophages and Nlrp3−/− macrophages, and inhibitory approaches were used to investigate inflammasome activation and its role in N. caninum infection. Inflammasome RT Profiler PCR Arrays were used to identify the primary genes involved in N. caninum infection. The expression of the sensor protein NLRP3, processing of caspase-1, secretion of IL-1β and cell death were detected. Neospora caninum replication in macrophages was also assessed. Results Many NLR molecules participated in the recognition of N. caninum, especially the sensor protein NLRP3, and further study revealed that the NLRP3 distribution became punctate in the cell cytoplasm, which facilitated inflammasome activation. Inflammasome activation-mediated caspase-1 processing and IL-1β cleavage in response to N. caninum infection were observed and were correlated with the time of infection and number of infecting parasites. LDH-related cell death was also observed, and this death was regarded as beneficial for the clearance of N. caninum. Treatment of N. caninum-infected macrophages with caspase-1, pan-caspase and NLRP3 inhibitors led to the impaired release of active IL-1β and a failure to restrict parasite replication. And Neospora caninum infected peritoneal macrophages from Nlrp3-deficient mice displayed greatly decreased release of active IL-1β and the failure of caspase-1 cleavage. Conclusions The NLRP3 inflammasome can be activated in N. caninum-infected macrophages, and plays a protective role in the host response to control N. caninum. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2197-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaocen Wang
- College of Veterinary Medicine, Jilin University, Jilin, Changchun, 130062, China
| | - Pengtao Gong
- College of Veterinary Medicine, Jilin University, Jilin, Changchun, 130062, China
| | - Xu Zhang
- College of Veterinary Medicine, Jilin University, Jilin, Changchun, 130062, China
| | - Jielin Wang
- College of Veterinary Medicine, Jilin University, Jilin, Changchun, 130062, China
| | - Lixin Tai
- College of Veterinary Medicine, Jilin University, Jilin, Changchun, 130062, China
| | - Xu Wang
- College of Veterinary Medicine, Jilin University, Jilin, Changchun, 130062, China
| | - Zhengkai Wei
- College of Veterinary Medicine, Jilin University, Jilin, Changchun, 130062, China
| | - Yongjun Yang
- College of Veterinary Medicine, Jilin University, Jilin, Changchun, 130062, China
| | - Zhengtao Yang
- College of Veterinary Medicine, Jilin University, Jilin, Changchun, 130062, China
| | - Jianhua Li
- College of Veterinary Medicine, Jilin University, Jilin, Changchun, 130062, China.
| | - Xichen Zhang
- College of Veterinary Medicine, Jilin University, Jilin, Changchun, 130062, China.
| |
Collapse
|
14
|
Mota CM, Oliveira ACM, Davoli-Ferreira M, Silva MV, Santiago FM, Nadipuram SM, Vashisht AA, Wohlschlegel JA, Bradley PJ, Silva JS, Mineo JR, Mineo TWP. Neospora caninum Activates p38 MAPK as an Evasion Mechanism against Innate Immunity. Front Microbiol 2016; 7:1456. [PMID: 27679624 PMCID: PMC5020094 DOI: 10.3389/fmicb.2016.01456] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/31/2016] [Indexed: 01/08/2023] Open
Abstract
Due to the high prevalence and economic impact of neosporosis, the development of safe and effective vaccines and therapies against this parasite has been a priority in the field and is crucial to limit horizontal and vertical transmission in natural hosts. Limited data is available regarding factors that regulate the immune response against this parasite and such knowledge is essential in order to understand Neospora caninum induced pathogenesis. Mitogen-activated protein kinases (MAPKs) govern diverse cellular processes, including growth, differentiation, apoptosis, and immune-mediated responses. In that sense, our goal was to understand the role of MAPKs during the infection by N. caninum. We found that p38 phosphorylation was quickly triggered in macrophages stimulated by live tachyzoites and antigen extracts, while its chemical inhibition resulted in upregulation of IL-12p40 production and augmented B7/MHC expression. In vivo blockade of p38 resulted in an amplified production of cytokines, which preceded a reduction in latent parasite burden and enhanced survival against the infection. Additionally, the experiments indicate that the p38 activation is induced by a mechanism that depends on GPCR, PI3K and AKT signaling pathways, and that the phenomena here observed is distinct that those induced by Toxoplasma gondii’s GRA24 protein. Altogether, these results showed that N. caninum manipulates p38 phosphorylation in its favor, in order to downregulate the host’s innate immune responses. Additionally, those results infer that active interference in this signaling pathway may be useful for the development of a new therapeutic strategy against neosporosis.
Collapse
Affiliation(s)
- Caroline M Mota
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo," Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| | - Ana C M Oliveira
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo," Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| | - Marcela Davoli-Ferreira
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo Ribeirão Preto, Brazil
| | - Murilo V Silva
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo," Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| | - Fernanda M Santiago
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo," Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| | - Santhosh M Nadipuram
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles CA, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles CA, USA
| | - Peter J Bradley
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los AngelesCA, USA; Molecular Biology Institute, University of California, Los Angeles, Los AngelesCA, USA
| | - João S Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo Ribeirão Preto, Brazil
| | - José R Mineo
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo," Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| | - Tiago W P Mineo
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo," Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| |
Collapse
|
15
|
Teixeira L, Moreira J, Melo J, Bezerra F, Marques RM, Ferreirinha P, Correia A, Monteiro MP, Ferreira PG, Vilanova M. Immune response in the adipose tissue of lean mice infected with the protozoan parasite Neospora caninum. Immunology 2015; 145:242-57. [PMID: 25581844 DOI: 10.1111/imm.12440] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 12/29/2014] [Accepted: 01/04/2015] [Indexed: 12/17/2022] Open
Abstract
The adipose tissue can make important contributions to immune function. Nevertheless, only a limited number of reports have investigated in lean hosts the immune response elicited in this tissue upon infection. Previous studies suggested that the intracellular protozoan Neospora caninum might affect adipose tissue physiology. Therefore, we investigated in mice challenged with this protozoan if immune cell populations within adipose tissue of different anatomical locations could be differently affected. Early in infection, parasites were detected in the adipose tissue and by 7 days of infection increased numbers of macrophages, regulatory T (Treg) cells and T-bet(+) cells were observed in gonadal, mesenteric, omental and subcutaneous adipose tissue. Increased expression of interferon-γ was also detected in gonadal adipose tissue of infected mice. Two months after infection, parasite DNA was no longer detected in these tissues, but T helper type 1 (Th1) cell numbers remained above control levels in the infected mice. Moreover, the Th1/Treg cell ratio was higher than that of controls in the mesenteric and subcutaneous adipose tissue. Interestingly, chronically infected mice presented a marked increase of serum leptin, a molecule that plays a role in energy balance regulation as well as in promoting Th1-type immune responses. Altogether, we show that an apicomplexa parasitic infection influences immune cellular composition of adipose tissue throughout the body as well as adipokine production, still noticed at a chronic phase of infection when parasites were already cleared from that particular tissue. This strengthens the emerging view that infections can have long-term consequences for the physiology of adipose tissue.
Collapse
Affiliation(s)
- Luzia Teixeira
- UMIB - Unidade Multidisciplinar de Investigação Biomédica, Departamento de Anatomia, ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abe C, Tanaka S, Nishimura M, Ihara F, Xuan X, Nishikawa Y. Role of the chemokine receptor CCR5-dependent host defense system in Neospora caninum infections. Parasit Vectors 2015; 8:5. [PMID: 25558986 PMCID: PMC4455913 DOI: 10.1186/s13071-014-0620-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/22/2014] [Indexed: 11/30/2022] Open
Abstract
Background Neospora caninum, a Toxoplasma gondii-like obligate intracellular parasite, causes
abortion in cattle and neurological signs in canines. To understand neosporosis
better, studies on host cell migration and host immune responses during the early
phase of infection are important. Although the C-C chemokine receptor 5 (CCR5)
plays a crucial role in immune cell migration, the role played by it in protective
immunity against N. caninum is poorly
understood. Methods CCR5−/− mice were used to investigate
their sensitivity levels to N. caninum
infection and their ability to activate immune cells against this parasite. Results Increased mortality and neurological impairment were observed in the
N. caninum-infected
CCR5−/− mice. In comparison with wild-type mice,
CCR5−/− mice experienced poor migration of dendritic
cells and natural killer T cells to the site of infection. Dendritic cells in an
in vitro culture from
CCR5−/− mice could not be activated upon infection
with N. caninum. Furthermore, higher levels of
IFN-γ and CCL5 expression, which are associated with brain tissue damage, were
observed in the brain tissue of CCR5−/− mice during the
acute phase of the infection, while there was no significant difference in the
parasite load between the wild-type and CCR5−/−
animals. Additionally, a primary microglia culture from
CCR5−/− mice showed lower levels of IL-6 and IL-12
production against N. caninum parasites. Conclusions Our findings show that migration and activation of immune cells via
CCR5 is required for controlling N. caninum
parasites during the early phase of the infection. Electronic supplementary material The online version of this article (doi:10.1186/s13071-014-0620-5) contains supplementary material, which is available to authorized
users.
Collapse
Affiliation(s)
- Chisa Abe
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| | - Sachi Tanaka
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan. .,Faculty of Agriculture, Shinshu University, Minami-Minowa, Kamiina, Nagano, 399-4598, Japan.
| | - Maki Nishimura
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| | - Fumiaki Ihara
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
17
|
Macrophage depletion prior to Neospora caninum infection results in severe neosporosis in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1185-8. [PMID: 24872515 DOI: 10.1128/cvi.00082-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We observed that murine macrophages showed greater activation and increased interleukin 6 (IL-6), IL-12p40, and interferon gamma (IFN-γ) production during Neospora caninum infection. Many macrophages migrated to the site of infection. Furthermore, macrophage-depleted mice exhibited increased sensitivity to N. caninum infection. This study indicates that macrophages are required for achieving protective immunity against N. caninum.
Collapse
|
18
|
Pollo-Oliveira L, Post H, Acencio ML, Lemke N, van den Toorn H, Tragante V, Heck AJR, Altelaar AFM, Yatsuda AP. Unravelling the Neospora caninum secretome through the secreted fraction (ESA) and quantification of the discharged tachyzoite using high-resolution mass spectrometry-based proteomics. Parasit Vectors 2013; 6:335. [PMID: 24267406 PMCID: PMC4182915 DOI: 10.1186/1756-3305-6-335] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/15/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The apicomplexan parasite Neospora caninum causes neosporosis, a disease that leads to abortion or stillbirth in cattle, generating an economic impact on the dairy and beef cattle trade. As an obligatory intracellular parasite, N. caninum needs to invade the host cell in an active manner to survive. The increase in parasite cytosolic Ca2+ upon contact with the host cell mediates critical events, including the exocytosis of phylum-specific secretory organelles and the activation of the parasite invasion motor. Because invasion is considered a requirement for pathogen survival and replication within the host, the identification of secreted proteins (secretome) involved in invasion may be useful to reveal interesting targets for therapeutic intervention. METHODS To chart the currently missing N. caninum secretome, we employed mass spectrometry-based proteomics to identify proteins present in the N. caninum tachyzoite using two different approaches. The first approach was identifying the proteins present in the tachyzoite-secreted fraction (ESA). The second approach was determining the relative quantification through peptide stable isotope labelling of the tachyzoites submitted to an ethanol secretion stimulus (discharged tachyzoite), expecting to identify the secreted proteins among the down-regulated group. RESULTS As a result, 615 proteins were identified at ESA and 2,011 proteins quantified at the discharged tachyzoite. We have analysed the connection between the secreted and the down-regulated proteins and searched for putative regulators of the secretion process among the up-regulated proteins. An interaction network was built by computational prediction involving the up- and down-regulated proteins. The mass spectrometry proteomics data have been deposited to the ProteomeXchange with identifier PXD000424. CONCLUSIONS The comparison between the protein abundances in ESA and their measure in the discharged tachyzoite allowed for a more precise identification of the most likely secreted proteins. Information from the network interaction and up-regulated proteins was important to recognise key proteins potentially involved in the metabolic regulation of secretion. Our results may be helpful to guide the selection of targets to be investigated against Neospora caninum and other Apicomplexan organisms.
Collapse
Affiliation(s)
- Letícia Pollo-Oliveira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto e Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Universidade de São Paulo, Av do Café , s/n, Ribeirão Preto, SP 14040-903, Brazil
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht 3884 CH, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, Utrecht 3884 CH, The Netherlands
| | - Marcio Luis Acencio
- Botucatu Institute of Biosciences, UNESP - Univ Estadual Paulista, Distrito de Rubião Jr, s/n, Botucatu, São Paulo 18918-970, Brazil
| | - Ney Lemke
- Botucatu Institute of Biosciences, UNESP - Univ Estadual Paulista, Distrito de Rubião Jr, s/n, Botucatu, São Paulo 18918-970, Brazil
| | - Henk van den Toorn
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht 3884 CH, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, Utrecht 3884 CH, The Netherlands
| | - Vinicius Tragante
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Division of Biomedical Genetics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Albert JR Heck
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht 3884 CH, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, Utrecht 3884 CH, The Netherlands
| | - AF Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht 3884 CH, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, Utrecht 3884 CH, The Netherlands
| | - Ana Patrícia Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto e Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Universidade de São Paulo, Av do Café , s/n, Ribeirão Preto, SP 14040-903, Brazil
| |
Collapse
|
19
|
Collantes-Fernandez E, Arrighi RBG, Álvarez-García G, Weidner JM, Regidor-Cerrillo J, Boothroyd JC, Ortega-Mora LM, Barragan A. Infected dendritic cells facilitate systemic dissemination and transplacental passage of the obligate intracellular parasite Neospora caninum in mice. PLoS One 2012; 7:e32123. [PMID: 22403627 PMCID: PMC3293873 DOI: 10.1371/journal.pone.0032123] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 01/19/2012] [Indexed: 12/03/2022] Open
Abstract
The obligate intracellular parasite Neospora caninum disseminates across the placenta and the blood-brain barrier, to reach sites where it causes severe pathology or establishes chronic persistent infections. The mechanisms used by N. caninum to breach restrictive biological barriers remain elusive. To examine the cellular basis of these processes, migration of different N. caninum isolates (Nc-1, Nc-Liverpool, Nc-SweB1 and the Spanish isolates: Nc-Spain 3H, Nc-Spain 4H, Nc-Spain 6, Nc-Spain 7 and Nc-Spain 9) was studied in an in vitro model based on a placental trophoblast-derived BeWo cell line. Here, we describe that infection of dendritic cells (DC) by N. caninum tachyzoites potentiated translocation of parasites across polarized cellular monolayers. In addition, powered by the parasite's own gliding motility, extracellular N. caninum tachyzoites were able to transmigrate across cellular monolayers. Altogether, the presented data provides evidence of two putative complementary pathways utilized by N. caninum, in an isolate-specific fashion, for passage of restrictive cellular barriers. Interestingly, adoptive transfer of tachyzoite-infected DC in mice resulted in increased parasitic loads in various organs, e.g. the central nervous system, compared to infections with free parasites. Inoculation of pregnant mice with infected DC resulted in an accentuated vertical transmission to the offspring with increased parasitic loads and neonatal mortality. These findings reveal that N. caninum exploits the natural cell trafficking pathways in the host to cross cellular barriers and disseminate to deep tissues. The findings are indicative of conserved dissemination strategies among coccidian apicomplexan parasites.
Collapse
Affiliation(s)
- Esther Collantes-Fernandez
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Swedish Institute for Communicable Disease Control, Stockholm, Sweden
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
- * E-mail: (EC); (AB)
| | - Romanico B. G. Arrighi
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Swedish Institute for Communicable Disease Control, Stockholm, Sweden
| | - Gema Álvarez-García
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Jessica M. Weidner
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Swedish Institute for Communicable Disease Control, Stockholm, Sweden
| | - Javier Regidor-Cerrillo
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - John C. Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Luis M. Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Antonio Barragan
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Swedish Institute for Communicable Disease Control, Stockholm, Sweden
- * E-mail: (EC); (AB)
| |
Collapse
|
20
|
Abstract
Neospora caninum is an intracellular parasite that poses a unique ability to infect a variety of cell types by causing host cell migration. Although previous studies demonstrated that parasite-derived proteins could trigger host cell migration, the related molecules have yet to be determined. Our study aimed to investigate the relationship between Neospora-derived molecules and host cell migration using recombinant protein of N. caninum cyclophilin (NcCyp). Indirect fluorescent antibody test revealed that NcCyp was expressed in the tachyzoite cytosol. Furthermore, NcCyp release from extracellular parasites was detected by sandwich enzyme-linked immunosorbent assay in a time-dependent manner. Recombinant NcCyp caused the cysteine-cysteine chemokine receptor 5-dependent migration of murine and bovine cells. Furthermore, immunohistochemistry indicated that NcCyp was consistently detected in tachyzoites distributed within or around the brain lesions. In conclusion, N. caninum-derived cyclophilin appears to contribute to host cell migration, thereby maintaining parasite/host interactions.
Collapse
|
21
|
Recognition by toll‐like receptor 2 induces antigen‐presenting cell activation and Th1 programming during infection by
Neospora caninum. Immunol Cell Biol 2010; 88:825-33. [DOI: 10.1038/icb.2010.52] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|