1
|
Koohsar F, Naddaf SR, Mirjalali H, Mohebali M, Rockni MB, Mahmoudi A, Mowlavi G. Genetic structure of Trichinella britovi populations in wildlife of north and northeast Iran. Int J Parasitol Parasites Wildl 2025; 26:101032. [PMID: 39811447 PMCID: PMC11732190 DOI: 10.1016/j.ijppaw.2024.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/08/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025]
Abstract
Trichinella britovi is a parasite prevalent in the temperate regions of the vast Palearctic realm, including Iran. In this study, we investigated Trichinella infection in road-killed animals and carcasses in northern and northeastern Iran by artificial digestion. We assessed species identification and intraspecific genetic diversity using the markers 5S ribosomal DNA intergenic spacer (5S rDNA), internal transcribed spacer I (ITS1), and cytochrome c oxidase subunit I (COXI). Of the 80 encountered carcasses, 10 had Trichinella infection, including seven golden jackals, one wolf, one wild cat, and one wild boar. BLAST analysis exhibited the highest similarities with T. britovi sequences in the GenBank database, at 99.79%, 99.84%, and 100% for COXI, 5S rDNA, and ITS1, respectively. All 5S rDNA sequences were identical, while analysis using DnaSP software identified eight haplotypes in the ITS1 region and six haplotypes in the COXI sequences. The phylogenetic analysis based on the COXI marker clustered all T. britovi sequences, including those from Iran, into a distinct clade. Furthermore, this marker revealed shallow branching, dividing T. britovi sequences into two subclades. The first subclade, the "European" group, consisted exclusively of haplotypes from Poland. In contrast, the second subclade, "Euro-Asiatic," included haplotypes of Asian and European origins. The Euro-Asiatic and European populations exhibited a 0.52% genetic distance while showing 0.59% and 0.15% intrapopulation divergence, respectively. Further studies involving specimens from other regions of Iran, particularly the southeast adjoining the Oriental zoogeographical zone, could provide additional insights into the molecular identity and population structures of T. britovi and potentially other species in Iran.
Collapse
Affiliation(s)
- Faramarz Koohsar
- Department of Medical Parasitology & Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohebali
- Department of Medical Parasitology & Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Bagher Rockni
- Department of Medical Parasitology & Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Mahmoudi
- Department of Biology, Faculty of Science, Urmia University, Iran
| | - Gholamreza Mowlavi
- Department of Medical Parasitology & Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Jain A, Li T, Wainer J, Edwards J, Rodoni BC, Sawbridge TI. High-Throughput Sequencing Enables Rapid Analyses of Nematode Mitochondrial Genomes from an Environmental Sample. Pathogens 2025; 14:234. [PMID: 40137719 PMCID: PMC11944570 DOI: 10.3390/pathogens14030234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Mitochondrial genomes serve as essential tools in evolutionary biology, phylogenetics, and population genetics due to their maternal inheritance, lack of recombination, and conserved structure. Traditional morphological methods for identifying nematodes are often insufficient for distinguishing cryptic species complexes. This study highlights recent advancements in nematode mitochondrial genome research, particularly the impact of long-read sequencing technologies such as Oxford Nanopore. These technologies have facilitated the assembly of mitochondrial genomes from mixed soil samples, overcoming challenges associated with designing specific primers for long PCR amplification across different groups of parasitic nematodes. In this study, we successfully recovered and assembled eleven nematode mitochondrial genomes using long-read sequencing, including those of two plant-parasitic nematode species. Notably, we detected Heterodera cruciferae in Victoria, expanding its known geographic range within Australia. Additionally, short-read sequencing data from a previous draft genome study revealed the presence of the mitochondrial genome of Heterodera filipjevi. Comparative analyses of Heterodera mitogenomes revealed conserved protein-coding genes essential for oxidative phosphorylation, as well as gene rearrangements and variations in transfer RNA placement, which may reflect adaptations to parasitic lifestyles. The consistently high A+T content and strand asymmetry observed across species align with trends reported in related genera. This study demonstrates the utility of long-read sequencing for identifying coexisting nematode species in agricultural fields, providing a rapid, accurate, and comprehensive alternative to traditional diagnostic methods. By incorporating non-target endemic species into public databases, this approach enhances biodiversity records and informs biosecurity strategies. These findings reinforce the potential of mitochondrial genomics to strengthen Australia's as well as the global biosecurity framework against plant-parasitic nematode threats.
Collapse
Affiliation(s)
- Akshita Jain
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia; (J.E.); (B.C.R.); (T.I.S.)
- AgriBio, Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC 3083, Australia; (T.L.); (J.W.)
| | - Tongda Li
- AgriBio, Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC 3083, Australia; (T.L.); (J.W.)
| | - John Wainer
- AgriBio, Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC 3083, Australia; (T.L.); (J.W.)
| | - Jacqueline Edwards
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia; (J.E.); (B.C.R.); (T.I.S.)
- AgriBio, Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC 3083, Australia; (T.L.); (J.W.)
| | - Brendan C. Rodoni
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia; (J.E.); (B.C.R.); (T.I.S.)
- AgriBio, Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC 3083, Australia; (T.L.); (J.W.)
| | - Timothy I. Sawbridge
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia; (J.E.); (B.C.R.); (T.I.S.)
- AgriBio, Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC 3083, Australia; (T.L.); (J.W.)
| |
Collapse
|
3
|
Hao Y, Li B, Ma L, Xu M, Niu P, Bu Y. The complete mitochondrial genome of Cylicocyclus ultrajectinus (Ihle, 1920). Mitochondrial DNA B Resour 2024; 9:1518-1521. [PMID: 39539983 PMCID: PMC11559021 DOI: 10.1080/23802359.2024.2427110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
In this study, the mitochondrial genome of Cylicocyclus ultrajectinus (Ihle, 1920) was sequenced for the first time using next-generation sequencing technology, and its compositional characteristics, structure, and phylogenetic relationship with other strongylid nematodes were analyzed by biological software. The results showed that these sequences contained 12 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 2 non-coding regions, all exhibiting a significant AT bias. Phylogenetic studies showed that C. ultrajectinus formed a distinct branch form other Cylicocyclus nematodes. This study contributes to the mitochondrial genome database of Strongylidae, laying a foundation for genetic variation, molecular classification, and evolutionary studies of strongylid nematodes.
Collapse
Affiliation(s)
- Yan Hao
- Hebi Polytechnic, Hebi, China
| | - Bing Li
- Hebi Polytechnic, Hebi, China
| | - Liqun Ma
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | | | | | - Yanzhen Bu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
4
|
Nikolaeva OV, Rusin LY, Mikhailov KV, Aleoshin VV, De Ley P. Both-strand gene coding in a plastome-like mitogenome of an enoplid nematode. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:419-424. [PMID: 38318934 DOI: 10.1002/jez.b.23241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/18/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
The phylum Nematoda remains very poorly sampled for mtDNA, with a strong bias toward parasitic, economically important or model species of the Chromadoria lineage. Most chromadorian mitogenomes share a specific order of genes encoded on one mtDNA strand. However, the few sequenced representatives of the Dorylaimia lineage exhibit a variable order of mtDNA genes encoded on both strands. While the ancestral arrangement of nematode mitogenome remains undefined, no evidence has been reported for Enoplia, the phylum's third early divergent major lineage. We describe the first mitogenome of an enoplian nematode, Campydora demonstrans, and contend that the complete 37-gene repertoire and both-strand gene encoding are ancestral states preserved in Enoplia and Dorylaimia versus the derived mitogenome arrangement in some Chromadoria. The C. demonstrans mitogenome is 17,018 bp in size and contains a noncoding perfect inverted repeat with 2013 bp-long arms, subdividing the mitogenome into two coding regions. This mtDNA arrangement is very rare among animals and instead resembles that of chloroplast genomes in land plants. Our report broadens mtDNA taxonomic sampling of the phylum Nematoda and adds support to the applicability of cox1 gene as a phylogenetic marker for establishing nematode relationships within higher taxa.
Collapse
Affiliation(s)
- Olga V Nikolaeva
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Leonid Yu Rusin
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| | - Kirill V Mikhailov
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| | - Vladimir V Aleoshin
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| | - Paul De Ley
- Department of Entomology, Plant Pathology & Weed Science, New Mexico State University, Las Cruces, New Mexico, USA
| |
Collapse
|
5
|
Inverted base composition skews and discontinuous mitochondrial genome architecture evolution in the Enoplea (Nematoda). BMC Genomics 2022; 23:376. [PMID: 35585506 PMCID: PMC9115964 DOI: 10.1186/s12864-022-08607-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
Background Within the class Enoplea, the earliest-branching lineages in the phylum Nematoda, the relatively highly conserved ancestral mitochondrial architecture of Trichinellida is in stark contrast to the rapidly evolving architecture of Dorylaimida and Mermithida. To better understand the evolution of mitogenomic architecture in this lineage, we sequenced the mitogenome of a fish parasite Pseudocapillaria tomentosa (Trichinellida: Capillariidae) and compared it to all available enoplean mitogenomes. Results P. tomentosa exhibited highly reduced noncoding regions (the largest was 98 bp), and a unique base composition among the Enoplea. We attributed the latter to the inverted GC skew (0.08) in comparison to the ancestral skew in Trichinellidae (-0.43 to -0.37). Capillariidae, Trichuridae and Longidoridae (Dorylaimida) generally exhibited low negative or low positive skews (-0.1 to 0.1), whereas Mermithidae exhibited fully inverted low skews (0 to 0.05). This is indicative of inversions in the strand replication order or otherwise disrupted replication mechanism in the lineages with reduced/inverted skews. Among the Trichinellida, Trichinellidae and Trichuridae have almost perfectly conserved architecture, whereas Capillariidae exhibit multiple rearrangements of tRNA genes. In contrast, Mermithidae (Mermithida) and Longidoridae (Dorylaimida) exhibit almost no similarity to the ancestral architecture. Conclusions Longidoridae exhibited more rearranged mitogenomic architecture than the hypervariable Mermithidae. Similar to the Chromadorea, the evolution of mitochondrial architecture in enoplean nematodes exhibits a strong discontinuity: lineages possessing a mostly conserved architecture over tens of millions of years are interspersed with lineages exhibiting architectural hypervariability. As Longidoridae also have some of the smallest metazoan mitochondrial genomes, they contradict the prediction that compact mitogenomes should be structurally stable. Lineages exhibiting inverted skews appear to represent the intermediate phase between the Trichinellidae (ancestral) and fully derived skews in Chromadorean mitogenomes (GC skews = 0.18 to 0.64). Multiple lines of evidence (CAT-GTR analysis in our study, a majority of previous mitogenomic results, and skew disruption scenarios) support the Dorylaimia split into two sister-clades: Dorylaimida + Mermithida and Trichinellida. However, skew inversions produce strong base composition biases, which can hamper phylogenetic and other evolutionary studies, so enoplean mitogenomes have to be used with utmost care in evolutionary studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08607-4.
Collapse
|
6
|
The Mitochondrial Genome of a Freshwater Pelagic Amphipod Macrohectopus branickii Is among the Longest in Metazoa. Genes (Basel) 2021; 12:genes12122030. [PMID: 34946978 PMCID: PMC8700879 DOI: 10.3390/genes12122030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
There are more than 350 species of amphipods (Crustacea) in Lake Baikal, which have emerged predominantly through the course of endemic radiation. This group represents a remarkable model for studying various aspects of evolution, one of which is the evolution of mitochondrial (mt) genome architectures. We sequenced and assembled the mt genome of a pelagic Baikalian amphipod species Macrohectopus branickii. The mt genome is revealed to have an extraordinary length (42,256 bp), deviating significantly from the genomes of other amphipod species and the majority of animals. The mt genome of M. branickii has a unique gene order within amphipods, duplications of the four tRNA genes and Cox2, and a long non-coding region, that makes up about two thirds of the genome’s size. The extension of the mt genome was most likely caused by multiple duplications and inversions of regions harboring ribosomal RNA genes. In this study, we analyzed the patterns of mt genome length changes in amphipods and other animal phyla. Through a statistical analysis, we demonstrated that the variability in the mt genome length may be a characteristic of certain phyla and is primarily conferred by expansions of non-coding regions.
Collapse
|
7
|
Bilska-Zając E, Różycki M, Korpysa-Dzirba W, Bełcik A, Ziętek-Barszcz A, Włodarczyk-Ramus M, Gontarczyk A, Cencek T. Trichinella Outbreaks on Pig Farms in Poland in 2012-2020. Pathogens 2021; 10:pathogens10111504. [PMID: 34832659 PMCID: PMC8621077 DOI: 10.3390/pathogens10111504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022] Open
Abstract
Trichinella nematodes continue to circulate in various hosts both in the domestic and sylvatic cycles. In the majority of countries in Europe, wild boars have been noticed as a primary source of Trichinella spp. infections in humans. However, in some regions, the meat of pigs containing Trichinella spp. larvae can still be a cause of trichinellosis. Therefore, in the present study, we aimed to determine and present actual data on the occurrence of Trichinella spp. on pig farms (Sus scrofa f. domestica) in Poland. In this study, over 194 million pigs, slaughtered for commercial and personal purposes between 2012 and 2020, were tested with a digestion method according to the official rules for Trichinella control. Positive results were noticed in 172 pigs which gives an overall prevalence of 0.000088%. On seven farms, rats (Rattus norvegicus) infected with Trichinella spp. were also discovered. The species identification showed pigs were infected with Trichinella spiralis on 26 farms, and on four farms pigs with Trichinella britovi infections were found. Therefore, it is important to constantly monitor pigs for the presence of these parasites, especially in view of the growing interest in organic meat originated from ecological farms.
Collapse
Affiliation(s)
- Ewa Bilska-Zając
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, Partyzantów Avenue, 57, 24-100 Pulawy, Poland; (E.B.-Z.); (M.R.); (A.B.); (M.W.-R.); (A.G.); (T.C.)
| | - Mirosław Różycki
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, Partyzantów Avenue, 57, 24-100 Pulawy, Poland; (E.B.-Z.); (M.R.); (A.B.); (M.W.-R.); (A.G.); (T.C.)
| | - Weronika Korpysa-Dzirba
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, Partyzantów Avenue, 57, 24-100 Pulawy, Poland; (E.B.-Z.); (M.R.); (A.B.); (M.W.-R.); (A.G.); (T.C.)
- Correspondence:
| | - Aneta Bełcik
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, Partyzantów Avenue, 57, 24-100 Pulawy, Poland; (E.B.-Z.); (M.R.); (A.B.); (M.W.-R.); (A.G.); (T.C.)
| | - Anna Ziętek-Barszcz
- Department of Epidemiology and Risk Assessment, National Veterinary Research Institute, Partyzantów Avenue, 57, 24-100 Pulawy, Poland;
| | - Magdalena Włodarczyk-Ramus
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, Partyzantów Avenue, 57, 24-100 Pulawy, Poland; (E.B.-Z.); (M.R.); (A.B.); (M.W.-R.); (A.G.); (T.C.)
| | - Aneta Gontarczyk
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, Partyzantów Avenue, 57, 24-100 Pulawy, Poland; (E.B.-Z.); (M.R.); (A.B.); (M.W.-R.); (A.G.); (T.C.)
| | - Tomasz Cencek
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, Partyzantów Avenue, 57, 24-100 Pulawy, Poland; (E.B.-Z.); (M.R.); (A.B.); (M.W.-R.); (A.G.); (T.C.)
| |
Collapse
|
8
|
Bilska-Zając E, Rosenthal B, Thompson P. Trich-tracker - a practical tool to trace Trichinella spiralis transmission based on rapid, cost-effective sampling of genome-wide genetic variation. Int J Parasitol 2021; 52:145-155. [PMID: 34543631 DOI: 10.1016/j.ijpara.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Molecular epidemiology using traditional sequencing has been notoriously difficult in inbred parasites due to a lack of genetic variation available for discriminating among parasites. Next generation sequencing techniques offer a solution to this problem by increasing the number of loci that can be sequenced. Here, we introduce Trich-tracker, a tool that makes efficient use of diagnostic variation distributed throughout the genome of Trichinella spiralis to more rapidly, and conclusively, resolve connections and distinctions among focal outbreaks of T. spiralis. In particular, we rapidly characterised genetic variation among a sample of parasites from Polish farms and wildlife, sampling genomic variation using double digest restriction site-associated DNA sequencing (ddRADseq). Approximately 400,000 bases of sequence were generated from each sample and shown to be distributed across the genome with single nucleotide polymorphisms occurring at a frequency of approximately one base in 10,000. Both phylogenetic and Bayesian clustering analyses indicated that ddRADseq genotypes formed distinct clusters for specific outbreaks and were quite distinct from wild boar samples. Two of the investigated outbreaks were more similar to each other than to other outbreak samples, suggesting a link between these outbreaks. Hence, the Trich-tracker procedure identified informative genomic variation which afforded unprecedented epidemiological resolution. Trich-tracker is very flexible tool, quickly and inexpensively mining genomes of even highly inbred populations of T. spiralis to support outbreak investigations. The simplicity of the entire procedure, and time and cost effectiveness of Trich-tracker support its practical application in ongoing Trichinella outbreaks. The discriminating power of this tool is tunable and scalable, allowing application in a variety of epidemiological contexts, and is easily adapted to other parasite systems.
Collapse
Affiliation(s)
- Ewa Bilska-Zając
- National Veterinary Research Institute in Puławy, Department of Parasitology and Invasive Diseases, Aleja Partyzantów 56, 24-100 Puławy, Poland
| | - Benjamin Rosenthal
- USDA-Agricultural Research Service, Animal Parasitic Diseases Lab, BARC-East Building 1040, 10300 Baltimore Avenue, 10705 Beltsville, MD, USA
| | - Peter Thompson
- USDA-Agricultural Research Service, Animal Parasitic Diseases Lab, BARC-East Building 1040, 10300 Baltimore Avenue, 10705 Beltsville, MD, USA
| |
Collapse
|
9
|
Barlow A, Roy K, Hawkins K, Ankarah AA, Rosenthal B. A review of testing and assurance methods for Trichinella surveillance programs. Food Waterborne Parasitol 2021; 24:e00129. [PMID: 34458599 PMCID: PMC8379475 DOI: 10.1016/j.fawpar.2021.e00129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022] Open
Abstract
While global cases of trichinellosis have fallen since pork regulation began, the disease remains a danger to pork and animal game consumers as well as a liability to producers. Managing food safety risk and supporting agricultural trade requires cost-effective and sensitive diagnostic methods. Several means exist to inspect pork for parasitic infections. Here, we review literature concerning the sensitivity, specificity, and cost of these methods. We found that artificial digestion coupled with optical microscopy to be the best method for verification of Trichinella larva free pork due to its cost efficiency, high specificity, and reliability. Serological techniques such as ELISA are useful for epidemiological surveillance of swine. While current PCR techniques are quick and useful for diagnosing species-specific infections, they are not cost efficient for large-scale testing. However, as PCR techniques, including Lateral Flow- Recombinase Polymerase Amplification (LF-RPA), improve and continue to reduce cost, such methods may ultimately succeed artificial digestion. We compared cost, sensitivity, and specificity of available and foreseeable tools. The magnetic stir bar method remains the gold standard for Trichinella surveillance. Serological methods miss early infections but offer promise for use in surveillance. Isothermal methods offer future promise given their speed, accuracy, and ease of use. Genetic methods are uneconomical but advances have promise to reduce cost.
Collapse
Affiliation(s)
- Alec Barlow
- USDA, ARS, NEA, BARC, Animal Parasitic Diseases Laboratory, Beltsville, MD, United States of America
| | - Kayla Roy
- USDA, ARS, NEA, BARC, Animal Parasitic Diseases Laboratory, Beltsville, MD, United States of America
| | - Kristopher Hawkins
- USDA, ARS, NEA, BARC, Animal Parasitic Diseases Laboratory, Beltsville, MD, United States of America
| | - Ako A Ankarah
- USDA, ARS, NEA, BARC, Animal Parasitic Diseases Laboratory, Beltsville, MD, United States of America
| | - Benjamin Rosenthal
- USDA, ARS, NEA, BARC, Animal Parasitic Diseases Laboratory, Beltsville, MD, United States of America
| |
Collapse
|
10
|
Zhao Q, Abuzeid AMI, He L, Zhuang T, Li X, Liu J, Zhu S, Chen X, Li G. The mitochondrial genome sequence analysis of Ophidascaris baylisi from the Burmese python (Python molurus bivittatus). Parasitol Int 2021; 85:102434. [PMID: 34375752 DOI: 10.1016/j.parint.2021.102434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Ophidascaris species are parasitic roundworms that inhabit the python gut, resulting in severe granulomatous lesions or even death. However, the classification and nomenclature of these roundworms are still controversial. Our study aims to identify a snake roundworm from the Burmese python (Python molurus bivittatus) and analyze the mitochondrial genome. We identified this roundworm as Ophidascaris baylisi based on the morphology and cytochrome c oxidase subunit I (cox1) sequence. Ophidascaris baylisi complete mitochondrial genome was 14,784 bp in length, consisting of two non-coding regions and 36 mitochondrial genes (12 protein-coding genes, 22 tRNA genes, and two rRNA genes). The protein-coding genes used TTG, ATG, ATT, or TTA as start codons and TAG, TAA, or T as stop codons. All tRNA genes showed a TV-loop structure, except trnS1AGN and trnS2UCN revealed a D-loop structure. The mitochondrial large ribosomal subunit 16S (rrnL) and small ribosomal subunit 12S (rrnS) were 956 bp and 700 bp long, respectively. Phylogenetic analysis based on O. baylisi mitochondrial protein-coding genes demonstrated that O. baylisi clustered with the family Ascarididae members and was most closely related to Ophidascaris wangi. These results may enhance the nematode mitochondrial genome database and provide valuable molecular markers for further research on the taxonomy, phylogeny, and genetic relationships of Ophidascaris nematodes.
Collapse
Affiliation(s)
- Qi Zhao
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Asmaa M I Abuzeid
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Long He
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Tingting Zhuang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Xiu Li
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Jumei Liu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Shilan Zhu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Xiaoyu Chen
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Guoqing Li
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China.
| |
Collapse
|
11
|
Mitochondrial Genomic Landscape: A Portrait of the Mitochondrial Genome 40 Years after the First Complete Sequence. Life (Basel) 2021; 11:life11070663. [PMID: 34357035 PMCID: PMC8303319 DOI: 10.3390/life11070663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022] Open
Abstract
Notwithstanding the initial claims of general conservation, mitochondrial genomes are a largely heterogeneous set of organellar chromosomes which displays a bewildering diversity in terms of structure, architecture, gene content, and functionality. The mitochondrial genome is typically described as a single chromosome, yet many examples of multipartite genomes have been found (for example, among sponges and diplonemeans); the mitochondrial genome is typically depicted as circular, yet many linear genomes are known (for example, among jellyfish, alveolates, and apicomplexans); the chromosome is normally said to be “small”, yet there is a huge variation between the smallest and the largest known genomes (found, for example, in ctenophores and vascular plants, respectively); even the gene content is highly unconserved, ranging from the 13 oxidative phosphorylation-related enzymatic subunits encoded by animal mitochondria to the wider set of mitochondrial genes found in jakobids. In the present paper, we compile and describe a large database of 27,873 mitochondrial genomes currently available in GenBank, encompassing the whole eukaryotic domain. We discuss the major features of mitochondrial molecular diversity, with special reference to nucleotide composition and compositional biases; moreover, the database is made publicly available for future analyses on the MoZoo Lab GitHub page.
Collapse
|
12
|
Rivero J, Callejón R, Cutillas C. Complete Mitochondrial Genome of Trichuristrichiura from Macaca sylvanus and Papio papio. Life (Basel) 2021; 11:life11020126. [PMID: 33562044 PMCID: PMC7915941 DOI: 10.3390/life11020126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/26/2022] Open
Abstract
Trichuriasis is among the most prevalent worldwide parasitism caused by helminths. For many years, Trichuris spp. have been described with a relatively narrow range of both morphological and biometrical features. The use of the complete mitochondrial genome (mitogenome) is an alternative and powerful molecular method for inferring phylogenies. Here, we present an overview of the contributions of mitogenome for Trichuris spp. from human and non-human primates. In addition, we carry out structural and phylogenetic comparative analyses with genomes of Trichuris species available in public datasets. The complete mt genomes of Trichuris trichiura and Trichuris sp. from Macaca sylvanus and T. trichiura from Papio papio are 14,091 bp, 14,047 bp and 14,089 bp in length, respectively. The three mt genomes are circular and consist of 37 genes—13 PCGs (cox1–3, nad1–6, nad4L, atp6, atp8 and cob), 22 transfer RNA genes (tRNAs), and two rRNAs (rrnL and rrnS). The molecular evidence presented here supports the hypothesis that T. trichiura de M. sylvanus (TMF31) and T. trichiura de P. papio (TPM1) were similar but genetically different with respect to Trichuris sp. from macaques (TMM5). The phylogenetic study also supported the evolution of the different Trichuris species. In conclusion, we suggest the existence of two cryptic species parasitizing M. sylvanus.
Collapse
|
13
|
Nuclear and Mitochondrial Data on Trichuris from Macaca fuscata Support Evidence of Host Specificity. Life (Basel) 2020; 11:life11010018. [PMID: 33396199 PMCID: PMC7823418 DOI: 10.3390/life11010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/04/2022] Open
Abstract
Whipworms are parasitic intestinal nematodes infecting mammals, and traditionally humans and other primates that have so far been considered infected by Trichuris trichiura. Recent molecular studies report a more complex scenario suggesting the presence of a species complex with several Trichuris taxa specifically infecting only one primate species as well as taxa able to infect a range of primate species. The systematics of the group is important for taxonomic inference, to estimate the relative zoonotic potential, and for conservation purposes. In fact, captive animals living in zoological gardens are usually infected by persistent monoxenous intestinal parasites. Here, two Japanese macaques living in the Bioparco Zoological Garden of Rome were found infected by Trichuris sp. Nematodes were characterized at the molecular level using nuclear (btub and 18S) and mitochondrial (16S and cytb) markers and then compared to Trichuris collected previously in the same location, and to other Trichuris infecting primates. Evidences from mitochondrial and nuclear markers allowed for the identification of Trichuris sp. specific to Macaca fuscata. Results obtained here also described a uniform taxonomic unit of Trichuris, separated but closely related to Trichuris trichiura, thus, emphasizing its zoonotic potential for workers and visitors.
Collapse
|
14
|
Zarlenga D, Thompson P, Pozio E. Trichinella species and genotypes. Res Vet Sci 2020; 133:289-296. [PMID: 33199264 DOI: 10.1016/j.rvsc.2020.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
Trichinella spiralis has historically been deemed "the pig parasite" owing to its initial classification within a monospecific genus. However, in recent years, the genus has expanded to include 10 distinct species and at least 3 different genotypes whose taxonomic status remains unstipulated. In contrast to T. spiralis, however, most of these sylvatic species and genotypes do not infect pigs well. Inasmuch as morphological characters cannot be used to define species within this genus, earlier classifications were based upon host and geographical ranges, biological characters, and the presence or absence of a collagen capsule that surrounds the muscle stage larvae. Later, isoenzymes, DNA gel fragmentation patterns and DNA probes were used to help in identification and classification. Today, amidst the "-omics" revolution, new molecular and biochemical-based methodologies have improved detection, differentiation and characterization at all levels including worm populations. These efforts have discernably expanded immunological, epidemiological, and genetic studies resulting in better hypotheses on the evolution of the genus, and on global events, transmission cycles, host associations, and biogeographical histories that contributed to its cosmopolitan distribution. Reviews of this sort are best begun with a background on the genus; however, efforts will divert to the most recent knowledge available on the taxonomy, phylogeny, epidemiology and biochemistry that define this genus in the 21st century.
Collapse
Affiliation(s)
- Dante Zarlenga
- Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA.
| | - Peter Thompson
- Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA
| | - Edoardo Pozio
- Department of Infectious Diseases, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
15
|
Kinkar L, Young ND, Sohn WM, Stroehlein AJ, Korhonen PK, Gasser RB. First record of a tandem-repeat region within the mitochondrial genome of Clonorchis sinensis using a long-read sequencing approach. PLoS Negl Trop Dis 2020; 14:e0008552. [PMID: 32845881 PMCID: PMC7449408 DOI: 10.1371/journal.pntd.0008552] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
Background Mitochondrial genomes provide useful genetic markers for systematic and population genetic studies of parasitic helminths. Although many such genome sequences have been published and deposited in public databases, there is evidence that some of them are incomplete relating to an inability of conventional techniques to reliably sequence non-coding (repetitive) regions. In the present study, we characterise the complete mitochondrial genome—including the long, non-coding region—of the carcinogenic Chinese liver fluke, Clonorchis sinensis, using long-read sequencing. Methods The mitochondrial genome was sequenced from total high molecular-weight genomic DNA isolated from a pool of 100 adult worms of C. sinensis using the MinION sequencing platform (Oxford Nanopore Technologies), and assembled and annotated using an informatic approach. Results From > 93,500 long-reads, we assembled a 18,304 bp-mitochondrial genome for C. sinensis. Within this genome we identified a novel non-coding region of 4,549 bp containing six tandem-repetitive units of 719–809 bp each. Given that genomic DNA from pooled worms was used for sequencing, some variability in length/sequence in this tandem-repetitive region was detectable, reflecting population variation. Conclusions For C. sinensis, we report the complete mitochondrial genome, which includes a long (> 4.5 kb) tandem-repetitive region. The discovery of this non-coding region using a nanopore-sequencing/informatic approach now paves the way to investigating the nature and extent of length/sequence variation in this region within and among individual worms, both within and among C. sinensis populations, and to exploring whether this region has a functional role in the regulation of replication and transcription, akin to the mitochondrial control region in mammals. Although applied to C. sinensis, the technological approach established here should be broadly applicable to characterise complex tandem-repetitive or homo-polymeric regions in the mitochondrial genomes of a wide range of taxa. In the present study, we characterised the complete mitochondrial genome of Clonorchis sinensis—a carcinogenic liver fluke. To do this, we sequenced from total genomic DNA from multiple adult worms using a new method (Oxford Nanopore technology) to obtain data for long stretches of DNA, and then assembled these data to construct a mitochondrial genome of 18,304 bp, containing a > 4.5 kb-long tandem-repetitive region—not previously detected in this species. The results demonstrate that this method is effective at sequencing long and complex non-coding elements—not achievable using conventional techniques. The discovery of this long tandem-repetitive region in C. sinensis provides an opportunity to now explore its origin(s) and length/sequence diversity in populations of this species, and also to characterise its function(s). The technological approach employed here should have broad applicability to characterise previously-elusive non-coding mitochondrial genomic regions in a wide range of taxa.
Collapse
Affiliation(s)
- Liina Kinkar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (NDY); (RBG)
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Andreas J. Stroehlein
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (NDY); (RBG)
| |
Collapse
|
16
|
|
17
|
Hu L, Zhang M, Sun Y, Bu Y. Characterization and phylogenetic analysis of the first complete mitochondrial genome of Cylicocyclus radiatus. Vet Parasitol 2020; 281:109097. [DOI: 10.1016/j.vetpar.2020.109097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
|
18
|
Sharma R, Thompson PC, Hoberg EP, Brad Scandrett W, Konecsni K, Harms NJ, Kukka PM, Jung TS, Elkin B, Mulders R, Larter NC, Branigan M, Pongracz J, Wagner B, Kafle P, Lobanov VA, Rosenthal BM, Jenkins EJ. Hiding in plain sight: discovery and phylogeography of a cryptic species of Trichinella (Nematoda: Trichinellidae) in wolverine (Gulo gulo). Int J Parasitol 2020; 50:277-287. [DOI: 10.1016/j.ijpara.2020.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 11/30/2022]
|
19
|
Montalbano Di Filippo M, Berrilli F, De Liberato C, Di Giovanni V, D'Amelio S, Friedrich KG, Cavallero S. Molecular characterization of Trichuris spp. from captive animals based on mitochondrial markers. Parasitol Int 2019; 75:102043. [PMID: 31881362 DOI: 10.1016/j.parint.2019.102043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 11/28/2022]
Abstract
Monoxenous parasites may easily infect animals in captivity, and nematodes belonging to the genus Trichuris are commonly reported in zoological gardens worldwide. Infections in captive animals should be accurately monitored and the characterization of pathogens is highly advisable, as a tool to infer possible routes of intra- and interspecific transmission pathways and to assess the related zoonotic potential. Whipworms are usually identified on the basis of few morphological features of adults males and eggs and by an host-affiliation criterion. Given the strong morphological convergence of adaptive traits and the possible occurrence of hybridization and/or cross-infections events, the use of molecular methods is of great utility. Here, we analysed two partial mitochondrial loci, the cytochrome c oxidase I and the cytochrome b regions, in Trichuris spp. infecting four animal species hosted in the Bioparco Zoological Garden of Rome. Results from molecular systematics, compared to previous data, suggested that the five Trichuris taxa recovered were well separated, showing a significant degree of host affiliation (herbivorous, primates/swine and rodents/canids). The screw horn antelopes and the camels were infected with two variants of Trichuris ovis; Trichuris sp. similar to those observed in rodents from South America was infecting the Patagonian maras. Moreover, Trichuris from the ring-tailed lemur showed a great similarity to Trichuris infecting the Japanese macaque previously analysed from the same zoological garden, and clustering together with Trichuris trichiura, posing a potential zoonotic threat for visitors and workers.
Collapse
Affiliation(s)
| | - Federica Berrilli
- Department of Clinical Sciences and Translational Medicine, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy
| | - Claudio De Liberato
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Vittoria Di Giovanni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Stefano D'Amelio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Klaus G Friedrich
- Fondazione Bioparco, Viale del Giardino Zoologico, 00197 Rome, Italy
| | - Serena Cavallero
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
20
|
Różycki M, Bilska-Zając E, Kochanowski M, Grądziel-Krukowska K, Zdybel J, Karamon J, Wiśniewski J, Cencek T. First case of Trichinella spiralis infection in beavers ( Castor fiber) in Poland and Europe. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 11:46-49. [PMID: 31890563 PMCID: PMC6928267 DOI: 10.1016/j.ijppaw.2019.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/04/2022]
Abstract
Background This is the first report of the finding of Trichinella spiralis in beaver meat (Castor fiber) in Poland and Europe. In Poland, the beaver is a strictly protected animal species, except the few regions where high population density leads to economic losses. In these areas, the reduction culling of the animals was introduced. This uncommon hunting game animal is consumed and treated as a delicacy by hunters. However, currently, there is a lack of knowledge on possible risk factors for humans associated with the consumption of beaver meat. This paper presents the result of the study on the occurrence of nematodes of the genus Trichinella in beavers. Methods In total, 69 beavers were examined for the presence of Trichinella spp. The 50g samples were taken from each animal and digested separately, according to a procedure based on the EU reference method. The larva DNA was examined by PCR and sequencing. Results One of the 69 examined beavers was infected. Only one Trichinella larva was detected by the digestion method. The result of PCR confirms the presence of T. spiralis in beaver meat. Conclusions This case further confirms the ability of these typical herbivores to be infected with Trichinella spp. This is the second confirmed case of Trichinella spp. infection in beavers in Europe and the first of T. spiralis. First report of the presence of Trichinella spiralis larva in beaver meat. Detection of Trichinella spiralis by digestion method and confirmed by PCR and sequencing. New parasitic risks factor for humans associated with consumption of beaver meat.
Collapse
Affiliation(s)
- Mirosław Różycki
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute in Pulawy, Al. Partyzantow 57, 24-100, Pulawy, Poland
| | - Ewa Bilska-Zając
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute in Pulawy, Al. Partyzantow 57, 24-100, Pulawy, Poland
| | - Maciej Kochanowski
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute in Pulawy, Al. Partyzantow 57, 24-100, Pulawy, Poland
| | - Katarzyna Grądziel-Krukowska
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute in Pulawy, Al. Partyzantow 57, 24-100, Pulawy, Poland
| | - Jolanta Zdybel
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute in Pulawy, Al. Partyzantow 57, 24-100, Pulawy, Poland
| | - Jacek Karamon
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute in Pulawy, Al. Partyzantow 57, 24-100, Pulawy, Poland
| | - Jan Wiśniewski
- Department of Food Hygiene and Public Health Protection, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Tomasz Cencek
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute in Pulawy, Al. Partyzantow 57, 24-100, Pulawy, Poland
| |
Collapse
|
21
|
Zhang X, Han LL, Hong X, Jiang P, Niu YF, Wang ZQ, Cui J. Genotyping and Phylogenetic Position of Trichinella spiralis Isolates from Different Geographical Locations in China. Front Genet 2019; 10:1093. [PMID: 31737057 PMCID: PMC6834790 DOI: 10.3389/fgene.2019.01093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/10/2019] [Indexed: 11/29/2022] Open
Abstract
In China, the nematode Trichinella spiralis is the main aetiological agent of human trichinellosis. We performed multi-locus microsatellite typing of T. spiralis isolates to improve the current knowledge of the evolution and population diversity. First, seven polymorphic microsatellite loci were used to infer the genetic diversity of T. spiralis collected in 10 endemic regions. Then, a Bayesian model-based STRUCTURE analysis, a clustering based on the neighbor-joining method, and a principal coordinate analysis (PCA) were performed to identify the genetic structure. Finally, the phylogenetic position of Chinese isolates was explored based on six mitochondrial and nuclear genetic markers (cox1, cytb, 5S ISR, ESV, ITS1, and 18S rDNA) using the maximum likelihood and Bayesian methods. In addition, the divergence time was estimated with multiple genes using an uncorrelated log-normal relaxed molecular-clock model. A total of 16 alleles were detected in 2,310 individuals (1,650 muscle larvae and 660 adult worms) using seven loci. The STRUCTURE analysis indicated that the T. spiralis isolates could be organized and derived from the admixture of two ancestral clusters, which was also substantiated through the clustering analysis based on the allelic data. PCA separated most samples from Tiandong, Guangxi (GX-td), and Linzhi, Tibet (Tibet-lz), from the remaining isolates. However, both maximum likelihood and Bayesian inference supported the close relationship between Xiangfan, Hubei (HB-xf), and GX-td. The molecular dating analysis suggested that the Chinese isolates started to diverge during the Late Pleistocene (0.69 Mya). Generally, T. spiralis was observed to harbor low genetic variation, and further investigation with deeper sampling is needed to elucidate the population structure.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhong Quan Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Cui
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Sharma R, Thompson P, Elkin B, Mulders R, Branigan M, Pongracz J, Wagner B, Scandrett B, Hoberg E, Rosenthal B, Jenkins E. Trichinella pseudospiralis in a wolverine (Gulo gulo) from the Canadian North. Int J Parasitol Parasites Wildl 2019; 9:274-280. [PMID: 31289720 PMCID: PMC6593184 DOI: 10.1016/j.ijppaw.2019.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 11/28/2022]
Abstract
Species of Trichinella are a globally distributed assemblage of nematodes, often with distinct host ranges, which include people, domestic, and wild animals. Trichinella spp. are important in northern Canada, where dietary habits of people and methods of meat preparation (drying, smoking, fermenting as well as raw) increase the risk posed by these foodborne zoonotic parasites. Outbreaks in the arctic and subarctic regions of Canada and the United States are generally attributed to T. nativa (T2) or the T6 genotype, when genetic characterization is performed. We report the discovery of Trichinella pseudospiralis (T4), a non-encapsulated species, in a wolverine (Gulo gulo) from the Northwest Territories of Canada. This parasite has been previously reported elsewhere from both mammals and carnivorous birds, but our findings represent new host and geographic records for T. pseudospiralis. Multiplex PCR and sequencing of fragments of Cytochrome Oxidase Subunit I (COI) and D3 rDNA confirmed the identification. Phylogenetically, Canadian isolates linked with each other and others derived from Palearctic or Neotropical regions, but not elsewhere in the Nearctic (continental USA). We suggest that migratory birds might have played a role in the dispersal of this pathogen 1000's of km to northwestern Canada. Wolverines are not typically consumed by humans, and thus should not pose a direct food safety risk for trichinellosis. However, the current finding suggests that they may serve as an indicator of a broader distribution for T. pseudospiralis. Along with infection risk already recognized for T. nativa and Trichinella T6, our observations emphasize the need for further studies using molecular diagnostics and alternative methods to clarify if this is a solitary case, or if T. pseudospiralis and other freeze susceptible species of Trichinella (such as T. spiralis) circulate more broadly in wildlife in Canada, and elsewhere.
Collapse
Affiliation(s)
- Rajnish Sharma
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Peter Thompson
- USDA-Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA
| | - Brett Elkin
- Environment and Natural Resources, Government of the Northwest Territories, 600, 5102-50th Avenue, Yellowknife, NT, X1A 3S8, Canada
| | - Robert Mulders
- Environment and Natural Resources, Government of the Northwest Territories, 600, 5102-50th Avenue, Yellowknife, NT, X1A 3S8, Canada
| | - Marsha Branigan
- Environment and Natural Resources, Government of the Northwest Territories, P.O. Box 2749, Shell Lake, Inuvik, NT, X0E 0T0, Canada
| | - Jodie Pongracz
- Environment and Natural Resources, Government of the Northwest Territories, P.O. Box 2749, Shell Lake, Inuvik, NT, X0E 0T0, Canada
| | - Brent Wagner
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Brad Scandrett
- Centre for Food-borne and Animal Parasitology, Canadian Food Inspection Agency, Saskatoon Laboratory, 116 Veterinary Road, Saskatoon, Saskatchewan, S7N 2R3, Canada
| | - Eric Hoberg
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Benjamin Rosenthal
- USDA-Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA
| | - Emily Jenkins
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, S7N 5B4, Canada
| |
Collapse
|
23
|
Cavallero S, Nejsum P, Cutillas C, Callejón R, Doležalová J, Modrý D, D’Amelio S. Insights into the molecular systematics of Trichuris infecting captive primates based on mitochondrial DNA analysis. Vet Parasitol 2019; 272:23-30. [DOI: 10.1016/j.vetpar.2019.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/21/2022]
|
24
|
Grzelak S, Moskwa B, Bień J. Trichinella britovi muscle larvae and adult worms: stage-specific and common antigens detected by two-dimensional gel electrophoresis-based immunoblotting. Parasit Vectors 2018; 11:584. [PMID: 30419953 PMCID: PMC6233509 DOI: 10.1186/s13071-018-3177-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/28/2018] [Indexed: 02/08/2023] Open
Abstract
Background Trichinella britovi is the second most common species of Trichinella that may affect human health. As an early diagnosis of trichinellosis is crucial for effective treatment, it is important to identify sensitive, specific and common antigens of adult T. britovi worms and muscle larvae. The present study was undertaken to uncover the stage-specific and common proteins of T. britovi that may be used in specific diagnostics. Methods Somatic extracts obtained from two developmental stages, muscle larvae (ML) and adult worms (Ad), were separated using two-dimensional gel electrophoresis (2-DE) coupled with immunoblot analysis. The positively-visualized protein spots specific for each stage were identified through liquid chromatography-tandem mass spectrometry (LC-LC/MS). Results A total of 272 spots were detected in the proteome of T. britovi adult worms (Ad) and 261 in the muscle larvae (ML). The somatic extracts from Ad and ML were specifically recognized by T. britovi-infected swine sera at 10 days post infection (dpi) and 60 dpi, with a total of 70 prominent protein spots. According to immunoblotting patterns and LC-MS/MS results, the immunogenic spots recognized by different pig T. britovi-infected sera were divided into three groups for the two developmental stages: adult stage-specific proteins, muscle larvae stage-specific proteins, and proteins common to both stages. Forty-five Ad proteins (29 Ad-specific and 16 common) and thirteen ML proteins (nine ML-specific and four common) cross-reacted with sera at 10 dpi. Many of the proteins identified in Ad (myosin-4, myosin light chain kinase, paramyosin, intermediate filament protein B, actin-depolymerizing factor 1 and calreticulin) are involved in structural and motor activity. Among the most abundant proteins identified in ML were 14-3-3 protein zeta, actin-5C, ATP synthase subunit d, deoxyribonuclease-2-alpha, poly-cysteine and histide-tailed protein, enolase, V-type proton ATPase catalytic and serine protease 30. Heat-shock protein, intermediate filament protein ifa-1 and intermediate filament protein B were identified in both proteomes. Conclusions To our knowledge, this study represents the first immunoproteomic identification of the antigenic proteins of adult worms and muscle larvae of T. britovi. Our results provide a valuable basis for the development of diagnostic methods. The identification of common components for the two developmental stages of T. britovi may be useful in the preparation of parasitic antigens in recombinant forms for diagnostic use.
Collapse
Affiliation(s)
- Sylwia Grzelak
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Bożena Moskwa
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Justyna Bień
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland.
| |
Collapse
|
25
|
Xie Y, Zhao B, Hoberg EP, Li M, Zhou X, Gu X, Lai W, Peng X, Yang G. Genetic characterisation and phylogenetic status of whipworms (Trichuris spp.) from captive non-human primates in China, determined by nuclear and mitochondrial sequencing. Parasit Vectors 2018; 11:516. [PMID: 30236150 PMCID: PMC6149069 DOI: 10.1186/s13071-018-3100-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/06/2018] [Indexed: 01/27/2023] Open
Abstract
Background Whipworms (Nematoda: Trichuridae), among the most common soil-transmitted helminths (STHs), can cause the socioeconomically important disease trichuriasis in various mammalian hosts including humans and non-human primates. For many years, Trichuris from non-human primates has been assigned to the same species as the one infecting humans Trichuris trichiura. More recently, several molecular reports challenged this assumption following recognition of a Trichuris species complex observed in humans and non-human primates. A refined concept for species limits within Trichuris contributes to an understanding of diversity and the potential (zoonotic) transmission among humans and non-human primates. In this study, we expanded previous investigations by exploring the diversity of Trichuris among eight primates including three Asian autochthonous species (i.e. Rhinopithecus roxellana, Rhinopithecus bieti and Nomascus leucogenys). Species-level identification, whether novel or assignable to known lineages of Trichuris, was based on analyses of nuclear internal transcribed spacers (ITS) and mitochondrial cytochrome c oxidase subunit 1 (cox1) genes. Results In total, seven genetically distinct subgroups of whipworms were determined to be present among the primates sampled. Most Trichuris lineages, including Subgroups 1, 1’, 3, 5 and 6, showed a broad host range and were not restricted to particular primate species; in addition to T. trichiura, a complex of Trichuris species was shown infecting primates. Furthermore, it was assumed that Trichuris spp. from either N. leucogenys and P. hamadryas or R. roxellana and R. bieti, respectively, were conspecific. Each pair was indicated to be a discrete lineage of Trichuris, designated, respectively, as Subgroups 1 or 1’ and 2, based on integrated genetic and phylogenetic evidence. Conclusion These results emphasise that the taxonomy and genetic variations of Trichuris are more complicated than previously acknowledged. These cumulative molecular and phylogenetic data provide a better understanding of the taxonomy, genetics and evolutionary biology of the whipworms. Electronic supplementary material The online version of this article (10.1186/s13071-018-3100-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Zhao
- Chengdu Zoo, Chengdu, 610081, Sichuan, China
| | - Eric P Hoberg
- Division of Parasitology, Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Mei Li
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuan Zhou
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weimin Lai
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
26
|
Molecular identification of Trichinella spp. in wild boar, and serological survey of high-risk populations in Iran. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Kim T, Kern E, Park C, Nadler SA, Bae YJ, Park JK. The bipartite mitochondrial genome of Ruizia karukerae (Rhigonematomorpha, Nematoda). Sci Rep 2018; 8:7482. [PMID: 29749383 PMCID: PMC5945635 DOI: 10.1038/s41598-018-25759-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/27/2018] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial genes and whole mitochondrial genome sequences are widely used as molecular markers in studying population genetics and resolving both deep and shallow nodes in phylogenetics. In animals the mitochondrial genome is generally composed of a single chromosome, but mystifying exceptions sometimes occur. We determined the complete mitochondrial genome of the millipede-parasitic nematode Ruizia karukerae and found its mitochondrial genome consists of two circular chromosomes, which is highly unusual in bilateral animals. Chromosome I is 7,659 bp and includes six protein-coding genes, two rRNA genes and nine tRNA genes. Chromosome II comprises 7,647 bp, with seven protein-coding genes and 16 tRNA genes. Interestingly, both chromosomes share a 1,010 bp sequence containing duplicate copies of cox2 and three tRNA genes (trnD, trnG and trnH), and the nucleotide sequences between the duplicated homologous gene copies are nearly identical, suggesting a possible recent genesis for this bipartite mitochondrial genome. Given that little is known about the formation, maintenance or evolution of abnormal mitochondrial genome structures, R. karukerae mtDNA may provide an important early glimpse into this process.
Collapse
Affiliation(s)
- Taeho Kim
- Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Elizabeth Kern
- Division of EcoScience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Steven A Nadler
- Department of Entomology and Nematology, University of California, Davis, CA, 95616, USA
| | - Yeon Jae Bae
- Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Joong-Ki Park
- Division of EcoScience, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
28
|
Reslová N, Škorpíková L, Slaný M, Pozio E, Kašný M. Fast and Reliable Differentiation of Eight Trichinella Species Using a High Resolution Melting Assay. Sci Rep 2017; 7:16210. [PMID: 29176674 PMCID: PMC5701189 DOI: 10.1038/s41598-017-16329-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/26/2017] [Indexed: 02/05/2023] Open
Abstract
High resolution melting analysis (HRMA) is a single-tube method, which can be carried out rapidly as an additional step following real-time quantitative PCR (qPCR). The method enables the differentiation of genetic variation (down to single nucleotide polymorphisms) in amplified DNA fragments without sequencing. HRMA has previously been adopted to determine variability in the amplified genes of a number of organisms. However, only one work to date has focused on pathogenic parasites-nematodes from the genus Trichinella. In this study, we employed a qPCR-HRMA assay specifically targeting two sequential gene fragments-cytochrome c oxidase subunit I (COI) and expansion segment V (ESV), in order to differentiate 37 single L1 muscle larvae samples of eight Trichinella species. We show that qPCR-HRMA based on the mitochondrial COI gene allows differentiation between the sequences of PCR products of the same length. This simple, rapid and reliable method can be used to identify at the species level single larvae of eight Trichinella taxa.
Collapse
Affiliation(s)
- Nikol Reslová
- Veterinary Research Institute, Department of Food and Feed Safety, Hudcova 296/70, 621 00, Brno, Czech Republic.
- Faculty of Science, Department of Botany and Zoology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Lucie Škorpíková
- Veterinary Research Institute, Department of Food and Feed Safety, Hudcova 296/70, 621 00, Brno, Czech Republic
- Faculty of Science, Department of Botany and Zoology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Michal Slaný
- Veterinary Research Institute, Department of Food and Feed Safety, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Edoardo Pozio
- European Union Reference Laboratory for Parasites, Istituto Superiore di Sanita, viale Regina Elena 299, 00161, Rome, Italy
| | - Martin Kašný
- Faculty of Science, Department of Botany and Zoology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| |
Collapse
|
29
|
Long-read sequencing improves assembly of Trichinella genomes 10-fold, revealing substantial synteny between lineages diverged over 7 million years. Parasitology 2017; 144:1302-1315. [PMID: 28583210 DOI: 10.1017/s0031182017000348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Genome assemblies can form the basis of comparative analyses fostering insight into the evolutionary genetics of a parasite's pathogenicity, host-pathogen interactions, environmental constraints and invasion biology; however, the length and complexity of many parasite genomes has hampered the development of well-resolved assemblies. In order to improve Trichinella genome assemblies, the genome of the sylvatic encapsulated species Trichinella murrelli was sequenced using third-generation, long-read technology and, using syntenic comparisons, scaffolded to a reference genome assembly of Trichinella spiralis, markedly improving both. A high-quality draft assembly for T. murrelli was achieved that totalled 63·2 Mbp, half of which was condensed into 26 contigs each longer than 571 000 bp. When compared with previous assemblies for parasites in the genus, ours required 10-fold fewer contigs, which were five times longer, on average. Better assembly across repetitive regions also enabled resolution of 8 Mbp of previously indeterminate sequence. Furthermore, syntenic comparisons identified widespread scaffold misassemblies in the T. spiralis reference genome. The two new assemblies, organized for the first time into three chromosomal scaffolds, will be valuable resources for future studies linking phenotypic traits within each species to their underlying genetic bases.
Collapse
|
30
|
Duplication of Drosophila melanogaster mitochondrial EF-Tu: pre-adaptation to T-arm truncation and exclusion of bulky aminoacyl residues. Biochem J 2017; 474:957-969. [PMID: 28130490 DOI: 10.1042/bcj20160929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 11/17/2022]
Abstract
Translation elongation factor Tu (EF-Tu) delivers aminoacyl-tRNA (aa-tRNA) to ribosomes in protein synthesis. EF-Tu generally recognizes aminoacyl moieties and acceptor- and T-stems of aa-tRNAs. However, nematode mitochondrial (mt) tRNAs frequently lack all or part of the T-arm that is recognized by canonical EF-Tu. We previously reported that two distinct EF-Tu species, EF-Tu1 and EF-Tu2, respectively, recognize mt tRNAs lacking T-arms and D-arms in the mitochondria of the chromadorean nematode Caenorhabditis elegansC. elegans EF-Tu2 specifically recognizes the seryl moiety of serylated D-armless tRNAs. Mitochondria of the enoplean nematode Trichinella possess three structural types of tRNAs: T-armless tRNAs, D-armless tRNAs, and cloverleaf tRNAs with a short T-arm. Trichinella mt EF-Tu1 binds to all three types and EF-Tu2 binds only to D-armless Ser-tRNAs, showing an evolutionary intermediate state from canonical EF-Tu to chromadorean nematode (e.g. C. elegans) EF-Tu species. We report here that two EF-Tu species also participate in Drosophila melanogaster mitochondria. Both D. melanogaster EF-Tu1 and EF-Tu2 bound to cloverleaf and D-armless tRNAs. D. melanogaster EF-Tu1 has the ability to recognize T-armless tRNAs that do not evidently exist in D. melanogaster mitochondria, but do exist in related arthropod species. In addition, D. melanogaster EF-Tu2 preferentially bound to aa-tRNAs carrying small amino acids, but not to aa-tRNAs carrying bulky amino acids. These results suggest that the Drosophila mt translation system could be another intermediate state between the canonical and nematode mitochondria-type translation systems.
Collapse
|
31
|
Mitochondrial genome diversity in dagger and needle nematodes (Nematoda: Longidoridae). Sci Rep 2017; 7:41813. [PMID: 28150734 PMCID: PMC5288807 DOI: 10.1038/srep41813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/30/2016] [Indexed: 11/23/2022] Open
Abstract
Dagger and needle nematodes included in the family Longidoridae (viz. Longidorus, Paralongidorus, and Xiphinema) are highly polyphagous plant-parasitic nematodes in wild and cultivated plants and some of them are plant-virus vectors (nepovirus). The mitochondrial (mt) genomes of the dagger and needle nematodes, Xiphinema rivesi, Xiphinema pachtaicum, Longidorus vineacola and Paralongidorus litoralis were sequenced in this study. The four circular mt genomes have an estimated size of 12.6, 12.5, 13.5 and 12.7 kb, respectively. Up to date, the mt genome of X. pachtaicum is the smallest genome found in Nematoda. The four mt genomes contain 12 protein-coding genes (viz. cox1-3, nad1-6, nad4L, atp6 and cob) and two ribosomal RNA genes (rrnL and rrnS), but the atp8 gene was not detected. These mt genomes showed a gene arrangement very different within the Longidoridae species sequenced, with the exception of very closely related species (X. americanum and X. rivesi). The sizes of non-coding regions in the Longidoridae nematodes were very small and were present in a few places in the mt genome. Phylogenetic analysis of all coding genes showed a closer relationship between Longidorus and Paralongidorus and different phylogenetic possibilities for the three Xiphinema species.
Collapse
|
32
|
Romanova EV, Aleoshin VV, Kamaltynov RM, Mikhailov KV, Logacheva MD, Sirotinina EA, Gornov AY, Anikin AS, Sherbakov DY. Evolution of mitochondrial genomes in Baikalian amphipods. BMC Genomics 2016; 17:1016. [PMID: 28105939 PMCID: PMC5249044 DOI: 10.1186/s12864-016-3357-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Amphipods (Crustacea) of Lake Baikal are a very numerous and diverse group of invertebrates generally believed to have originated by adaptive radiation. The evolutionary history and phylogenetic relationships in Baikalian amphipods still remain poorly understood. Sequencing of mitochondrial genomes is a relatively feasible way for obtaining a set of gene sequences suitable for robust phylogenetic inferences. The architecture of mitochondrial genomes also may provide additional information on the mechanisms of evolution of amphipods in Lake Baikal. RESULTS Three complete and four nearly complete mitochondrial genomes of Baikalian amphipods were obtained by high-throughput sequencing using the Illumina platform. A phylogenetic inference based on the nucleotide sequences of all mitochondrial protein coding genes revealed the Baikalian species to be a monophyletic group relative to the nearest non-Baikalian species with a completely sequenced mitochondrial genome - Gammarus duebeni. The phylogeny of Baikalian amphipods also suggests that the shallow-water species Eulimnogammarus has likely evolved from a deep-water ancestor, however many other species have to be added to the analysis to test this hypothesis. The gene order in all mitochondrial genomes of studied Baikalian amphipods differs from the pancrustacean ground pattern. Mitochondrial genomes of four species possess 23 tRNA genes, and in three genomes the extra tRNA gene copies have likely undergone remolding. Widely varying lengths of putative control regions and other intergenic spacers are typical for the mitochondrial genomes of Baikalian amphipods. CONCLUSIONS The mitochondrial genomes of Baikalian amphipods display varying organization suggesting an intense rearrangement process during their evolution. Comparison of complete mitochondrial genomes is a potent approach for studying the amphipod evolution in Lake Baikal.
Collapse
Affiliation(s)
- Elena V. Romanova
- Laboratory of Molecular Systematics, Limnological Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
| | - Vladimir V. Aleoshin
- Belozersky Institute for Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994 Russian Federation
| | - Ravil M. Kamaltynov
- Laboratory of Molecular Systematics, Limnological Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
| | - Kirill V. Mikhailov
- Belozersky Institute for Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994 Russian Federation
| | - Maria D. Logacheva
- Belozersky Institute for Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russian Federation
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994 Russian Federation
- Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420012 Russian Federation
| | - Elena A. Sirotinina
- Laboratory of Molecular Systematics, Limnological Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
| | - Alexander Yu. Gornov
- Institute for System Dynamics and Control Theory, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
| | - Anton S. Anikin
- Institute for System Dynamics and Control Theory, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
| | - Dmitry Yu. Sherbakov
- Laboratory of Molecular Systematics, Limnological Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033 Russian Federation
- Faculty of Biology and Soil Studies, Irkutsk State University, Irkutsk, 664003 Russian Federation
| |
Collapse
|
33
|
Odoevskaya IM, Spiridonov SE. Trichinella nativa haplotypes in Russia show diversity in cytochrome oxidase mtDNA gene. Vet Parasitol 2016; 231:39-42. [DOI: 10.1016/j.vetpar.2016.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 11/30/2022]
|
34
|
Korhonen PK, Pozio E, La Rosa G, Chang BCH, Koehler AV, Hoberg EP, Boag PR, Tan P, Jex AR, Hofmann A, Sternberg PW, Young ND, Gasser RB. Phylogenomic and biogeographic reconstruction of the Trichinella complex. Nat Commun 2016; 7:10513. [PMID: 26830005 PMCID: PMC4740406 DOI: 10.1038/ncomms10513] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 12/18/2015] [Indexed: 01/21/2023] Open
Abstract
Trichinellosis is a globally important food-borne parasitic disease of humans caused by roundworms of the Trichinella complex. Extensive biological diversity is reflected in substantial ecological and genetic variability within and among Trichinella taxa, and major controversy surrounds the systematics of this complex. Here we report the sequencing and assembly of 16 draft genomes representing all 12 recognized Trichinella species and genotypes, define protein-coding gene sets and assess genetic differences among these taxa. Using thousands of shared single-copy orthologous gene sequences, we fully reconstruct, for the first time, a phylogeny and biogeography for the Trichinella complex, and show that encapsulated and non-encapsulated Trichinella taxa diverged from their most recent common ancestor ∼21 million years ago (mya), with taxon diversifications commencing ∼10-7 mya.
Collapse
Affiliation(s)
- Pasi K Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Edoardo Pozio
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Giuseppe La Rosa
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Bill C H Chang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Yourgene Bioscience, Shu-Lin District, New Taipei City 23863, Taiwan
| | - Anson V Koehler
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Eric P Hoberg
- United States National Parasite Collection, US Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA
| | - Peter R Boag
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Patrick Tan
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Republic of Singapore.,Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 138672, Republic of Singapore
| | - Aaron R Jex
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Queensland 4111, Australia
| | - Paul W Sternberg
- Division of Biology, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
35
|
Gasser RB, Korhonen PK, Zhu XQ, Young ND. Harnessing the Toxocara Genome to Underpin Toxocariasis Research and New Interventions. ADVANCES IN PARASITOLOGY 2016; 91:87-110. [PMID: 27015948 DOI: 10.1016/bs.apar.2015.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Parasitic worms, such as flatworms (platyhelminths) and roundworms (nematodes), cause substantial morbidity and mortality in animals and people globally. The ascaridoid nematode Toxocara canis is a zoonotic parasite of socioeconomic significance worldwide. In humans, this worm causes toxocariasis (disease) mainly in underprivileged communities in both the developed and developing worlds. While reasonably well studied from clinical and epidemiological perspectives, little is understood about the molecular biology of T. canis, its relationship with its hosts and the disease that it causes. However, a recent report of the draft genome and transcriptomes of T. canis should underpin many fundamental and applied research areas in the future. The present article gives a background on Toxocara and toxocariasis, a brief account of diagnostic approaches for specific identification and genetic analysis, and gives a perspective on the impact that the genome of T. canis and advanced molecular technologies could have on our understanding of the parasite and the diseases that it causes as well as the design of new and improved approaches for the diagnosis, treatment and control of toxocariasis.
Collapse
|
36
|
Exploring molecular variation in Schistosoma japonicum in China. Sci Rep 2015; 5:17345. [PMID: 26621075 PMCID: PMC4664899 DOI: 10.1038/srep17345] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/26/2015] [Indexed: 12/12/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease that affects more than 200 million people worldwide. The main disease-causing agents, Schistosoma japonicum, S. mansoni and S. haematobium, are blood flukes that have complex life cycles involving a snail intermediate host. In Asia, S. japonicum causes hepatointestinal disease (schistosomiasis japonica) and is challenging to control due to a broad distribution of its snail hosts and range of animal reservoir hosts. In China, extensive efforts have been underway to control this parasite, but genetic variability in S. japonicum populations could represent an obstacle to eliminating schistosomiasis japonica. Although a draft genome sequence is available for S. japonicum, there has been no previous study of molecular variation in this parasite on a genome-wide scale. In this study, we conducted the first deep genomic exploration of seven S. japonicum populations from mainland China, constructed phylogenies using mitochondrial and nuclear genomic data sets, and established considerable variation between some of the populations in genes inferred to be linked to key cellular processes and/or pathogen-host interactions. Based on the findings from this study, we propose that verifying intraspecific conservation in vaccine or drug target candidates is an important first step toward developing effective vaccines and chemotherapies against schistosomiasis.
Collapse
|
37
|
Hawash MBF, Andersen LO, Gasser RB, Stensvold CR, Nejsum P. Mitochondrial Genome Analyses Suggest Multiple Trichuris Species in Humans, Baboons, and Pigs from Different Geographical Regions. PLoS Negl Trop Dis 2015; 9:e0004059. [PMID: 26367282 PMCID: PMC4569395 DOI: 10.1371/journal.pntd.0004059] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 08/14/2015] [Indexed: 11/19/2022] Open
Abstract
Background The whipworms Trichuris trichiura and Trichuris suis are two parasitic nematodes of humans and pigs, respectively. Although whipworms in human and non-human primates historically have been referred to as T. trichiura, recent reports suggest that several Trichuris spp. are found in primates. Methods and Findings We sequenced and annotated complete mitochondrial genomes of Trichuris recovered from a human in Uganda, an olive baboon in the US, a hamadryas baboon in Denmark, and two pigs from Denmark and Uganda. Comparative analyses using other published mitochondrial genomes of Trichuris recovered from a human and a porcine host in China and from a françois’ leaf-monkey (China) were performed, including phylogenetic analyses and pairwise genetic and amino acid distances. Genetic and protein distances between human Trichuris in Uganda and China were high (~19% and 15%, respectively) suggesting that they represented different species. Trichuris from the olive baboon in US was genetically related to human Trichuris in China, while the other from the hamadryas baboon in Denmark was nearly identical to human Trichuris from Uganda. Baboon-derived Trichuris was genetically distinct from Trichuris from françois’ leaf monkey, suggesting multiple whipworm species circulating among non-human primates. The genetic and protein distances between pig Trichuris from Denmark and other regions were roughly 9% and 6%, respectively, while Chinese and Ugandan whipworms were more closely related. Conclusion and Significance Our results indicate that Trichuris species infecting humans and pigs are phylogenetically distinct across geographical regions, which might have important implications for the implementation of suitable and effective control strategies in different regions. Moreover, we provide support for the hypothesis that Trichuris infecting primates represents a complex of cryptic species with some species being able to infect both humans and non-human primates. Trichuris trichiura and Trichuris suis are whipworms found in humans and pigs, respectively, causing morbidity in humans and being associated with production losses in pigs. Although Trichuris from non-human primates is attributed to T. trichiura, hence considered the same species as the one infecting humans, several recent reports question this assumption. Morphologically similar parasites that have a wide global distribution and/or those capable of infecting several host species may comprise several ‘hidden’ species. In this study, we sequenced, annotated, and compared the mitochondrial genomes (including published genomes) of Trichuris obtained from different hosts in different geographical regions, including humans (Uganda and China), pigs (China, Uganda, and Denmark) and two types of non-human primates (baboons and françois’ leaf monkey). We found high genetic distinctiveness between human Trichuris from China and Uganda. Likewise, pig Trichuris from Denmark and other regions also showed considerable, although lower, genetic diversity. This suggests that both pig- and human-derived Trichuris may represent different species with potential differences in endemicity, which may have important implications for implementing effective control strategies. Our data also suggests that Trichuris infecting primates comprises several species and may be transmitted from non-human primates to humans.
Collapse
Affiliation(s)
- Mohamed B. F. Hawash
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Lee O. Andersen
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Robin B. Gasser
- Department of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Christen Rune Stensvold
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Nejsum
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| |
Collapse
|
38
|
Yang X, Gasser RB, Koehler AV, Wang L, Zhu K, Chen L, Feng H, Hu M, Fang R. Mitochondrial genome of Hypoderaeum conoideum - comparison with selected trematodes. Parasit Vectors 2015; 8:97. [PMID: 25889473 PMCID: PMC4331133 DOI: 10.1186/s13071-015-0720-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/06/2015] [Indexed: 11/18/2022] Open
Abstract
Background Hypoderaeum conoideum is a neglected but important trematode. The life cycle of this parasite is complex: snails serve as the first intermediate hosts: bivalves, fishes or tadpoles serve as the second intermediate hosts, and poultry (such as chickens and ducks) act as definitive hosts. In recent years, H. conoideum has caused significant economic losses to the poultry industry in some Asian countries. Despite its importance, little is known about the molecular ecology and population genetics of this parasite. Knowledge of mitochondrial (mt) genome of H. conoideum can provide a foundation for phylogenetic studies as well as epidemiological investigations. Methods The entire mt genome of H. conoideum was amplified in five overlapping fragments by PCR and sequenced, annotated and compared with mt genomes of selected trematodes. A phylogenetic analysis of concatenated mt amino acid sequence data for H. conoideum, eight other digeneans (Clonorchis sinensis, Fasciola gigantica, F. hepatica, Opisthorchis felineus, Schistosoma haematobium, S. japonicum, S. mekongi and S. spindale) and one tapeworm (Taenia solium; outgroup) was conducted to assess their relationships. Results The complete mt genome of H. conoideum is 14,180 bp in length, and contains 12 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and one non-coding region (NCR). The gene arrangement is the same as in Fasciola spp, with all genes being transcribed in the same direction. The phylogenetic analysis showed that H. conoideum had a relatively close relationship with F. hepatica and other members of the Fasciolidae, followed by the Opisthorchiidae, and then the Schistosomatidae. Conclusions The mt genome of H. conoideum should be useful as a resource for comparative mt genomic studies of trematodes and for DNA markers for systematic, population genetic and epidemiological studies of H. conoideum and congeners.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, 3010, VIC, Australia.
| | - Anson V Koehler
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, 3010, VIC, Australia.
| | - Lixia Wang
- Hubei Provincial Center for Diseases Control and Prevention, Wuhan, 430079, Hubei, PR China.
| | - Kaixiang Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Lu Chen
- Hubei Entry-Exit Inspection and Quarantine Bureau, Wuhan, 430022, Hubei, PR China.
| | - Hanli Feng
- Hubei Entry-Exit Inspection and Quarantine Bureau, Wuhan, 430022, Hubei, PR China.
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| |
Collapse
|