1
|
Ní Dhufaigh K, Botwright N, Dillon E, O’Connor I, MacCarthy E, Slattery O. Differential Exoproteome and Biochemical Characterisation of Neoparamoeba perurans. Microorganisms 2021; 9:microorganisms9061258. [PMID: 34207776 PMCID: PMC8226569 DOI: 10.3390/microorganisms9061258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022] Open
Abstract
Infection with the protozoan ectoparasite Neoparamoeba perurans, the causative agent of AGD, remains a global threat to salmonid farming. This study aimed to analyse the exoproteome of both an attenuated and virulent N. perurans isolate using proteomics and cytotoxicity testing. A disproportionate presence of proteins from the co-cultured microbiota of N. perurans was revealed on searching an amalgamated database of bacterial, N. perurans and Amoebozoa proteins. LC-MS/MS identified 33 differentially expressed proteins, the majority of which were upregulated in the attenuated exoproteome. Proteins of putative interest found in both exoproteomes were maltoporin, ferrichrome-iron receptor, and putative ferric enterobactin receptor. Protease activity remained significantly elevated in the attenuated exoproteome compared with the virulent exoproteome. Similarly, the attenuated exoproteome had a significantly higher cytotoxic effect on rainbow trout gill cell line (RTgill W1) cells compared with the virulent exoproteome. The presence of a phosphatase and serine protease in the virulent exoproteome may facilitate AGD infection but do not appear to be key players in causing cytotoxicity. Altogether, this study reveals prolonged culture of N. perurans affects the exoproteome composition in favour of nutritional acquisition, and that the current culturing protocol for virulent N. perurans does not facilitate the secretion of virulence factors.
Collapse
Affiliation(s)
- Kerrie Ní Dhufaigh
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Co. Galway, H91 T8NW Eircode, Ireland; (I.O.); (E.M.)
- Correspondence:
| | - Natasha Botwright
- CSIRO Agriculture and Food, Livestock & Aquaculture, Queensland Biosciences Precinct, 306 Carmody Road, Brisbane, QLD 4067, Australia;
| | - Eugene Dillon
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Co. Dublin, D04 V1W8 Eircode, Ireland;
| | - Ian O’Connor
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Co. Galway, H91 T8NW Eircode, Ireland; (I.O.); (E.M.)
| | - Eugene MacCarthy
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Co. Galway, H91 T8NW Eircode, Ireland; (I.O.); (E.M.)
| | - Orla Slattery
- Department of Biopharmaceutical and Medical Science, Galway-Mayo Institute of Technology, Co. Galway, H91 T8NW Eircode, Ireland;
| |
Collapse
|
2
|
Erection of a New Genus and Species for the Pathogen of Hard Clams 'Quahog Parasite Unknown' (QPX): Mucochytrium quahogii gen. nov., sp. nov. Protist 2021; 172:125793. [PMID: 33607480 DOI: 10.1016/j.protis.2021.125793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/21/2022]
Abstract
Quahog Parasite Unknown (QPX) is a facultative parasite of the hard clam, Mercenaria mercenaria. Although it has been observed in clams since the 1960's and cultivated since the 1990's, conflicting reports on important aspects of its biology have prevented its formal description. 18S rRNA gene sequences identify QPX as a thraustochytrid, but its production of copious mucus is atypical for this group. There are also conflicting reports about whether QPX shares common features of thraustochytrids, such as the production of an ectoplasmic net and biflagellate zoospores. This study reaffirms the previous descriptions of zoospore production by QPX in culture, in multiple strains from several geographic locations, and provides detail on how to maintain QPX cultures under conditions that promote the production of zoospores. Furthermore, we describe new aspects of the life cycle not previously observed. Finally, we erect Mucochytrium quahogii gen. nov., sp. nov. to accommodate this unusual thraustochytrid.
Collapse
|
3
|
Farhat S, Tanguy A, Pales Espinosa E, Guo X, Boutet I, Smolowitz R, Murphy D, Rivara GJ, Allam B. Identification of variants associated with hard clam, Mercenaria mercenaria, resistance to Quahog Parasite Unknown disease. Genomics 2020; 112:4887-4896. [PMID: 32890702 DOI: 10.1016/j.ygeno.2020.08.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
Severe losses in aquacultured and wild hard clam (Mercenaria mercenaria) stocks have been previously reported in the northeastern United States due to a protistan parasite called QPX (Quahog Parasite Unknown). Previous work demonstrated that clam resistance to QPX is under genetic control. This study identifies single nucleotide polymorphism (SNP) associated with clam survivorship from two geographically segregated populations, both deployed in an enzootic site. The analysis contrasted samples collected before and after undergoing QPX-related mortalities and relied on a robust draft clam genome assembly. ~200 genes displayed significant variant enrichment at each sampling point in both populations, including 18 genes shared between both populations. Markers from both populations were identified in genes related to apoptosis pathways, protein-protein interaction, receptors, and signaling. This research begins to identify genetic markers associated with clam resistance to QPX disease, leading the way for the development of resistant clam stocks through marker-assisted selection.
Collapse
Affiliation(s)
- Sarah Farhat
- Marine Animal Disease Laboratory, School of Marine and Atmospheric Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794-5000, USA
| | - Arnaud Tanguy
- Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Sorbonne Université, Place Georges Teissier, 29680 Roscoff, France
| | - Emmanuelle Pales Espinosa
- Marine Animal Disease Laboratory, School of Marine and Atmospheric Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794-5000, USA
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ 08349, USA
| | - Isabelle Boutet
- Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Sorbonne Université, Place Georges Teissier, 29680 Roscoff, France
| | - Roxanna Smolowitz
- Roger Williams University, Department of Biology, Marine Biology, and Environmental Science, 1 Old Ferry Rd, Bristol, RI 02809, USA
| | - Diane Murphy
- Cape Cod Cooperative Extension, 3195 Main St, Barnstable, MA 02630, NY 1197, USA
| | - Gregg J Rivara
- Cornell University Cooperative Extension of Suffolk County, 3690 Cedar Beach Rd, Southold, NY 11971, USA
| | - Bassem Allam
- Marine Animal Disease Laboratory, School of Marine and Atmospheric Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794-5000, USA.
| |
Collapse
|
4
|
Xue Q. Pathogen proteases and host protease inhibitors in molluscan infectious diseases. J Invertebr Pathol 2019; 166:107214. [PMID: 31348922 DOI: 10.1016/j.jip.2019.107214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/11/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
The development of infectious diseases represents an outcome of dynamic interactions between the disease-producing agent's pathogenicity and the host's self-defense mechanism. Proteases secreted by pathogenic microorganisms and protease inhibitors produced by host species play an important role in the process. This review aimed at summarizing major findings in research on pathogen proteases and host protease inhibitors that had been proposed to be related to the development of mollusk diseases. Metalloproteases and serine proteases respectively belonging to Family M4 and Family S8 of the MEROPS system are among the most studied proteases that may function as virulence factors in mollusk pathogens. On the other hand, a mollusk-specific family (Family I84) of novel serine protease inhibitors and homologues of the tissue inhibitor of metalloprotease have been studied for their potential in the molluscan host defense. In addition, research at the genomic and transcriptomic levels showed that more proteases of pathogens and protease inhibitor of hosts are likely involved in mollusk disease processes. Therefore, the pathological significance of interactions between pathogen proteases and host protease inhibitors in the development of molluscan infectious diseases deserves more research efforts.
Collapse
Affiliation(s)
- Qinggang Xue
- Zhejiang Key Lab of Aquatic Germplasm Resources, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
5
|
Abstract
Background Quahog Parasite Unknown (QPX) is an opportunistic protistan pathogen of the clam Mercenaria mercenaria. Infections with QPX have caused significant economic losses in the Northeastern United States. Previous research demonstrated a geographic gradient for disease prevalence and intensity, but little information is available on the genetic diversity of the parasite throughout its distribution range. Also, QPX virulence factors are not well understood. This study addresses the occurrence of QPX genetic variants with a particular focus on functions involved in virulence and adaptation to environmental conditions. Results Analyses were performed using transcriptome-wide single-nucleotide polymorphism (SNP) of four QPX isolates cultured from infected clams collected from disparate locations along the Northeastern United States. For contig assembly and mapping, two different genome builds and four transcriptomes of the parasite were examined. Genomic variants appeared at a differential rate relative to sequenced transcripts at 20.18 and 22.55% occurrence under 1000 base pairs upstream and downstream protein domains respectively and at 57.26% rate in protein domain coding sequences. QPX strains shared 30.50% of the mutations and exhibited a preferential nucleotide substitution towards thymine. Sequence identity suggested relatedness between different QPX strains, with the parasite being possibly introduced to Virginia from the Massachusetts region during clam trading, while QPX could have been naturally present in New York. Diversity in virulence, temperature, and salinity domains suggested a common variability between strains, but with a preferential higher variation in local adaptation genes. This could explain differences in disease prevalence noted in different regions. Overall, the results supported views that this opportunistic parasite might be able to adapt to varying environmental conditions. Conclusion Relatedness and mutations between the four QPX strains suggested that variability in environmental-related functions favors parasite survival, potentially promoting resilience against stressful conditions. These findings are in agreement with the widespread presence of QPX in the environment. Although QPX levels are enzootic in most areas, an increase in disease outbreaks were often associated with seasonal changes in environmental conditions. A selection mediated by the parasitic life of QPX remains possible, but the effect of the environment on the biology of the parasite appears more obvious. Electronic supplementary material The online version of this article (10.1186/s12864-018-4866-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sleiman Bassim
- School of Marine and Atmospheric Sciences, Stony Brook University, NY, 11794-5000, USA
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, NY, 11794-5000, USA.
| |
Collapse
|
6
|
Hartman R, Pales Espinosa E, Allam B. Identification of clam plasma proteins that bind its pathogen Quahog Parasite Unknown. FISH & SHELLFISH IMMUNOLOGY 2018; 77:214-221. [PMID: 29609028 DOI: 10.1016/j.fsi.2018.03.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/22/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
The hard clam (Mercenaria mercenaria) is among the most economically-important marine species along the east coast of the United States, representing the first marine resource in several Northeastern states. The species is rather resilient to infections and the only important disease of hard clams results from an infection caused by Quahog Parasite Unknown (QPX), a protistan parasite that can lead to significant mortality events in wild and aquacultured clam stocks. Though the presence of QPX disease has been documented since the 1960s, little information is available on cellular and molecular interactions between the parasite and the host. This study examined the interactions between the clam immune system and QPX cells. First, the effect of clam plasma on the binding of hemocytes to parasite cells was evaluated. Second, clam plasma proteins that bind QPX cells were identified through proteomic (LC-MS/MS) analyses. Finally, the effect of prior clam exposure to QPX on the abundance of QPX-reactive proteins in the plasma was evaluated. Results showed that plasma factors enhance the attachment of hemocytes to QPX. Among the proteins that specifically bind to QPX cells, several lectins were identified, as well as complement component proteins and proteolytic enzymes. Furthermore, results showed that some of these lectins and complement-related proteins are inducible as their abundance significantly increased following QPX challenge. These results shed light on plasma proteins involved in the recognition and binding of parasite cells and provide molecular targets for future investigations of factors involved in clam resistance to the disease, and ultimately for the selection of resistant clam stocks.
Collapse
Affiliation(s)
- Rachel Hartman
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
7
|
Rubin E, Tanguy A, Pales Espinosa E, Allam B. Differential Gene Expression in Five Isolates of the Clam Pathogen, Quahog Parasite Unknown (QPX). J Eukaryot Microbiol 2017; 64:647-654. [PMID: 28171698 DOI: 10.1111/jeu.12400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/30/2017] [Accepted: 01/30/2017] [Indexed: 11/28/2022]
Abstract
Quahog parasite unknown (QPX) is a thraustochytrid protist that infects the hard clam, Mercenaria mercenaria, causing significant economic losses along the northeastern coast of North America. Previous investigations noted differences in growth dynamics and virulence in QPX cells from different geographic locations. In order to probe the molecular determinants for these variations, we investigated the transcriptomic profiles of five geographically distinct QPX isolates using custom 15k 60-mer oligonucleotide arrays. A total of 1,263 transcripts were differentially expressed (DE) among the five QPX isolates. The hierarchical clustering of gene expression profiles showed that the QPX isolates from Raritan Bay (RB, NY) and from Provincetown Harbor (MA) were more similar to each other and diverged from QPX isolates from Peconic Bay (PB, NY) and Old Plantation Creek (VA), which had more similar gene expression profiles. The most prominent difference was based on 78 transcripts coding for heat shock proteins DE between the five QPX isolates. The study generated contrasting transcriptomic profiles for QPX isolated from northern (MA) and deeper (RB, NY) locations as compared to southern (VA) and shallower (PB, NY) areas, suggesting the adaptation of the parasite to local environmental, in particular temperature, conditions.
Collapse
Affiliation(s)
- Ewelina Rubin
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, 11794-5000, New York, USA
| | - Arnaud Tanguy
- UPMC Université Paris 6, UMR 7144, Equipe Génétique et Adaptation en Milieu Extrême, Station Biologique de Roscoff, Roscoff, 29682, France.,UPMC Université Paris 6, UMR 7138, Systématique, Adaptation et Evolution, Paris, 75005, France
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, 11794-5000, New York, USA
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, 11794-5000, New York, USA
| |
Collapse
|
8
|
Rubin E, Werneburg GT, Pales Espinosa E, Thanassi DG, Allam B. Identification and characterization of peptidases secreted by quahog parasite unknown (QPX), the protistan parasite of hard clams. DISEASES OF AQUATIC ORGANISMS 2016; 122:21-33. [PMID: 27901501 DOI: 10.3354/dao03058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Quahog parasite unknown (QPX) is a protistan parasite capable of causing deadly infections in the hard clam Mercenaria mercenaria, one of the most valuable shellfish species in the USA. QPX is an extracellular parasite found mostly in the connective tissue of clam mantle and, in more severe cases of infection, other clam organs. Histopathologic examinations revealed that QPX cells within clam tissues are typically surrounded by hollow areas that have been hypothesized to be, at least in part, a result of extracellular digestion of clam proteins by the parasite. We investigated peptidase activity in QPX extracellular secretions using sodium dodecyl sulfate-polyacrylamide gels containing gelatin as a co-polymerized substrate. Multiple peptidase activity bands of molecular weights ranging from 20 to 100 kDa were detected in QPX secretions derived from a variety of culture media. One major band of approximately 35 kDa was composed of subtilisin-like peptidases that were released by QPX cells in all studied media, suggesting that these are the most common peptidases used by QPX for nutrient acquisition. PCR quantification of mRNA encoding QPX subtilisins revealed that their expression changes with the protein substrate used in the culture media. A fast protein liquid chromatography (FPLC) was used to fractionate QPX extracellular secretions. An FPLC-fraction containing a subtilisin-type serine peptidase was able to digest clam plasma proteins, suggesting that this peptidase might be involved in the disease process, and making it a good candidate for further investigation as a possible virulence factor of the parasite.
Collapse
Affiliation(s)
- Ewelina Rubin
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| | | | | | | | | |
Collapse
|