1
|
Okore W, Ouma C, Okoth RO, Yeda R, Ingasia LO, Mwakio EW, Ochora DO, Wakoli DM, Amwoma JG, Chemwor GC, Juma JA, Okudo CO, Cheruiyot AC, Opot BH, Juma D, Egbo TE, Andagalu B, Roth A, Kamau E, Akala HM. Increased sensitivity of malaria parasites to common antimalaria drugs after the introduction of artemether-lumefantrine: Implication of policy change and implementation of more effective drugs in fight against malaria. PLoS One 2024; 19:e0298585. [PMID: 38900782 PMCID: PMC11189199 DOI: 10.1371/journal.pone.0298585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/28/2024] [Indexed: 06/22/2024] Open
Abstract
Single nucleotide polymorphisms (SNPs) in the Plasmodium falciparum multi-drug resistance protein 1 (Pfmrp1) gene have previously been reported to confer resistance to Artemisinin-based Combination Therapies (ACTs) in Southeast Asia. A total of 300 samples collected from six sites between 2008 and 2019 under an ongoing malaria drug sensitivity patterns in Kenya study were evaluated for the presence of SNPs at Pfmrp1 gene codons: H191Y, S437A, I876V, and F1390I using the Agena MassARRAY® platform. Each isolate was further tested against artemisinin (ART), lumefantrine (LU), amodiaquine (AQ), mefloquine (MQ), quinine (QN), and chloroquine (CQ) using malaria the SYBR Green I-based method to determine their in vitro drug sensitivity. Of the samples genotyped, polymorphism at Pfmrp1 codon I876V was the most frequent, with 59.3% (163/275) mutants, followed by F1390I, 7.2% (20/278), H191Y, 4.0% (6/151), and S437A, 3.3% (9/274). A significant decrease in median 50% inhibition concentrations (IC50s) and interquartile range (IQR) was noted; AQ from 2.996 ng/ml [IQR = 2.604-4.747, n = 51] in 2008 to 1.495 ng/ml [IQR = 0.7134-3.318, n = 40] (P<0.001) in 2019, QN from 59.64 ng/ml [IQR = 29.88-80.89, n = 51] in 2008 to 18.10 ng/ml [IQR = 11.81-26.92, n = 42] (P<0.001) in 2019, CQ from 35.19 ng/ml [IQR = 16.99-71.20, n = 30] in 2008 to 6.699 ng/ml [IQR = 4.976-9.875, n = 37] (P<0.001) in 2019, and ART from 2.680 ng/ml [IQR = 1.608-4.857, n = 57] in 2008 to 2.105 ng/ml [IQR = 1.266-3.267, n = 47] (P = 0.0012) in 2019, implying increasing parasite sensitivity to the drugs over time. However, no significant variations were observed in LU (P = 0.2692) and MQ (P = 0.0939) respectively, suggesting stable parasite responses over time. There was no statistical significance between the mutation at 876 and parasite sensitivity to selected antimalarials tested, suggesting stable sensitivity for the parasites with 876V mutations. These findings show that Kenyan parasite strains are still sensitive to AQ, QN, CQ, ART, LU, and MQ. Despite the presence of Pfmrp1 mutations in parasites among the population.
Collapse
Affiliation(s)
- Winnie Okore
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
- Department of Biomedical Sciences and Technology, Maseno University, Kisumu, Kenya
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, Maseno University, Kisumu, Kenya
| | - Raphael O. Okoth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Redemptah Yeda
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Luicer O. Ingasia
- Sydney Brenner Institute of Molecular Biosciences, University of Witwatersrand, Johannesburg, South Africa
| | - Edwin W. Mwakio
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Douglas O. Ochora
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
- Department of Biological Sciences, Kisii University, Kisii, Kenya
| | - Duncan M. Wakoli
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
- Department of Biochemistry and Molecular Biology, Egerton University, Njoro, Kenya
| | - Joseph G. Amwoma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Gladys C. Chemwor
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Jackline A. Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Charles O. Okudo
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Agnes C. Cheruiyot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Benjamin H. Opot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Dennis Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Timothy E. Egbo
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kisumu, Kenya
| | - Ben Andagalu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Amanda Roth
- Medical Communications for Combat Casualty Care, Fort Detrick, Maryland, United States of America
| | - Edwin Kamau
- Department of Pathology and Area Laboratory Services, Tripler Army Medical Center, Honolulu, Honolulu, United States of America
| | - Hoseah M. Akala
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| |
Collapse
|
2
|
Sifuna PM, Mbinji M, Lucas TO, Onyango I, Akala HM, Waitumbi JN, Ogutu BR, Hutter JN, Otieno W. The Walter Reed Project, Kisumu Field Station: Impact of Research on Malaria Policy, Management, and Prevention. Am J Trop Med Hyg 2024; 110:1069-1079. [PMID: 38653233 PMCID: PMC11154051 DOI: 10.4269/ajtmh.23-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/16/2024] [Indexed: 04/25/2024] Open
Abstract
The Walter Reed Project is a collaboration between the Walter Reed Army Institute of Research of the United States Department of Defense and the Kenya Medical Research Institute. The Kisumu field station, comprising four campuses, has until recently been devoted primarily to research on malaria countermeasures. The Kombewa Clinical Research Center is dedicated to conducting regulated clinical trials of therapeutic and vaccine candidates in development. The center's robust population-based surveillance platform, along with an active community engagement strategy, guarantees consistent recruitment and retention of participants in clinical trials. The Malaria Diagnostic Center, backed by WHO-certified microscopists and a large malaria blood film collection, champions high-quality malaria diagnosis and strict quality assurance through standardized microscopy trainings. The Malaria Drug Resistance Laboratory leverages cutting-edge technology such as real-time Polymerase Chain Reaction (qPCR) to conduct comprehensive research on resistance markers and obtain information on drug efficacy. The laboratory has been working on validating artemisinin resistance markers and improving tracking methods for current and future antimalarial compounds. Finally, the Basic Science Laboratory employs advanced genomic technology to examine endpoints such as immunogenicity and genomic fingerprinting for candidate drugs and vaccine efficacy. Herein, we examine the site's significant contributions to malaria policy, management, and prevention practices in Kenya and around the world.
Collapse
Affiliation(s)
- Peter M Sifuna
- Kenya Medical Research Institute, Kisumu, Kenya
- U.S. Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - Michal Mbinji
- Kenya Medical Research Institute, Kisumu, Kenya
- U.S. Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - Tina O Lucas
- Kenya Medical Research Institute, Kisumu, Kenya
- U.S. Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - Irene Onyango
- Kenya Medical Research Institute, Kisumu, Kenya
- U.S. Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - Hoseah M Akala
- Kenya Medical Research Institute, Kisumu, Kenya
- U.S. Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - John N Waitumbi
- Kenya Medical Research Institute, Kisumu, Kenya
- U.S. Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - Bernhards R Ogutu
- Kenya Medical Research Institute, Kisumu, Kenya
- U.S. Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - Jack N Hutter
- U.S. Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - Walter Otieno
- Kenya Medical Research Institute, Kisumu, Kenya
- U.S. Army Medical Research Directorate-Africa, Kisumu, Kenya
| |
Collapse
|
3
|
Wotodjo AN, Oboh MA, Doucoure S, Diagne N, Diène-Sarr F, Niang M, Trape JF, Sokhna C, Amambua-Ngwa A, D'Alessandro U. Rebound of multiple infections and prevalence of anti-malarial resistance associated markers following malaria upsurges in Dielmo village, Senegal, West Africa. Malar J 2023; 22:257. [PMID: 37670357 PMCID: PMC10478411 DOI: 10.1186/s12936-023-04694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Thanks to the scale up of malaria control interventions, the malaria burden in Senegal has decreased substantially to the point that the National Malaria Control Programme plans to achieve malaria elimination by 2030. To guide such efforts, measuring and monitoring parasite population evolution and anti-malarial drugs resistance is extremely important. Information on the prevalence of parasite mutations related to drug resistance can provide a first signal of emergence, introduction and selection that can help with refining drug interventions. The aim of this study was to analyse the prevalence of anti-malarial drug resistance-associated markers before and after the implementation of artemisinin-based combination therapy (ACT) from 2005 to 2014 in Dielmo, a model site for malaria intervention studies in Senegal. METHODS Samples from both malaria patients and Plasmodium falciparum asymptomatic carriers were analysed with high resolution melting (HRM) technique to genotype P. falciparum chloroquine resistance transporter (Pfcrt) gene haplotypes and multidrug-resistant protein 1 (Pfmdr1) gene at codons N86 and Y184. RESULTS Among the 539 samples analysed, 474, 486, and 511 were successfully genotyped for Pfmdr1 N86, Y184, and Pfcrt, respectively. The prevalence of drug resistance markers was high, particularly during the malaria upsurges. Following the scale-up in bed net distribution, only the mutant (86F-like) variant of Pfmdr1 86 was present while during the malaria upsurges the predominance of two types 86Y-86N (43%) and 86F-like (56%) were observed. Most infections (87%) carried the wild type Y-allele at Pfmdr1 184 during the period of nets scale-up while during the malaria upsurges only 16% of infections had wild type and 79% of infections had mixed (mutant/wild) type. The frequency of the mixed genotypes SVMNT-like_CVMNK and SVMNT-like_CVIET within Pfcrt gene was particularly low during bednet scale up. Their frequency increased significantly (P < 0.001) during the malaria upsurges. CONCLUSION This data demonstrated the effect of multiple interventions on the dynamics of drug resistance-associated mutations in the main malaria parasite P. falciparum in an endemic village in Senegal. Monitoring drug resistance markers should be conducted periodically to detect threats of emergence or resurgence that could compromise the efficacy of anti-malarial drugs.
Collapse
Affiliation(s)
- Amélé Nyedzie Wotodjo
- VITROME, UMR 257 IRD, Campus UCAD-IRD, Dakar, Senegal.
- Medical Research Council Unit, London School of Hygiene and Tropical Medicine, Fajara, The Gambia.
| | - Mary Aigbiremo Oboh
- Medical Research Council Unit, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Department of Biological Sciences, University of Medical Sciences, Ondo, Nigeria
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | | | | | | | - Makhtar Niang
- Institut Pasteur de Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Jean-François Trape
- UMR MIVEGEC, Laboratoire de Paludologie et Zoologie Médicale, IRD, Dakar, Senegal
| | - Cheikh Sokhna
- VITROME, UMR 257 IRD, Campus UCAD-IRD, Dakar, Senegal
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Umberto D'Alessandro
- Medical Research Council Unit, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| |
Collapse
|
4
|
Chemwor GC, Andagalu BM, Onyango IA, Opot BH, Okoth RO, Yedah RA, Juma JA, Mwakio EW, Wakoli DM, Amwoma JG, Cheruiyot AC, Juma DW, Ogutu BR, Egbo TE, Garges EC, Roth AL, Kamau E, Watson OJ, Akala HM. Therapeutic response to artemisinin combination therapies among individuals with Plasmodium falciparum single infection vs mixed Plasmodium species infections: a retrospective posthoc analysis in Kisumu County, western Kenya. Int J Infect Dis 2023; 132:17-25. [PMID: 37061211 DOI: 10.1016/j.ijid.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/17/2023] Open
Abstract
OBJECTIVES This study examined the treatment response of mixed vs single-species Plasmodium falciparum infections to artemisinin-based combination therapies (ACTs). METHODS A total of 1211 blood samples collected on days 0, 7, 14, 21, 28, 35, and 42 from 173 individuals enrolled in two randomized ACT efficacy studies were tested for malaria using 18s ribosomal RNA-based real-time polymerase chain reaction. All recurrent parasitemia were characterized for Plasmodium species composition and time to reinfection during 42-day follow-up compared across ACTs. RESULTS Day 0 samples had 71.1% (116/163) single P. falciparum infections and 28.2% (46/163) coinfections. A total of 54.0% (88/163) of individuals tested positive for Plasmodium at least once between days 7-42. A total of 19.3% (17/88) of individuals with recurrent infections were infected with a different Plasmodium species than observed at day 0, with 76.5% (13/17) of these "hidden" infections appearing after clearing P. falciparum present at day 0. Artesunate-mefloquine (16.4 hours) and dihydroartemisinin-piperaquine (17.6 hours) had increased clearance rates over artemether-lumefantrine (21.0 hours). Dihydroartemisinin-piperaquine exhibited the longest duration of reinfection prophylaxis. Cure rates were comparable across each species composition. CONCLUSION No differences in clearance rates were found depending on whether the infection contained species other than P. falciparum. Significantly longer durations of protection were observed for individuals treated with dihydroartemisinin-piperaquine.
Collapse
Affiliation(s)
- Gladys C Chemwor
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, P. O. Box 54 - 40100, Kisumu, Kenya
| | - Ben M Andagalu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, P. O. Box 54 - 40100, Kisumu, Kenya
| | - Irene A Onyango
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, P. O. Box 54 - 40100, Kisumu, Kenya
| | - Benjamin H Opot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, P. O. Box 54 - 40100, Kisumu, Kenya
| | - Raphael O Okoth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, P. O. Box 54 - 40100, Kisumu, Kenya
| | - Redemptah A Yedah
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, P. O. Box 54 - 40100, Kisumu, Kenya
| | - Jackline A Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, P. O. Box 54 - 40100, Kisumu, Kenya
| | - Edwin W Mwakio
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, P. O. Box 54 - 40100, Kisumu, Kenya
| | - Dancan M Wakoli
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, P. O. Box 54 - 40100, Kisumu, Kenya
| | - Joseph G Amwoma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, P. O. Box 54 - 40100, Kisumu, Kenya
| | - Agnes C Cheruiyot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, P. O. Box 54 - 40100, Kisumu, Kenya
| | - Dennis W Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, P. O. Box 54 - 40100, Kisumu, Kenya
| | - Bernhards R Ogutu
- Centre for Clinical Research, Kenya Medical Research Institute, 1578-40100 Kisumu-Kakamega Road, Kisumu, Kenya; Centre for Research in Therapeutic Sciences (CREATES), Strathmore University, P.O. Box 59857, 00200, City Square, Nairobi, Kenya
| | - Timothy E Egbo
- United States Army Medical Research Directorate-Africa, (USAMRD-A), P.O. Box 606, 00621 Village Market, Nairobi, Kenya
| | - Eric C Garges
- United States Army Medical Research Directorate-Africa, (USAMRD-A), P.O. Box 606, 00621 Village Market, Nairobi, Kenya
| | - Amanda L Roth
- United States Army Medical Research Directorate-Africa, (USAMRD-A), P.O. Box 606, 00621 Village Market, Nairobi, Kenya; Medical Communications for Combat Casualty Care, 1545 Porter St, Fort Detrick, Maryland, 21702, USA
| | - Edwin Kamau
- United States Army Medical Research Directorate-Africa, (USAMRD-A), P.O. Box 606, 00621 Village Market, Nairobi, Kenya; Department of Pathology and Area Laboratory Services, Tripler Army Medical Center, 1 Jarrett White Rd, Honolulu, HI 96859, Honolulu, USA
| | - Oliver J Watson
- Medical Research Council, Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK
| | - Hoseah M Akala
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, P. O. Box 54 - 40100, Kisumu, Kenya.
| |
Collapse
|
5
|
Tadele G, Jawara A, Oboh M, Oriero E, Dugassa S, Amambua-Ngwa A, Golassa L. Clinical isolates of uncomplicated falciparum malaria from high and low malaria transmission areas show distinct pfcrt and pfmdr1 polymorphisms in western Ethiopia. Malar J 2023; 22:171. [PMID: 37270589 DOI: 10.1186/s12936-023-04602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/20/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Pfcrt gene has been associated with chloroquine resistance and the pfmdr1 gene can alter malaria parasite susceptibility to lumefantrine, mefloquine, and chloroquine. In the absence of chloroquine (CQ) and extensive use of artemether-lumefantrine (AL) from 2004 to 2020 to treat uncomplicated falciparum malaria, pfcrt haplotype, and pfmdr1 single nucleotide polymorphisms (SNPs) were determined in two sites of West Ethiopia with a gradient of malaria transmission. METHODS 230 microscopically confirmed P. falciparum isolates were collected from Assosa (high transmission area) and Gida Ayana (low transmission area) sites, of which 225 of them tested positive by PCR. High-Resolution Melting Assay (HRM) was used to determine the prevalence of pfcrt haplotypes and pfmdr1 SNPs. Furthermore, the pfmdr1 gene copy number (CNV) was determined using real-time PCR. A P-value of less or equal to 0.05 was considered significant. RESULTS Of the 225 samples, 95.5%, 94.4%, 86.7%, 91.1%, and 94.2% were successfully genotyped with HRM for pfcrt haplotype, pfmdr1-86, pfmdr1-184, pfmdr1-1042 and pfmdr1-1246, respectively. The mutant pfcrt haplotypes were detected among 33.5% (52/155) and 80% (48/60) of isolates collected from the Assosa and Gida Ayana sites, respectively. Plasmodium falciparum with chloroquine-resistant haplotypes was more prevalent in the Gida Ayana area compared with the Assosa area (COR = 8.4, P = 0.00). Pfmdr1-N86Y wild type and 184F mutations were found in 79.8% (166/208) and 73.4% (146/199) samples, respectively. No single mutation was observed at the pfmdr1-1042 locus; however, 89.6% (190/212) of parasites in West Ethiopia carry the wild-type D1246Y variants. Eight pfmdr1 haplotypes at codons N86Y-Y184F-D1246Y were identified with the dominant NFD 61% (122/200). There was no difference in the distribution of pfmdr1 SNPs, haplotypes, and CNV between the two study sites (P > 0.05). CONCLUSION Plasmodium falciparum with the pfcrt wild-type haplotype was prevalent in high malaria transmission site than in low transmission area. The NFD haplotype was the predominant haplotype of the N86Y-Y184F-D1246Y. A continuous investigation is needed to closely monitor the changes in the pfmdr1 SNPs, which are associated with the selection of parasite populations by ACT.
Collapse
Affiliation(s)
- Geletta Tadele
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Aminata Jawara
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Mary Oboh
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Eniyou Oriero
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Sisay Dugassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
6
|
Rahmasari FV, Asih PBS, Dewayanti FK, Rotejanaprasert C, Charunwatthana P, Imwong M, Syafruddin D. Drug resistance of Plasmodium falciparum and Plasmodium vivax isolates in Indonesia. Malar J 2022; 21:354. [PMID: 36443817 PMCID: PMC9703442 DOI: 10.1186/s12936-022-04385-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
This review article aims to investigate the genotypic profiles of Plasmodium falciparum and Plasmodium vivax isolates collected across a wide geographic region and their association with resistance to anti-malarial drugs used in Indonesia. A systematic review was conducted between 1991 and date. Search engines, such as PubMed, Science Direct, and Google Scholar, were used for articles published in English and Indonesian to search the literature. Of the 471 initially identified studies, 61 were selected for 4316 P. falciparum and 1950 P. vivax individual infections. The studies included 23 molecular studies and 38 therapeutic efficacy studies. K76T was the most common pfcrt mutation. K76N (2.1%) was associated with the haplotype CVMNN. By following dihydroartemisinin-piperaquine (DHA-PPQ) therapy, the mutant pfmdr1 alleles 86Y and 1034C were selected. Low prevalence of haplotype N86Y/Y184/D1246Y pfmdr1 reduces susceptibility to AS-AQ. SNP mutation pvmdr1 Y976F reached 96.1% in Papua and East Nusa Tenggara. Polymorphism analysis in the pfdhfr gene revealed 94/111 (84.7%) double mutants S108N/C59R or S108T/A16V in Central Java. The predominant pfdhfr haplotypes (based on alleles 16, 51, 59,108, 164) found in Indonesia were ANCNI, ANCSI, ANRNI, and ANRNL. Some isolates carried A437G (35.3%) or A437G/K540E SNPs (26.5%) in pfdhps. Two novel pfdhps mutant alleles, I588F/G and K540T, were associated with six pfdhps haplotypes. The highest prevalence of pvdhfr quadruple mutation (F57L/S58R/T61M/S117T) (61.8%) was detected in Papua. In pvdhps, the only polymorphism before and after 2008 was 383G mutation with 19% prevalence. There were no mutations in the pfk13 gene reported with validated and candidate or associated k13 mutation. An increased copy number of pfpm2, associated with piperaquine resistance, was found only in cases of reinfection. Meanwhile, mutation of pvk12 and pvpm4 I165V is unlikely associated with ART and PPQ drug resistance. DHA-PPQ is still effective in treating uncomplicated falciparum and vivax malaria. Serious consideration should be given to interrupt local malaria transmission and dynamic patterns of resistance to anti-malarial drugs to modify chemotherapeutic policy treatment strategies. The presence of several changes in pfk13 in the parasite population is of concern and highlights the importance of further evaluation of parasitic ART susceptibility in Indonesia.
Collapse
Affiliation(s)
- Farindira Vesti Rahmasari
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Parasitology, School of Medicine, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia
| | - Puji B S Asih
- Eijkman Research Centre for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Farahana K Dewayanti
- Eijkman Research Centre for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Chawarat Rotejanaprasert
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Prakaykaew Charunwatthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Din Syafruddin
- Eijkman Research Centre for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
7
|
Wakoli DM, Ondigo BN, Ochora DO, Amwoma JG, Okore W, Mwakio EW, Chemwor G, Juma J, Okoth R, Okudo C, Yeda R, Opot BH, Cheruiyot AC, Juma D, Roth A, Ogutu BR, Boudreaux D, Andagalu B, Akala HM. Impact of parasite genomic dynamics on the sensitivity of Plasmodium falciparum isolates to piperaquine and other antimalarial drugs. BMC Med 2022; 20:448. [PMID: 36397090 PMCID: PMC9673313 DOI: 10.1186/s12916-022-02652-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dihydroartemisinin-piperaquine (DHA-PPQ) is an alternative first-line antimalarial to artemether-lumefantrine in Kenya. However, recent reports on the emergence of PPQ resistance in Southeast Asia threaten its continued use in Kenya and Africa. In line with the policy on continued deployment of DHA-PPQ, it is imperative to monitor the susceptibility of Kenyan parasites to PPQ and other antimalarials. METHODS Parasite isolates collected between 2008 and 2021 from individuals with naturally acquired P. falciparum infections presenting with uncomplicated malaria were tested for in vitro susceptibility to piperaquine, dihydroartemisinin, lumefantrine, artemether, and chloroquine using the malaria SYBR Green I method. A subset of the 2019-2021 samples was further tested for ex vivo susceptibility to PPQ using piperaquine survival assay (PSA). Each isolate was also characterized for mutations associated with antimalarial resistance in Pfcrt, Pfmdr1, Pfpm2/3, Pfdhfr, and Pfdhps genes using real-time PCR and Agena MassARRAY platform. Associations between phenotype and genotype were also determined. RESULTS The PPQ median IC50 interquartile range (IQR) remained stable during the study period, 32.70 nM (IQR 20.2-45.6) in 2008 and 27.30 nM (IQR 6.9-52.8) in 2021 (P=0.1615). The median ex vivo piperaquine survival rate (IQR) was 0% (0-5.27) at 95% CI. Five isolates had a PSA survival rate of ≥10%, consistent with the range of PPQ-resistant parasites, though they lacked polymorphisms in Pfmdr1 and Plasmepsin genes. Lumefantrine and artemether median IC50s rose significantly to 62.40 nM (IQR 26.9-100.8) (P = 0.0201); 7.00 nM (IQR 2.4-13.4) (P = 0.0021) in 2021 from 26.30 nM (IQR 5.1-64.3); and 2.70 nM (IQR 1.3-10.4) in 2008, respectively. Conversely, chloroquine median IC50s decreased significantly to 10.30 nM (IQR 7.2-20.9) in 2021 from 15.30 nM (IQR 7.6-30.4) in 2008, coinciding with a decline in the prevalence of Pfcrt 76T allele over time (P = 0.0357). The proportions of piperaquine-resistant markers including Pfpm2/3 and Pfmdr1 did not vary significantly. A significant association was observed between PPQ IC50 and Pfcrt K76T allele (P=0.0026). CONCLUSIONS Circulating Kenyan parasites have remained sensitive to PPQ and other antimalarials, though the response to artemether (ART) and lumefantrine (LM) is declining. This study forms a baseline for continued surveillance of current antimalarials for timely detection of resistance.
Collapse
Affiliation(s)
- Dancan M Wakoli
- Department of Biochemistry and Molecular Biology, Egerton University, Egerton-Njoro, Kenya. .,Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya.
| | - Bartholomew N Ondigo
- Department of Biochemistry and Molecular Biology, Egerton University, Egerton-Njoro, Kenya.,Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Douglas O Ochora
- Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Joseph G Amwoma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya.,Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Winnie Okore
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya.,Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Edwin W Mwakio
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Gladys Chemwor
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Jackeline Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Raphael Okoth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Charles Okudo
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Redemptah Yeda
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Benjamin H Opot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Agnes C Cheruiyot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Dennis Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Amanda Roth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Benhards R Ogutu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Daniel Boudreaux
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Ben Andagalu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Hoseah M Akala
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya.
| |
Collapse
|
8
|
Temporal trends in molecular markers of drug resistance in Plasmodium falciparum in human blood and profiles of corresponding resistant markers in mosquito oocysts in Asembo, western Kenya. Malar J 2022; 21:265. [PMID: 36100912 PMCID: PMC9472345 DOI: 10.1186/s12936-022-04284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Over the last two decades, the scale-up of vector control and changes in the first-line anti-malarial, from chloroquine (CQ) to sulfadoxine-pyrimethamine (SP) and then to artemether-lumefantrine (AL), have resulted in significant decreases in malaria burden in western Kenya. This study evaluated the long-term effects of control interventions on molecular markers of Plasmodium falciparum drug resistance using parasites obtained from humans and mosquitoes at discrete time points. METHODS Dried blood spot samples collected in 2012 and 2017 community surveys in Asembo, Kenya were genotyped by Sanger sequencing for markers associated with resistance to SP (Pfdhfr, Pfdhps), CQ, AQ, lumefantrine (Pfcrt, Pfmdr1) and artemisinin (Pfk13). Temporal trends in the prevalence of these markers, including data from 2012 to 2017 as well as published data from 1996, 2001, 2007 from same area, were analysed. The same markers from mosquito oocysts collected in 2012 were compared with results from human blood samples. RESULTS The prevalence of SP dhfr/dhps quintuple mutant haplotype C50I51R59N108I164/S436G437E540A581A613 increased from 19.7% in 1996 to 86.0% in 2012, while an increase in the sextuple mutant haplotype C50I51R59N108I164/H436G437E540A581A613 containing Pfdhps-436H was found from 10.5% in 2012 to 34.6% in 2017. Resistant Pfcrt-76 T declined from 94.6% in 2007 to 18.3% in 2012 and 0.9% in 2017. Mutant Pfmdr1-86Y decreased across years from 74.8% in 1996 to zero in 2017, mutant Pfmdr1-184F and wild Pfmdr1-D1246 increased from 17.9% to 58.9% in 2007 to 55.9% and 90.1% in 2017, respectively. Pfmdr1 haplotype N86F184S1034N1042D1246 increased from 11.0% in 2007 to 49.6% in 2017. No resistant mutations in Pfk13 were found. Prevalence of Pfdhps-436H was lower while prevalence of Pfcrt-76 T was higher in mosquitoes than in human blood samples. CONCLUSION This study showed an increased prevalence of dhfr/dhps resistant markers over 20 years with the emergence of Pfdhps-436H mutant a decade ago in Asembo. The reversal of Pfcrt from CQ-resistant to CQ-sensitive genotype occurred following 19 years of CQ withdrawal. No Pfk13 markers associated with artemisinin resistance were detected, but the increased haplotype of Pfmdr1 N86F184S1034N1042D1246 was observed. The differences in prevalence of Pfdhps-436H and Pfcrt-76 T SNPs between two hosts and the role of mosquitoes in the transmission of drug resistant parasites require further investigation.
Collapse
|
9
|
Gupta Y, Sharma N, Singh S, Romero JG, Rajendran V, Mogire RM, Kashif M, Beach J, Jeske W, Poonam, Ogutu BR, Kanzok SM, Akala HM, Legac J, Rosenthal PJ, Rademacher DJ, Durvasula R, Singh AP, Rathi B, Kempaiah P. The Multistage Antimalarial Compound Calxinin Perturbates P. falciparum Ca 2+ Homeostasis by Targeting a Unique Ion Channel. Pharmaceutics 2022; 14:1371. [PMID: 35890267 PMCID: PMC9319510 DOI: 10.3390/pharmaceutics14071371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 12/22/2022] Open
Abstract
Malaria elimination urgently needs novel antimalarial therapies that transcend resistance, toxicity, and high costs. Our multicentric international collaborative team focuses on developing multistage antimalarials that exhibit novel mechanisms of action. Here, we describe the design, synthesis, and evaluation of a novel multistage antimalarial compound, 'Calxinin'. A compound that consists of hydroxyethylamine (HEA) and trifluoromethyl-benzyl-piperazine. Calxinin exhibits potent inhibitory activity in the nanomolar range against the asexual blood stages of drug-sensitive (3D7), multidrug-resistant (Dd2), artemisinin-resistant (IPC4912), and fresh Kenyan field isolated Plasmodium falciparum strains. Calxinin treatment resulted in diminished maturation of parasite sexual precursor cells (gametocytes) accompanied by distorted parasite morphology. Further, in vitro liver-stage testing with a mouse model showed reduced parasite load at an IC50 of 79 nM. A single dose (10 mg/kg) of Calxinin resulted in a 30% reduction in parasitemia in mice infected with a chloroquine-resistant strain of the rodent parasite P. berghei. The ex vivo ookinete inhibitory concentration within mosquito gut IC50 was 150 nM. Cellular in vitro toxicity assays in the primary and immortalized human cell lines did not show cytotoxicity. A computational protein target identification pipeline identified a putative P. falciparum membrane protein (Pf3D7_1313500) involved in parasite calcium (Ca2+) homeostasis as a potential Calxinin target. This highly conserved protein is related to the family of transient receptor potential cation channels (TRP-ML). Target validation experiments showed that exposure of parasitized RBCs (pRBCs) to Calxinin induces a rapid release of intracellular Ca2+ from pRBCs; leaving de-calcinated parasites trapped in RBCs. Overall, we demonstrated that Calxinin is a promising antimalarial lead compound with a novel mechanism of action and with potential therapeutic, prophylactic, and transmission-blocking properties against parasites resistant to current antimalarials.
Collapse
Affiliation(s)
- Yash Gupta
- Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.G.); (R.D.)
| | - Neha Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, New Delhi 110021, India; (N.S.); (S.S.)
| | - Snigdha Singh
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, New Delhi 110021, India; (N.S.); (S.S.)
| | - Jesus G. Romero
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60660, USA; (J.G.R.); (J.B.); (W.J.); (D.J.R.)
- School of Biology, Institute of Experimental Biology, Central University of Venezuela, Caracas 1040, Venezuela
| | - Vinoth Rajendran
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India;
| | - Reagan M. Mogire
- Centre Clinical Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya; (R.M.M.); (B.R.O.); (H.M.A.)
| | - Mohammad Kashif
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi 110067, India; (M.K.); (A.P.S.)
| | - Jordan Beach
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60660, USA; (J.G.R.); (J.B.); (W.J.); (D.J.R.)
| | - Walter Jeske
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60660, USA; (J.G.R.); (J.B.); (W.J.); (D.J.R.)
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi, New Delhi 110021, India;
- Delhi School of Public Health, Institute of Eminence, University of Delhi, New Delhi 110007, India
| | - Bernhards R. Ogutu
- Centre Clinical Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya; (R.M.M.); (B.R.O.); (H.M.A.)
| | - Stefan M. Kanzok
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA;
| | - Hoseah M. Akala
- Centre Clinical Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya; (R.M.M.); (B.R.O.); (H.M.A.)
| | - Jennifer Legac
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA; (J.L.); (P.J.R.)
| | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA; (J.L.); (P.J.R.)
| | - David J. Rademacher
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60660, USA; (J.G.R.); (J.B.); (W.J.); (D.J.R.)
- Core Imaging Facility and Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Ravi Durvasula
- Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.G.); (R.D.)
| | - Agam P. Singh
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi 110067, India; (M.K.); (A.P.S.)
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, New Delhi 110021, India; (N.S.); (S.S.)
- Delhi School of Public Health, Institute of Eminence, University of Delhi, New Delhi 110007, India
| | - Prakasha Kempaiah
- Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.G.); (R.D.)
| |
Collapse
|
10
|
Targeted Amplicon Deep Sequencing for Monitoring Antimalarial Resistance Markers in Western Kenya. Antimicrob Agents Chemother 2022; 66:e0194521. [PMID: 35266823 PMCID: PMC9017353 DOI: 10.1128/aac.01945-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Molecular surveillance of Plasmodium falciparum parasites is important to track emerging and new mutations and trends in established mutations and should serve as an early warning system for antimalarial resistance. Dried blood spots were obtained from a Plasmodium falciparum malaria survey in school children conducted across eight counties in western Kenya in 2019. Real-time PCR identified 500 P. falciparum-positive samples that were amplified at five drug resistance loci for targeted amplicon deep sequencing (TADS). The absence of important kelch 13 mutations was similar to previous findings in Kenya pre-2019, and low-frequency mutations were observed in codons 569 and 578. The chloroquine resistance transporter gene codons 76 and 145 were wild type, indicating that the parasites were chloroquine and piperaquine sensitive, respectively. The multidrug resistance gene 1 haplotypes based on codons 86, 184, and 199 were predominantly present in mixed infections with haplotypes NYT and NFT, driven by the absence of chloroquine pressure and the use of lumefantrine, respectively. The sulfadoxine-pyrimethamine resistance profile was a “superresistant” combination of triple mutations in both Pfdhfr (51I 59R 108N) and Pfdhps (436H 437G 540E), rendering sulfadoxine-pyrimethamine ineffective. TADS highlighted the low-frequency variants, allowing the early identification of new mutations, Pfmdr1 codon 199S and Pfdhfr codon 85I and emerging 164L mutations. The added value of TADS is its accuracy in identifying mixed-genotype infections and for high-throughput monitoring of antimalarial resistance markers.
Collapse
|
11
|
Berzosa P, Molina de la Fuente I, Ta-Tang TH, González V, García L, Rodríguez-Galet A, Díaz-Regañón R, Galán R, Cerrada-Gálvez L, Ncogo P, Riloha M, Benito A. Temporal evolution of the resistance genotypes of Plasmodium falciparum in isolates from Equatorial Guinea during 20 years (1999 to 2019). Malar J 2021; 20:463. [PMID: 34906159 PMCID: PMC8670137 DOI: 10.1186/s12936-021-04000-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022] Open
Abstract
Background Malaria is one of the deadliest diseases in the world, particularly in Africa. As such, resistance to anti-malarial drugs is one of the most important problems in terms of global malaria control. This study assesses the evolution of the different resistance markers over time and the possible influence of interventions and treatment changes that have been made in Equatorial Guinea. Methods A total of 1223 biological samples obtained in the period 1999 to 2019 were included in the study. Screening for mutations in the pfdhfr, pfdhps, pfmdr1, and pfcrt genes was carried out by nested PCR and restriction-fragment length polymorphisms (RFLPs), and the study of pfk13 genes was carried out by nested PCR, followed by sequencing to determine the presence of mutations. Results The partially and fully resistant haplotypes (pfdhfr + pfdhps) were found to increase over time. Moreover, in 2019, the fully resistant haplotype was found to be increasing, although its super-resistant counterpart remains much less prevalent. A continued decline in pfmdr1 and pfcrt gene mutations over time was also found. The number of mutations detected in pfk13 has increased since 2008, when artemisinin-based combination therapy (ACT) were first introduced, with more mutations being observed in 2019, with two synonymous and five non-synonymous mutations being detected, although these are not related to resistance to ACT. In addition, the non-synonymous A578S mutation, which is the most frequent on the African continent, was detected in 2013, although not in the following years. Conclusions Withdrawal of the use of chloroquine (CQ) as a treatment in Equatorial Guinea has been shown to be effective over time, as wild-type parasite populations outnumber mutant populations. The upward trend observed in sulfadoxine-pyrimethamine (SP) resistance markers suggest its misuse, either alone or in combination with artesunate (AS) or amodiaquine (AQ), in some areas of the country, as was found in a previous study conducted by this group, which allows selective pressure from SP to continue. Single nucleotide polymorphisms (SNPs) 540E and 581G do not exceed the limit of 50 and 10%, respectively, thus meaning that SP is still effective as an intermittent preventive treatment (IPT) in this country. As for the pfk13 gene, no mutations have been detected in relation to resistance to ACT. However, in 2019 there is a greater accumulation of non-synonymous mutations compared to years prior to 2008. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Pedro Berzosa
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain.
| | - Irene Molina de la Fuente
- Department of Biomedicine and Biotechnology, University of Alcalá and National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain
| | - Thuy-Huong Ta-Tang
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain
| | - Vicenta González
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain
| | - Luz García
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain
| | - Ana Rodríguez-Galet
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain.,HIV Molecular Epidemiology Laboratory, Ramón y Cajal-IRyCIS Hospital, Madrid, Spain
| | - Ramón Díaz-Regañón
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain
| | - Rosario Galán
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain
| | - Laura Cerrada-Gálvez
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain
| | - Policarpo Ncogo
- State Foundation, Health, Childhood and Social Welfare FSP, Madrid, Spain
| | - Matilde Riloha
- Ministry of Health and Social Welfare-Malaria National Programme of Equatorial Guinea, Malabo, Equatorial Guinea
| | - Agustin Benito
- National Centre of Tropical Medicine-Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Asua V, Conrad MD, Aydemir O, Duvalsaint M, Legac J, Duarte E, Tumwebaze P, Chin DM, Cooper RA, Yeka A, Kamya MR, Dorsey G, Nsobya SL, Bailey J, Rosenthal PJ. Changing Prevalence of Potential Mediators of Aminoquinoline, Antifolate, and Artemisinin Resistance Across Uganda. J Infect Dis 2021; 223:985-994. [PMID: 33146722 PMCID: PMC8006419 DOI: 10.1093/infdis/jiaa687] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/27/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND In Uganda, artemether-lumefantrine is recommended for malaria treatment and sulfadoxine-pyrimethamine for chemoprevention during pregnancy, but drug resistance may limit efficacies. METHODS Genetic polymorphisms associated with sensitivities to key drugs were characterized in samples collected from 16 sites across Uganda in 2018 and 2019 by ligase detection reaction fluorescent microsphere, molecular inversion probe, dideoxy sequencing, and quantitative polymerase chain reaction assays. RESULTS Considering transporter polymorphisms associated with resistance to aminoquinolines, the prevalence of Plasmodium falciparum chloroquine resistance transporter (PfCRT) 76T decreased, but varied markedly between sites (0-46% in 2018; 0-23% in 2019); additional PfCRT polymorphisms and plasmepsin-2/3 amplifications associated elsewhere with resistance to piperaquine were not seen. For P. falciparum multidrug resistance protein 1, in 2019 the 86Y mutation was absent at all sites, the 1246Y mutation had prevalence ≤20% at 14 of 16 sites, and gene amplification was not seen. Considering mutations associated with high-level sulfadoxine-pyrimethamine resistance, prevalences of P. falciparum dihydrofolate reductase 164L (up to 80%) and dihydropteroate synthase 581G (up to 67%) were high at multiple sites. Considering P. falciparum kelch protein propeller domain mutations associated with artemisinin delayed clearance, prevalence of the 469Y and 675V mutations has increased at multiple sites in northern Uganda (up to 23% and 41%, respectively). CONCLUSIONS We demonstrate concerning spread of mutations that may limit efficacies of key antimalarial drugs.
Collapse
Affiliation(s)
- Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Melissa D Conrad
- University of California, San Francisco, San Francisco, California, USA
| | | | - Marvin Duvalsaint
- University of California, San Francisco, San Francisco, California, USA
| | - Jennifer Legac
- University of California, San Francisco, San Francisco, California, USA
| | - Elias Duarte
- University of California, San Francisco, San Francisco, California, USA
| | | | | | - Roland A Cooper
- Dominican University of California, San Rafael, California, USA
| | - Adoke Yeka
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Grant Dorsey
- University of California, San Francisco, San Francisco, California, USA
| | - Sam L Nsobya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | |
Collapse
|
13
|
Windle ST, Lane KD, Gadalla NB, Liu A, Mu J, Caleon RL, Rahman RS, Sá JM, Wellems TE. Evidence for linkage of pfmdr1, pfcrt, and pfk13 polymorphisms to lumefantrine and mefloquine susceptibilities in a Plasmodium falciparum cross. Int J Parasitol Drugs Drug Resist 2020; 14:208-217. [PMID: 33197753 PMCID: PMC7677662 DOI: 10.1016/j.ijpddr.2020.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022]
Abstract
BACKGROUND Lumefantrine and mefloquine are used worldwide in artemisinin-based combination therapy (ACT) of malaria. Better understanding of drug susceptibility and resistance is needed and can be obtained from studies of genetic crosses. METHODS Drug response phenotypes of a cross between Plasmodium falciparum lines 803 (Cambodia) and GB4 (Ghana) were obtained as half-maximal effective concentrations (EC50s) and days to recovery (DTR) after 24 h exposure to 500 nM lumefantrine. EC50s of mefloquine, halofantrine, chloroquine, and dihydroartemisinin were also determined. Quantitative trait loci (QTL) analysis and statistical tests with candidate genes were used to identify polymorphisms associated with response phenotypes. RESULTS Lumefantrine EC50s averaged 5.8-fold higher for the 803 than GB4 parent, and DTR results were 3-5 and 16-18 days, respectively. In 803 × GB4 progeny, outcomes of these two lumefantrine assays showed strong inverse correlation; these phenotypes also correlated strongly with mefloquine and halofantrine EC50s. By QTL analysis, lumefantrine and mefloquine phenotypes mapped to a chromosome 5 region containing codon polymorphisms N86Y and Y184F in the P. falciparum multidrug resistance 1 protein (PfMDR1). Statistical tests of candidate genes identified correlations between inheritance of PfK13 Kelch protein polymorphism C580Y (and possibly K189T) and lumefantrine and mefloquine susceptibilities. Correlations were detected between lumefantrine and chloroquine EC50s and polymorphisms N326S and I356T in the CVIET-type P. falciparum chloroquine resistance transporter (PfCRT) common to 803 and GB4. CONCLUSIONS Correlations in this study suggest common mechanisms of action in lumefantrine, mefloquine, and halofantrine responses. PfK13 as well as PfMDR1 and PfCRT polymorphisms may affect access and/or action of these arylaminoalcohol drugs at locations of hemoglobin digestion and heme metabolism. In endemic regions, pressure from use of lumefantrine or mefloquine in ACTs may drive selection of PfK13 polymorphisms along with versions of PfMDR1 and PfCRT associated with lower susceptibility to these drugs.
Collapse
Affiliation(s)
- Sean T Windle
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Kristin D Lane
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Nahla B Gadalla
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Anna Liu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Ramoncito L Caleon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Rifat S Rahman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Juliana M Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA.
| |
Collapse
|
14
|
Adamu A, Jada MS, Haruna HMS, Yakubu BO, Ibrahim MA, Balogun EO, Sakura T, Inaoka DK, Kita K, Hirayama K, Culleton R, Shuaibu MN. Plasmodium falciparum multidrug resistance gene-1 polymorphisms in Northern Nigeria: implications for the continued use of artemether-lumefantrine in the region. Malar J 2020; 19:439. [PMID: 33256739 PMCID: PMC7708160 DOI: 10.1186/s12936-020-03506-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background The analysis of single nucleotide polymorphism (SNPs) in drug-resistance associated genes is a commonly used strategy for the surveillance of anti-malarial drug resistance in populations of parasites. The present study was designed and performed to provide genetic epidemiological data of the prevalence of N86Y-Y184F-D1246Y SNPs in Plasmodium falciparum multidrug resistance 1 (pfmdr1) in the malaria hotspot of Northern Nigeria. Methods Plasmodium falciparum-positive blood samples on Whatman-3MM filter papers were collected from 750 symptomatic patients from four states (Kano, Kaduna, Yobe and Adamawa) in Northern Nigeria, and genotyped via BigDye (v3.1) terminator cycle sequencing for the presence of three SNPs in pfmdr1. SNPs in pfmdr1 were used to construct NYD, NYY, NFY, NFD, YYY, YYD, YFD and YFY haplotypes, and all data were analysed using Pearson Chi square and Fisher’s exact (FE) tests. Results The prevalence of the pfmdr1 86Y allele was highest in Kaduna (12.50%, 2 = 10.50, P = 0.02), whilst the 184F allele was highest in Kano (73.10%, 2 = 13.20, P = 0.00), and the pfmdr1 1246Y allele was highest in Yobe (5.26%, 2 = 9.20, P = 0.03). The NFD haplotype had the highest prevalence of 69.81% in Kano (2 = 36.10, P = 0.00), followed by NYD with a prevalence of 49.00% in Adamawa, then YFD with prevalence of 11.46% in Kaduna. The YYY haplotype was not observed in any of the studied states. Conclusion The present study suggests that strains of P. falciparum with reduced sensitivity to the lumefantrine component of AL exist in Northern Nigeria and predominate in the North-West region.
Collapse
Affiliation(s)
- Auwal Adamu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Mahmoud Suleiman Jada
- Department of Biochemistry, Modibbo Adama University of Technology Yola, Yola, Nigeria
| | | | | | | | | | - Takaya Sakura
- Institute of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Daniel Ken Inaoka
- Institute of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Kiyoshi Kita
- Institute of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Kenji Hirayama
- Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Richard Culleton
- Department of Molecular Parasitology, Proteo-Science Center, Ehime University, Ehime, Japan
| | | |
Collapse
|
15
|
Natama HM, Toussaint R, Bazié DLC, Samadoulougou S, Coulibaly-Traoré M, Tinto H, Kirakoya-Samadoulougou F. Prevalence and factors associated with carriage of Pfmdr1 polymorphisms among pregnant women receiving intermittent preventive treatment with sulfadoxine-pyrimethamine (IPTp-SP) and artemether-lumefantrine for malaria treatment in Burkina Faso. Malar J 2020; 19:399. [PMID: 33172485 PMCID: PMC7653827 DOI: 10.1186/s12936-020-03473-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/31/2020] [Indexed: 11/11/2022] Open
Abstract
Background Single nucleotide polymorphisms occurring in the Plasmodium falciparum multidrug resistant gene 1 (pfmdr1) are known to be associated with aminoquinoline resistance and, therefore, represent key P. falciparum markers for monitoring resistance both in susceptible groups (children under 5 years old and pregnant women) and in the general population. This study aimed to determine prevalence and factors associated with the carriage of pfmdr1 N86Y, Y184F and D1246Y polymorphisms among pregnant women in a setting of high malaria transmission in Burkina Faso. Methods Plasmodium falciparum isolates were collected at the first antenatal care visit (ANC-1) as well as at delivery from pregnant women participating in the COSMIC trial (NTC01941264), which assessed malaria preventive interventions during pregnancy in the Nanoro Health District. Here, pregnant women received intermittent preventive treatment with sulfadoxine-pyrimethamine (IPTp-SP) and malaria infections and/or diseases were treated using artemether-lumefantrine (AL) during the trial. Parasite DNA was extracted from dried blood spots and the presence of pfmdr1 mutations at positions 86, 184 and 1246 was determined using nested PCR, followed by restriction fragment length polymorphism (RFLP) analysis. Results A prevalence of 13.2% (20/151) and 12.1% (14/116) of the pfmdr1 86Y mutant allele was found at ANC-1 and at delivery, respectively, while no mutant allele was observed for Y184F and D1246Y codons at both ANC-1 and at delivery. There were no significant factors associated with pfmdr1 86Y mutant allele carriage at ANC-1. However, malaria infections at delivery with a parasite density above the median (2237.2 (IQR: 613.5–11,425.7) parasites/µl) was associated with an increase risk of pfmdr1 86Y mutant allele carriage (AOR = 5.5 (95% CI 1.07–28.0); P = 0.04). In contrast, both three or more IPTp-SP doses (AOR = 0.25 (95% CI 0.07–0.92); P = 0.04) and one or more AL treatment (AOR = 0.25 (95% CI 0.07–0.89); P = 0.03) during pregnancy were associated with a significant reduce risk of pfmdr1 86Y mutant allele carriage at delivery. Conclusion These findings suggest that both high coverage of IPTp-SP and the use of AL for the treatment of malaria infection/disease during pregnancy select for pfmdr1 N86 wild-type allele at delivery.
Collapse
Affiliation(s)
- Hamtandi Magloire Natama
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso.
| | - Rouamba Toussaint
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso.,Centre D'Epidémiologie, Biostatistique Et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Djamina Line Cerine Bazié
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Sékou Samadoulougou
- Centre for Research On Planning and Development (CRAD), Laval University, Quebec, Canada.,Evaluation Platform On Obesity Prevention, Quebec Heart and Lung Institute, Quebec, Canada
| | - Maminata Coulibaly-Traoré
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Halidou Tinto
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Fati Kirakoya-Samadoulougou
- Centre D'Epidémiologie, Biostatistique Et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| |
Collapse
|
16
|
Chebore W, Zhou Z, Westercamp N, Otieno K, Shi YP, Sergent SB, Rondini KA, Svigel SS, Guyah B, Udhayakumar V, Halsey ES, Samuels AM, Kariuki S. Assessment of molecular markers of anti-malarial drug resistance among children participating in a therapeutic efficacy study in western Kenya. Malar J 2020; 19:291. [PMID: 32795367 PMCID: PMC7427724 DOI: 10.1186/s12936-020-03358-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Anti-malarial drug resistance remains a major threat to global malaria control efforts. In Africa, Plasmodium falciparum remains susceptible to artemisinin-based combination therapy (ACT), but the emergence of resistant parasites in multiple countries in Southeast Asia and concerns over emergence and/or spread of resistant parasites in Africa warrants continuous monitoring. The World Health Organization recommends that surveillance for molecular markers of resistance be included within therapeutic efficacy studies (TES). The current study assessed molecular markers associated with resistance to Artemether-lumefantrine (AL) and Dihydroartemisinin-piperaquine (DP) from samples collected from children aged 6-59 months enrolled in a TES conducted in Siaya County, western Kenya from 2016 to 2017. METHODS Three hundred and twenty-three samples collected pre-treatment (day-0) and 110 samples collected at the day of recurrent parasitaemia (up to day 42) were tested for the presence of drug resistance markers in the Pfk13 propeller domain, and the Pfmdr1 and Pfcrt genes by Sanger sequencing. Additionally, the Pfpm2 gene copy number was assessed by real-time polymerase chain reaction. RESULTS No mutations previously associated with artemisinin resistance were detected in the Pfk13 propeller region. However, other non-synonymous mutations in the Pfk13 propeller region were detected. The most common mutation found on day-0 and at day of recurrence in the Pfmdr1 multidrug resistance marker was at codon 184F. Very few mutations were found in the Pfcrt marker (< 5%). Within the DP arm, all recrudescent cases (8 sample pairs) that were tested for Pfpm2 gene copy number had a single gene copy. None of the associations between observed mutations and treatment outcomes were statistically significant. CONCLUSION The results indicate absence of Pfk13 mutations associated with parasite resistance to artemisinin in this area and a very high proportion of wild-type parasites for Pfcrt. Although the frequency of Pfmdr1 184F mutations was high in these samples, the association with treatment failure did not reach statistical significance. As the spread of artemisinin-resistant parasites remains a possibility, continued monitoring for molecular markers of ACT resistance is needed to complement clinical data to inform treatment policy in Kenya and other malaria-endemic regions.
Collapse
Affiliation(s)
- Winnie Chebore
- Kenya Medical Research Institute, Centre for Global Health Research, P.O. Box 1578, Kisumu, Kenya
- Maseno University, Kisumu, Kenya
| | - Zhiyong Zhou
- Centers for Disease Control and Prevention, Malaria Branch, Atlanta, GA, USA
| | - Nelli Westercamp
- Centers for Disease Control and Prevention, Malaria Branch, Atlanta, GA, USA
| | - Kephas Otieno
- Kenya Medical Research Institute, Centre for Global Health Research, P.O. Box 1578, Kisumu, Kenya
| | - Ya Ping Shi
- Centers for Disease Control and Prevention, Malaria Branch, Atlanta, GA, USA
| | - Sheila B Sergent
- Centers for Disease Control and Prevention, Malaria Branch, Atlanta, GA, USA
| | - Kelsey Anne Rondini
- Centers for Disease Control and Prevention, Malaria Branch, Atlanta, GA, USA
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Samaly Souza Svigel
- Centers for Disease Control and Prevention, Malaria Branch, Atlanta, GA, USA
| | | | | | - Eric S Halsey
- Centers for Disease Control and Prevention, Malaria Branch, Atlanta, GA, USA
- U.S. President's Malaria Initiative, Atlanta, GA, USA
| | - Aaron M Samuels
- Centers for Disease Control and Prevention, Malaria Branch, Atlanta, GA, USA
- Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Simon Kariuki
- Kenya Medical Research Institute, Centre for Global Health Research, P.O. Box 1578, Kisumu, Kenya.
| |
Collapse
|
17
|
Maraka M, Akala HM, Amolo AS, Juma D, Omariba D, Cheruiyot A, Opot B, Okello Okudo C, Mwakio E, Chemwor G, Juma JA, Okoth R, Yeda R, Andagalu B. A seven-year surveillance of epidemiology of malaria reveals travel and gender are the key drivers of dispersion of drug resistant genotypes in Kenya. PeerJ 2020; 8:e8082. [PMID: 32201636 PMCID: PMC7073242 DOI: 10.7717/peerj.8082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/21/2019] [Indexed: 11/20/2022] Open
Abstract
Malaria drug resistance is a global public health concern. Though parasite mutations have been associated with resistance, other factors could influence the resistance. A robust surveillance system is required to monitor and help contain the resistance. This study established the role of travel and gender in dispersion of chloroquine resistant genotypes in malaria epidemic zones in Kenya. A total of 1,776 individuals presenting with uncomplicated malaria at hospitals selected from four malaria transmission zones in Kenya between 2008 and 2014 were enrolled in a prospective surveillance study assessing the epidemiology of malaria drug resistance patterns. Demographic and clinical information per individual was obtained using a structured questionnaire. Further, 2 mL of blood was collected for malaria diagnosis, parasitemia quantification and molecular analysis. DNA extracted from dried blood spots collected from each of the individuals was genotyped for polymorphisms in Plasmodium falciparum chloroquine transporter gene (Pfcrt 76), Plasmodium falciparum multidrug resistant gene 1 (Pfmdr1 86 and Pfmdr1 184) regions that are putative drug resistance genes using both conventional polymerase chain reaction (PCR) and real-time PCR. The molecular and demographic data was analyzed using Stata version 13 (College Station, TX: StataCorp LP) while mapping of cases at the selected geographic zones was done in QGIS version 2.18. Chloroquine resistant (CQR) genotypes across gender revealed an association with chloroquine resistance by both univariate model (p = 0.027) and by multivariate model (p = 0.025), female as reference group in both models. Prior treatment with antimalarial drugs within the last 6 weeks before enrollment was associated with carriage of CQR genotype by multivariate model (p = 0.034). Further, a significant relationship was observed between travel and CQR carriage both by univariate model (p = 0.001) and multivariate model (p = 0.002). These findings suggest that gender and travel are significantly associated with chloroquine resistance. From a gender perspective, males are more likely to harbor resistant strains than females hence involved in strain dispersion. On the other hand, travel underscores the role of transport network in introducing spread of resistant genotypes, bringing in to focus the need to monitor gene flow and establish strategies to minimize the introduction of resistance strains by controlling malaria among frequent transporters.
Collapse
Affiliation(s)
- Moureen Maraka
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Siaya, Kenya
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Hoseah M. Akala
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Asito S. Amolo
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Siaya, Kenya
| | - Dennis Juma
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Duke Omariba
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Agnes Cheruiyot
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Benjamin Opot
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Charles Okello Okudo
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Edwin Mwakio
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Gladys Chemwor
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Jackline A. Juma
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Raphael Okoth
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Redemptah Yeda
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Ben Andagalu
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| |
Collapse
|
18
|
Yeka A, Wallender E, Mulebeke R, Kibuuka A, Kigozi R, Bosco A, Kyambadde P, Opigo J, Kalyesubula S, Senzoga J, Vinden J, Conrad M, Rosenthal PJ. Comparative Efficacy of Artemether-Lumefantrine and Dihydroartemisinin-Piperaquine for the Treatment of Uncomplicated Malaria in Ugandan Children. J Infect Dis 2020; 219:1112-1120. [PMID: 30418593 DOI: 10.1093/infdis/jiy637] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/01/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In Uganda, artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DHA-PQ) showed excellent treatment efficacy for uncomplicated malaria in prior trials. Because the frequency of resistance to artemisinins and piperaquine is increasing in Southeast Asia and the prevalence of Plasmodium falciparum polymorphisms associated with resistance has changed, we reassessed treatment efficacies at 3 sites in Uganda. METHODS For this randomized, single-blinded clinical trial, children aged 6-59 months with uncomplicated falciparum malaria were assigned treatment with AL or DHA-PQ and followed for 42 days. Primary end points were risks of recurrent parasitemia, either unadjusted or adjusted to distinguish recrudescence from new infection. We assessed selection by study regimens of relevant P. falciparum genetic polymorphisms associated with drug resistance. RESULTS Of 599 patients enrolled, 578 completed follow-up. There were no early treatment failures. The risk of recurrent parasitemia was lower with DHA-PQ as compared to AL at all 3 sites at 42 days (26.0% vs 47.0%; P < .001). Recrudescent infections were uncommon in both the DHA-PQ and AL arms (1.1% and 2.2%, respectively; P = .25). Neither regimen selected for pfcrt or pfmdr1 polymorphisms associated with drug resistance. CONCLUSIONS AL and DHA-PQ remain effective for the treatment of malaria in Uganda. Neither regimen selected for genetic polymorphisms associated with drug resistance. CLINICAL TRIALS REGISTRATION ISRCTN15793046.
Collapse
Affiliation(s)
- Adoke Yeka
- School of Public Health, Makerere University College of Health Sciences
| | - Erika Wallender
- Department of Medicine, University of California, San Francisco
| | - Ronald Mulebeke
- School of Public Health, Makerere University College of Health Sciences
| | - Afizi Kibuuka
- School of Public Health, Makerere University College of Health Sciences
| | - Ruth Kigozi
- Malaria Action Programme for Districts, Malaria Consortium
| | - Agaba Bosco
- National Malaria Control Program, Ministry of Health, Uganda
| | - Paul Kyambadde
- National Malaria Control Program, Ministry of Health, Uganda
| | - Jimmy Opigo
- National Malaria Control Program, Ministry of Health, Uganda
| | - Simeon Kalyesubula
- East African Public Health Laboratories Networking Project, Kampala, Uganda
| | - Joseph Senzoga
- East African Public Health Laboratories Networking Project, Kampala, Uganda
| | - Joanna Vinden
- School of Public Health, University of California, Berkeley
| | - Melissa Conrad
- Department of Medicine, University of California, San Francisco
| | | |
Collapse
|
19
|
No evidence of P. falciparum K13 artemisinin conferring mutations over a 24-year analysis in Coastal Kenya, but a near complete reversion to chloroquine wild type parasites. Antimicrob Agents Chemother 2019:AAC.01067-19. [PMID: 31591113 PMCID: PMC6879256 DOI: 10.1128/aac.01067-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antimalarial drug resistance is a substantial impediment to malaria control. The spread of resistance has been described using genetic markers, which are important epidemiological tools. We carried out a temporal analysis of changes in allele frequencies of 12 drug resistance markers over 2 decades of changing antimalarial drug policy in Kenya. Antimalarial drug resistance is a substantial impediment to malaria control. The spread of resistance has been described using genetic markers, which are important epidemiological tools. We carried out a temporal analysis of changes in allele frequencies of 12 drug resistance markers over 2 decades of changing antimalarial drug policy in Kenya. We did not detect any of the validated kelch 13 (k13) artemisinin resistance markers; nonetheless, a single k13 allele, K189T, was maintained at a stable high frequency (>10%) over time. There was a distinct shift from chloroquine-resistant transporter (crt)-76, multidrug-resistant gene 1 (mdr1)-86 and mdr1-1246 chloroquine (CQ) resistance alleles to a 99% prevalence of CQ-sensitive alleles in the population, following the withdrawal of CQ from routine use. In contrast, the dihydropteroate synthetase (dhps) double mutant (437G and 540E) associated with sulfadoxine-pyrimethamine (SP) resistance was maintained at a high frequency (>75%), after a change from SP to artemisinin combination therapies (ACTs). The novel cysteine desulfurase (nfs) K65 allele, implicated in resistance to lumefantrine in a West African study, showed a gradual significant decline in allele frequency pre- and post-ACT introduction (from 38% to 20%), suggesting evidence of directional selection in Kenya, potentially not due to lumefantrine. The high frequency of CQ-sensitive parasites circulating in the population suggests that the reintroduction of CQ in combination therapy for the treatment of malaria can be considered in the future. However, the risk of a reemergence of CQ-resistant parasites circulating below detectable levels or being reintroduced from other regions remains.
Collapse
|
20
|
Prevalence of Plasmodium falciparum Pfcrt and Pfmdr1 alleles in settings with different levels of Plasmodium vivax co-endemicity in Ethiopia. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 11:8-12. [PMID: 31539706 PMCID: PMC6796752 DOI: 10.1016/j.ijpddr.2019.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022]
Abstract
Plasmodium falciparum and P. vivax co-exist at different endemicity levels across Ethiopia. For over two decades Artemether-Lumefantrine (AL) is the first line treatment for uncomplicated P. falciparum, while chloroquine (CQ) is still used to treat P. vivax. It is currently unclear whether a shift from CQ to AL for P. falciparum treatment has implications for AL efficacy and results in a reversal of mutations in genes associated to CQ resistance, given the high co-endemicity of the two species and the continued availability of CQ for the treatment of P. vivax. This study thus assessed the prevalence of Pfcrt-K76T and Pfmdr1-N86Y point mutations in P. falciparum. 18S RNA gene based nested PCR confirmed P. falciparum samples (N = 183) collected through community and health facility targeted cross-sectional surveys from settings with varying P. vivax and P. falciparum endemicity were used. The proportion of Plasmodium infections that were P. vivax was 62.2% in Adama, 41.4% in Babile, 30.0% in Benishangul-Gumuz to 6.9% in Gambella. The Pfcrt-76T mutant haplotype was observed more from samples with higher endemicity of P. vivax as being 98.4% (61/62), 100% (31/31), 65.2% (15/23) and 41.5% (22/53) in samples from Adama, Babile, Benishangul-Gumuz and Gambella, respectively. However, a relatively higher proportion of Pfmdr1-N86 allele (77.3–100%) were maintained in all sites. The observed high level of the mutant Pfcrt-76T allele in P. vivax co-endemic sites might require that utilization of CQ needs to be re-evaluated in settings co-endemic for the two species. A country-wide assessment is recommended to clarify the implication of the observed level of variation in drug resistance markers on the efficacy of AL-based treatment against uncomplicated P. falciparum malaria.
Collapse
|
21
|
Apinjoh TO, Ouattara A, Titanji VPK, Djimde A, Amambua-Ngwa A. Genetic diversity and drug resistance surveillance of Plasmodium falciparum for malaria elimination: is there an ideal tool for resource-limited sub-Saharan Africa? Malar J 2019; 18:217. [PMID: 31242921 PMCID: PMC6595576 DOI: 10.1186/s12936-019-2844-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
The intensification of malaria control interventions has resulted in its global decline, but it remains a significant public health burden especially in sub-Saharan Africa (sSA). Knowledge on the parasite diversity, its transmission dynamics, mechanisms of adaptation to environmental and interventional pressures could help refine or develop new control and elimination strategies. Critical to this is the accurate assessment of the parasite’s genetic diversity and monitoring of genetic markers of anti-malarial resistance across all susceptible populations. Such wide molecular surveillance will require selected tools and approaches from a variety of ever evolving advancements in technology and the changing epidemiology of malaria. The choice of an effective approach for specific endemic settings remains challenging, particularly for countries in sSA with limited access to advanced technologies. This article examines the current strategies and tools for Plasmodium falciparum genetic diversity typing and resistance monitoring and proposes how the different tools could be employed in resource-poor settings. Advanced approaches enabling targeted deep sequencing is valued as a sensitive method for assessing drug resistance and parasite diversity but remains out of the reach of most laboratories in sSA due to the high cost of development and maintenance. It is, however, feasible to equip a limited number of laboratories as Centres of Excellence in Africa (CEA), which will receive and process samples from a network of peripheral laboratories in the continent. Cheaper, sensitive and portable real-time PCR methods can be used in peripheral laboratories to pre-screen and select samples for targeted deep sequence or genome wide analyses at these CEAs.
Collapse
Affiliation(s)
- Tobias O Apinjoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Amed Ouattara
- School of Medicine, University of Maryland, College Park, Baltimore, USA
| | - Vincent P K Titanji
- Faculty of Science, Engineering and Technology, Cameroon Christian University, Bali, Cameroon
| | - Abdoulaye Djimde
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | |
Collapse
|
22
|
Ocan M, Akena D, Nsobya S, Kamya MR, Senono R, Kinengyere AA, Obuku EA. Persistence of chloroquine resistance alleles in malaria endemic countries: a systematic review of burden and risk factors. Malar J 2019; 18:76. [PMID: 30871535 PMCID: PMC6419488 DOI: 10.1186/s12936-019-2716-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/08/2019] [Indexed: 12/18/2022] Open
Abstract
Background Chloroquine, a previous highly efficacious, easy to use and affordable anti-malarial agent was withdrawn from malaria endemic regions due to high levels of resistance. This review collated evidence from published-reviewed articles to establish prevalence of Pfcrt 76T and Pfmdr-1 86Y alleles in malaria affected countries following official discontinuation of chloroquine use. Methods A review protocol was developed, registered in PROSPERO (#CRD42018083957) and published in a peer-reviewed journal. Article search was done in PubMed, Scopus, Lilacs/Vhl and Embase databases by two experienced librarians (AK, RS) for the period 1990-to-Febuary 2018. Mesh terms and Boolean operators (AND, OR) were used. Data extraction form was designed in Excel spread sheet 2007. Data extraction was done by three reviewers (NL, BB and MO), discrepancies were resolved by discussion. Random effects analysis was done in Open Meta Analyst software. Heterogeneity was established using I2-statistic. Results A total of 4721 citations were retrieved from article search (Pubmed = 361, Lilac/vhl = 28, Science Direct = 944, Scopus = 3388). Additional targeted search resulted in three (03) eligible articles. After removal of duplicates (n = 523) and screening, 38 articles were included in the final review. Average genotyping success rate was 63.6% (18,343/28,820) for Pfcrt K76T and 93.5% (16,232/17,365) for Pfmdr-1 86Y mutations. Prevalence of Pfcrt 76T was as follows; East Africa 48.9% (2528/5242), Southern Africa 18.6% (373/2163), West Africa 58.3% (3321/6608), Asia 80.2% (1951/2436). Prevalence of Pfmdr-1 86Y was; East Africa 32.4% (1447/5722), Southern Africa 36.1% (544/1640), West Africa 52.2% (1986/4200), Asia 46.4% (1276/2217). Over half, 52.6% (20/38) of included studies reported continued unofficial chloroquine use following policy change. Studies done in Madagascar and Kenya reported re-emergence of chloroquine sensitive parasites (IC50 < 30.9 nM). The average time (years) since discontinuation of chloroquine use to data collection was 8.7 ± 7.4. There was high heterogeneity (I2 > 95%). Conclusion The prevalence of chloroquine resistance alleles among Plasmodium falciparum parasites have steadily declined since discontinuation of chloroquine use. However, Pfcrt K76T and Pfmdr-1 N86Y mutations still persist at moderate frequencies in most malaria affected countries.
Collapse
Affiliation(s)
- Moses Ocan
- Department of Pharmacology & Therapeutics, Makerere University, P.O. Box 7072, Kampala, Uganda. .,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda.
| | - Dickens Akena
- Department of Psychiatry, Makerere University, P.O. Box 7072, Kampala, Uganda.,Infectious Disease Institute, Makerere University, P. O. Box 22418, Kampala, Uganda
| | - Sam Nsobya
- Department of Medical Microbiology, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Moses R Kamya
- Department of Medicine, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Richard Senono
- Infectious Disease Institute, Makerere University, P. O. Box 22418, Kampala, Uganda.,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda
| | - Alison Annet Kinengyere
- Albert Cook Library, Makerere University, P.O. Box 7072, Kampala, Uganda.,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda
| | - Ekwaro A Obuku
- Clinical Epidemiology Unit, Department of Medicine, Makerere University, P.O. Box 7072, Kampala, Uganda.,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda.,Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
23
|
Abugri J, Ansah F, Asante KP, Opoku CN, Amenga-Etego LA, Awandare GA. Prevalence of chloroquine and antifolate drug resistance alleles in Plasmodium falciparum clinical isolates from three areas in Ghana. AAS Open Res 2018; 1:1. [PMID: 32382694 PMCID: PMC7185243 DOI: 10.12688/aasopenres.12825.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2018] [Indexed: 01/24/2023] Open
Abstract
Background: The emergence and spread of resistance in
Plasmodium falciparum to chloroquine (CQ) necessitated the change from CQ to artemisinin-based combination therapies (ACTs) as first-line drug for the management of uncomplicated malaria in Ghana in 2005. Sulphadoxine-pyrimethamine (SP) which was the second line antimalarial drug in Ghana, was now adopted for intermittent preventive treatment of malaria in pregnancy (IPTp). Methods: To examine the prevalence of molecular markers associated with CQ and antifolate drug resistance in Ghana, we employed restriction fragment length polymorphism polymerase chain reaction to genotype and compare single nucleotide polymorphisms (SNPs) in the
P. falciparum chloroquine resistance transporter (
pfcrt, PF3D7_0709000), multidrug resistance (
pfmdr1, PF3D7_0523000), bifunctional dihydrofolate reductase-thymidylate synthase (
pfdhfr, PF3D7_0417200) and dihydropteroate synthase (
pfdhps, PF3D7_0810800) genes. Parasites were collected from children with malaria reporting to hospitals in three different epidemiological areas of Ghana (Accra, Kintampo and Navrongo) in 2012-2013 and 2016-2017. Results: The overall prevalence of the CQ resistance-associated
pfcrt 76T allele was 8%, whereas
pfmdr1 86Y and 184F alleles were present in 10.2% and 65.1% of infections, respectively. The majority of the isolates harboured the antifolate resistance-associated
pfdhfr alleles 51I (83.4%), 59R (85.9 %) and 108N (90.5%).
Pfdhps 437G and 540E were detected in 90.6% and 0.7% of infections, respectively. We observed no significant difference across the three study sites for all the polymorphisms except for
pfdhps 437G
, which was more common in Accra compared to Kintampo for the 2016-2017 isolates. Across both
pfdhfr and
pfdhps genes, a large proportion (61%) of the isolates harboured the quadruple mutant combination (
I51R59N108/
G437). CQ resistance alleles decreased during the 12 years after CQ withdrawal, but an mediate SP resistance alleles increased. Conclusion: Surveillance of the prevalence of resistance alleles is necessary in monitoring the efficacy of antimalarial drugs.
Collapse
Affiliation(s)
- James Abugri
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Department of Applied Chemistry and Biochemistry, Faculty of Applied Sciences, University for Development Studies, Tamale, Ghana
| | - Felix Ansah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Kwaku P Asante
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Ghana
| | | | - Lucas A Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Navrongo Health Research Centre, Navrongo, Ghana
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
24
|
Abugri J, Ansah F, Asante KP, Opoku CN, Amenga-Etego LA, Awandare GA. Prevalence of chloroquine and antifolate drug resistance alleles in Plasmodium falciparum clinical isolates from three areas in Ghana. AAS Open Res 2018; 1:1. [PMID: 32382694 PMCID: PMC7185243 DOI: 10.12688/aasopenres.12825.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2018] [Indexed: 11/25/2023] Open
Abstract
Background: The emergence and spread of resistance in Plasmodium falciparum to chloroquine (CQ) necessitated the change from CQ to artemisinin-based combination therapies (ACTs) as first-line drug for the management of uncomplicated malaria in Ghana in 2005. Sulphadoxine-pyrimethamine (SP) which was the second line antimalarial drug in Ghana, was now adopted for intermittent preventive treatment of malaria in pregnancy (IPTp). Methods: To examine the prevalence of molecular markers associated with CQ and antifolate drug resistance in Ghana, we employed restriction fragment length polymorphism polymerase chain reaction to genotype and compare single nucleotide polymorphisms (SNPs) in the P. falciparum chloroquine resistance transporter ( pfcrt, PF3D7_0709000), multidrug resistance ( pfmdr1, PF3D7_0523000), bifunctional dihydrofolate reductase-thymidylate synthase ( pfdhfr, PF3D7_0417200) and dihydropteroate synthase ( pfdhps, PF3D7_0810800) genes. Parasites were collected from children with malaria reporting to hospitals in three different epidemiological areas of Ghana (Accra, Kintampo and Navrongo) in 2012-2013 and 2016-2017. Results: The overall prevalence of the CQ resistance-associated pfcrt 76T allele was 8%, whereas pfmdr1 86Y and 184F alleles were present in 10.2% and 65.1% of infections, respectively. The majority of the isolates harboured the antifolate resistance-associated pfdhfr alleles 51I (83.4%), 59R (85.9 %) and 108N (90.5%). Pfdhps 437G and 540E were detected in 90.6% and 0.7% of infections, respectively. We observed no significant difference across the three study sites for all the polymorphisms except for pfdhps 437G , which was more common in Accra compared to Kintampo for the 2016-2017 isolates. Across both pfdhfr and pfdhps genes, a large proportion (61%) of the isolates harboured the quadruple mutant combination ( I 51 R 59 N 108/ G 437). CQ resistance alleles decreased during the 12 years after CQ withdrawal, but an mediate SP resistance alleles increased. Conclusion: Surveillance of the prevalence of resistance alleles is necessary in monitoring the efficacy of antimalarial drugs.
Collapse
Affiliation(s)
- James Abugri
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- Department of Applied Chemistry and Biochemistry, Faculty of Applied Sciences, University for Development Studies, Tamale, Ghana
| | - Felix Ansah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Kwaku P. Asante
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Ghana
| | | | - Lucas A. Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- Navrongo Health Research Centre, Navrongo, Ghana
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
25
|
Muiruri P, Juma DW, Ingasia LA, Chebon LJ, Opot B, Ngalah BS, Cheruiyot J, Andagalu B, Akala HM, Nyambati VCS, Ng'ang'a JK, Kamau E. Selective sweeps and genetic lineages of Plasmodium falciparum multi-drug resistance (pfmdr1) gene in Kenya. Malar J 2018; 17:398. [PMID: 30376843 PMCID: PMC6208105 DOI: 10.1186/s12936-018-2534-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/20/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND There are concerns that resistance to artemisinin-based combination therapy might emerge in Kenya and sub-Saharan Africa (SSA) in the same pattern as was with chloroquine and sulfadoxine-pyrimethamine. Single nucleotide polymorphisms (SNPs) in critical alleles of pfmdr1 gene have been associated with resistance to artemisinin and its partner drugs. Microsatellite analysis of loci flanking genes associated with anti-malarial drug resistance has been used in defining the geographic origins, dissemination of resistant parasites and identifying regions in the genome that have been under selection. METHODS This study set out to investigate evidence of selective sweep and genetic lineages in pfmdr1 genotypes associated with the use of artemether-lumefantrine (AL), as the first-line treatment in Kenya. Parasites (n = 252) from different regions in Kenya were assayed for SNPs at codons 86, 184 and 1246 and typed for 7 neutral microsatellites and 13 microsatellites loci flanking (± 99 kb) pfmdr1 in Plasmodium falciparum infections. RESULTS The data showed differential site and region specific prevalence of SNPs associated with drug resistance in the pfmdr1 gene. The prevalence of pfmdr1 N86, 184F, and D1246 in western Kenya (Kisumu, Kericho and Kisii) compared to the coast of Kenya (Malindi) was 92.9% vs. 66.7%, 53.5% vs. to 24.2% and 96% vs. to 87.9%, respectively. The NFD haplotype which is consistent with AL selection was at 51% in western Kenya compared to 25% in coastal Kenya. CONCLUSION Selection pressures were observed to be different in different regions of Kenya, especially the western region compared to the coastal region. The data showed independent genetic lineages for all the pfmdr1 alleles. The evidence of soft sweeps in pfmdr1 observed varied in direction from one region to another. This is challenging for malaria control programs in SSA which clearly indicate effective malaria control policies should be based on the region and not at a country wide level.
Collapse
Affiliation(s)
- Peninah Muiruri
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
- Department of Biochemistry, School of Biomedical Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya
| | - Denis W Juma
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Luicer A Ingasia
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Lorna J Chebon
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Benjamin Opot
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Bidii S Ngalah
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Jelagat Cheruiyot
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Ben Andagalu
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Hoseah M Akala
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Venny C S Nyambati
- Department of Biochemistry, School of Biomedical Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya
| | - Joseph K Ng'ang'a
- Department of Biochemistry, School of Biomedical Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya
| | - Edwin Kamau
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya.
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA.
| |
Collapse
|
26
|
Goomber S, Mishra N, Anvikar A, Yadav CP, Valecha N. Spatio-temporal distribution of PfMDR1 polymorphism among uncomplicated Plasmodium falciparum malaria cases along international border of north east India. INFECTION GENETICS AND EVOLUTION 2018; 63:285-290. [PMID: 29842979 DOI: 10.1016/j.meegid.2018.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 10/16/2022]
Abstract
PfMDR1 single nucleotide polymorphisms (SNP) are good correlate markers for antimalarial drug resistance worldwide. Present study is a comprehensive view of screening of PfMDR1 polymorphism to antimalarials practiced with geography and time. Study sites Mizoram, Tripura, Meghalaya chosen are at multivariate drug pressure due to cross border migration and transmission. Mizoram is gateway to south east Asia through Myanmar whereas Tripura, Meghalaya share porous border with Bangladesh. Baseline finger pricked blood stained filter paper for confirmed uncomplicated Plasmodium falciparum infected patients (year 2015) were obtained from National Institute of Malaria Research, New Delhi, India. PfMDR1 polymorphism for codon N86Y, Y184F, D1246Y was determined by PCR-RFLP, further confirmed by sequencing. There observed marked predominance of Plasmodium isolates with PfMDR1 wild type alleles for all codons under study i.e. 86, 184, 1246. Spatially, Plasmodium isolates from Mizoram were most diverse with co-existence of PfMDR1 genotype with NYD, YYD, NFD haplotypes, followed by Tripura. Isolates from Meghalaya were of all NYD haplotype. Reports, referring to screening of PfMDR1 SNPs to CQ/SP/AS-SP across India, were archived. Temporal study show distinct rise in proportion of PfMDR1 wild type N86 allele since introduction of Artemether-Lumefantrine as first line antimalarial. Hence spatio-temporal screening of Plasmodium population with PfMDR1 single nucleotide polymorphism accounts for its association with antimalarial susceptibility and validate PfMDR1 SNPs as antimalarial drug resistant marker.
Collapse
Affiliation(s)
- Shelly Goomber
- National Institute of Malaria Research, Indian Council of Medical Research, Sector - 8, Dwarka, New Delhi, India.
| | - Neelima Mishra
- National Institute of Malaria Research, Indian Council of Medical Research, Sector - 8, Dwarka, New Delhi, India
| | - Anup Anvikar
- National Institute of Malaria Research, Indian Council of Medical Research, Sector - 8, Dwarka, New Delhi, India
| | - Chander Prakash Yadav
- National Institute of Malaria Research, Indian Council of Medical Research, Sector - 8, Dwarka, New Delhi, India
| | - Neena Valecha
- National Institute of Malaria Research, Indian Council of Medical Research, Sector - 8, Dwarka, New Delhi, India
| |
Collapse
|
27
|
Hemming-Schroeder E, Umukoro E, Lo E, Fung B, Tomás-Domingo P, Zhou G, Zhong D, Dixit A, Atieli H, Githeko A, Vardo-Zalik A, Yan G. Impacts of Antimalarial Drugs on Plasmodium falciparum Drug Resistance Markers, Western Kenya, 2003-2015. Am J Trop Med Hyg 2018; 98:692-699. [PMID: 29363453 PMCID: PMC5930917 DOI: 10.4269/ajtmh.17-0763] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Antimalarial drug resistance has threatened global malaria control since chloroquine (CQ)-resistant Plasmodium falciparum emerged in Asia in the 1950s. Understanding the impacts of changing antimalarial drug policy on resistance is critical for resistance management. Plasmodium falciparum isolates were collected from 2003 to 2015 in western Kenya and analyzed for genetic markers associated with resistance to CQ (Pfcrt), sulfadoxine-pyrimethamine (SP) (Pfdhfr/Pfdhps), and artemether-lumefantrine (AL) (PfKelch13/Pfmdr1) antimalarials. In addition, household antimalarial drug use surveys were administered. Pfcrt 76T prevalence decreased from 76% to 6% from 2003 to 2015. Pfdhfr/Pfdhps quintuple mutants decreased from 70% in 2003 to 14% in 2008, but increased to near fixation by 2015. SP "super resistant" alleles Pfdhps 581G and 613S/T were not detected in the 2015 samples that were assessed. The Pfmdr1 N86-184F-D1246 haplotype associated with decreased lumefantrine susceptibility increased significantly from 4% in 2005 to 51% in 2015. No PfKelch13 mutations that have been previously associated with artemisinin resistance were detected in the study populations. The increase in Pfdhfr/Pfdhps quintuple mutants that associates with SP resistance may have resulted from the increased usage of SP for intermittent preventative therapy in pregnancy (IPTp) and for malaria treatment in the community. Prevalent Pfdhfr/Pfdhps mutations call for careful monitoring of SP resistance and effectiveness of the current IPTp program in Kenya. In addition, the commonly occurring Pfmdr1 N86-184F-D1246 haplotype associated with increased lumefantrine tolerance calls for surveillance of AL efficacy in Kenya, as well as consideration for a rotating artemisinin-combination therapy regimen.
Collapse
Affiliation(s)
| | | | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina, Charlotte, North Carolina
| | - Becky Fung
- Program in Public Health, University of California, Irvine, California
| | | | - Guofa Zhou
- Program in Public Health, University of California, Irvine, California
| | - Daibin Zhong
- Program in Public Health, University of California, Irvine, California
| | - Amruta Dixit
- Program in Public Health, University of California, Irvine, California
| | - Harrysone Atieli
- Centre for Vector Biology and Control Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Andrew Githeko
- Centre for Vector Biology and Control Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Guiyun Yan
- Program in Public Health, University of California, Irvine, California
| |
Collapse
|
28
|
Sustained Ex Vivo Susceptibility of Plasmodium falciparum to Artemisinin Derivatives but Increasing Tolerance to Artemisinin Combination Therapy Partner Quinolines in The Gambia. Antimicrob Agents Chemother 2017; 61:AAC.00759-17. [PMID: 28971859 PMCID: PMC5700332 DOI: 10.1128/aac.00759-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/22/2017] [Indexed: 02/03/2023] Open
Abstract
Antimalarial interventions have yielded a significant decline in malaria prevalence in The Gambia, where artemether-lumefantrine (AL) has been used as a first-line antimalarial for a decade. Clinical Plasmodium falciparum isolates collected from 2012 to 2015 were analyzed ex vivo for antimalarial susceptibility and genotyped for drug resistance markers (pfcrt K76T, pfmdr1 codons 86, 184, and 1246, and pfk13) and microsatellite variation. Additionally, allele frequencies of single nucleotide polymorphisms (SNPs) from other drug resistance-associated genes were compared from genomic sequence data sets from 2008 (n = 79) and 2014 (n = 168). No artemisinin resistance-associated pfk13 mutation was found, and only 4% of the isolates tested in 2015 showed significant growth after exposure to dihydroartemisinin. Conversely, the 50% inhibitory concentrations (IC50s) of amodiaquine and lumefantrine increased within this period. pfcrt 76T and pfmdr1 184F mutants remained at a prevalence above 80%. pfcrt 76T was positively associated with higher IC50s to chloroquine. pfmdr1 NYD increased in frequency between 2012 and 2015 due to lumefantrine selection. The TNYD (pfcrt 76T and pfmdr1 NYD wild-type haplotype) also increased in frequency following AL implementation in 2008. These results suggest selection for pfcrt and pfmdr1 genotypes that enable tolerance to lumefantrine. Increased tolerance to lumefantrine calls for sustained chemotherapeutic monitoring in The Gambia to minimize complete artemisinin combination therapy (ACT) failure in the future.
Collapse
|
29
|
Apinjoh TO, Mugri RN, Miotto O, Chi HF, Tata RB, Anchang-Kimbi JK, Fon EM, Tangoh DA, Nyingchu RV, Jacob C, Amato R, Djimde A, Kwiatkowski D, Achidi EA, Amambua-Ngwa A. Molecular markers for artemisinin and partner drug resistance in natural Plasmodium falciparum populations following increased insecticide treated net coverage along the slope of mount Cameroon: cross-sectional study. Infect Dis Poverty 2017; 6:136. [PMID: 29110722 PMCID: PMC5674235 DOI: 10.1186/s40249-017-0350-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/09/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Drug resistance is one of the greatest challenges of malaria control programmes, with the monitoring of parasite resistance to artemisinins or to Artemisinin Combination Therapy (ACT) partner drugs critical to elimination efforts. Markers of resistance to a wide panel of antimalarials were assessed in natural parasite populations from southwestern Cameroon. METHODS Individuals with asymptomatic parasitaemia or uncomplicated malaria were enrolled through cross-sectional surveys from May 2013 to March 2014 along the slope of mount Cameroon. Plasmodium falciparum malaria parasitaemic blood, screened by light microscopy, was depleted of leucocytes using CF11 cellulose columns and the parasite genotype ascertained by sequencing on the Illumina HiSeq platform. RESULTS A total of 259 participants were enrolled in this study from three different altitudes. While some alleles associated with drug resistance in pfdhfr, pfmdr1 and pfcrt were highly prevalent, less than 3% of all samples carried mutations in the pfkelch13 gene, none of which were amongst those associated with slow artemisinin parasite clearance rates in Southeast Asia. The most prevalent haplotypes were triple mutants Pfdhfr I 51 R 59 N 108 I 164(99%), pfcrt- C72V73 I 74 E 75 T 76 (47.3%), and single mutants PfdhpsS436 G 437K540A581A613(69%) and Pfmdr1 N86 F 184D1246 (53.2%). CONCLUSIONS The predominance of the Pf pfcrt CVIET and Pf dhfr IRN triple mutant parasites and absence of pfkelch13 resistance alleles suggest that the amodiaquine and pyrimethamine components of AS-AQ and SP may no longer be effective in their role while chloroquine resistance still persists in southwestern Cameroon.
Collapse
Affiliation(s)
- Tobias O. Apinjoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Regina N. Mugri
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Olivo Miotto
- Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Hanesh F. Chi
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Rolland B. Tata
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | | | - Eleanor M. Fon
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Delphine A. Tangoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
- Department of Medical Laboratory Science, University of Buea, Buea, Cameroon
| | - Robert V. Nyingchu
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
- Department of Medical Laboratory Science, University of Buea, Buea, Cameroon
| | | | - Roberto Amato
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA UK
| | | | | | - Eric A. Achidi
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | | |
Collapse
|
30
|
Gil JP, Krishna S. pfmdr1 (Plasmodium falciparum multidrug drug resistance gene 1): a pivotal factor in malaria resistance to artemisinin combination therapies. Expert Rev Anti Infect Ther 2017; 15:527-543. [DOI: 10.1080/14787210.2017.1313703] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- J. Pedro Gil
- Physiology and Pharmacology Department, Karolinska Institutet, Stockholm, Sweden
| | - S. Krishna
- St George’s University Hospital, Institute for Infection and Immunity, London, United Kingdom
| |
Collapse
|
31
|
Maiga H, Lasry E, Diarra M, Sagara I, Bamadio A, Traore A, Coumare S, Bahonan S, Sangare B, Dicko Y, Diallo N, Tembely A, Traore D, Niangaly H, Dao F, Haidara A, Dicko A, Doumbo OK, Djimde AA. Seasonal Malaria Chemoprevention with Sulphadoxine-Pyrimethamine and Amodiaquine Selects Pfdhfr-dhps Quintuple Mutant Genotype in Mali. PLoS One 2016; 11:e0162718. [PMID: 27662368 PMCID: PMC5035027 DOI: 10.1371/journal.pone.0162718] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/26/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Seasonal malaria chemoprevention (SMC) with sulphadoxine-pyrimethamine (SP) plus amodiaquine (AQ) is being scaled up in Sahelian countries of West Africa. However, the potential development of Plasmodium falciparum resistance to the respective component drugs is a major concern. METHODS Two cross-sectional surveys were conducted before (August 2012) and after (June 2014) a pilot implementation of SMC in Koutiala, Mali. Children aged 3-59 months received 7 rounds of curative doses of SP plus AQ over two malaria seasons. Genotypes of P. falciparum Pfdhfr codons 51, 59 and 108; Pfdhps codons 437 and 540, Pfcrt codon 76 and Pfmdr1codon 86 were analyzed by PCR on DNA from samples collected before and after SMC, and in non-SMC patient population as controls (November 2014). RESULTS In the SMC population 191/662 (28.9%) and 85/670 (12.7%) of children were P. falciparum positive by microscopy and were included in the molecular analysis before (2012) and after SMC implementation (2014), respectively. In the non-SMC patient population 220/310 (71%) were successfully PCR analyzed. In the SMC children, the prevalence of all molecular markers of SP resistance increased significantly after SMC including the Pfdhfr-dhps quintuple mutant genotype, which was 1.6% before but 7.1% after SMC (p = 0.02). The prevalence of Pfmdr1-86Y significantly decreased from 26.7% to 15.3% (p = 0.04) while no significant change was seen for Pfcrt 76T. In 2014, prevalence of all molecular markers of SP resistance were significantly higher among SMC children compared to the non-SMC population patient (p < 0.01). No Pfdhfr-164 mutation was found neither at baseline nor post SMC. CONCLUSION SMC increased the prevalence of molecular markers of P. falciparum resistance to SP in the treated children. However, there was no significant increase of these markers of resistance in the general parasite population after 2 years and 7 rounds of SMC.
Collapse
Affiliation(s)
- Hamma Maiga
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Odontostomatology and Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Estrella Lasry
- Médecins Sans Frontières (MSF), New York, New York, United States of America
| | - Modibo Diarra
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Odontostomatology and Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Issaka Sagara
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Odontostomatology and Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Amadou Bamadio
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Odontostomatology and Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Aliou Traore
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Odontostomatology and Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Samba Coumare
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Odontostomatology and Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Mali
| | | | - Boubou Sangare
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Odontostomatology and Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Yeyia Dicko
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Odontostomatology and Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Nouhoum Diallo
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Odontostomatology and Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Aly Tembely
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Odontostomatology and Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Djibril Traore
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Odontostomatology and Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Hamidou Niangaly
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Odontostomatology and Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - François Dao
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Odontostomatology and Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Aboubecrine Haidara
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Odontostomatology and Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Alassane Dicko
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Odontostomatology and Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Odontostomatology and Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Abdoulaye A. Djimde
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Odontostomatology and Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Mali
- * E-mail:
| |
Collapse
|
32
|
Mbaye A, Dieye B, Ndiaye YD, Bei AK, Muna A, Deme AB, Yade MS, Diongue K, Gaye A, Ndiaye IM, Ndiaye T, Sy M, Diallo MA, Badiane AS, Ndiaye M, Seck MC, Sy N, Koita O, Krogstad DJ, Nwakanma D, Ndiaye D. Selection of N86F184D1246 haplotype of Pfmrd1 gene by artemether-lumefantrine drug pressure on Plasmodium falciparum populations in Senegal. Malar J 2016; 15:433. [PMID: 27562216 PMCID: PMC5000460 DOI: 10.1186/s12936-016-1490-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/16/2016] [Indexed: 01/06/2023] Open
Abstract
Background The use of artemisinin as a monotherapy resulted in the emergence of artemisinin resistance in 2005 in Southeast Asia. Monitoring of artemisinin combination therapy (ACT) is critical in order to detect and prevent the spread of resistance in endemic areas. Ex vivo studies and genotyping of molecular markers of resistance can be used as part of this routine monitoring strategy. One gene that has been associated in some ACT partner drug resistance is the Plasmodium falciparum multidrug resistance protein 1 (pfmdr1) gene. The purpose of this study was to assess the drug susceptibility of P. falciparum populations from Thiès, Senegal by ex vivo assay and typing molecular markers of resistance to drug components of ACT currently used for treatment. Methods The ex vivo susceptibility of 170 P. falciparum isolates to chloroquine, amodiaquine, lumefantrine, artesunate, and artemether was determined using the DAPI ex vivo assay. The high resolution melting technique was used to genotype the pfmdr1 gene at codons 86, 184 and 1246. Results A significant decrease in IC50 values was observed between 2012 and 2013: from 13.84 to 6.484 for amodiaquine, 173.4 to 113.2 for lumefantrine, and 39.72 to 18.29 for chloroquine, respectively. Increase of the wild haplotype NYD and the decrease of the mutant haplotype NFD (79 and 62.26 %) was also observed. A correlation was observed between the wild type allele Y184 in pfmdr1 and higher IC50 for all drugs, except amodiaquine. Conclusion This study has shown an increase in sensitivity over the span of two transmission seasons, marked by an increase in the WT alleles at pfmdr1. Continuous the monitoring of the ACT used for treatment of uncomplicated malaria will be helpful.
Collapse
Affiliation(s)
- Aminata Mbaye
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal.
| | - Baba Dieye
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Yaye D Ndiaye
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Amy K Bei
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | | | - Awa B Deme
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Mamadou S Yade
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Khadim Diongue
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Amy Gaye
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Ibrahima M Ndiaye
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Tolla Ndiaye
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Mouhamad Sy
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Mamadou A Diallo
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Aida S Badiane
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Mouhamadou Ndiaye
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Mame C Seck
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | - Ngayo Sy
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal
| | | | | | | | - Daouda Ndiaye
- Laboratory of Parasitology/Mycology HALD, Cheikh Anta Diop University of Dakar, PO Box 5005, Dakar, Senegal.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
33
|
In Vitro and Molecular Surveillance for Antimalarial Drug Resistance in Plasmodium falciparum Parasites in Western Kenya Reveals Sustained Artemisinin Sensitivity and Increased Chloroquine Sensitivity. Antimicrob Agents Chemother 2015; 59:7540-7. [PMID: 26392510 DOI: 10.1128/aac.01894-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/16/2015] [Indexed: 01/06/2023] Open
Abstract
Malaria control is hindered by the evolution and spread of resistance to antimalarials, necessitating multiple changes to drug policies over time. A comprehensive antimalarial drug resistance surveillance program is vital for detecting the potential emergence of resistance to antimalarials, including current artemisinin-based combination therapies. An antimalarial drug resistance surveillance study involving 203 Plasmodium falciparum malaria-positive children was conducted in western Kenya between 2010 and 2013. Specimens from enrolled children were analyzed in vitro for sensitivity to chloroquine (CQ), amodiaquine (AQ), mefloquine (MQ), lumefantrine, and artemisinin derivatives (artesunate and dihydroartemisinin) and for drug resistance allele polymorphisms in P. falciparum crt (Pfcrt), Pfmdr-1, and the K13 propeller domain (K13). We observed a significant increase in the proportion of samples with the Pfcrt wild-type (CVMNK) genotype, from 61.2% in 2010 to 93.0% in 2013 (P < 0.0001), and higher proportions of parasites with elevated sensitivity to CQ in vitro. The majority of isolates harbored the wild-type N allele in Pfmdr-1 codon 86 (93.5%), with only 7 (3.50%) samples with the N86Y mutant allele (the mutant nucleotide is underlined). Likewise, most isolates harbored the wild-type Pfmdr-1 D1246 allele (79.8%), with only 12 (6.38%) specimens with the D1246Y mutant allele and 26 (13.8%) with mixed alleles. All the samples had a single copy of the Pfmdr-1 gene (mean of 0.907 ± 0.141 copies). None of the sequenced parasites had mutations in K13. Our results suggest that artemisinin is likely to remain highly efficacious and that CQ sensitivity appears to be on the rise in western Kenya.
Collapse
|