1
|
Ferreira LM, García-García P, García PA, Castro MÁ. A review on quinolines: New green synthetic methods and bioactive potential. Eur J Pharm Sci 2025; 209:107097. [PMID: 40221058 DOI: 10.1016/j.ejps.2025.107097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Quinolines have been an interest of study for a few decades due to the importance of this system in natural and pharmaceutical products. Since their discovery in the nineteenth century, many medicinal properties have been found for quinoline compounds. Firstly, as an anti-parasitic agent against malaria and then against many other diseases, such as, other parasitic infections, HIV, bacterial infections and cancer. Consequently, many synthetic methods have been developed to afford the quinoline ring. In this review we look back at traditional methods and look forward to the most recent and promising "green" methods for the synthesis of quinolines. Also, we review the newest advances in therapeutic compounds based on the quinoline skeleton for the treatment of parasitic and cancer diseases and the most recent applications of quinoline derivatives in drug delivery systems.
Collapse
Affiliation(s)
- Laura M Ferreira
- Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, CIETUS/IBSAL, Universidad de Salamanca, Campus Miguel de Unamuno Salamanca, 37007, Spain
| | - Pilar García-García
- Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, CIETUS/IBSAL, Universidad de Salamanca, Campus Miguel de Unamuno Salamanca, 37007, Spain.
| | - Pablo A García
- Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, CIETUS/IBSAL, Universidad de Salamanca, Campus Miguel de Unamuno Salamanca, 37007, Spain
| | - María Ángeles Castro
- Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, CIETUS/IBSAL, Universidad de Salamanca, Campus Miguel de Unamuno Salamanca, 37007, Spain.
| |
Collapse
|
2
|
Tom AA, Rajendran V, Thottasseri AA, Goswami K, Roy S, Gopan G, Mani M, Kannan T. Antiplasmodial action of 4-nitrobenzenesulfonamide chalcones: Design, synthesis, characterisation, in vitro and in silico evaluation against blood stages of Plasmodium falciparum 3D7. Drug Dev Res 2024; 85:e22233. [PMID: 39030842 DOI: 10.1002/ddr.22233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/13/2024] [Accepted: 06/29/2024] [Indexed: 07/22/2024]
Abstract
Malaria is an intracellular protozoan parasitic disease caused by Plasmodium species with significant morbidity and mortality in endemic regions. The complex lifecycle of the parasite and the emergence of drug-resistant Plasmodium falciparum have hampered the efficacy of current anti-malarial agents. To circumvent this situation, the present study attempts to demonstrate the blood-stage anti-plasmodial action of 26 hybrid compounds containing the three privileged bioactive scaffolds (sulfonamide, chalcone, and nitro group) with synergistic and multitarget action. These three parent scaffolds exhibit divergent activities, such as antibacterial, anti-malarial, anti-fungal, anti-inflammatory, and anticancer. All the synthesised compounds were characterised using various spectroscopic techniques. The in vitro blood-stage inhibitory activity of 26 hybrid compounds was evaluated against mixed-stage culture (asynchronize) of human malarial parasite P. falciparum, Pf 3D7 at different concentrations ranging from 25.0 µg/mL to 0.78 µg/mL using SYBR 1 green assay, with IC50 values determined after 48 h of treatment based on the drug-response curves. Two potent compounds (11 and 10), with 2-Br and 2,6-diCl substitutions, showed pronounced activity with IC50 values of 5.4 µg/mL and 5.6 µg/mL, whereas others displayed varied activity with IC50 values ranging from 7.0 µg/mL to 22.0 µg/mL. Both 11 and 10 showed greater susceptibility towards mature-stage trophozoites than ring-stage parasites. The hemolytic and in vitro cytotoxicity assays revealed that compounds 11 and 10 did not cause any toxic effects on host red blood cells (uninfected), human-derived Mo7e cells, and murine-derived BA/F3 cells. The in vitro observations are consistent with the in silico studies using P. falciparum-dihydrofolate reductase, where 11 and 10 showed a binding affinity of -10.4 Kcal/mol. This is the first report of the hybrid scaffold, 4-nitrobenzenesulfonamide chalcones, demonstrating its potential as an anti-plasmodial agent.
Collapse
Affiliation(s)
- Anju Agnes Tom
- Department of Chemistry, Pondicherry University, Puducherry, India
| | - Vinoth Rajendran
- Department of Microbiology, Pondicherry University, Puducherry, India
| | | | - Koustav Goswami
- Department of Chemistry, Pondicherry University, Puducherry, India
| | - Souvik Roy
- Department of Chemistry, Pondicherry University, Puducherry, India
| | - Gopika Gopan
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - Maheswaran Mani
- Department of Microbiology, Pondicherry University, Puducherry, India
| | | |
Collapse
|
3
|
Lu M, Liu Y. Gold-Catalyzed Regio- and Stereoselective Alkenylation of Quinoline N-Oxides with Allenamides. Org Lett 2024; 26:5493-5499. [PMID: 38905136 DOI: 10.1021/acs.orglett.4c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
A gold-catalyzed cycloaddition/ring opening of allenamides with quinoline N-oxides has been developed, which provides C2-alkenylated quinolines with high E selectivity in moderate to high yields. It is noted that quinoline N-oxides with a C8 or C7 substituent are crucial for this catalytic reaction.
Collapse
Affiliation(s)
- Mingduo Lu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| | - Yuanhong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| |
Collapse
|
4
|
Ain QT, Saleem N, Munawar N, Nawaz R, Naseer F, Ahmed S. Quest for malaria management using natural remedies. Front Pharmacol 2024; 15:1359890. [PMID: 39011507 PMCID: PMC11247327 DOI: 10.3389/fphar.2024.1359890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/29/2024] [Indexed: 07/17/2024] Open
Abstract
Malaria, transmitted through the bite of a Plasmodium-infected Anopheles mosquito, remains a significant global health concern. This review examines the complex life cycle of Plasmodium, emphasizing the role of humans and mosquitoes in its transmission and proliferation. Malarial parasites are transmitted as sporozoites to the human body by biting an infected female Anopheles mosquito. These sporozoites then invade liver cells, multiply, and release merozoites, which infect red blood cells, perpetuating the cycle. As this cycle continues, the affected person starts experiencing the clinical symptoms of the disease. The current treatments for malaria, including chloroquine, artemisinin-based combination therapy, and quinine, are discussed alongside the challenges of drug resistance and misdiagnosis. Although efforts have been made to develop a malarial vaccine, they have so far been unsuccessful. Additionally, the review explores the potential of medicinal plants as remedies for malaria, highlighting the efficacy of compounds derived from Artemisia annua, Cinchona species, and Helianthus annuus L., as well as exploration of plants and phytocompounds like cryptolepine, and isoliquiritigenin against drug-resistant Plasmodium species. Moreover, studies from Pakistan further highlight the diverse vegetal resources utilized in malaria treatment, emphasizing the need for further research into natural remedies. Despite the advantages of herbal medicines, including cost-effectiveness, and fewer side effects; their limitations must be taken into account, including variations in potency and potential drug interactions. The review concludes by advocating for a balanced approach to malaria treatment and prevention, emphasizing the importance of early detection, accurate diagnosis, and integrated efforts to combat the disease in the endemic regions.
Collapse
Affiliation(s)
- Qura Tul Ain
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
- Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Nida Saleem
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Nayla Munawar
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rukhsana Nawaz
- Department of Clinical Psychology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Faiza Naseer
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Sagheer Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| |
Collapse
|
5
|
Uddin A, Gupta S, Shoaib R, Aneja B, Irfan I, Gupta K, Rawat N, Combrinck J, Kumar B, Aleem M, Hasan P, Joshi MC, Chhonker YS, Zahid M, Hussain A, Pandey K, Alajmi MF, Murry DJ, Egan TJ, Singh S, Abid M. Blood-stage antimalarial activity, favourable metabolic stability and in vivo toxicity of novel piperazine linked 7-chloroquinoline-triazole conjugates. Eur J Med Chem 2024; 264:115969. [PMID: 38039787 DOI: 10.1016/j.ejmech.2023.115969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
The persistence of drug resistance poses a significant obstacle to the advancement of efficacious malaria treatments. The remarkable efficacy displayed by 1,2,3-triazole-based compounds against Plasmodium falciparum highlights the potential of triazole conjugates, with diverse pharmacologically active structures, as potential antimalarial agents. We aimed to synthesize 7-dichloroquinoline-triazole conjugates and their structure-activity relationship (SAR) derivatives to investigate their anti-plasmodial activity. Among them, QP11, featuring a m-NO2 substitution, demonstrated efficacy against both chloroquine-sensitive and -resistant parasite strains. QP11 selectively inhibited FP2, a cysteine protease involved in hemoglobin degradation, and showed synergistic effects when combined with chloroquine. Additionally, QP11 hindered hemoglobin degradation and hemozoin formation within the parasite. Metabolic stability studies indicated high stability of QP11, making it a promising antimalarial candidate. In vivo evaluation using a murine malaria model demonstrated QP11's efficacy in eradicating parasite growth without neurotoxicity, presenting it as a promising compound for novel antimalarial development.
Collapse
Affiliation(s)
- Amad Uddin
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sonal Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rumaisha Shoaib
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Babita Aneja
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Iram Irfan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Kanika Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Neha Rawat
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jill Combrinck
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa
| | - Bhumika Kumar
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India; National Institute of Malaria Research, New Delhi, 110077, India
| | - Mohd Aleem
- Division of Behavioral Neuroscience, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - Phool Hasan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mukesh C Joshi
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science College of Pharmacy, University of Nebraska Medical Center, 986145, Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Muhammad Zahid
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, 986145, Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kailash Pandey
- National Institute of Malaria Research, New Delhi, 110077, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Daryl J Murry
- Department of Pharmacy Practice and Science College of Pharmacy, University of Nebraska Medical Center, 986145, Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
6
|
Espinosa-Saez R, Robledo SM, Pineda T, Murillo J, Zúñiga C, Yañez O, Cantero-López P, Saez-Vega A, Guzmán-Teran C. Screening of the antileishmanial and antiplasmodial potential of synthetic 2-arylquinoline analogs. Sci Rep 2023; 13:17523. [PMID: 37845281 PMCID: PMC10579228 DOI: 10.1038/s41598-023-43805-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023] Open
Abstract
In this study, six analogs of 2-arylquinoline were synthesized and evaluated for their in vitro and in vivo antiplasmodial and leishmanicidal activity. At a later stage, hemolytic activity and druggability were tested in vitro and in silico, respectively, observing as a result: firstly, compounds showed half-maximal effective concentration (EC50) values between 3.6 and 19.3 µM. Likewise, a treatment using the compounds 4a-f caused improvement in most of the treated hamsters and cured some of them. Regarding the antiplasmodial activity, the compounds showed moderate to high activity, although they did not show hemolytic activity. Furthermore, 4e and 4f compounds were not able to control P. berghei infection when administered to animal models. Molecular dynamic simulations, molecular docking and ligand binding affinity indicate good characteristics of the studied compounds, which are expected to be active. And lastly, the compounds are absorbable at the hematoencephalic barrier but not in the gastrointestinal tract. In summary, ADMET properties suggest that these molecules may be used as a safe treatment against Leishmania.
Collapse
Affiliation(s)
- Roger Espinosa-Saez
- Grupo de Investigación, Evaluación y Desarrollo de Fármacos y Afines-IDEFARMA, Departamento de Regencia y Farmacia, Universidad de Córdoba, Montería, Córdoba, Colombia
| | - Sara M Robledo
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Facultad de Medicina, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Tatiana Pineda
- Corporación de Innovación Para el Desarrollo de Productos, Medellín, Antioquia, Colombia
| | - Javier Murillo
- Corporación de Innovación Para el Desarrollo de Productos, Medellín, Antioquia, Colombia
| | - César Zúñiga
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Sede Providencia, Santiago, Chile
- Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago, Chile
| | - Osvaldo Yañez
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago, Chile
| | - Plinio Cantero-López
- Departamento de Ciencias, Facultad de Ciencias Exactas, Químicas, Universidad Andres Bello, Viña del Mar, Chile
- Center of Applied Nanoscience (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
- Relativistic Molecular Physics Group (ReMoPh), PhD Program in Molecular Physical Chemistry, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Alex Saez-Vega
- Escuela de Ciencias Aplicadas e Ingenierías, Universidad EAFIT, Medellín, Colombia
| | - Camilo Guzmán-Teran
- Grupo de Investigación, Evaluación y Desarrollo de Fármacos y Afines-IDEFARMA, Departamento de Regencia y Farmacia, Universidad de Córdoba, Montería, Córdoba, Colombia.
| |
Collapse
|
7
|
Mittal RK, Purohit P, Abdellattif MH, Aggarwal M. Microwave and Cs +-assisted chemo selective reaction protocol for synthesizing 2-styryl quinoline biorelevant molecules. OPEN CHEM 2023. [DOI: 10.1515/chem-2022-0250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Abstract
The reaction protocols and their continuous development to achieve the desired selectivity remain a primary target of organic chemistry, which is addressed here with the specific role of the cesium ion. The pharmacophore “2-styryl quinoline” was taken as a reference here because of the continuation of our work, where it was found fit as fusion inhibitors and anti-viral agents. The present protocol defines its importance for the synthesis of O-alkylated products. However, in most cases, N-alkylation proceeds because of nitrogen atoms’ more nucleophilic nature and electronic density. The cesium effect makes this possible because of the large cationic size and its affection for the oxygen atom. The plausible mechanism and its progression were demonstrated here with the help of density function theory calculation by analyzing the energy of intermediates. The protocol is also found suitable with microwave irradiation. Moreover, it gives the product a better yield in less reaction time. The present reaction protocol and its importance will address some of the crucial issues related to the synthesis of the complex molecule, and the present protocol will open up hope, where the selectivity and product yield would be a concern.
Collapse
|
8
|
Moorthy H, Yadav M, Tamang N, Mavileti SK, Singla L, Choudhury AR, Sahal D, Golakoti NR. Antiplasmodial and Antimalarial Activity of 3,5-Diarylidenetetrahydro-2H-pyran-4(3H)-ones via Inhibition of Plasmodium falciparum Pyridoxal Synthase. ChemMedChem 2023; 18:e202200411. [PMID: 36251345 DOI: 10.1002/cmdc.202200411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/13/2022] [Indexed: 01/24/2023]
Abstract
A series of 22 different 3,5-diarylidenetetrahydro-2H-pyran-4(3H)-ones (DATPs) were synthesized, characterized, and screened for their in vitro antiplasmodial activities against chloroquine (CQ)-sensitive Pf3D7, CQ-resistant PfINDO, and artemisinin-resistant PfMRA-1240 strains of Plasmodium falciparum. DATP 19 (3,5-bis(4-hydroxy-3,5-dimethoxybenzylidene)tetrahydro-2H-pyran-4(3H)-one) was found to be the most potent (IC50 1.07 μM) against PfMRA-1240, whereas 21 (3,5-bis(3,4,5-trimethoxybenzylidene)tetrahydro-2H-pyran-4(3H)-one) showed IC50 values of 1.72 and 1.44 μM against Pf3D7 and PfINDO, respectively. Resistance indices (RI) as low as 0.2 to 0.5 for 10 (3,5-bis(4-nitrobenzylidene)tetrahydro-2H-pyran-4(3H)-one) and 20 (3,5-bis(3-nitrobenzylidene)tetrahydro-2H-pyran-4(3H)-one), and <1 for most other DATPs reveals their greater potency against resistant strains than the sensitive one. The single-crystal XRD data for DATP 21 are reported. In silico support was obtained through docking studies. Killing all three strains within 4-8 h, these DATPs showed rapid kill kinetics toward the trophozoite stage. Furthermore, DATP 18 (3,5-bis(quinolin-4-ylmethylene)tetrahydro-2H-pyran-4(3H)-one) inhibited PfPdx1 enzyme activity with IC50 20.34 μM, which is about twofold lower than that (IC50 43 μM) for an already known inhibitor 4PEHz. At an oral dose of 300 mg/kg body weight, DATPs 19 and 21 were found to be nontoxic to mice, and at 100 mg/kg body weight, DATP 19 was found to suppress parasitaemia, which led to an increase in median survival time by three days relative to untreated control mice in a malaria curative study.
Collapse
Affiliation(s)
- Hariharan Moorthy
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, 515134, India
| | - Mamta Yadav
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Nitesh Tamang
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, 515134, India
| | - Sai Kiran Mavileti
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, 515134, India
| | - Labhini Singla
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli P.O., Mohali, Punjab, 140306, India
| | - Angshuman Roy Choudhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli P.O., Mohali, Punjab, 140306, India
| | - Dinkar Sahal
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Nageswara Rao Golakoti
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, 515134, India
| |
Collapse
|
9
|
Sehlangia S, Nayak N, Garg N, Pradeep CP. Substituent-Controlled Structural, Supramolecular, and Cytotoxic Properties of a Series of 2-Styryl-8-nitro and 2-Styryl-8-hydroxy Quinolines. ACS OMEGA 2022; 7:24838-24850. [PMID: 35874236 PMCID: PMC9301718 DOI: 10.1021/acsomega.2c03047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Styryl quinolines are biologically active compounds with properties largely depending on the substituents on the styryl and quinoline rings. The supramolecular aspects of this class of compounds are rarely explored. In this study, two new series of styryl quinoline derivatives, bearing -OH and -NO2 groups at the eighthposition of the quinoline ring and -SCH3, -OCH3, and -Br groups on the styryl ring, have been developed, and their structural, supramolecular, and cytotoxic properties have been analyzed. Crystallographic analyses revealed the exciting substituent-dependent structural and supramolecular features of these compounds. In general, the 8 -OH substituted derivatives (SA series) exhibited a non-planar molecular geometry having larger dihedral angles (5.75-59.3°) between the planes of the aromatic rings. At the same time, the 8 -NO2 substituted derivatives (SB series) exhibited a more or less planar molecular geometry, as revealed by the smaller dihedral angles (1.32-3.45°) between the aromatic rings. Multiple O-H···O, C-H···O, O-H···N, and π-π stacking interactions among the molecules lead to fascinating supramolecular architectures such as hydrogen-bonded triple helices, zig-zag 1D chains, π-π stacked infinite chains, and so forth in their crystal lattice. Hirshfeld surface analyses confirmed the existence of strong π-π stacking and other weak bonding interactions in these compounds. The preliminary cytotoxic properties of SA and SB series compounds were evaluated against the human cervical cancer cell lines (HeLa cells), which further highlighted the roles of functional substituents on the aromatic rings. The SA series compounds with the -OH substituent on the quinoline ring exhibited better cytotoxicity than the SB series compounds with a -NO2 substituent. Similarly, the electron-withdrawing group -Br on the styryl ring enhanced the cytotoxicity in both series. The IC50 values were 2.52-4.69 and 2.897-10.37 μM, respectively, for the SA and SB series compounds. Compound S3A having -OH and -Br groups on the quinoline and styryl ring, respectively, exhibited the best IC50 value of 2.52 μM among all the compounds tested. These findings confirm the relevance of the hydroxyl group in the eighth position of quinoline. In short, the present study attempts to provide a systematic analysis of the effects of aromatic ring substituents on the structural, supramolecular, and cytotoxic properties of styryl quinolines for the first time.
Collapse
Affiliation(s)
- Suman Sehlangia
- School
of Basic Sciences, Indian Institute of Technology
Mandi, Kamand 175005, Himachal Pradesh, India
| | - Namyashree Nayak
- School
of Basic Sciences, Indian Institute of Technology
Mandi, Kamand 175005, Himachal Pradesh, India
| | - Neha Garg
- Department
of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical
Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Chullikkattil P. Pradeep
- School
of Basic Sciences, Indian Institute of Technology
Mandi, Kamand 175005, Himachal Pradesh, India
| |
Collapse
|
10
|
Bernard MM, Mohanty A, Rajendran V. Title: A Comprehensive Review on Classifying Fast-acting and Slow-acting Antimalarial Agents Based on Time of Action and Target Organelle of Plasmodium sp. Pathog Dis 2022; 80:6589403. [PMID: 35588061 DOI: 10.1093/femspd/ftac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/20/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical resistance towards malarial parasites has rendered many antimalarials ineffective, likely due to a lack of understanding of time of action and stage specificity of all life stages. Therefore, to tackle this problem a more incisive comprehensive analysis of the fast and slow-acting profile of antimalarial agents relating to parasite time-kill kinetics and the target organelle on the progression of blood-stage parasites was carried out. It is evident from numerous findings that drugs targeting food vacuole, nuclear components, and endoplasmic reticulum mainly exhibit a fast-killing phenotype within 24h affecting first-cycle activity. Whereas drugs targeting mitochondria, apicoplast, microtubules, parasite invasion and egress exhibit a largely slow-killing phenotype within 96-120h, affecting second-cycle activity with few exemptions as moderately fast-killing. It is essential to understand the susceptibility of drugs on rings, trophozoites, schizonts, merozoites, and the appearance of organelle at each stage of 48h intraerythrocytic parasite cycle. Therefore, these parameters may facilitate the paradigm for understanding the timing of antimalarials action in deciphering its precise mechanism linked with time. Thus, classifying drugs based on the time of killing may promote designing new combination regimens against varied strains of P. falciparum and evaluating potential clinical resistance.
Collapse
Affiliation(s)
- Monika Marie Bernard
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Abhinab Mohanty
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Vinoth Rajendran
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
11
|
Jiatsa Mbouna CD, Tchatat Tali BM, Tsouh Fokou PV, Madiesse Kemgne EA, Keumoe R, Toghueo Kouipou RM, Yamthe Tchokouaha LR, Tchuente Tchuenmogne MA, Kenou DK, Sahal D, Boyom FF. Specific sub fractions from Terminalia mantaly (H. Perrier) extracts potently inhibit Plasmodium falciparum rings, merozoite egress and invasion. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114909. [PMID: 34902534 DOI: 10.1016/j.jep.2021.114909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Terminalia mantaly (H. Perrier) and Terminalia superba (Engl. & Diels) are sources of treatment for various diseases, including malaria and/or related symptoms in parts of Southwestern Cameroon. However, there is limited information on the extent of the antiplasmodial potential of their extracts. AIM OF THE STUDY The present study was designed to investigate the antiplasmodial potential of chromatographic sub fractions (SFs) from promising fractions of Terminalia mantaly (Tm) [TmsbwChl, the chloroform fraction from water extract of Tm, IC50 (μg/mL) PfINDO: 0.56, Pf3D7: 1.12; SI > 357 (HEK/PfINDO) & 178 (HEK/Pf3D7)] and Terminalia superba (Ts) [TsrmEA, the ethyl acetate fraction from methanolic extract of Ts, IC50 (μg/mL) PfINDO: 1.82, Pf3D7: 1.65; SI > 109 (HEK/PfINDO) & 121 (HEK/Pf3D7)] obtained from previous studies. The SFs were tested against Plasmodium falciparum 3D7 (Pf3D7-chloroquine sensitive) and INDO (PfINDO-chloroquine resistant) strains in culture. Also, the phytochemical profile of potent SFs was determined and finally, the inhibition of the asexual blood stages of Plasmodium falciparum by the SFs with the highest promise was assessed. MATERIAL AND METHODS Selected SFs were submitted to a second bio-guided fractionation using silica gel column chromatography. The partial phytochemical composition of potent antiplasmodial SFs was determined using gas chromatography coupled to mass spectrometry (GC-MS). The SYBR Green I-based fluorescence microtiter plate assay was used to monitor the growth of Plasmodium falciparum parasites in culture in the presence or absence of extracts. Microscopy and flow cytometry counting was used to assess the Plasmodium falciparum stage-specific inhibition and post-drug exposure growth suppression by highly potent extracts. RESULTS Twenty-one of the 39 SFs afforded from TmsbwChl showed activity (IC50: 0.29-4.74 μg/mL) against both Pf3D7 and PfINDO strains. Of note, eight SFs namely, Tm25, Tm28-30, Tm34-36 and Tm38, exerted highly potent antiplasmodial activity (IC50 < 1 μg/mL) with IC50PfINDO: 0.41-0.84 μg/mL and IC50Pf3D7: 0.29-0.68 μg/mL. They also displayed very high selectivity (50 < SIPfINDO, SIPf3D7 > 344) on the two Plasmodial strains. On the other hand, 7 SFs (SFs Ts03, Ts04, Ts06, Ts09, Ts10, Ts12 and Ts13) from TsrmEA showed promising inhibitory potential against both parasite strains (IC50: 2.01-5.14 μg/mL). Sub fraction Tm36 (IC50PfINDO: 0.41 μg/mL, SIPfINDO > 243; IC50Pf3D7: 0.29 μg/mL, SIPf3D7 > 344) showed the highest promise. The GC-MS analysis of the 8 selected SFs led to the identification of 99 phytometabolites, with D-limonene (2), benzaldehyde (12), carvone (13), caryophyllene (35), hexadecanoic acid, methyl ester (74) and 9-octadecenoic acid, methyl ester (82) being the main constituents. Sub fractions Tm28, Tm29, Tm30, Tm36 and Tm38 inhibited all the three intraerythrocytic stages of P. falciparum, with strong potency against ring stage development, merozoite egress and invasion processes. CONCLUSIONS This study has identified highly potent antiplasmodial SFs from Terminalia mantaly with significant activity on the intraerythrocytic development of Plasmodium falciparum. These SFs qualify as promising sources of novel antiplasmodial lead compounds. Further purification and characterization studies are expected to unravel molecular targets in rings and merozoites.
Collapse
Affiliation(s)
- Cedric Derick Jiatsa Mbouna
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Brice Mariscal Tchatat Tali
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Patrick Valere Tsouh Fokou
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon; Department of Biochemistry, Faculty of Sciences, University of Bamenda, PO Box 39, Bambili, Cameroon
| | - Eugenie Aimee Madiesse Kemgne
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Rodrigue Keumoe
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Rufin Marie Toghueo Kouipou
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Lauve Rachel Yamthe Tchokouaha
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon; Institute for Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, P.O. Box 6163, Yaoundé, Cameroon
| | - Marthe Aimée Tchuente Tchuenmogne
- Laboratory of Natural Products and Organic Synthesis, Department of Organic Chemistry,Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Donald Kagho Kenou
- Laboratory of Natural Products and Organic Synthesis, Department of Organic Chemistry,Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Dinkar Sahal
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology, New Delhi -110067, India.
| | - Fabrice Fekam Boyom
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|
12
|
Saini M, Das R, Mehta DK, Chauhan S. Styrylquinolines Derivatives: SAR study and Synthetic Approaches. Med Chem 2022; 18:859-870. [DOI: 10.2174/1573406418666220214085856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
In the present-day scenario, heterocyclic derivatives have revealed the primary function of various medicinal agents precious for humanity. Out of a diverse range of heterocycles, Styrylquinolines scaffolds have been proved to play an essential role in a broad range of biological activities, includinganti-HIV-1, antimicrobial, anti-inflammatory, anti-Alzheimer activity with antiproliferative effects on tumor cell lines.
Due to the immense pharmacological importance, distinct synthetic methods have been executed to attain new drug entities from Styrylquinolines. Various schemes for synthesizing Styrylquinolines derivatives like one-pot, ultrasound-promoted heterogeneous acid-catalysed, microwave-assisted, solvent-free, and green synthesis were discussed in the present review. Some products of Styrylquinolines are in clinical trials, and patents are also granted for the novel synthesis of Styrylquinolines. According to the structure-activity relationship, replacement at the R-7 and R-8 positions is required for various activities.
In this review, recent synthetic approaches in the medicinal chemistry of Styrylquinolines and potent Styrylquinolines derivatives based on structural activity relationships (SAR) are outlined. Moreover, their primary methods and modifications are also discussed.
Collapse
Affiliation(s)
- Monika Saini
- MM College of Pharmacy, Department of Pharmaceutical Chemistry,
Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Hr, India
| | - Rina Das
- MM College of Pharmacy, Department of Pharmaceutical Chemistry,
Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Hr, India
| | - Dinesh Kumar Mehta
- MM College of Pharmacy, Department of Pharmaceutical Chemistry,
Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Hr, India
| | - Samrat Chauhan
- MM College of Pharmacy, Department of Pharmaceutical Chemistry,
Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Hr, India
| |
Collapse
|
13
|
Scarim CB, Pavan FR. Recent advancement in drug development of nitro(NO 2 )-heterocyclic compounds as lead scaffolds for the treatment of Mycobacterium tuberculosis. Drug Dev Res 2022; 83:842-858. [PMID: 35106801 DOI: 10.1002/ddr.21921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/26/2021] [Accepted: 01/13/2022] [Indexed: 11/11/2022]
Abstract
Tuberculosis (TB) is an infectious disease caused predominantly by Mycobacterium tuberculosis (Mtb). It was responsible for approximately 1.4 million deaths worldwide in 2019. The lack of new drugs to treat drug-resistant strains is a principal factor for the slow rise in TB infections. Our aim is to aid the development of new TB treatments by describing improvements (last decade, 2011-2021) to nitro(NO2 )-based compounds that have shown activity or pharmacological properties (e.g., anti-proliferative, anti-kinetoplastid) against Mtb. For all compounds, we have included final correlations of minimum inhibitory concentrations against Mtb (H37 Rv).
Collapse
Affiliation(s)
- Cauê Benito Scarim
- Department of Cell and Molecular Biology, University of Mississippi Medical Center (UMMC), Jackson, Mississippi, USA
| | - Fernando Rogério Pavan
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| |
Collapse
|
14
|
Li C, Wang H, Liu L, Sun R, Wang X, Zhou M, Li L. Base‐Catalyzed Intramolecular Self‐Cyclization of
o
‐Alkenylaryl Isocyanides: Access to 4‐Cyano‐3‐arylquinolines. ChemistrySelect 2022. [DOI: 10.1002/slct.202103829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chao Li
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun 113001 P. R. China
| | - He Wang
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun 113001 P. R. China
| | - Lu Liu
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun 113001 P. R. China
| | - Ran Sun
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun 113001 P. R. China
| | - Xin Wang
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun 113001 P. R. China
| | - Ming‐Dong Zhou
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun 113001 P. R. China
| | - Lei Li
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun 113001 P. R. China
| |
Collapse
|
15
|
Norwood VM, Murillo-Solano C, Goertzen MG, Brummel BR, Perry DL, Rocca JR, Chakrabarti D, Huigens RW. Ring Distortion of Vincamine Leads to the Identification of Re-Engineered Antiplasmodial Agents. ACS OMEGA 2021; 6:20455-20470. [PMID: 34395993 PMCID: PMC8359148 DOI: 10.1021/acsomega.1c02480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/22/2021] [Indexed: 05/10/2023]
Abstract
There is a significant need for new agents to combat malaria, which resulted in ∼409,000 deaths globally in 2019. We utilized a ring distortion strategy to create complex and diverse compounds from vincamine with the goal of discovering molecules with re-engineered biological activities. We found compound 8 (V3b) to target chloroquine-resistant Plasmodium falciparum Dd2 parasites (EC50 = 1.81 ± 0.09 μM against Dd2 parasites; EC50 > 40 μM against HepG2 cells) and established structure-activity relationships for 25 related analogues. New analogue 30 (V3ss, Dd2, EC50 = 0.25 ± 0.004 μM; HepG2, EC50 > 25 μM) was found to demonstrate the most potent activity, which prevents exit on the parasite from the schizont stage of intraerythrocytic development and requires >24 h to kill P. falciparum Dd2 cells. These findings demonstrate the potential that vincamine ring distortion has toward the discovery of novel antimalarial agents and other therapies significant to human health.
Collapse
Affiliation(s)
- Verrill M. Norwood
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Claribel Murillo-Solano
- Division
of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Michael G. Goertzen
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Beau R. Brummel
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - David L. Perry
- Division
of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - James R. Rocca
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- McKnight
Brain Institute, J H Miller Health Center, University of Florida, P.O. Box 100015, Gainesville, Florida 32610, United States
| | - Debopam Chakrabarti
- Division
of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
- . Phone: (407) 882-2256
| | - Robert William Huigens
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- . Phone: (352) 273-7718
| |
Collapse
|
16
|
Wright AE, Collins JE, Roberts B, Roberts JC, Winder PL, Reed JK, Diaz MC, Pomponi SA, Chakrabarti D. Antiplasmodial Compounds from Deep-Water Marine Invertebrates. Mar Drugs 2021; 19:md19040179. [PMID: 33805935 PMCID: PMC8064351 DOI: 10.3390/md19040179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/03/2023] Open
Abstract
Novel drug leads for malaria therapy are urgently needed because of the widespread emergence of resistance to all available drugs. Screening of the Harbor Branch enriched fraction library against the Plasmodium falciparum chloroquine-resistant strain (Dd2) followed by bioassay-guided fractionation led to the identification of two potent antiplasmodials; a novel diterpene designated as bebrycin A (1) and the known C21 degraded terpene nitenin (2). A SYBR Green I assay was used to establish a Dd2 EC50 of 1.08 ± 0.21 and 0.29 ± 0.02 µM for bebrycin A and nitenin, respectively. Further analysis was then performed to assess the stage specificity of the inhibitors antiplasmodial effects on the Dd2 intraerythrocytic life cycle. Exposure to bebrycin A was found to block parasite maturation at the schizont stage if added any time prior to late schizogony at 42 hours post invasion, (HPI). In contrast, early life cycle exposure to nitenin (prior to 18 HPI) was identified as crucial to parasite inhibition, suggesting nitenin may target the maturation of the parasite during the transition from ring to early trophozoite (6–18 HPI), a novel property among known antimalarials.
Collapse
Affiliation(s)
- Amy E. Wright
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US Highway 1 North, Fort Pierce, FL 34946, USA; (J.C.R.); (P.L.W.); (J.K.R.); (M.C.D.); (S.A.P.)
- Correspondence: (A.E.W.); (D.C.); Tel.: +1-772-242-2459 (A.E.W.); +1-407-882-2256 (D.C.)
| | - Jennifer E. Collins
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA; (J.E.C.); (B.R.)
| | - Bracken Roberts
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA; (J.E.C.); (B.R.)
| | - Jill C. Roberts
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US Highway 1 North, Fort Pierce, FL 34946, USA; (J.C.R.); (P.L.W.); (J.K.R.); (M.C.D.); (S.A.P.)
| | - Priscilla L. Winder
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US Highway 1 North, Fort Pierce, FL 34946, USA; (J.C.R.); (P.L.W.); (J.K.R.); (M.C.D.); (S.A.P.)
| | - John K. Reed
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US Highway 1 North, Fort Pierce, FL 34946, USA; (J.C.R.); (P.L.W.); (J.K.R.); (M.C.D.); (S.A.P.)
| | - Maria Cristina Diaz
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US Highway 1 North, Fort Pierce, FL 34946, USA; (J.C.R.); (P.L.W.); (J.K.R.); (M.C.D.); (S.A.P.)
| | - Shirley A. Pomponi
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US Highway 1 North, Fort Pierce, FL 34946, USA; (J.C.R.); (P.L.W.); (J.K.R.); (M.C.D.); (S.A.P.)
| | - Debopam Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA; (J.E.C.); (B.R.)
- Correspondence: (A.E.W.); (D.C.); Tel.: +1-772-242-2459 (A.E.W.); +1-407-882-2256 (D.C.)
| |
Collapse
|
17
|
Belyaeva KV, Nikitina LP, Afonin AV, Grishchenko LA, Trofimov BA. Cyanoquinolines and Furo[3,4- b]quinolinones Formation via On-The-Spot 2,3-Functionalization of Quinolines with Cyanopropargylic Alcohols. J Org Chem 2021; 86:3800-3809. [PMID: 33605731 DOI: 10.1021/acs.joc.0c02644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A convenient approach to 2-(1-ethoxyalkoxy)-3-cyanoquinolines (in up to 50% yields) has been developed. The approach comprises functionalization of quinolines with acetals of cyanopropargylic alcohols (KOH/H2O/MeCN, 55-60 °C) followed by their transformation to furo[3,4-b]quinolinones (in up to 98% yields) via the sequential removal of acetal protection and intramolecular cyclization/hydration (7% aqueous HCl, acetone, 20-25 °C).
Collapse
Affiliation(s)
- Kseniya V Belyaeva
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russian Federation
| | - Lina P Nikitina
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russian Federation
| | - Andrey V Afonin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russian Federation
| | - Ludmila A Grishchenko
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russian Federation
| | - Boris A Trofimov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russian Federation
| |
Collapse
|
18
|
Activities of Quinoxaline, Nitroquinoxaline, and [1,2,4]Triazolo[4,3-a]quinoxaline Analogs of MMV007204 against Schistosoma mansoni. Antimicrob Agents Chemother 2021; 65:AAC.01370-20. [PMID: 33257453 DOI: 10.1128/aac.01370-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/23/2020] [Indexed: 01/10/2023] Open
Abstract
The reliance on one drug, praziquantel, to treat the parasitic disease schistosomiasis in millions of people a year shows the need to further develop a pipeline of new drugs to treat this disease. Recently, an antimalarial quinoxaline derivative (MMV007204) from the Medicines for Malaria Venture (MMV) Malaria Box demonstrated promise against Schistosoma mansoni In this study, 47 synthesized compounds containing quinoxaline moieties were first assayed against the larval stage of this parasite, newly transformed schistosomula (NTS); of these, 16 killed over 70% NTS at 10 µM. Further testing against NTS and adult S. mansoni yielded three compounds with 50% inhibitory concentrations (IC50s) of ≤0.31 µM against adult S. mansoni and selectivity indices of ≥8.9. Administration of these compounds as a single oral dose of 400 mg/kg of body weight to S. mansoni -infected mice yielded only moderate worm burden reduction (WBR) (9.3% to 46.3%). The discrepancy between these compounds' good in vitro activities and their poor in vivo activities indicates that optimization of their pharmacokinetic properties may yield compounds with greater bioavailabilities and better antischistosomiasis activities in vivo.
Collapse
|
19
|
Thorve PR, Maji B. Deaminative Olefination of Methyl N-Heteroarenes by an Amine Oxidase Inspired Catalyst. Org Lett 2021; 23:542-547. [DOI: 10.1021/acs.orglett.0c04060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pradip Ramdas Thorve
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
20
|
Belyaeva KV, Nikitina LP, Afonin AV, Trofimov BA. Acylacetylenes in multiple functionalization of hydroxyquinolines and quinolones. Tetrahedron 2020; 76:131523. [PMID: 32839627 PMCID: PMC7438341 DOI: 10.1016/j.tet.2020.131523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 11/01/2022]
Abstract
The expected one-pot multiple functionalization of hydroxyquinolines and quinolones with acylacetylenes (20 mol% KOH, 5 equiv. H2O, MeCN, 55-60 °C), which, according to the previous finding, might involve the addition of OH and NH-functions to the triple bond and insertion of acylacetylenes into the quinoline scaffold, retains mainly on the formation of chalcone-quinoline ensembles in up 99% yield. The higher functionalized quinolines can be obtained in a synthetically acceptable yield, when the above ensembles are treated with the second molecule of acylacetylenes. Thus, the further insertion of second molecule of the acetylenes into the quinoline scaffold occurs as a much slower process indicating a strong adverse substituent effect of the remote chalcone moiety.
Collapse
Affiliation(s)
- Kseniya V Belyaeva
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of Russian Academy of Sciences, 1 Favorsky Str., Irkutsk, 664033, Russian Federation
| | - Lina P Nikitina
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of Russian Academy of Sciences, 1 Favorsky Str., Irkutsk, 664033, Russian Federation
| | - Andrei V Afonin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of Russian Academy of Sciences, 1 Favorsky Str., Irkutsk, 664033, Russian Federation
| | - Boris A Trofimov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of Russian Academy of Sciences, 1 Favorsky Str., Irkutsk, 664033, Russian Federation
| |
Collapse
|
21
|
Huang G, Murillo Solano C, Melendez J, Shaw J, Collins J, Banks R, Arshadi AK, Boonhok R, Min H, Miao J, Chakrabarti D, Yuan Y. Synthesis, Structure-Activity Relationship, and Antimalarial Efficacy of 6-Chloro-2-arylvinylquinolines. J Med Chem 2020; 63:11756-11785. [PMID: 32959656 DOI: 10.1021/acs.jmedchem.0c00858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is an urgent need to develop new efficacious antimalarials to address the emerging drug-resistant clinical cases. Our previous phenotypic screening identified styrylquinoline UCF501 as a promising antimalarial compound. To optimize UCF501, we herein report a detailed structure-activity relationship study of 2-arylvinylquinolines, leading to the discovery of potent, low nanomolar antiplasmodial compounds against a Plasmodium falciparum CQ-resistant Dd2 strain, with excellent selectivity profiles (resistance index < 1 and selectivity index > 200). Several metabolically stable 2-arylvinylquinolines are identified as fast-acting agents that kill asexual blood-stage parasites at the trophozoite phase, and the most promising compound 24 also demonstrates transmission blocking potential. Additionally, the monophosphate salt of 24 exhibits excellent in vivo antimalarial efficacy in the murine model without noticeable toxicity. Thus, the 2-arylvinylquinolines represent a promising class of antimalarial drug leads.
Collapse
Affiliation(s)
- Guang Huang
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Claribel Murillo Solano
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Joel Melendez
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Justin Shaw
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Jennifer Collins
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Robert Banks
- Research Program Services, University of Central Florida, Orlando, Florida 32816, United States
| | - Arash Keshavarzi Arshadi
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Rachasak Boonhok
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States.,Department of Medical Technology, School of Allied Health Science, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Hui Min
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Debopam Chakrabarti
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Yu Yuan
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
22
|
Efange NM, Lobe MMM, Keumoe R, Ayong L, Efange SMN. Spirofused tetrahydroisoquinoline-oxindole hybrids as a novel class of fast acting antimalarial agents with multiple modes of action. Sci Rep 2020; 10:17932. [PMID: 33087791 PMCID: PMC7578093 DOI: 10.1038/s41598-020-74824-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/07/2020] [Indexed: 11/15/2022] Open
Abstract
Molecular hybridization of privileged scaffolds may generate novel antiplasmodial chemotypes that display superior biological activity and delay drug resistance. In the present study, we describe the in vitro activities and mode of action of 3′,4′-dihydro-2′H-spiro[indoline-3,1′-isoquinolin]-2-ones, a novel class of spirofused tetrahydroisoquinoline–oxindole hybrids, as novel antimalarial agents. Whole cell phenotypic screening of these compounds identified (14b), subsequently named (±)-moxiquindole, as the most potent compound in the current series with equipotent antiplasmodial activity against both chloroquine sensitive and multidrug resistant parasite strains with good selectivity. The compound was active against all asexual stages of the parasite including inhibition of merozoite egress. Additionally, (±)-moxiquindole exhibited significant inhibitory effects on hemoglobin degradation, and disrupted vacuolar lipid dynamics. Taken together, our data confirm the antiplasmodial activity of (±)-moxiquindole, and identify 3′4′-dihydro-2′H-spiro[indoline-3,1′-isoquinolin]-2-ones as a novel class of antimalarial agents with multiple modes of action.
Collapse
Affiliation(s)
- Noella M Efange
- Department of Biochemistry and Molecular Biology, University of Buea, P.O. Box 63, Buea, Cameroon.,Centre Pasteur du Cameroon, Yaoundé, Cameroon
| | - Maloba M M Lobe
- Department of Chemistry, University of Buea, P.O. Box 63, Buea, Cameroon
| | | | | | - Simon M N Efange
- Department of Chemistry, University of Buea, P.O. Box 63, Buea, Cameroon.
| |
Collapse
|
23
|
Huang G, Solano CM, Melendez J, Yu-Alfonzo S, Boonhok R, Min H, Miao J, Chakrabarti D, Yuan Y. Discovery of fast-acting dual-stage antimalarial agents by profiling pyridylvinylquinoline chemical space via copper catalyzed azide-alkyne cycloadditions. Eur J Med Chem 2020; 209:112889. [PMID: 33045660 DOI: 10.1016/j.ejmech.2020.112889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 11/18/2022]
Abstract
To identity fast-acting, multistage antimalarial agents, a series of pyridylvinylquinoline-triazole analogues have been synthesized via CuAAC. Most of the compounds display significant inhibitory effect on the drug-resistant malarial Dd2 strain at low submicromolar concentrations. Among the tested analogues, compound 60 is the most potent molecule with an EC50 value of 0.04 ± 0.01 μM. Our current study indicates that compound 60 is a fast-acting antimalarial compound and it demonstrates stage specific action at the trophozoite phase in the P. falciparum asexual life cycle. In addition, compound 60 is active against both early and late stage P. falciparum gametocytes. From a mechanistic perspective, compound 60 shows good activity as an inhibitor of β-hematin formation. Collectively, our findings suggest that fast-acting agent 60 targets dual life stages of the malarial parasites and warrant further investigation of pyridylvinylquinoline hybrids as new antimalarials.
Collapse
Affiliation(s)
- Guang Huang
- Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | - Claribel Murillo Solano
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA
| | - Joel Melendez
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA
| | - Sabrina Yu-Alfonzo
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA
| | - Rachasak Boonhok
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA; Department of Medical Technology, School of Allied Health Science, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Hui Min
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Debopam Chakrabarti
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA.
| | - Yu Yuan
- Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
24
|
Rodríguez D, Guerrero SA, Palma A, Cobo J, Glidewell C. 4-Styrylquinolines from cyclocondensation reactions between (2-aminophenyl)chalcones and 1,3-diketones: crystal structures and regiochemistry. Acta Crystallogr C Struct Chem 2020; 76:883-890. [PMID: 32887859 PMCID: PMC7474186 DOI: 10.1107/s2053229620010803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 11/10/2022] Open
Abstract
Structures are reported for two matched sets of substituted 4-styrylquinolines which were prepared by the formation of the heterocyclic ring in cyclocondensation reactions between 1-(2-aminophenyl)-3-arylprop-2-en-1-ones with 1,3-dicarbonyl compounds. (E)-3-Acetyl-4-[2-(4-methoxyphenyl)ethenyl]-2-methylquinoline, C21H19NO2, (I), (E)-3-acetyl-4-[2-(4-bromophenyl)ethenyl]-2-methylquinoline, C20H16BrNO, (II), and (E)-3-acetyl-2-methyl-4-{2-[4-(trifluoromethyl)phenyl]ethenyl}quinoline, C21H16F3NO, (III), are isomorphous and in each structure the molecules are linked by a single C-H...O hydrogen bond to form C(6) chains. In (I), but not in (II) or (III), this is augmented by a C-H...π(arene) hydrogen bond to form a chain of rings; hence, (I)-(III) are not strictly isostructural. By contrast with (I)-(III), no two of ethyl (E)-4-[2-(4-methoxyphenyl)ethenyl]-2-methylquinoline-3-carboxylate, C22H21NO3, (IV), ethyl (E)-4-[2-(4-bromophenyl)ethenyl]-2-methylquinoline-3-carboxylate, C21H18BrNO2, (V), and ethyl (E)-2-methyl-4-{2-[4-(trifluoromethyl)phenyl]ethenyl}quinoline-3-carboxylate, C22H18F3NO2, (VI), are isomorphous. The molecules of (IV) are linked by a single C-H...O hydrogen bond to form C(13) chains, but cyclic centrosymmetric dimers are formed in both (V) and (VI). The dimer in (V) contains a C-H...π(pyridyl) hydrogen bond, while that in (VI) contains two independent C-H...O hydrogen bonds. Comparisons are made with some related structures, and both the regiochemistry and the mechanism of the heterocyclic ring formation are discussed.
Collapse
Affiliation(s)
- Diego Rodríguez
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, AA 678, Bucaramanga, Colombia
| | - Sergio Andrés Guerrero
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, AA 678, Bucaramanga, Colombia
| | - Alirio Palma
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, AA 678, Bucaramanga, Colombia
| | - Justo Cobo
- Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain
| | | |
Collapse
|
25
|
Albino SL, da Silva JM, de C Nobre MS, de M E Silva YMS, Santos MB, de Araújo RSA, do C A de Lima M, Schmitt M, de Moura RO. Bioprospecting of Nitrogenous Heterocyclic Scaffolds with Potential Action for Neglected Parasitosis: A Review. Curr Pharm Des 2020; 26:4112-4150. [PMID: 32611290 DOI: 10.2174/1381612826666200701160904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/24/2020] [Indexed: 11/22/2022]
Abstract
Neglected parasitic diseases are a group of infections currently considered as a worldwide concern. This fact can be attributed to the migration of these diseases to developed and developing countries, associated with therapeutic insufficiency resulted from the low investment in the research and development of new drugs. In order to overcome this situation, bioprospecting supports medicinal chemistry in the identification of new scaffolds with therapeutically appropriate physicochemical and pharmacokinetic properties. Among them, we highlight the nitrogenous heterocyclic compounds, as they are secondary metabolites of many natural products with potential biological activity. The objective of this work was to review studies within a 10-year timeframe (2009- 2019), focusing on the pharmacological application of nitrogen bioprospectives (pyrrole, pyridine, indole, quinoline, acridine, and their respective derivatives) against neglected parasitic infections (malaria, leishmania, trypanosomiases, and schistosomiasis), and their application as a template for semi-synthesis or total synthesis of potential antiparasitic agents. In our studies, it was observed that among the selected articles, there was a higher focus on the attempt to identify and obtain novel antimalarial compounds, in a way that an extensive amount of studies involving all heterocyclic nitrogen nuclei were found. On the other hand, the parasites with the lowest number of publications up until the present date have been trypanosomiasis, especially those caused by Trypanosoma cruzi, and schistosomiasis, where some heterocyclics have not even been cited in recent years. Thus, we conclude that despite the great biodiversity on the planet, little attention has been given to certain neglected tropical diseases, especially those that reach countries with a high poverty rate.
Collapse
Affiliation(s)
- Sonaly L Albino
- Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Jamire M da Silva
- Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitaria, Recife, Pernambuco, 50670-901, Brazil
| | - Michelangela S de C Nobre
- Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitaria, Recife, Pernambuco, 50670-901, Brazil
| | - Yvnni M S de M E Silva
- Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Mirelly B Santos
- Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Rodrigo S A de Araújo
- Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Maria do C A de Lima
- Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitaria, Recife, Pernambuco, 50670-901, Brazil
| | - Martine Schmitt
- Universite de Strasbourg, CNRS, LIT UMR 7200, Laboratoire d'innovation therapeutique, Illkirch, France
| | - Ricardo O de Moura
- Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitaria, Recife, Pernambuco, 50670-901, Brazil
| |
Collapse
|
26
|
Musiol R. Styrylquinoline – A Versatile Scaffold in Medicinal Chemistry. Med Chem 2020; 16:141-154. [PMID: 31161997 DOI: 10.2174/1573406415666190603103012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/08/2019] [Accepted: 05/03/2019] [Indexed: 11/22/2022]
Abstract
Background: :
Styrylquinolines are characteristic fully aromatic compounds with flat,
rather lipophilic structures. The first reports on their synthesis and biological activity were published
roughly a century ago. However, their low selectivity, unfavorable toxicity and problems
with their mechanism of action significantly hampered their development. As a result, they have
been abandoned for most of the time since they were discovered.
Objective: :
Their renaissance was observed by the antiretroviral activity of several styrylquinoline
derivatives that have been reported to be HIV integrase inhibitors. Subsequently, other activities
such as their antifungal and anticancer abilities have also been revisited.
Methods:
In the present review, the spectrum of the activity of styrylquinolines and their use in
drug design is presented and analyzed.
Results:
New properties and applications that were reported recently have re-established
styrylquinolines within medicinal and material chemistry. The considerable increase in the number
of published papers regarding their activity spectrum will ensure further discoveries in the field.
Conclusions:
Styrylquinolines have earned a much stronger position in medicinal chemistry due to
the discovery of their new activities, profound mechanisms of action and as drug candidates in
clinical trials.
Collapse
Affiliation(s)
- Robert Musiol
- Institute of Chemistry, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500, Chorzow, Poland
| |
Collapse
|
27
|
Paciaroni NG, Perry DL, Norwood VM, Murillo-Solano C, Collins J, Tenneti S, Chakrabarti D, Huigens RW. Re-Engineering of Yohimbine's Biological Activity through Ring Distortion: Identification and Structure-Activity Relationships of a New Class of Antiplasmodial Agents. ACS Infect Dis 2020; 6:159-167. [PMID: 31913597 DOI: 10.1021/acsinfecdis.9b00380] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Select natural products are ideal starting points for ring distortion, or the dramatic altering of inherently complex molecules through short synthetic pathways, to generate an array of novel compounds with diverse skeletal architectures. A major goal of our ring distortion approach is to re-engineer the biological activity of indole alkaloids to identify new compounds with diverse biological activities in areas of significance to human health and medicine. In this study, we re-engineered the biological activity of the indole alkaloid yohimbine through ring rearrangement and ring cleavage synthesis pathways to discover new series of antiplasmodial agents. One new compound, Y7j, was found to demonstrate good potency against chloroquine-resistant Plasmodium falciparum Dd2 cells (EC50 = 0.33 μM) without eliciting cytotoxicity against HepG2 cells (EC50 > 40 μM). Y7j demonstrated stage-specific action against parasites at the late ring/trophozoite stage. A series of analogues was synthesized to gain structure-activity relationship insights, and we learned that both benzyl groups of Y7j are required for activity and fine-tuning of antiplasmodial activities could be accomplished by changing substitution patterns on the benzyl moieties. This study demonstrates the potential for ring distortion to drive new discoveries and change paradigms in chemical biology and drug discovery.
Collapse
Affiliation(s)
- Nicholas G. Paciaroni
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - David L. Perry
- Division of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Verrill M. Norwood
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Claribel Murillo-Solano
- Division of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Jennifer Collins
- Division of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Srinivasarao Tenneti
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Debopam Chakrabarti
- Division of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Robert W. Huigens
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| |
Collapse
|
28
|
Keshavarzi Arshadi A, Salem M, Collins J, Yuan JS, Chakrabarti D. DeepMalaria: Artificial Intelligence Driven Discovery of Potent Antiplasmodials. Front Pharmacol 2020; 10:1526. [PMID: 32009951 PMCID: PMC6974622 DOI: 10.3389/fphar.2019.01526] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
Antimalarial drugs are becoming less effective due to the emergence of drug resistance. Resistance has been reported for all available malaria drugs, including artemisinin, thus creating a perpetual need for alternative drug candidates. The traditional drug discovery approach of high throughput screening (HTS) of large compound libraries for identification of new drug leads is time-consuming and resource intensive. While virtual in silico screening is a solution to this problem, however, the generalization of the models is not ideal. Artificial intelligence (AI), utilizing either structure-based or ligand-based approaches, has demonstrated highly accurate performances in the field of chemical property prediction. Leveraging the existing data, AI would be a suitable alternative to blind-search HTS or fingerprint-based virtual screening. The AI model would learn patterns within the data and help to search for hit compounds efficiently. In this work, we introduce DeepMalaria, a deep-learning based process capable of predicting the anti-Plasmodium falciparum inhibitory properties of compounds using their SMILES. A graph-based model is trained on 13,446 publicly available antiplasmodial hit compounds from GlaxoSmithKline (GSK) dataset that are currently being used to find novel drug candidates for malaria. We validated this model by predicting hit compounds from a macrocyclic compound library and already approved drugs that are used for repurposing. We have chosen macrocyclic compounds as these ligand-binding structures are underexplored in malaria drug discovery. The in silico pipeline for this process also consists of additional validation of an in-house independent dataset consisting mostly of natural product compounds. Transfer learning from a large dataset was leveraged to improve the performance of the deep learning model. To validate the DeepMalaria generated hits, we used a commonly used SYBR Green I fluorescence assay based phenotypic screening. DeepMalaria was able to detect all the compounds with nanomolar activity and 87.5% of the compounds with greater than 50% inhibition. Further experiments to reveal the compounds’ mechanism of action have shown that not only does one of the hit compounds, DC-9237, inhibits all asexual stages of Plasmodium falciparum, but is a fast-acting compound which makes it a strong candidate for further optimization.
Collapse
Affiliation(s)
- Arash Keshavarzi Arshadi
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Milad Salem
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, United States
| | - Jennifer Collins
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Jiann Shiun Yuan
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, United States
| | - Debopam Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
29
|
Huang G, Solano CM, Su Y, Ezzat N, Matsui S, Huang L, Chakrabarti D, Yuan Y. Microwave-assisted, rapid synthesis of 2-vinylquinolines and evaluation of their antimalarial activity. Tetrahedron Lett 2019; 60:1736-1740. [PMID: 31802783 PMCID: PMC6892474 DOI: 10.1016/j.tetlet.2019.05.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A rapid and efficient synthesis of 2-vinylquinolines via trifluoromethanesulfonamidemediated olefination of 2-methylquinoline and aldehyde under microwave irradiation is reported. Biological evaluation of these scaffolds demonstrates that 2-vinylquinolines 3x - 3z possess excellent antimalarial activities against chloroquine-resistant Dd2 strain of Plasmodium falciparum (IC50 < 100 nM).
Collapse
Affiliation(s)
- Guang Huang
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| | - Claribel Murillo Solano
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Yuxin Su
- Academy of Military Medical Science, Beijing, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Nameer Ezzat
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| | - Shino Matsui
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| | - Liuyu Huang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Debopam Chakrabarti
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Yu Yuan
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
30
|
Andrade MAS, Mascaro LH. Photoelectrocatalytic reduction of nitrobenzene on Bi-doped CuGaS 2 films. CHEMOSPHERE 2018; 212:79-86. [PMID: 30142568 DOI: 10.1016/j.chemosphere.2018.08.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Nitrobenzene, a toxic nitroaromatic, a feedstock compound to the production of many commercially relevant chemicals were photoelectrocatalytically reduced into aniline on a photoelectrode comprised by a bismuth-doped CuGaS2 nanocrystallyne thin films on molybdenum. The activity of the photoelectrodes were compared to the reaction performed on undoped-CuGaS2 films, and they were carried out under illumination with an applied bias potential at 0.9 V. Aniline was highly selectively obtained with 83% of conversion for reaction times of 100 min when using Bi-doped CuGaS2, representing higher conversion of nitrobenzene and yield to aniline than the undoped photoelectrode. The catalytic performance of the doped films remained stable for a set of 5 consecutive experiments. These results indicate Bi-doped CuGaS2 as a promising material to be applied in the photoelectrocatalytic reduction of nitrobenzene into aniline through the direct pathway mechanism, using solar light illumination.
Collapse
Affiliation(s)
- Marcos A S Andrade
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, Km 235, CEP 13565-905 São Carlos, SP, Brazil.
| | - Lucia H Mascaro
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, Km 235, CEP 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
31
|
Gao W, Li Z, Xu Q, Li Y. First synthesis of novel 2,4-bis(( E)-styryl)quinoline-3-carboxylate derivatives and their antitumor activity. RSC Adv 2018; 8:38844-38849. [PMID: 35558278 PMCID: PMC9090603 DOI: 10.1039/c8ra08023b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/12/2018] [Indexed: 11/21/2022] Open
Abstract
A simple and flexible synthesis of a new series of 2,4-bis((E)-styryl)quinoline-3-carboxylates (3a-t) has been achieved for the first time in good yields via successive Arbuzov/Horner-Wadsworth-Emmons (HWE) reaction in one-pot using the newly-synthesized ethyl 4-(bromomethyl)-2-(chloromethyl)quinoline-3-carboxylate as the substrate. Our synthetic protocol is as attractive and powerful as it is simple, tolerates a wide range of substituents, and does not involve the use of expensive reagents or catalysts. These title compounds belong to a new class of quinoline derivatives and their antitumor activity was assessed on human cancer cell lines (A549, HT29 and T24). The MTT assay showed compounds 3h, 3k and 3t had significant inhibitory activity with IC50 values of 1.53, 1.38 and 2.36 μM against A549 and 1.50, 0.77 and 0.97 μM against HT29, respectively, much better than the reference cisplatin.
Collapse
Affiliation(s)
- Wentao Gao
- Institute of Superfine Chemicals, Bohai University Jinzhou 121000 P. R. China
| | - Zhiyuan Li
- Institute of Superfine Chemicals, Bohai University Jinzhou 121000 P. R. China
| | - Qiqi Xu
- Institute of Superfine Chemicals, Bohai University Jinzhou 121000 P. R. China
| | - Yang Li
- Institute of Superfine Chemicals, Bohai University Jinzhou 121000 P. R. China
| |
Collapse
|