1
|
Cano-Manuel A, Granados JE, Álvarez-García G, Huertas-López A, Diezma-Díaz C, Cano-Manuel FJ, Ortega-Mora LM, Fandos P, Mentaberre G, López-Olvera JR, Martínez-Carrasco C. Seronegativity of Iberian ibex (Capra pyrenaica) against Toxoplasma gondii and Neospora caninum is consistent with eco-epidemiological and environmental features in Mediterranean mountainous areas. Res Vet Sci 2025; 184:105530. [PMID: 39798541 DOI: 10.1016/j.rvsc.2025.105530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/23/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Knowledge of pathogen epidemiological dynamics and habitat ecological features is essential for wildlife population and health monitoring and management. Toxoplasma gondii and Neospora caninum are two broadly distributed multi-host parasites that affect both wild and domestic animals and, in the case of T. gondii, cause zoonosis. This study reports the seroprevalence of both parasites in Iberian ibex (Capra pyrenaica), a mountain wild ruminant native to the Iberian Peninsula, from the Natural Space of Sierra Nevada (NSSN) in southeastern Spain. Serum from 146 Iberian ibexes were analysed using two in-house ELISA techniques. The positive and doubtful sera were further checked by Western Blot (WB). Seventeen ibexes (11.6 %; 95 % confidence interval 6.4-16.7) were positive for T. gondii and seven (4.8 %; 95 % confidence interval 1.3-8.2) for N. caninum. However, no sera were positive to T. gondii nor to N. caninum by WB. Using at least two different serological techniques is recommended when they are not validated for the target host species. The NSSN is a hypoendemic area for T. gondii and N. caninum, probably determined by the reduced abundance and restricted distribution of their definitive hosts. This would explain the hypoendemic situation in the NSSN and the lack of specific antibodies against these two parasites in the Iberian ibex population. This eco-epidemiological scenario can be challenged by climate and anthropogenic changes, recommending long-term monitoring Iberian ibex population and health, both as a conservation measure for the species and as an indicator of the potential impact of global change on high mountain ecosystems.
Collapse
Affiliation(s)
- Alejandro Cano-Manuel
- Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad de Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - José Enrique Granados
- Research group RNM118 (Especies cinegéticas y plagas) and Parque Nacional y Parque Natural Sierra Nevada, Carretera Antigua Sierra Nevada km 7, 18071 Pinos Genil (Granada), Spain
| | - Gema Álvarez-García
- Grupo SALUVET, Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ana Huertas-López
- Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad de Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain; Grupo SALUVET, Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carlos Diezma-Díaz
- Grupo SALUVET, Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Francisco Javier Cano-Manuel
- Research group RNM118 (Especies cinegéticas y plagas) and Parque Nacional y Parque Natural Sierra Nevada, Carretera Antigua Sierra Nevada km 7, 18071 Pinos Genil (Granada), Spain
| | - Luis Miguel Ortega-Mora
- Grupo SALUVET, Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | - Gregorio Mentaberre
- Wildlife Ecology & Health group (WE&H) and Departament de Ciència Animal, Universitat de Lleida (UdL), 25198 Lleida, Spain
| | - Jorge Ramón López-Olvera
- Servei d'Ecopatologia de Fauna Salvatge (SEFaS) and Wildlife Ecology & Health group (WE&H), Departament de Medicina i Cirurgia Animals, Universitat Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Carlos Martínez-Carrasco
- Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad de Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
2
|
Sánchez-Sánchez R, Imhof D, Hecker YP, Ferre I, Re M, Moreno-Gonzalo J, Blanco-Murcia J, Mejías-López E, Hulverson MA, Choi R, Arnold SLM, Ojo KK, Barrett LK, Hemphill A, Van Voorhis WC, Ortega-Mora LM. An Early Treatment With BKI-1748 Exhibits Full Protection Against Abortion and Congenital Infection in Sheep Experimentally Infected With Toxoplasma gondii. J Infect Dis 2024; 229:558-566. [PMID: 37889572 PMCID: PMC10873186 DOI: 10.1093/infdis/jiad470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/27/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023] Open
Abstract
Congenital toxoplasmosis in humans and in other mammalian species, such as small ruminants, is a well-known cause of abortion and fetal malformations. The calcium-dependent protein kinase 1 (CDPK1) inhibitor BKI-1748 has shown a promising safety profile for its use in humans and a good efficacy against Toxoplasma gondii infection in vitro and in mouse models. Ten doses of BKI-1748 given every other day orally in sheep at 15 mg/kg did not show systemic or pregnancy-related toxicity. In sheep experimentally infected at 90 days of pregnancy with 1000 TgShSp1 oocysts, the BKI-1748 treatment administered from 48 hours after infection led to complete protection against abortion and congenital infection. In addition, compared to infected/untreated sheep, treated sheep showed a drastically lower rectal temperature increase and none showed IgG seroconversion throughout the study. In conclusion, BKI-1748 treatment in pregnant sheep starting at 48 hours after infection was fully effective against congenital toxoplasmosis.
Collapse
Affiliation(s)
- Roberto Sánchez-Sánchez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Dennis Imhof
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | - Yanina P Hecker
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
- Institute of Innovation for Agricultural Production and Sustainable Development (IPADS, Balcarce), INTA-CONICET, Balcarce, Argentina
| | - Ignacio Ferre
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Michela Re
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
- Animal Medicine and Surgery Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Javier Moreno-Gonzalo
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
- Animal Medicine and Surgery Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Javier Blanco-Murcia
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
- Animal Medicine and Surgery Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Elena Mejías-López
- Animal Medicine and Surgery Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Matthew A Hulverson
- Center for Emerging and Re-emerging Infectious Diseases, Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Ryan Choi
- Center for Emerging and Re-emerging Infectious Diseases, Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Samuel L M Arnold
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Kayode K Ojo
- Center for Emerging and Re-emerging Infectious Diseases, Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Lynn K Barrett
- Center for Emerging and Re-emerging Infectious Diseases, Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | - Wesley C Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases, Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
3
|
Imhof D, Hänggeli KPA, De Sousa MCF, Vigneswaran A, Hofmann L, Amdouni Y, Boubaker G, Müller J, Hemphill A. Working towards the development of vaccines and chemotherapeutics against neosporosis-With all of its ups and downs-Looking ahead. ADVANCES IN PARASITOLOGY 2024; 124:91-154. [PMID: 38754928 DOI: 10.1016/bs.apar.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Neospora caninum is an apicomplexan and obligatory intracellular parasite, which is the leading cause of reproductive failure in cattle and affects other farm and domestic animals, but also induces neuromuscular disease in dogs of all ages. In cattle, neosporosis is an important health problem, and has a considerable economic impact. To date there is no protective vaccine or chemotherapeutic treatment on the market. Immuno-prophylaxis has long been considered as the best control measure. Proteins involved in host cell interaction and invasion, as well as antigens mediating inflammatory responses have been the most frequently assessed vaccine targets. However, despite considerable efforts no effective vaccine has been introduced to the market to date. The development of effective compounds to limit the effects of vertical transmission of N. caninum tachyzoites has emerged as an alternative or addition to vaccination, provided suitable targets and safe and efficacious drugs can be identified. Additionally, the combination of both treatment strategies might be interesting to further increase protectivity against N. caninum infections and to decrease the duration of treatment and the risk of potential drug resistance. Well-established and standardized animal infection models are key factors for the evaluation of promising vaccine and compound candidates. The vast majority of experimental animal experiments concerning neosporosis have been performed in mice, although in recent years the numbers of experimental studies in cattle and sheep have increased. In this review, we discuss the recent findings concerning the progress in drug and vaccine development against N. caninum infections in mice and ruminants.
Collapse
Affiliation(s)
- Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Kai Pascal Alexander Hänggeli
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Maria Cristina Ferreira De Sousa
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anitha Vigneswaran
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Larissa Hofmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Yosra Amdouni
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
4
|
Horcajo P, Ortega-Mora LM, Benavides J, Sánchez-Sánchez R, Amieva R, Collantes-Fernández E, Pastor-Fernández I. Ovine placental explants: A new ex vivo model to study host‒pathogen interactions in reproductive pathogens. Theriogenology 2023; 212:157-171. [PMID: 37729817 DOI: 10.1016/j.theriogenology.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
Reproductive failure is one of the main performance constraints in ruminant livestock. Transmissible agents such as Toxoplasma gondii and Neospora caninum are commonly involved in the occurrence of abortion in ruminants, but little is known about the mechanisms involved. While in vivo models are optimal for the study of abortion pathogenesis, they have a high economic cost and come with ethical concerns. Unfortunately, alternative in vitro models fail to replicate the complex in vivo placental structure. To overcome the limitations of currently available models, we developed an ex vivo model based on the cultivation of fresh and cryopreserved sheep placental explants, enabling the biobanking of tissues. Reproducible and simple markers of tissue integrity (histology, RNA concentrations), viability (resazurin reduction), and functionality (synthesis of steroid hormones) were also investigated, allowing a clear quality assessment of the model. This work shows that, similar to fresh explants, tissues cryopreserved in ethylene glycol using slow freezing rates maintain not only their structure and function but also their receptivity to T. gondii and N. caninum infection. In addition, the findings demonstrate that explant lifespan is mainly limited by the culture method, with protocols requiring improvements to extend it beyond 2 days. These findings suggest that cryopreserved tissues can be exploited to study the initial host‒pathogen interactions taking place in the placenta, thus deepening the knowledge of the specific mechanisms that trigger reproductive failure in sheep. Importantly, this work paves the way for the development of similar models in related species and contributes to the reduction of experimental animal use in the future.
Collapse
Affiliation(s)
- Pilar Horcajo
- SALUVET group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Luis Miguel Ortega-Mora
- SALUVET group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Julio Benavides
- Instituto de Ganadería de Montaña (CSIC-ULE), Grulleros, León, 24346, Spain.
| | - Roberto Sánchez-Sánchez
- SALUVET group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Rafael Amieva
- SALUVET group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Esther Collantes-Fernández
- SALUVET group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Iván Pastor-Fernández
- SALUVET group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| |
Collapse
|
5
|
López-Ureña NM, Calero-Bernal R, Vázquez-Calvo Á, Sánchez-Sánchez R, Ortega-Mora LM, Álvarez-García G. A comparative study of serological tests used in the diagnosis of Toxoplasma gondii infection in small ruminants evidenced the importance of cross-reactions for harmonizing diagnostic performance. Res Vet Sci 2023; 165:105052. [PMID: 37864907 DOI: 10.1016/j.rvsc.2023.105052] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023]
Abstract
Toxoplasma gondii is a major foodborne zoonotic pathogen that can be transmitted through the consumption of raw or undercooked meat of small ruminants, among others. Serology has been suggested as an epidemiological indicator and several tests are available nowadays. However, there is no comparative study with the most used ones. Therefore, the objective of this study was to develop and validate two in-house tests (Western blot -TgSALUVET WB- and ELISA -TgSALUVET ELISA 2.0-) and perform a comparative study including such tests and four commercial ELISA kits (IDScreen®, PrioCHECK®, Pigtype® and IDEXX). First, a specific pattern of recognition of immunodominant antigens by TgSALUVET WB was determined with serum panels of noninfected sheep and sheep infected with T. gondii or Neospora caninum. Next, TgSALUVET WB was used as a reference to preliminary validate TgSALUVET ELISA 2.0 using sera from sheep and goats naturally infected with T. gondii. Then, the abovementioned sheep serum panels were analyzed by all tests and subjected to TG-ROC analyses and agreement tests, and cross-reactivity with the anti-N. caninum IgGs was studied. All the techniques were accurate enough for the cutoff values initially suggested with all serum panels (Se and Sp ≥ 94%), except for PrioCHECK®, which showed 83% Sp. However, a cutoff readjustment improved their diagnostic performance. Additionally, cross-reactions between anti-N. caninum antibodies and T. gondii antigens were detected with all tests. Thus, a second cutoff readjustment was carried out and the use of both readjusted cutoff values is recommended to obtain comparable data and avoid false-positive results.
Collapse
Affiliation(s)
- Nadia María López-Ureña
- SALUVET Research Group, Animal Health Department, Faculty of Veterinary Sciences, Universidad Complutense de Madrid (UCM), Madrid 28040, Spain.
| | - Rafael Calero-Bernal
- SALUVET Research Group, Animal Health Department, Faculty of Veterinary Sciences, Universidad Complutense de Madrid (UCM), Madrid 28040, Spain.
| | | | - Roberto Sánchez-Sánchez
- SALUVET Research Group, Animal Health Department, Faculty of Veterinary Sciences, Universidad Complutense de Madrid (UCM), Madrid 28040, Spain.
| | - Luis Miguel Ortega-Mora
- SALUVET Research Group, Animal Health Department, Faculty of Veterinary Sciences, Universidad Complutense de Madrid (UCM), Madrid 28040, Spain.
| | - Gema Álvarez-García
- SALUVET Research Group, Animal Health Department, Faculty of Veterinary Sciences, Universidad Complutense de Madrid (UCM), Madrid 28040, Spain.
| |
Collapse
|
6
|
Imhof D, Pownall WR, Schlange C, Monney C, Ortega-Mora LM, Ojo KK, Van Voorhis WC, Oevermann A, Hemphill A. Vaccine-Linked Chemotherapy Approach: Additive Effects of Combining the Listeria monocytogenes-Based Vaccine Lm3Dx_NcSAG1 With the Bumped Kinase Inhibitor BKI-1748 Against Neospora caninum Infection in Mice. Front Vet Sci 2022; 9:901056. [PMID: 35832325 PMCID: PMC9272043 DOI: 10.3389/fvets.2022.901056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022] Open
Abstract
The apicomplexan parasite Neospora (N.) caninum causes neosporosis in numerous host species. There is no marketed vaccine and no licensed drug for the prevention and/or treatment of neosporosis. Vaccine development against this parasite has encountered significant obstacles, probably due to pregnancy-induced immunomodulation hampering efficacy, which has stimulated the search for potential drug therapies that could be applied to limit the effects of neosporosis in dams as well as in offspring. We here investigated, in a pregnant neosporosis mouse model, the safety and efficacy of a combined vaccination-drug treatment approach. Mice were vaccinated intramuscularly with 1 × 107 CFU of our recently generated Listeria (L.) monocytogenes vaccine vector expressing the major N. caninum tachyzoite surface antigen NcSAG1 (Lm3Dx_SAG1). Following mating and experimental subcutaneous infection with 1 × 105 N. caninum (NcSpain-7) tachyzoites on day 7 of pregnancy, drug treatments were initiated using the bumped kinase inhibitor BKI-1748 at 20 mg/kg/day for 5 days. In parallel, other experimental groups were either just vaccinated or only treated. Dams and offspring were followed-up until day 25 post-partum, after which all mice were euthanized. None of the treatments induced adverse effects and neither of the treatments affected fertility or litter sizes. Cerebral infection in dams as assessed by real-time PCR was significantly reduced in the vaccinated and BKI-1748 treated groups, but was not reduced significantly in the group receiving the combination. However, in non-pregnant mice, all three treatment groups exhibited significantly reduced parasite burdens. Both, vaccination as well BKI-1748 as single treatment increased pup survival to 44 and 48%, respectively, while the combination treatment led to survival of 86% of all pups. Vertical transmission in the combination group was 23% compared to 46 and 50% in the groups receiving only BKI-treatment or the vaccine, respectively. In the dams, IgG titers were significantly reduced in all treatment groups compared to the untreated control, while in non-pregnant mice, IgG titers were reduced only in the group receiving the vaccine. Overall, vaccine-linked chemotherapy was more efficacious than vaccination or drug treatment alone and should be considered for further evaluation in a more relevant experimental model.
Collapse
Affiliation(s)
- Dennis Imhof
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - William Robert Pownall
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Division of Small Animal Surgery, Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Carling Schlange
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Camille Monney
- Department of Clinical Research and Veterinary Public Health, Division of Neurological Sciences, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Luis-Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Kayode K. Ojo
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Wesley C. Van Voorhis
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Anna Oevermann
- Department of Clinical Research and Veterinary Public Health, Division of Neurological Sciences, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Müller J, Anghel N, Imhof D, Hänggeli K, Uldry AC, Braga-Lagache S, Heller M, Ojo KK, Ortega-Mora LM, Van Voorhis WC, Hemphill A. Common Molecular Targets of a Quinolone Based Bumped Kinase Inhibitor in Neospora caninum and Danio rerio. Int J Mol Sci 2022; 23:2381. [PMID: 35216497 PMCID: PMC8879773 DOI: 10.3390/ijms23042381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/30/2022] Open
Abstract
Neospora caninum is an apicomplexan parasite closely related to Toxoplasma gondii, and causes abortions, stillbirths and/or fetal malformations in livestock. Target-based drug development has led to the synthesis of calcium-dependent protein kinase 1 inhibitors, collectively named bumped kinase inhibitors (BKIs). Previous studies have shown that several BKIs have excellent efficacy against neosporosis in vitro and in vivo. However, several members of this class of compounds impair fertility in pregnant mouse models and cause embryonic malformation in a zebrafish (Danio rerio) model. Similar to the first-generation antiprotozoal drug quinine, some BKIs have a quinoline core structure. To identify common targets in both organisms, we performed differential affinity chromatography with cell-free extracts from N. caninum tachyzoites and D. rerio embryos using the 5-aminopyrazole-4-carboxamide (AC) compound BKI-1748 and quinine columns coupled to epoxy-activated sepharose followed by mass spectrometry. BKI-binding proteins of interest were identified in eluates from columns coupled to BKI-1748, or in eluates from BKI-1748 as well as quinine columns. In N. caninum, 12 proteins were bound specifically to BKI-1748 alone, and 105 proteins, including NcCDPK1, were bound to both BKI-1748 and quinine. For D. rerio, the corresponding numbers were 13 and 98 binding proteins, respectively. In both organisms, a majority of BKI-1748 binding proteins was involved in RNA binding and modification, in particular, splicing. Moreover, both datasets contained proteins involved in DNA binding or modification and key steps of intermediate metabolism. These results suggest that BKI-1748 interacts with not only specific targets in apicomplexans, such as CDPK1, but also with targets in other eukaryotes, which are involved in common, essential pathways.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (N.A.); (D.I.); (K.H.)
| | - Nicoleta Anghel
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (N.A.); (D.I.); (K.H.)
| | - Dennis Imhof
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (N.A.); (D.I.); (K.H.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Kai Hänggeli
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (N.A.); (D.I.); (K.H.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (A.-C.U.); (S.B.-L.); (M.H.)
| | - Sophie Braga-Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (A.-C.U.); (S.B.-L.); (M.H.)
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (A.-C.U.); (S.B.-L.); (M.H.)
| | - Kayode K. Ojo
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (K.K.O.); (W.C.V.V.)
| | - Luis-Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Wesley C. Van Voorhis
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (K.K.O.); (W.C.V.V.)
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (N.A.); (D.I.); (K.H.)
| |
Collapse
|
8
|
Dynamics of Neospora caninum-Associated Abortions in a Dairy Sheep Flock and Results of a Test-and-Cull Control Programme. Pathogens 2021; 10:pathogens10111518. [PMID: 34832673 PMCID: PMC8625302 DOI: 10.3390/pathogens10111518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/03/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Neospora caninum is an apicomplexan parasite that can cause abortions and perinatal mortality in sheep. Although ovine neosporosis has been described worldwide, there is a lack of information about the relationship between N. caninum serostatus and the reproductive performance. In this study, we described the infection dynamics in a dairy sheep flock with an abortion rate up to 25% and a N. caninum seroprevalence of 32%. Abortions were recorded in 36% and 9% of seropositive and seronegative sheep, respectively. Seropositive sheep were more likely to abort twice (OR = 4.44) or three or more times (OR = 10.13) than seronegative sheep. Endogenous transplacental transmission was the main route of transmission since 86% of seropositive sheep had seropositive offspring. Within dams that had any abortion, seropositive sheep were more likely than seronegative ones to have female descendants that aborted (OR = 8.12). The slight increase in seropositivity with the age, the low percentage of animals with postnatal seroconversion or with low avidity antibodies, and the seropositivity of one flock dog, indicated that horizontal transmission might have some relevance in this flock. A control programme based on selective culling of seropositive sheep and replacement with seronegative animals was effective in reducing the abortion rate to 7.2%.
Collapse
|
9
|
Sánchez-Sánchez R, Ferre I, Re M, Pérez-Arroyo B, Cleofé-Resta D, García VH, Díaz MP, Ferrer LM, Ruiz H, Vallejo-García R, Benavides J, Hulverson MA, Choi R, Whitman GR, Hemphill A, Van Voorhis WC, Ortega-Mora LM. A short-term treatment with BKI-1294 does not protect foetuses from sheep experimentally infected with Neospora caninum tachyzoites during pregnancy. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 17:176-185. [PMID: 34655903 PMCID: PMC8526916 DOI: 10.1016/j.ijpddr.2021.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 01/17/2023]
Abstract
The Neospora caninum Calcium-dependent protein kinase 1 (NcCDPK1) inhibitor BKI-1294 had demonstrated excellent efficacy in a pregnant mouse model of neosporosis, and was also highly efficacious in a pregnant sheep model of toxoplasmosis. In this work, we present the efficacy of BKI-1294 treatment (dosed 5 times orally every 48 h) starting 48 h after intravenous infection of sheep with 105 Nc-Spain7 tachyzoites at mid-pregnancy. In the dams, BKI-1294 plasma concentrations were above the IC50 for N. caninum for 12-15 days. In treated sheep, when they were compared to untreated ones, we observed a minor increase in rectal temperature, higher IFNγ levels after blood stimulation in vitro, and a minor increase of IgG levels against N. caninum soluble antigens through day 28 post-infection. Additionally, the anti-NcSAG1 and anti-NcSAG4 IgGs were lower in treated dams on days 21 and 42 post-infection. However, BKI-1294 did not protect against abortion (87% foetal mortality in both infected groups, treated and untreated) and did not reduce transplacental transmission, parasite load or lesions in placentomes and foetal brain. The lack of foetal protection was likely caused by short systemic exposure in the dams and suboptimal foetal exposure to this parasitostatic drug, which was unable to reduce replication of the likely established N. caninum tachyzoites in the foetus at the moment of treatment. New BKIs with a very low plasma clearance and good ability to cross the blood-brain and placental barriers need to be developed.
Collapse
Affiliation(s)
- Roberto Sánchez-Sánchez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain
| | - Ignacio Ferre
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain
| | - Michela Re
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain; Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain
| | - Bárbara Pérez-Arroyo
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain
| | - Darío Cleofé-Resta
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain
| | - Victor Herrero García
- Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain
| | - Manuel Pizarro Díaz
- Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain
| | - Luis Miguel Ferrer
- Departamento de Patología Animal, Facultad de Veterinaria, C/ Miguel Servet 177, 50013, Zaragoza, Spain
| | - Hector Ruiz
- Departamento de Patología Animal, Facultad de Veterinaria, C/ Miguel Servet 177, 50013, Zaragoza, Spain
| | | | - Julio Benavides
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain
| | - Matthew A Hulverson
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, 98109-4766, Seattle, WA, USA
| | - Ryan Choi
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, 98109-4766, Seattle, WA, USA
| | - Grant R Whitman
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, 98109-4766, Seattle, WA, USA
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012, Berne, Switzerland
| | - Wesley C Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, 98109-4766, Seattle, WA, USA
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain.
| |
Collapse
|
10
|
Anghel N, Imhof D, Winzer P, Balmer V, Ramseier J, Haenggeli K, Choi R, Hulverson MA, Whitman GR, Arnold SL, Ojo KK, Van Voorhis WC, Doggett JS, Ortega-Mora LM, Hemphill A. Endochin-like quinolones (ELQs) and bumped kinase inhibitors (BKIs): Synergistic and additive effects of combined treatments against Neospora caninum infection in vitro and in vivo. Int J Parasitol Drugs Drug Resist 2021; 17:92-106. [PMID: 34482255 PMCID: PMC8416643 DOI: 10.1016/j.ijpddr.2021.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 12/30/2022]
Abstract
The apicomplexan parasite Neospora caninum is an important causative agent of congenital neosporosis, resulting in abortion, birth of weak offspring and neuromuscular disorders in cattle, sheep, and many other species. Among several compound classes that are currently being developed, two have been reported to limit the effects of congenital neosporosis: (i) bumped kinase inhibitors (BKIs) target calcium dependent protein kinase 1 (CDPK1), an enzyme that is encoded by an apicoplast-derived gene and found only in apicomplexans and plants. CDPK1 is essential for host cell invasion and egress; (ii) endochin-like quinolones (ELQs) are inhibitors of the cytochrome bc1 complex of the mitochondrial electron transport chain and thus inhibit oxidative phosphorylation. We here report on the in vitro and in vivo activities of BKI-1748, and of ELQ-316 and its respective prodrugs ELQ-334 and ELQ-422, applied either as single-compounds or ELQ-BKI-combinations. In vitro, BKI-1748 and ELQ-316, as well as BKI-1748 and ELQ-334, acted synergistically, while this was not observed for the BKI-1748/ELQ-422 combination treatment. In a N. caninum-infected pregnant BALB/c mouse model, the synergistic effects observed in vitro were not entirely reproduced, but 100% postnatal survival and 100% inhibition of vertical transmission was noted in the group treated with the BKI-1748/ELQ-334 combination. In addition, the combined drug applications resulted in lower neonatal mortality compared to treatments with single drugs.
Collapse
Affiliation(s)
- Nicoleta Anghel
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland,Corresponding author. Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland.
| | - Dennis Imhof
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland
| | - Pablo Winzer
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland
| | - Vreni Balmer
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Jessica Ramseier
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Kai Haenggeli
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland
| | - Ryan Choi
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Matthew A. Hulverson
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Grant R. Whitman
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Samuel L.M. Arnold
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA,Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Kayode K. Ojo
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Wesley C. Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA,Departments of Global Health and Microbiology, University of Washington, Seattle, WA, USA
| | - J. Stone Doggett
- VA Portland Health Care System, Research and Development Service, Portland, OR, USA
| | - Luis M. Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid, Spain
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland,Corresponding author.
| |
Collapse
|
11
|
Imhof D, Anghel N, Winzer P, Balmer V, Ramseier J, Hänggeli K, Choi R, Hulverson MA, Whitman GR, Arnold SLM, Ojo KK, Van Voorhis WC, Doggett JS, Ortega-Mora LM, Hemphill A. In vitro activity, safety and in vivo efficacy of the novel bumped kinase inhibitor BKI-1748 in non-pregnant and pregnant mice experimentally infected with Neospora caninum tachyzoites and Toxoplasma gondii oocysts. Int J Parasitol Drugs Drug Resist 2021; 16:90-101. [PMID: 34030110 PMCID: PMC8144743 DOI: 10.1016/j.ijpddr.2021.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022]
Abstract
Bumped kinase inhibitors (BKIs) target the apicomplexan calcium-dependent protein kinase 1 (CDPK1). BKI-1748, a 5-aminopyrazole-4-carboxamide compound when added to fibroblast cells concomitantly to the time of infection, inhibited proliferation of apicomplexan parasites at EC50s of 165 nM (Neospora caninum) and 43 nM (Toxoplasma gondii). Immunofluorescence and electron microscopy showed that addition of 2.5 μM BKI-1748 to infected HFF monolayers transformed parasites into multinucleated schizont-like complexes (MNCs) containing newly formed zoites, which were unable to separate and form infective tachyzoites or undergo egress. In zebrafish (Danio rerio) embryo development assays, no embryonic impairment was detected within 96 h at BKI-1748 concentrations up to 10 μM. In pregnant mice, BKI-1748 applied at days 9-13 of pregnancy at a dose of 20 mg/kg/day was safe and no pregnancy interference was observed. The efficacy of BKI-1748 was assessed in standardized pregnant mouse models infected with N. caninum (NcSpain-7) tachyzoites or T. gondii (TgShSp1) oocysts. In both models, treatments resulted in increased pup survival and profound inhibition of vertical transmission. However, in dams and non-pregnant mice, BKI-1748 treatments resulted in significantly decreased cerebral parasite loads only in T. gondii infected mice. In the T. gondii-model, ocular infection was detected in 10 out of 12 adult mice of the control group, but only in 3 out of 12 mice in the BKI-1748-treated group. Thus, TgShSp1 oocyst infection is a suitable model to study both cerebral and ocular infection by T. gondii. BKI-1748 represents an interesting candidate for follow-up studies on neosporosis and toxoplasmosis in larger animal models.
Collapse
Affiliation(s)
- Dennis Imhof
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland.
| | - Nicoleta Anghel
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland
| | - Pablo Winzer
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland
| | - Vreni Balmer
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Jessica Ramseier
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Kai Hänggeli
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland
| | - Ryan Choi
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Matthew A Hulverson
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Grant R Whitman
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Samuel L M Arnold
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA; Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Kayode K Ojo
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Wesley C Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA; Departments of Global Health and Microbiology, University of Washington, Seattle, WA, USA
| | - J Stone Doggett
- VA Portland Health Care System, Research and Development Service, Portland, OR, USA
| | - Luis M Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid, Spain
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland.
| |
Collapse
|
12
|
Pereira LM, de Luca G, Abichabki NDLM, Brochi JCV, Baroni L, Abreu-Filho PG, Yatsuda AP. Atovaquone, chloroquine, primaquine, quinine and tetracycline: antiproliferative effects of relevant antimalarials on Neospora caninum. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2021; 30:e022120. [PMID: 33787719 DOI: 10.1590/s1984-29612021006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/20/2021] [Indexed: 01/21/2023]
Abstract
Neospora caninum is an apicomplexan parasite that causes abortion in cattle, resulting in significant economic losses. There is no commercial treatment for neosporosis, and drug repositioning is a fast strategy to test possible candidates against N. caninum. In this article, we describe the effects of atovaquone, chloroquine, quinine, primaquine and tetracycline on N. caninum proliferation. The IC50 concentrations in N. caninum were compared to the current information based on previous studies for Plasmodium and Toxoplasma gondii, correlating to the described mechanisms of action of each tested drug. The inhibitory patterns indicate similarities and differences among N. caninum, Plasmodium and T. gondii. For example, atovaquone demonstrates high antiparasitic activity in all the analyzed models, while chloroquine does not inhibit N. caninum. On the other hand, tetracycline is effective against Plasmodium and N. caninum, despite its low activity in T. gondii models. The repurposing of antimalarial drugs in N. caninum is a fast and inexpensive way to develop novel formulations using well-established compounds.
Collapse
Affiliation(s)
- Luiz Miguel Pereira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Gabriela de Luca
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Nathália de Lima Martins Abichabki
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Jade Cabestre Venancio Brochi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Luciana Baroni
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Péricles Gama Abreu-Filho
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Ana Patrícia Yatsuda
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| |
Collapse
|
13
|
Van Voorhis WC, Hulverson MA, Choi R, Huang W, Arnold SLM, Schaefer DA, Betzer DP, Vidadala RSR, Lee S, Whitman GR, Barrett LK, Maly DJ, Riggs MW, Fan E, Kennedy TJ, Tzipori S, Doggett JS, Winzer P, Anghel N, Imhof D, Müller J, Hemphill A, Ferre I, Sanchez-Sanchez R, Ortega-Mora LM, Ojo KK. One health therapeutics: Target-Based drug development for cryptosporidiosis and other apicomplexa diseases. Vet Parasitol 2021; 289:109336. [PMID: 33418437 PMCID: PMC8582285 DOI: 10.1016/j.vetpar.2020.109336] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
This is a review of the development of bumped-kinase inhibitors (BKIs) for the therapy of One Health parasitic apicomplexan diseases. Many apicomplexan infections are shared between humans and livestock, such as cryptosporidiosis and toxoplasmosis, as well as livestock only diseases such as neosporosis. We have demonstrated proof-of-concept for BKI therapy in livestock models of cryptosporidiosis (newborn calves infected with Cryptosporidium parvum), toxoplasmosis (pregnant sheep infected with Toxoplasma gondii), and neosporosis (pregnant sheep infected with Neospora caninum). We discuss the potential uses of BKIs for the treatment of diseases caused by apicomplexan parasites in animals and humans, and the improvements that need to be made to further develop BKIs.
Collapse
Affiliation(s)
- Wesley C Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA.
| | - Matthew A Hulverson
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| | - Ryan Choi
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| | - Wenlin Huang
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Samuel L M Arnold
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| | - Deborah A Schaefer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Dana P Betzer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Rama S R Vidadala
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Sangun Lee
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, 01536, USA
| | - Grant R Whitman
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| | - Lynn K Barrett
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Michael W Riggs
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | | | - Saul Tzipori
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, 01536, USA
| | - J Stone Doggett
- Oregon Health & Science University, Portland, OR, 97239, USA
| | - Pablo Winzer
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| | - Nicoleta Anghel
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| | - Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| | - Ignacio Ferre
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Roberto Sanchez-Sanchez
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Luis Miguel Ortega-Mora
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Kayode K Ojo
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
14
|
Winzer P, Imhof D, Anghel N, Ritler D, Müller J, Boubaker G, Aguado-Martinez A, Ortega-Mora LM, Ojo KK, VanVoorhis WC, Hemphill A. The Impact of BKI-1294 Therapy in Mice Infected With the Apicomplexan Parasite Neospora caninum and Re-infected During Pregnancy. Front Vet Sci 2020; 7:587570. [PMID: 33195616 PMCID: PMC7593410 DOI: 10.3389/fvets.2020.587570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/08/2020] [Indexed: 01/10/2023] Open
Abstract
Exposure of Neospora caninum tachyzoites to BKI-1294 in vitro results in the formation of long-lived multinucleated complexes (MNCs). However, in vivo treatment of BALB/c mice with BKI-1294 shortly after N. caninum infection during pregnancy was safe and profoundly reduced pup mortality and vertical transmission. We hypothesized that the formation of MNCs could trigger immune responses that contribute to BKI efficacy in vivo. In this study, mice were first vaccinated with a sublethal dose of N. caninum tachyzoites and were treated with BKI-1294. We then investigated the effects of these treatments after mating and re-infection during pregnancy. Effects on fertility, pup survival, vertical transmission, and parasite load in dams were evaluated. Cytokines in sera or splenocyte culture supernatants were assessed by either ELISA or the Luminex™ 200 system, and humoral immune responses against tachyzoite and MNC antigens were compared by ELISA, Western blotting and immunoproteomics. Our results showed that BKI-1294 treatment of live-vaccinated mice reduced the cerebral parasite load in the dams, but resulted in higher neonatal pup mortality and vertical transmission. In live-vaccinated mice, cytokine levels, most notably IFN-y, IL-10, and IL-12, were consistently lower in BKI-1294 treated animals compared to non-treated mice. In addition, comparative Western blotting identified two protein bands in MNC extracts that were only recognized by sera of live-vaccinated mice treated with BKI-1294, and were not found in tachyzoite extracts. We conclude that treatment of live-vaccinated mice with BKI-1294 influenced the cellular and humoral immune responses against infection, affected the safety of the live-vaccine, and decreased protection against re-infection and vertical transmission during pregnancy.
Collapse
Affiliation(s)
- Pablo Winzer
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Dennis Imhof
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Nicoleta Anghel
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Dominic Ritler
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Luis-Miguel Ortega-Mora
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid, Spain
| | - Kayode K Ojo
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Wesley C VanVoorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States.,Departments of Global Health and Microbiology, University of Washington, Seattle, WA, United States
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Anghel N, Winzer PA, Imhof D, Müller J, Langa X, Rieder J, Barrett LK, Vidadala RSR, Huang W, Choi R, Hulverson MA, Whitman GR, Arnold SL, Van Voorhis WC, Ojo KK, Maly DJ, Fan E, Hemphill A. Comparative assessment of the effects of bumped kinase inhibitors on early zebrafish embryo development and pregnancy in mice. Int J Antimicrob Agents 2020; 56:106099. [PMID: 32707170 DOI: 10.1016/j.ijantimicag.2020.106099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 01/30/2023]
Abstract
Bumped kinase inhibitors (BKIs) are effective against a variety of apicomplexan parasites. Fifteen BKIs with promising in vitro efficacy against Neospora caninum tachyzoites, low cytotoxicity in mammalian cells, and no toxic effects in non-pregnant BALB/c mice were assessed in pregnant mice. Drugs were emulsified in corn oil and were applied by gavage for 5 days. Five BKIs did not affect pregnancy, five BKIs exhibited ~15-35% neonatal mortality and five compounds caused strong effects (infertility, abortion, stillbirth and pup mortality). Additionally, the impact of these compounds on zebrafish (Danio rerio) embryo development was assessed by exposing freshly fertilised eggs to 0.2-50 μM of BKIs and microscopic monitoring of embryo development in a blinded manner for 4 days. We propose an algorithm that includes quantification of malformations and embryo deaths, and established a scoring system that allows the calculation of an impact score (Si) indicating at which concentrations BKIs visibly affect zebrafish embryo development. Comparison of the two models showed that for nine compounds no clear correlation between Si and pregnancy outcome was observed. However, the three BKIs affecting zebrafish embryos only at high concentrations (≥40 μM) did not impair mouse pregnancy at all, and the three compounds that inhibited zebrafish embryo development already at 0.2 μM showed detrimental effects in the pregnancy model. Thus, the zebrafish embryo development test has limited predictive value to foresee pregnancy outcome in BKI-treated mice. We conclude that maternal health-related factors such as cardiovascular, pharmacokinetic and/or bioavailability properties also contribute to BKI-pregnancy effects.
Collapse
Affiliation(s)
- Nicoleta Anghel
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Pablo A Winzer
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Xavier Langa
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3000 Bern, Switzerland
| | - Jessica Rieder
- Centre for Fish and Wildlife Health (FIWI), Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Lynn K Barrett
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | | | - Wenlin Huang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Ryan Choi
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Mathew A Hulverson
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Grant R Whitman
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Samuel L Arnold
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Wesley C Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Kayode K Ojo
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland.
| |
Collapse
|
16
|
Winzer P, Müller J, Imhof D, Ritler D, Uldry AC, Braga-Lagache S, Heller M, Ojo KK, Van Voorhis WC, Ortega-Mora LM, Hemphill A. Neospora caninum: Differential Proteome of Multinucleated Complexes Induced by the Bumped Kinase Inhibitor BKI-1294. Microorganisms 2020; 8:microorganisms8060801. [PMID: 32466554 PMCID: PMC7355844 DOI: 10.3390/microorganisms8060801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 11/23/2022] Open
Abstract
Background: the apicomplexan parasite Neospora caninum causes important reproductive problems in farm animals, most notably in cattle. After infection via oocysts or tissue cysts, rapidly dividing tachyzoites infect various tissues and organs, and in immunocompetent hosts, they differentiate into slowly dividing bradyzoites, which form tissue cysts and constitute a resting stage persisting within infected tissues. Bumped kinase inhibitors (BKIs) of calcium dependent protein kinase 1 are promising drug candidates for the treatment of Neospora infections. BKI-1294 exposure of cell cultures infected with N. caninum tachyzoites results in the formation of massive multinucleated complexes (MNCs) containing numerous newly formed zoites, which remain viable for extended periods of time under drug pressure in vitro. MNC and tachyzoites exhibit considerable antigenic and structural differences. Methods: Using shotgun mass spectrometry, we compared the proteomes of tachyzoites to BKI-1294 induced MNCs, and analyzed the mRNA expression levels of selected genes in both stages. Results: More than half of the identified proteins are downregulated in MNCs as compared to tachyzoites. Only 12 proteins are upregulated, the majority of them containing SAG1 related sequence (SRS) domains, and some also known to be expressed in bradyzoites Conclusions: MNCs exhibit a proteome different from tachyzoites, share some bradyzoite-like features, but may constitute a third stage, which remains viable and ensures survival under adverse conditions such as drug pressure. We propose the term “baryzoites” for this stage (from Greek βαρυσ = massive, bulky, heavy, inert).
Collapse
Affiliation(s)
- Pablo Winzer
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (P.W.); (D.I.); (D.R.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (P.W.); (D.I.); (D.R.)
- Correspondence: (J.M.); (A.H.); Tel.: +41-31-631-23-84 (A.H.); Fax: +41-31-631-24-76 (A.H.)
| | - Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (P.W.); (D.I.); (D.R.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Dominic Ritler
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (P.W.); (D.I.); (D.R.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Berne, Freiburgstrasse 15, CH-3010 Berne, Switzerland; (A.-C.U.); (S.B.-L.); (M.H.)
| | - Sophie Braga-Lagache
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Berne, Freiburgstrasse 15, CH-3010 Berne, Switzerland; (A.-C.U.); (S.B.-L.); (M.H.)
| | - Manfred Heller
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Berne, Freiburgstrasse 15, CH-3010 Berne, Switzerland; (A.-C.U.); (S.B.-L.); (M.H.)
| | - Kayode K. Ojo
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (K.K.O.); (W.C.V.V.)
| | - Wesley C. Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (K.K.O.); (W.C.V.V.)
| | - Luis-Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain;
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (P.W.); (D.I.); (D.R.)
- Correspondence: (J.M.); (A.H.); Tel.: +41-31-631-23-84 (A.H.); Fax: +41-31-631-24-76 (A.H.)
| |
Collapse
|
17
|
Neospora caninum: Structure and Fate of Multinucleated Complexes Induced by the Bumped Kinase Inhibitor BKI-1294. Pathogens 2020; 9:pathogens9050382. [PMID: 32429314 PMCID: PMC7281336 DOI: 10.3390/pathogens9050382] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Bumped kinase inhibitors (BKIs) are potential drugs for neosporosis treatment in farm animals. BKI-1294 exposure results in the formation of multinucleated complexes (MNCs), which remain viable in vitro under constant drug pressure. We investigated the formation of BKI-1294 induced MNCs, the re-emergence of viable tachyzoites following drug removal, and the localization of CDPK1, the molecular target of BKIs. Methods: N. caninum tachyzoites and MNCs were studied by TEM and immunofluorescence using antibodies directed against CDPK1, and against NcSAG1 and IMC1 as markers for tachyzoites and newly formed zoites, respectively. Results: After six days of drug exposure, MNCs lacked SAG1 surface expression but remained intracellular, and formed numerous zoites incapable of disjoining from each other. Following drug removal, proliferation continued, and zoites lacking NcSAG1 emerged from the periphery of these complexes, forming infective tachyzoites after 10 days. In intracellular tachyzoites, CDPK1 was evenly distributed but shifted towards the apical part once parasites were extracellular. This shift was not affected by BKI-1294. Conclusions: CDPK1 has a dynamic distribution depending on whether parasites are located within a host cell or outside. During MNC-to-tachyzoite reconversion newly formed tachyzoites are generated directly from MNCs through zoites of unknown surface antigen composition. Further in vivo studies are needed to determine if MNCs could lead to a persistent reservoir of infection after BKI treatment.
Collapse
|
18
|
Pereira LM, Mota CM, Baroni L, Bronzon da Costa CM, Brochi JCV, Wainwright M, Mineo TWP, Braga GÚL, Yatsuda AP. Inhibitory action of phenothiazinium dyes against Neospora caninum. Sci Rep 2020; 10:7483. [PMID: 32366934 PMCID: PMC7198568 DOI: 10.1038/s41598-020-64454-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
Neospora caninum is an Apicomplexan parasite related to important losses in livestock, causing abortions and decreased fertility in affected cows. Several chemotherapeutic strategies have been developed for disease control; however, no commercial treatment is available. Among the candidate drugs against neosporosis, phenothiazinium dyes, offer a low cost-efficient approach to parasite control. We report the anti-parasitic effects of the phenothiaziums Methylene Blue (MB), New Methylene Blue (NMB), 1,9–Dimethyl Methylene Blue (DMMB) and Toluidine Blue O (TBO) on N. caninum, using in vitro and in vivo models. The dyes inhibited parasite proliferation at nanomolar concentrations (0.019–1.83 μM) and a synergistic effect was achieved when Methylene Blue was combined with New Methylene Blue (Combination Index = 0.84). Moreover, the phenothiazinium dyes improved parasite clearance when combined with Pyrimethamine (Pyr). Combination of Methylene Blue + 1,9–Dimethyl Methylene Blue demonstrated superior efficacy compared to Pyrimethamine based counterparts in an in vivo model of infection. We also observed that Methylene Blue, New Methylene Blue and 1,9–Dimethyl Methylene Blue increased by 5000% the reactive oxygen species (ROS) levels in N. caninum tachyzoites. Phenothiazinium dyes represent an accessible group of candidates with the potential to compound future formulations for neosporosis control.
Collapse
Affiliation(s)
- Luiz Miguel Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil.,Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Caroline Martins Mota
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Luciana Baroni
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Cássia Mariana Bronzon da Costa
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Jade Cabestre Venancio Brochi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Mark Wainwright
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, United Kingdom
| | - Tiago Wilson Patriarca Mineo
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Gilberto Úbida Leite Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Ana Patrícia Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil. .,Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
19
|
Diezma-Díaz C, Ferre I, Re M, Jiménez-Meléndez A, Tabanera E, Pizarro-Díaz M, González-Huecas M, Alcaide-Pardo M, Blanco-Murcia FJ, Ortega-Mora LM, Álvarez-García G. A model for chronic bovine besnoitiosis: Parasite stage and inoculation route are key factors. Transbound Emerg Dis 2019; 67:234-249. [PMID: 31483955 DOI: 10.1111/tbed.13345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 12/17/2022]
Abstract
In this work, an experimental model for chronic besnoitiosis in bovine was developed and characterized. Using a previously established calf model, two new variables (parasite stage and inoculation route) were combined and used. Twelve Holstein Friesian 3-month-old male calves were randomly divided into four groups of three animals each. Bradyzoites were obtained from a chronically infected bull and used for inoculation via three different inoculation routes. Three groups were inoculated with 106 bradyzoites by intravenous (G1), subcutaneous (G2) and intradermal (G3) routes, and a non-infected control group (G4) was inoculated with PBS. The trial lasted for 90 days and included daily clinical monitoring as well as weekly skin biopsies and blood sampling. Sera were obtained to analyse both cellular and humoral responses. Once the calves were euthanized, tissues from the skin, eyes, respiratory and reproductive tracts, among others, were collected to study presence of the parasite. Clinically, the infection was classified as mild to moderate for the acute stage since all infected calves showed lymphadenopathy from four days post-infection (pi) and fever from one week pi until 24 days pi. However, the most relevant results were achieved during the chronic stage that was classified as moderate to severe. In fact, pathognomonic conjunctival cysts were observed in all infected calves from 40 days pi onwards and were more abundant in G3. Moreover, one calf from this group developed skin lesions (49 days pi). The microscopic tissue cysts and Besnoitia DNA were detected primarily in skin, reproductive tract and respiratory tissue samples, and parasite load was higher in G3. In conclusion, the parasite stage (bradyzoite) and the inoculation route are key factors that influence the outcome of an infection. In particular, the intradermal route led to more severe clinical signs of the chronic phase in the inoculated calves.
Collapse
Affiliation(s)
- Carlos Diezma-Díaz
- Animal Health Department, Faculty of Veterinary Sciences, SALUVET, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid, Spain
| | - Ignacio Ferre
- Animal Health Department, Faculty of Veterinary Sciences, SALUVET, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid, Spain
| | - Michela Re
- Animal Health Department, Faculty of Veterinary Sciences, SALUVET, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid, Spain.,Animal Medicine and Surgery Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid, Spain
| | - Alejandro Jiménez-Meléndez
- Animal Health Department, Faculty of Veterinary Sciences, SALUVET, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid, Spain
| | - Enrique Tabanera
- Animal Medicine and Surgery Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid, Spain
| | - Manuel Pizarro-Díaz
- Animal Medicine and Surgery Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid, Spain
| | - Marta González-Huecas
- Animal Medicine and Surgery Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid, Spain
| | - María Alcaide-Pardo
- Animal Health Department, Faculty of Veterinary Sciences, SALUVET, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid, Spain
| | - Francisco Javier Blanco-Murcia
- Animal Health Department, Faculty of Veterinary Sciences, SALUVET, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid, Spain.,Animal Medicine and Surgery Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid, Spain
| | - Luis Miguel Ortega-Mora
- Animal Health Department, Faculty of Veterinary Sciences, SALUVET, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid, Spain
| | - Gema Álvarez-García
- Animal Health Department, Faculty of Veterinary Sciences, SALUVET, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid, Spain
| |
Collapse
|
20
|
Treatment with Bumped Kinase Inhibitor 1294 Is Safe and Leads to Significant Protection against Abortion and Vertical Transmission in Sheep Experimentally Infected with Toxoplasma gondii during Pregnancy. Antimicrob Agents Chemother 2019; 63:AAC.02527-18. [PMID: 31061151 DOI: 10.1128/aac.02527-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/22/2019] [Indexed: 01/06/2023] Open
Abstract
Previous studies on drug efficacy showed low protection against abortion and vertical transmission of Toxoplasma gondii in pregnant sheep. Bumped kinase inhibitors (BKIs), which are ATP-competitive inhibitors of calcium-dependent protein kinase 1 (CDPK1), were shown to be highly efficacious against several apicomplexan parasites in vitro and in laboratory animal models. Here, we present the safety and efficacy of BKI-1294 treatment (dosed orally at 100 mg/kg of body weight 5 times every 48 h) initiated 48 h after oral infection of sheep at midpregnancy with 1,000 TgShSp1 oocysts. BKI-1294 demonstrated systemic exposure in pregnant ewes, with maximum plasma concentrations of 2 to 3 μM and trough concentrations of 0.4 μM at 48 h after each dose. Oral administration of BKI-1294 in uninfected sheep at midpregnancy was deemed safe, since there were no changes in behavior, fecal consistency, rectal temperatures, hematological and biochemical parameters, or fetal mortality/morbidity. In ewes infected with a T. gondii oocyst dose lethal for fetuses, BKI-1294 treatment led to a minor rectal temperature increase after infection and a decrease in fetal/lamb mortality of 71%. None of the lambs born alive in the treated group exhibited congenital encephalitis lesions, and vertical transmission was prevented in 53% of them. BKI-1294 treatment during infection led to strong interferon gamma production after cell stimulation in vitro and a low humoral immune response to soluble tachyzoite antigens but high levels of anti-SAG1 antibodies. The results demonstrate a proof of concept for the therapeutic use of BKI-1294 to protect ovine fetuses from T. gondii infection during pregnancy.
Collapse
|
21
|
Bumped kinase inhibitor 1369 is effective against Cystoisospora suis in vivo and in vitro. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 10:9-19. [PMID: 30959327 PMCID: PMC6453670 DOI: 10.1016/j.ijpddr.2019.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/22/2022]
Abstract
Cystoisosporosis is a leading diarrheal disease in suckling piglets. With the confirmation of resistance against the only available drug toltrazuril, there is a substantial need for novel therapeutics to combat the infection and its negative effects on animal health. In closely related apicomplexan species, bumped kinase inhibitors (BKIs) targeting calcium-dependent protein kinase 1 (CDPK1) were shown to be effective in inhibiting host-cell invasion and parasite growth. Therefore, the gene coding for Cystoisospora suis CDPK1 (CsCDPK1) was identified and cloned to investigate activity and thermal stabilization of the recombinant CsCDPK1 enzyme by BKI 1369. In this comprehensive study, the efficacy, safety and pharmacokinetics of BKI 1369 in piglets experimentally infected with Cystoisospora suis (toltrazuril-sensitive, Wien-I and toltrazuril-resistant, Holland-I strains) were determined in vivo and in vitro using an established animal infection model and cell culture, respectively. BKI 1369 inhibited merozoite proliferation in intestinal porcine epithelial cells-1 (IPEC-1) by at least 50% at a concentration of 40 nM, and proliferation was almost completely inhibited (>95%) at 200 nM. Nonetheless, exposure of infected cultures to 200 nM BKI 1369 for five days did not induce structural alterations in surviving merozoites as confirmed by transmission electron microscopy. Five-day treatment with BKI 1369 (10 mg/kg BW twice a day) effectively suppressed oocyst excretion and diarrhea and improved body weight gains in treated piglets without obvious side effects for both toltrazuril-sensitive, Wien-I and resistant, Holland-I C. suis strains. The plasma concentration of BKI 1369 in piglets increased to 11.7 μM during treatment, suggesting constant drug accumulation and exposure of parasites to the drug. Therefore, oral applications of BKI 1369 could potentially be a therapeutic alternative against porcine cystoisosporosis. For use in pigs, future studies on BKI 1369 should be directed towards ease of drug handling and minimizing treatment frequencies. Oral application of BKI 1369 effectively reduced oocyst excretion and diarrhea in Cystoisospora suis infected piglets. 200 nM of BKI 1369 almost completely suppressed parasite proliferation in vitro. IC50 and IC95 concentrations of BKI 1369 did not induce morphological alterations in in vitro cultured merozoites. Cystoisosporasuis CDPK1, the putative target of BKI 1369, has glycine as gatekeeper residue.
Collapse
|
22
|
Diezma-Díaz C, Ferre I, Re M, Jiménez-Meléndez A, Tabanera E, González-Huecas M, Pizarro-Díaz M, Yanguas-Pérez D, Brum PL, Blanco-Murcia J, Ortega-Mora LM, Álvarez-García G. The route of Besnoitia besnoiti tachyzoites inoculation does not influence the clinical outcome of the infection in calves. Vet Parasitol 2019; 267:21-25. [PMID: 30878080 DOI: 10.1016/j.vetpar.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 12/12/2022]
Abstract
In a previous attempt, an experimental model of bovine besnoitiosis was established in calves that were intravenously inoculated with different doses of Besnoitia besnoiti tachyzoites. Despite the fact that all infected calves developed the acute stage of disease, only microscopic findings characteristic of chronic besnoitiosis were reported. In the present study, calves were inoculated by subcutaneous and intradermal routes with B. besnoiti tachyzoites with the aim of developing clinical signs and macroscopic lesions characteristic of chronic besnoitiosis. Nine 3-month-old male calves were randomly distributed into three groups of three animals each. Next, 106 tachyzoites were inoculated by either the subcutaneous (G1) or intradermal route (G2). The negative control group (G3) was inoculated with PBS. Daily clinical monitoring and regular blood collection were performed. At 70 days post-infection (pi), animals were euthanized, and tissues were collected to investigate lesions and parasites. Infected animals developed mild-moderate acute besnoitiosis characterized by lymphadenopathy from four days to 47 days pi, and sporadic fever peaks were only observed in one calf from G2. However, other clinical signs and macroscopic lesions characteristic of chronic besnoitiosis were not detected. Only nine tissue samples were B. besnoiti-DNA-positive, eight of which belonged to reproductive and respiratory tracts tissues from G1. Finally, the kinetics of the immune responses were similar in both infected groups. However, delayed and lower cellular and humoral immune responses were observed in G1 followed by G2 and were compared with intravenously inoculated calves. The differences observed among the three inoculation routes could be due to different effector mechanisms of the host early innate immune response against B. besnoiti. Accordingly, the inoculation route of B. besnoiti tachyzoites does not significantly influence the clinical outcome of the infection in calves. Thus, a further refinement of this experimental model of bovine besnoitiosis is needed to reproduce macroscopic lesions characteristic of chronic stage disease.
Collapse
Affiliation(s)
- C Diezma-Díaz
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - I Ferre
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - M Re
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain; Animal Medicine and Surgery Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - A Jiménez-Meléndez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - E Tabanera
- Animal Medicine and Surgery Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - M González-Huecas
- Animal Medicine and Surgery Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - M Pizarro-Díaz
- Animal Medicine and Surgery Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - D Yanguas-Pérez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - P L Brum
- Laboratory of Microbiology and Parasitology, UNIPAMPA, Federal University of Pampa, Dom Pedrito, Brazil
| | - J Blanco-Murcia
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain; Animal Medicine and Surgery Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - L M Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - G Álvarez-García
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| |
Collapse
|
23
|
Li S, Gong P, Tai L, Li X, Wang X, Zhao C, Zhang X, Yang Z, Yang J, Li J, Zhang X. Extracellular Vesicles Secreted by Neospora caninum Are Recognized by Toll-Like Receptor 2 and Modulate Host Cell Innate Immunity Through the MAPK Signaling Pathway. Front Immunol 2018; 9:1633. [PMID: 30087675 PMCID: PMC6066505 DOI: 10.3389/fimmu.2018.01633] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/02/2018] [Indexed: 12/23/2022] Open
Abstract
Neospora caninum is an obligate intracellular parasite, which causes significant economic losses in the cattle industry. However, the immune mechanism of the parasite–host interaction is not yet fully understood. Extracellular vesicles (EVs) have emerged as a ubiquitous mechanism by which almost all cells, especially immune and tumor cells, participate in intercellular communications. Although studies have indicated that EVs secreted by Toxoplasma gondii or Trypanosoma brucei promote exchanges of biological molecules important for the host–parasite interplay, however, EVs and their biological activities in N. caninum is not clear. Here, we used multiple methods, including electron microscopy, nanoparticle tracking analysis, RT-PCR, immunofluorescence, western blot, proteomics, and cytokine analyses, to examine the properties of N. caninum EVs. We found that N. caninum produced EVs that are similar to mammalian exosomes, which generally range from 30 to 150 nm in diameter. It was shown that N. caninum EVs could remarkably increase the production of pro-inflammatory cytokines IL-12p40, TNF-α, IL-1β, IL-6, and IFN-γ by wild-type (WT) mouse bone marrow-derived macrophages (BMDMs) whereas the secretion of IL-12p40, TNF-α, and IFN-γ was very strongly downregulated in TLR2−/− mouse BMDMs. The levels of IL-6 were not affected, but the secretion of IL-10 was upregulated. We found that the phosphorylation levels of P38, ERK, and JNK were significantly reduced in the TLR2−/− cells compared with those in WT mouse BMDMs and that treatment with chemical inhibiters of P38, ERK, and JNK resulted in upregulation of IL-6, IL-12p40, and IL-10 production. Together, these results demonstrated that N. caninum EVs could be rapidly internalized to deliver proteins to the host cells and modulate the host cell immune responses through MAPK signaling pathway in a TLR2-dependent manner. Our study is the first to reveal potential roles for N. caninum EVs in host communication and immune response in parasite–host interactions.
Collapse
Affiliation(s)
- Shan Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengtao Gong
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lixin Tai
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaocen Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chunyan Zhao
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xu Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhengtao Yang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ju Yang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xichen Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
24
|
Sánchez-Sánchez R, Ferre I, Re M, Regidor-Cerrillo J, Blanco-Murcia J, Ferrer LM, Navarro T, Pizarro Díaz M, González-Huecas M, Tabanera E, Benavides J, Ortega-Mora LM. Influence of dose and route of administration on the outcome of infection with the virulent Neospora caninum isolate Nc-Spain7 in pregnant sheep at mid-gestation. Vet Res 2018; 49:42. [PMID: 29739449 PMCID: PMC5941812 DOI: 10.1186/s13567-018-0539-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/06/2018] [Indexed: 11/01/2022] Open
Abstract
Experimental infections in pregnant sheep have been focused on studying the effect of the time of challenge on the outcome of N. caninum infection, whereas the impact of the dose and route of challenge has not been studied in depth. Therefore, clinical outcome, immune responses, parasite detection and burden, and lesion severity in placental tissues and foetal brains were investigated in 90-day-pregnant sheep inoculated intravenously with 105 (G1), 104 (G2), 103 (G3), or 102 (G4) tachyzoites or subcutaneously with 104 (G5) tachyzoites of the virulent Nc-Spain7 isolate and an uninfected group (G6). Comparing challenge doses, G1 was the only group that had 100% abortion. Likewise, IFNγ levels in G1 increased earlier than those in other intravenously infected groups, and IgG levels on day 21 post-infection (pi) were higher in G1 than those in other intravenously infected groups. Concerning vertical transmission, G1 shows a higher parasite burden in the foetal brain than did G2 and G3. Comparing routes of administration, no differences in foetal survival rate or parasite load in the foetal brain were found. Although G2 had higher IFNγ levels than G5 on day 10 pi, no differences were found in humoral immune responses. Because the outcome after intravenous infection with 105 tachyzoites was similar to that observed after intravenous infection with 106 tachyzoites used in a previous work (100% abortion and vertical transmission), we conclude that it may be reasonable to use 105 tachyzoites administered by the intravenous route in further experiments when assessing drugs or vaccine candidates.
Collapse
Affiliation(s)
- Roberto Sánchez-Sánchez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Ignacio Ferre
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Michela Re
- Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Javier Regidor-Cerrillo
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Javier Blanco-Murcia
- Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Luis Miguel Ferrer
- Departamento de Patología Animal, Facultad de Veterinaria, C/Miguel Servet 177, 50013, Zaragoza, Spain
| | - Teresa Navarro
- Departamento de Patología Animal, Facultad de Veterinaria, C/Miguel Servet 177, 50013, Zaragoza, Spain
| | - Manuel Pizarro Díaz
- Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Marta González-Huecas
- Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Enrique Tabanera
- Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Julio Benavides
- Livestock Health and Production Institute (ULE-CSIC), 24346, León, Spain
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| |
Collapse
|