1
|
Sönmez Hİ, Madak E, Karaer MC, Sarımehmetoğlu HO. Anthelmintic Resistance in Ancylostoma caninum: A Comprehensive Review. Vet Med Sci 2025; 11:e70434. [PMID: 40434926 PMCID: PMC12118500 DOI: 10.1002/vms3.70434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 05/16/2025] [Indexed: 06/01/2025] Open
Abstract
Ancylostoma caninum, a zoonotic hookworm species, significantly affects the global health of companion animals, humans and wildlife populations. This parasitic infection is prevalent in various environments, particularly in regions with warm climates, and affects a wide range of canids, including dogs, where it is most commonly found. A. caninum is a major concern not only due to its zoonotic potential but also because of its growing resistance to anthelmintic treatments. The development of resistance in parasitic species is primarily driven by genetic mutations that allow the parasite to survive treatment with commonly used drugs and presents a serious challenge to parasite control efforts. This review explores the biology and epidemiology of A. caninum, focusing on the mechanisms and prevalence of anthelmintic resistance. By reviewing worldwide studies, this paper highlights the prevalence of resistance across different anthelmintic classes and its implications for veterinary and public health. The findings emphasize the need for better management strategies and innovative solutions to address this growing problem.
Collapse
Affiliation(s)
- Hande İrem Sönmez
- Graduate School of Health Science, Ankara UniversityAnkaraTürkiye
- Department of ParasitologyFaculty of Veterinary MedicineAnkara UniversityAnkaraTürkiye
| | - Elif Madak
- Graduate School of Health Science, Ankara UniversityAnkaraTürkiye
| | - Mina Cansu Karaer
- Institute of Preclinical SciencesVeterinary FacultyUniversity of LjubljanaLjubljanaSlovenia
| | | |
Collapse
|
2
|
Packianathan R, Hodge A, Bruellke N, Pearce M, Selepe F, Taweethavonsawat P, Geurden T. Efficacy of Simparica Trio® against induced infections of Ancylostoma braziliense and Ancylostoma ceylanicum in dogs. Parasit Vectors 2025; 18:159. [PMID: 40296062 PMCID: PMC12036228 DOI: 10.1186/s13071-025-06758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/10/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Hookworm infections such as Ancylostoma braziliense and A. ceylanicum pose a significant threat to pets and are implicated in causing zoonotic diseases. Despite the availability of preventatives, compliance can be lacking. Increasing pet owner options and combining endo- and ectoparasite treatments might improve this compliance. In four separate studies, we investigated the efficacy of Simparica Trio® (Zoetis Inc., Parsippany, NJ, USA) containing minimum dosages of 1.2 mg/kg sarolaner, 24 µg/kg moxidectin and 5 mg/kg pyrantel against fourth- and fifth-stage larvae (L4 and L5, respectively) and adults of A. braziliense and adults of A. ceylanicum in dogs. METHODS Four negatively controlled, randomised and blinded laboratory studies were conducted against induced infections of A. braziliense and A. ceylanicum, with the interval between infection and treatment selected to evaluate efficacy against each targeted stage. Each treated dog received a single oral dose of Simparica Trio® at the recommended label dose. Necropsy was conducted for worm recovery on day 7 or 8 post-treatment. RESULTS No treatment-related adverse events were recorded in any of the studies. No worms were recovered from any of the Simparica Trio®-treated dogs in all four studies, thus resulting in 100% efficacy (P ≤ 0.0005) of Simparica Trio® against all stages of A. braziliense and the adult stage of A. ceylanicum in dogs. CONCLUSIONS Simparica Trio® containing sarolaner, moxidectin and pyrantel was highly effective against induced infections of L4, L5 and adult stages of A. braziliense and the adult stage of A. ceylanicum in dogs.
Collapse
Affiliation(s)
- Raj Packianathan
- Zoetis, Veterinary Medicine Research and Development, Zoetis Australia, Rhodes, NSW, 2138, Australia.
| | - Andrew Hodge
- Zoetis, Veterinary Medicine Research and Development, Zoetis Australia, Rhodes, NSW, 2138, Australia
| | - Natalie Bruellke
- Zoetis, Veterinary Medicine Research and Development, Zoetis Australia, Rhodes, NSW, 2138, Australia
| | - Michael Pearce
- Zoetis, Veterinary Medicine Research and Development, Zoetis Australia, Rhodes, NSW, 2138, Australia
| | - Frans Selepe
- Clinvet International, Uitzich Road, Bainsvlei, Bloemfontein, 9338, South Africa
| | | | - Thomas Geurden
- Zoetis, Veterinary Medicine Research and Development, Mercuriusstraat 20, 1930, Zaventem, Belgium
| |
Collapse
|
3
|
Soman D, Radhika R, Lakshmanan B, Rajagopal A, Priya MN, Syamala K, George A. Molecular Detection of Benzimidazole Resistance Associated with the F200Y Polymorphism in the β-Tubulin Gene of Ancylostoma caninum: First Report from India. Acta Parasitol 2025; 70:90. [PMID: 40221945 DOI: 10.1007/s11686-025-01030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/24/2025] [Indexed: 04/15/2025]
Abstract
PURPOSE The study aimed to detect benzimidazole (BZ) resistance in Ancylostoma caninum in dogs from Thrissur district, Kerala, India, using amplification refractory mutation system- polymerase chain reaction (ARMS-PCR). The primary objective was to determine the presence and frequency of mutations at codon 200 of the isotype-1 β-tubulin gene, associated with BZ resistance, in adult worms and infective larvae. METHODS A total of 75 adult A. caninum worms were collected during post-mortem, and 280 infective larvae (L3) from 35 faecal samples positive for strongyle ova were obtained from various locations. Amplification of the isotype-1 β-tubulin gene at codon 200 was performed by ARMS PCR, followed by Sanger sequencing to confirm of single nucleotide polymorphisms (SNPs). Genotypes were analysed using EMBOSS and NCBI BLAST tools. RESULTS All 75 adult worms exhibited the homozygous susceptible genotype at codon 200. Out of 280 larvae genotyped, two were homozygous resistant, one was heterozygous, and 277 were homozygous susceptible. The overall frequencies of the resistant (TAC) and susceptible (TTC) alleles were 0.01 and 0.99, respectively. Both homozygous and heterozygous resistant larvae were found in a household with recurring ancylostomosis. No mutations were observed at codon 198. CONCLUSION The study identified a low frequency of BZ-resistant alleles in A. caninum larvae in Thrissur, Kerala, marking the first such report in India. Although resistance remains at an early stage, ongoing monitoring is essential to mitigate its spread in the canine population.
Collapse
Affiliation(s)
- Deepa Soman
- Kerala Veterinary and Animal Sciences University (KVASU), Pookode, Wayanad, Kerala, India.
| | - R Radhika
- Kerala Veterinary and Animal Sciences University (KVASU), Pookode, Wayanad, Kerala, India
| | - Bindu Lakshmanan
- Kerala Veterinary and Animal Sciences University (KVASU), Pookode, Wayanad, Kerala, India
| | - Asha Rajagopal
- Kerala Veterinary and Animal Sciences University (KVASU), Pookode, Wayanad, Kerala, India
| | - M N Priya
- Kerala Veterinary and Animal Sciences University (KVASU), Pookode, Wayanad, Kerala, India
| | - K Syamala
- Kerala Veterinary and Animal Sciences University (KVASU), Pookode, Wayanad, Kerala, India
| | - Arun George
- Kerala Veterinary and Animal Sciences University (KVASU), Pookode, Wayanad, Kerala, India
| |
Collapse
|
4
|
Jimenez Castro PD, Willcox JL, Rochani H, Richmond HL, Martinez HE, Lozoya CE, Savard C, Leutenegger CM. Investigation of risk factors associated with Ancylostoma spp. infection and the benzimidazole F167Y resistance marker polymorphism in dogs from the United States. Int J Parasitol Drugs Drug Resist 2025; 27:100584. [PMID: 39919355 PMCID: PMC11847747 DOI: 10.1016/j.ijpddr.2025.100584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
Ancylostoma caninum is the most significant intestinal nematode parasite of dogs. We acquired fecal surveillance data from a large population of dogs in the United States (US). A diagnostic test using real-time PCR (qPCR) for Ancylostoma spp. and allele-specific qPCR detecting the SNP F167Y in the isotype 1 of the Beta-tubulin gene, was used in 885,424 randomized canine fecal samples collected between March 2022 and December 2023. Overall, Ancylostoma spp. had a prevalence of 1.76% (15,537/885,424), with the highest in the South 3.73% (10,747/287,576), and the lowest in the West 0.45% (632/140,282). Within the subset of Ancylostoma spp.-detected dogs used for further analysis, the F167Y SNP had an overall prevalence of 14.44% with the highest in the West and the lowest in the Midwest (10.76%). The greyhound exhibited a higher prevalence of Ancylostoma spp. infections (17.03%) and a higher prevalence of the F167Y polymorphism (33.6%) compared to non-greyhounds (13.7% and 2.08%), respectively, but were not associated with the highest risk for the F167Y polymorphism. Sex did not influence hookworm infection nor F167Y polymorphism prevalence. Intact dogs had a prevalence of hookworm infection and F167Y polymorphism of 3.88% and 15.66%, respectively. Puppies showed increased prevalence of hookworms (3.70%) and the F167Y SNP (17.1%). Greyhounds, bluetick coonhounds, and boerboels had the highest relative risks for hookworm infection, while Cavalier King Charles spaniels, Havanese, and shiba inus had the lowest. The top and bottom three with the highest and lowest RR for the F167Y SNP were the old English sheepdog, American foxhound, and toy poodle Toy, and shih tzu, Maltese, and Australian cattle dogs, respectively. This study highlights the value of an accessible diagnostic qPCR test with fast turnaround in unraveling the molecular epidemiology of hookworms and benzimidazole resistance, as well as explore potentially important risk factorsin dogs with routine veterinary care.
Collapse
Affiliation(s)
- Pablo D Jimenez Castro
- Antech Diagnostics, Mars Petcare Science & Diagnostics, Fountain Valley, CA, USA; Grupo de Parasitologia Veterinaria, Universidad Nacional de Colombia, Colombia.
| | - Jennifer L Willcox
- Antech Diagnostics, Mars Petcare Science & Diagnostics, Fountain Valley, CA, USA
| | - Haresh Rochani
- Antech Diagnostics, Mars Petcare Science & Diagnostics, Fountain Valley, CA, USA
| | - Holly L Richmond
- Antech Diagnostics, Mars Petcare Science & Diagnostics, Fountain Valley, CA, USA
| | - Heather E Martinez
- Antech Diagnostics, Mars Petcare Science & Diagnostics, Fountain Valley, CA, USA
| | - Cecilia E Lozoya
- Antech Diagnostics, Mars Petcare Science & Diagnostics, Fountain Valley, CA, USA
| | - Christian Savard
- BioVet Inc. (an Antech Diagnostics of Mars Petcare Science & Diagnostics Company), Saint-Hyacinthe, Québec, Canada
| | | |
Collapse
|
5
|
Abdullah S, Stocker T, Kang H, Scott I, Hayward D, Jaensch S, Ward MP, Jones MK, Kotze AC, Šlapeta J. Widespread occurrence of benzimidazole resistance single nucleotide polymorphisms in the canine hookworm, Ancylostoma caninum, in Australia. Int J Parasitol 2025; 55:173-182. [PMID: 39716589 DOI: 10.1016/j.ijpara.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Canine hookworm (Ancylostoma caninum), a gastrointestinal nematode of domestic dogs, principally infects the small intestine of dogs and has the potential to cause zoonotic disease. In greyhounds and pet dogs in the USA, A. caninum has been shown to be resistant to multiple anthelmintics. We conducted a molecular survey of benzimidazole resistance in A. caninum from dogs at veterinary diagnostic centers in Australia and New Zealand. First, we implemented an internal transcribed spacer (ITS)-2 rDNA deep amplicon metabarcoding sequencing approach to ascertain the species of hookworms infecting dogs in the region. Then, we evaluated the frequency of the canonical F167Y and Q134H isotype-1 β-tubulin mutations, which confer benzimidazole resistance, using the same sequencing approach. The most detected hookworm species in diagnostic samples was A. caninum (90%; 83/92); the related Northern hookworm (Uncinaria stenocephala) was identified in 11% (10/92) of the diagnostic samples. There was a single sample with coinfection by A. caninum and U. stenocephala. Both isotype-1 β-tubulin mutations were present in A. caninum, 49% and 67% for Q134H and F167Y, respectively. Mutation F167Y in the isotype-1 β-tubulin mutation was recorded in U. stenocephala for the first known time. Canonical benzimidazole resistance codons 198 and 200 mutations were absent. Egg hatch assays performed on a subset of the A. caninum samples showed significant correlation between 50% inhibitory concentration (IC50) to thiabendazole and F167Y, with an increased IC50 for samples with > 75% F167Y mutation. We detected 14% of dogs with > 75% F167Y mutation in A. caninum. Given that these samples were collected from dogs across various regions of Australia, the present study suggests that benzimidazole resistance in A. caninum is widespread. Therefore, to mitigate the risk of resistance selection and further spread, adoption of a risk assessment-based approach to limit unnecessary anthelmintic use should be a key consideration for future parasite control.
Collapse
Affiliation(s)
- Swaid Abdullah
- The University of Queensland, School of Veterinary Science, Gatton 4343, QLD, Australia.
| | - Thomas Stocker
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Hyungsuk Kang
- The University of Queensland, School of Veterinary Science, Gatton 4343, QLD, Australia
| | - Ian Scott
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Douglas Hayward
- Vetnostics NSW - North Ryde Laboratory, Macquarie Park, New South Wales, Australia
| | - Susan Jaensch
- Vetnostics NSW - North Ryde Laboratory, Macquarie Park, New South Wales, Australia
| | - Michael P Ward
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Malcolm K Jones
- The University of Queensland, School of Veterinary Science, Gatton 4343, QLD, Australia
| | - Andrew C Kotze
- The University of Queensland, School of Veterinary Science, Gatton 4343, QLD, Australia
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia; Sydney Institute for Infectious Diseases, The University of Sydney, New South Wales, Australia.
| |
Collapse
|
6
|
Ofori SA, Amissah-Reynolds PK, Gyamfi O, Addo KA, Nyarko S, Agyei V, Dwomoh J, Ayemugah E. Efficacy of Anthelmintics Against Canine Hookworm Infections in the Bono East Region of Ghana. J Parasitol Res 2025; 2025:4079763. [PMID: 40017589 PMCID: PMC11865468 DOI: 10.1155/japr/4079763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/21/2025] [Indexed: 03/01/2025] Open
Abstract
Hookworm infections present a major health risk to dogs, especially in areas characterized by warmer climates and poor sanitation. This cross-sectional study was undertaken to determine the prevalence of hookworm infections and the efficacy of anthelmintic treatments in dogs from the Bono East Region of Ghana. Four hundred and ninety-one (491) canine stool samples were examined using the McMaster technique to ascertain the prevalence of hookworms. Using in vivo and in vitro techniques, the efficacy of three anthelmintics (albendazole, pyrantel, and niclosamide) was assessed in an experimental control trial involving dogs naturally infected with hookworms. The effects of the drugs on hematological and biochemical parameters were measured within a 14-day period to assess changes over time. The study found a total prevalence of 54.2% (266), with significantly higher infection rates in puppies (69.8%, 97), hunting dogs (64.1%, 91), and rural dogs (84.2%, 160). Logistic regression identified age, purpose, and settlement type as risk factors for infection. Of the three treatments, niclosamide was the most efficacious, reducing egg counts by 95%, while albendazole was the least efficacious (-69%). In vitro tests confirmed the superior performance of niclosamide, with the lowest IC50 value of 29.19 μg/mL. Hookworm-infected dogs exhibited anemia, eosinophilia, hypoalbuminemia, and hypoproteinemia. There was significant improvement in the hematobiochemical parameters after treatment, particularly in niclosamide-treated dogs. Veterinarians can consider niclosamide, especially in resource-limited settings, due to its affordability. The findings emphasize the importance of regular monitoring and treatment of hookworm infections to improve the overall health and well-being of dogs in the region. Herein, we report for the first time on reduced efficacy of albendazole and pyrantel against dog-related hookworms in Ghana.
Collapse
Affiliation(s)
- Samuel Ayetibo Ofori
- Department of Biological Sciences Education, Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development, Ashanti Mampong, Ghana
| | - Papa Kofi Amissah-Reynolds
- Department of Biological Sciences Education, Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development, Ashanti Mampong, Ghana
| | - Opoku Gyamfi
- Department of Chemistry Education, Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development, Ashanti Mampong, Ghana
| | - Kofi Agyapong Addo
- Department of Biological Sciences Education, Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development, Ashanti Mampong, Ghana
| | - Simon Nyarko
- Department of Pharmaceutics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Victor Agyei
- Department of Biological Sciences Education, Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development, Ashanti Mampong, Ghana
| | - Joshua Dwomoh
- Department of Biological Sciences Education, Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development, Ashanti Mampong, Ghana
| | - Esther Ayemugah
- Department of Public Health Education, Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development, Ashanti Mampong, Ghana
| |
Collapse
|
7
|
Ochoa SJ, Hanzlicek GA, Miller KR, Kastner J, Jesudoss Chelladurai JRJ. Survey on canine hookworms: Knowledge, perceptions and practices among U.S. veterinarians. Res Vet Sci 2025; 183:105501. [PMID: 39657407 DOI: 10.1016/j.rvsc.2024.105501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 11/09/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
Canine hookworms (Ancylostoma caninum) are highly prevalent in pet dogs in the United States of America (U.S.). They pose a significant health risk to infected dogs and are also a potential risk to humans as zoonotic agents. Veterinarians play a crucial role in managing this threat through the diagnosis and treatment of infections in pet dogs. However, the rising incidence of anthelmintic resistance in U.S. hookworm populations necessitates increased awareness among veterinarians. To determine U.S. veterinarian's knowledge, perceptions and practices about canine hookworms, a cross-sectional online survey was administered between February and December 2022. 208 veterinarians from 43 states participated in the study. Only 65 % of veterinarians reported awareness of hookworm prevalence. Hookworm infected dogs were encountered more frequently in the South than in Western states. Veterinarians perceived that hookworms were present in all breeds without breed predilection followed by mixed breeds, pit bulls and hound breeds. Most respondents reported that infections were rarely symptomatic, highlighting the importance of diagnostic testing. In-clinic diagnostic modalities were most preferred. Fenbendazole and pyrantel pamoate were the most commonly used anthelmintics. Most veterinarians followed up on infected dogs but retesting time after treatment varied. Awareness of multi-drug resistant hookworms was high but encountering persistent hookworm cases was lower. Veterinarians frequently educated clients about hookworms and prevention, but less about the zoonotic potential. This study provides insights for improving awareness, diagnostics, treatment protocols, and client education regarding canine hookworms in the U.S.. Overall, veterinarians play an active role in hookworm prevention and control.
Collapse
Affiliation(s)
- Sara J Ochoa
- MPH Program, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave., Manhattan, KS 66506, United States of America
| | - Gregg A Hanzlicek
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave., Manhattan, KS 66506, United States of America; Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave., Manhattan, KS 66506, United States of America
| | - Kamilyah R Miller
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave., Manhattan, KS 66506, United States of America
| | - Justin Kastner
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave., Manhattan, KS 66506, United States of America
| | - Jeba R J Jesudoss Chelladurai
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave., Manhattan, KS 66506, United States of America; Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave., Manhattan, KS 66506, United States of America.
| |
Collapse
|
8
|
Wang Z, Xu K, Yin S, Liu J, Qin J, Wang D, Xu L, Wang C. Assessment of synergistic efficacy of carbaryl in combination with Cinnamomum cassia and Origanum vulgare essential oils against Dermanyssus gallinae. Poult Sci 2025; 104:104540. [PMID: 39546919 PMCID: PMC11609369 DOI: 10.1016/j.psj.2024.104540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
The poultry red mite Dermanyssus gallinae, a prevalent ectoparasite in egg-laying poultry, severely compromises bird health and impedes the poultry industry's development. However, the escalating drug resistance due to sustained reliance on chemical acaricides highlights the urgent need for new mite management strategies. Therefore, plant essential oils (EOs), which exhibit natural acaricidal properties and environmental compatibility, represent promising candidates for developing eco-friendly acaricides. In this study, we formulated binary mixtures of the median lethal concentrations (LC50) of carbaryl and EOs of Cinnamomum cassia and Origanum vulgare at ratios from 1:9 to 9:1 and then evaluated their contact toxicity, fumigant toxicity, and ovicidal effects against D. gallinae. The binary mixtures of C. cassia-carbaryl (2:8), O. vulgare-carbaryl (6:4), and C. cassia-O. vulgare (7:3) exhibited the most effective contact toxicity and achieved mite mortality rates of 60 %, 66.7 %, and 65.5 %, respectively, with poison ratios of 1.22, 1.25, and 1.24, respectively, indicating synergism. In the fumigant trials, the O. vulgare-carbaryl (6:4) mixture achieved 97 % mite mortality at 48 h, whereas the C. cassia-carbaryl (2:8) mixture demonstrated low mite mortality of 18 %. Notably, the C. cassia-O. vulgare mixture at 7:3 resulted in 87 % mite mortality, which was lower than that of the other ratios for this mixture. Furthermore, the ovicidal effects of the optimal binary mixtures of C. cassia-carbaryl (2:8), O. vulgare-carbaryl (6:4), and C. cassia-O. vulgare (7:3) were significantly better than those of a single drug, with egg hatchabilities of 2.3 %, 6.6 %, and 4.3 %, respectively, thus indicating strong inhibition of D. gallinae eggs. These combinations outperformed the single-agent controls, with egg hatchability rates of 31 % for C. cassia EO, 33.3 % for O. vulgare EO, and 20 % for carbaryl. Compared with the control group, mite eggs treated with the optimal binary mixtures and single drugs exhibited significant shrinkage and structural damage, which are consistent with low egg hatchability. These results demonstrate that integrating EOs with carbaryl could represent a viable alternative strategy for the management of poultry red mites.
Collapse
Affiliation(s)
- Zhonghao Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Kai Xu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Shuo Yin
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Jing Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Jianhua Qin
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Dehe Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Lijun Xu
- Baoding Livestock Husbandry workstation, Baoding 071023, Hebei, China
| | - Chuanwen Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, Hebei, China.
| |
Collapse
|
9
|
Venkatesan A, Chen R, Bär M, Schneeberger PHH, Reimer B, Hürlimann E, Coulibaly JT, Ali SM, Sayasone S, Soghigian J, Keiser J, Gilleard JS. Trichuriasis in Human Patients from Côte d'Ivoire Caused by Novel Trichuris incognita Species with Low Sensitivity to Albendazole/Ivermectin Combination Treatment. Emerg Infect Dis 2025; 31:104-114. [PMID: 39714288 DOI: 10.3201/eid3101.240995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Albendazole/ivermectin combination therapy is a promising alternative to benzimidazole monotherapy alone for Trichuris trichiura control. We used fecal DNA metabarcoding to genetically characterize Trichuris spp. populations in patient samples from Côte d'Ivoire showing lower (egg reduction rate <70%) albendazole/ivermectin sensitivity than those from Laos and Tanzania (egg reduction rates >98%). Internal transcribed spacer (ITS) 1 and ITS2 metabarcoding revealed the entire detected Côte d'Ivoire Trichuris population was phylogenetically distinct from T. trichiura found in Laos and Tanzania and was more closely related to T. suis. Mitochondrial genome sequencing of 8 adult Trichuris worms from Côte d'Ivoire confirmed their species-level differentiation. Sequences from human patients in Cameroon and Uganda and 3 captive nonhuman primates suggest this novel species, T. incognita, is distributed beyond Côte d'Ivoire and has zoonotic potential. Continued surveillance by using fecal DNA metabarcoding will be needed to determine Trichuris spp. geographic distribution and control strategies.
Collapse
|
10
|
Jackson CA, McKean EL, Hawdon JM. Challenges in establishing small animal models for Ancylostoma caninum : Host specificity and resistance to infection in rodent hosts. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001360. [PMID: 39776753 PMCID: PMC11704952 DOI: 10.17912/micropub.biology.001360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
This study explores potential small animal models for the dog hookworm, Ancylostoma caninum , a parasitic nematode which has repeatedly exhibited the ability to develop resistance to a range of anthelmintics. Immunomodulated hamsters, gerbils, rats, and mice were infected with A. caninum. Despite varying degrees of immunosuppression, and in some cases, total adaptive immunodeficiency, no adult worms were recovered, and larval arrest (L3 stage) occurred in muscle tissue of mice and hamsters. This highlights the strict host specificity of A. caninum and emphasizes the challenges of developing rodent models usable for anthelmintic testing with a strict specialist parasite.
Collapse
Affiliation(s)
- Catherine A. Jackson
- Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, Washington, D.C., United States
| | - Elise L. McKean
- Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, Washington, D.C., United States
- Biological Sciences, George Washington University, Washington, Washington, D.C., United States
| | - John M. Hawdon
- Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, Washington, D.C., United States
| |
Collapse
|
11
|
Tenorio JCB, Heikal MF, Kafle A, Saichua P, Suttiprapa S. Benzimidazole Resistance-Associated Mutations in the β-tubulin Gene of Hookworms: A Systematic Review. Parasitol Res 2024; 123:405. [PMID: 39652258 DOI: 10.1007/s00436-024-08432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
There is a growing number of reports on the occurrence of benzimidazole resistance-associated single nucleotide polymorphisms (SNPs) in the β-tubulin isotype 1 gene of various helminths of veterinary, and public health concerns. However, a comprehensive analysis of their occurrence, and their contributions to conferring benzimidazole resistance among hookworms has yet to be done. The objectives of this systematic review are to summarize and synthesize peer-reviewed evidence on the occurrence of these resistance-associated mutations in hookworms, document their geographical distribution, and assess their contributions to conferring phenotypic resistance. Three databases were systematically searched using specific keywords. Research that assessed the occurrence of benzimidazole resistance-associated SNPs in hookworms, papers that reported the geographical distribution of these SNPs, and studies that investigated the SNPs' resistance-associated phenotypic effects were included in the review. Research that was not done in hookworms, papers not in the English language, and literature reviews and book chapters were excluded. Critical appraisal checklists were used to determine the risk of bias in the selected papers. Data were extracted from the selected studies and analyzed. PROSPERO Systematic Review Protocol Registration No.: CRD42024510924. A total of 29 studies were included and analyzed. Of these, four were conducted in a laboratory setting, eight described the development and validation of SNP detection methods, and the remaining 17 involved field research. Seven SNP-induced amino acid substitutions at four loci were reported among several hookworm species: Q134H, F167Y, E198A, E198K, E198V, F200Y, and F200L. SNPs have been reported in isolates occurring in the United States, Canada, Brazil, Haiti, Australia, New Zealand, Kenya, Ghana, Mozambique, and Tanzania. Resistance mutations have not been reported in Asia. E198A and F200L were reported in Ancylostoma ceylanicum with laboratory-induced resistance. F167Y and Q134H conferred resistance in A. caninum, as revealed by in vitro investigations and field assessments. There is insufficient peer-reviewed evidence to prove the association between SNP occurrence and resistance. Mutations in the β-tubulin isotype 1 gene confer benzimidazole resistance in A. caninum and A. ceylanicum, but similar evidence is lacking for other human hookworms. Understanding benzimidazole resistance through further research can better inform treatment, prevention, and control strategies.
Collapse
Affiliation(s)
- Jan Clyden B Tenorio
- Tropical Medicine Graduate Program, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
| | - Muhammad Fikri Heikal
- Tropical Medicine Graduate Program, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Alok Kafle
- Tropical Medicine Graduate Program, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Prasert Saichua
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
12
|
Rapp P, Williamson EM, Uski R, Savikoski I, Pynnönen A, Gindonis V, Sukura A, Näreaho A. Low intestinal parasite prevalence in Finnish pet dogs and cats. Acta Vet Scand 2024; 66:52. [PMID: 39313799 PMCID: PMC11421109 DOI: 10.1186/s13028-024-00776-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND This study updates the knowledge of current canine and feline endoparasitic prevalence in Finland. The previous studies reported intestinal worm prevalence of 5.9% in dogs and 7.1% in cats. We also determined the anthelmintic regime and background data of dogs and cats concerning Toxocara spp. INFECTION Altogether 664 canine and 379 feline (including 46 shelter cats') fecal samples from over six-month-old animals were examined with quantitative Mini-FLOTAC method using zinc sulfate with a specific gravity of 1.35. Of these samples, 396 canine and 89 feline samples were analyzed using the Baermann method for nematode larvae. A fenbendazole efficacy study was conducted with 12 animals positive for Toxocara spp. RESULTS Endoparasites were found in the feces of 3.5% of dogs, 3.6% of pet cats, and 41.3% of shelter cats. The most common findings in dogs were strongylid (1.7%) and Toxocara canis (0.9%) eggs. Trematode (0.4%), Eucoleus spp. (0.3%), taeniid (0.2%), and Trichuris vulpis (0.2%) eggs, and Cystoisospora spp. oocysts (0.2%) were also detected. One dog (0.2%) was positive for Crenosoma vulpis based on the Baermann method. Toxocara cati (3.3%), taeniid (0.6%), and trematode (0.3%) eggs were found in pet cats' samples. The findings in shelter cat samples were T. cati (34.8%), Eucoleus spp. (13.0%), Cystoisospora spp. oocysts (10.9%), taeniids (8.7%), and Toxoplasma gondii/Hammondia hammondii oocysts (2.2%). Fenbendazole efficacy was adequate in all treated animals, except one cat. The background data revealed 31.2% of dogs being dewormed less than once a year or never. Under twelve-month-old dogs and dogs that were dewormed twice a year were most likely to be T. canis- infected. Shelter cats, male cats, mixed-breed cats, cats that were dewormed two to four times a year, and cats with a history of parasitic infections were most likely to be T. cati infected. CONCLUSIONS The prevalence of pet canine and feline intestinal parasites in Finland is low, particularly the Toxocara spp. PREVALENCE In free-roaming cats Eucoleus spp. is surprisingly prevalent. The parasite control strategies reported do not follow the ESCCAP guidelines. Typically, owners deworm their pets only once a year or less frequently.
Collapse
Affiliation(s)
- Pia Rapp
- Department of Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | - Eeva-Maria Williamson
- Department of Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Riina Uski
- Department of Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Inka Savikoski
- Department of Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Annika Pynnönen
- Department of Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Veera Gindonis
- Environmental Health Services, City of Porvoo, Porvoo, Finland
| | - Antti Sukura
- Department of Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Anu Näreaho
- Department of Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Krücken J, Ehnert P, Fiedler S, Horn F, Helm CS, Ramünke S, Bartmann T, Kahl A, Neubert A, Weiher W, Daher R, Terhalle W, Klabunde-Negatsch A, Steuber S, von Samson-Himmelstjerna G. Faecal egg count reduction tests and nemabiome analysis reveal high frequency of multi-resistant parasites on sheep farms in north-east Germany involving multiple strongyle parasite species. Int J Parasitol Drugs Drug Resist 2024; 25:100547. [PMID: 38733882 PMCID: PMC11097076 DOI: 10.1016/j.ijpddr.2024.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Anthelmintic resistance in sheep parasitic gastrointestinal nematodes is widespread and a severe health and economic issue but prevalence of resistance and involved parasite species are unknown in Germany. Here, the faecal egg count reduction test (FECRT) was performed on eight farms using fenbendazole, ivermectin and moxidectin and on four farms using only moxidectin. A questionnaire was used to obtain data on management practices to potentially identify risk factors for presence of resistance. All requirements of the recently revised WAAVP guideline for diagnosing anthelmintic resistance using the FECRT were applied. Nematode species composition in pre- and post-treatment samples was analysed with the nemabiome approach. Using the eggCounts statistic package, resistance against fenbendazole, ivermectin and moxidectin was found on 7/8, 8/8 and 8/12 farms, respectively. No formal risk factor analysis was conducted since resistance was present on most farms. Comparison with the bayescount R package results revealed substantial agreement between methods (Cohen's κ = 0.774). In contrast, interpretation of data comparing revised and original WAAVP guidelines resulted in moderate agreement (Cohen's κ = 0.444). The FECR for moxidectin was significantly higher than for ivermectin and fenbendazole. Nemabiome data identified 4 to 12 species in pre-treatment samples and treatments caused a small but significant decrease in species diversity (inverse Simpson index). Non-metric multidimensional scaling and k-means clustering were used to identify common patterns in pre- and post-treatment samples. However, post-treatment samples were scattered among the pre-treatment samples. Resistant parasite species differed between farms. In conclusion, the revised FECRT guideline allows robust detection of anthelmintic resistance. Resistance was widespread and involved multiple parasite species. Resistance against both drug classes on the same farm was common. Further studies including additional drugs (levamisole, monepantel, closantel) should combine sensitive FECRTs with nemabiome data to comprehensively characterise the anthelmintic susceptibility status of sheep nematodes in Germany.
Collapse
Affiliation(s)
- Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Paula Ehnert
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Stefan Fiedler
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Fabian Horn
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Christina S Helm
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Sabrina Ramünke
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Tanja Bartmann
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Alexandra Kahl
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Ann Neubert
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Wiebke Weiher
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Ricarda Daher
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Werner Terhalle
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | | | - Stephan Steuber
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Georg von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
14
|
Nezami R, Otis C, Boyer A, Blanchard J, Moreau M, Pelletier JP, Martel-Pelletier J, Godoy P, Troncy E. Surveillance of Ancylostoma caninum in naturally infected dogs in Quebec, Canada, and assessment of benzimidazole anthelmintics reveal a variable efficacy with the presence of a resistant isolate in imported dogs. Vet Parasitol Reg Stud Reports 2024; 52:101036. [PMID: 38880561 DOI: 10.1016/j.vprsr.2024.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 06/18/2024]
Abstract
Ancylostoma caninum is a widely prevalent parasitic nematode in dogs across the world. There has been a notable increase in reports of anthelmintic resistance in A. caninum within the United States of America in recent years, which has led us to investigate the potential of this scenario in Canada. The study objectives were to assess the prevalence of A. caninum in two different groups, including a colony of rescued dogs in Canada and three imported Greyhound dogs from USA, and to evaluate the efficacy of two benzimidazole (BZ) anthelmintics against A. caninum, complemented with a molecular genetic analysis adapted to low prevalence. Fecal samples were collected at pre- and post-treatment with fenbendazole for the native shelters-origin group, and a combination of anthelmintic formulations, including the pro-BZ febantel for the USA-origin group. The coprology analyses found several genera of internal parasites. Canine ancylostomiasis was the most prevalent parasitosis with 30.77% in the native group and 100% in the USA group, but with overall low average of A. caninum eggs per gram. Through the fecal egg count reduction test (FECRT), applying a cut-off at 90% as baseline of egg reduction for successful efficacy, BZ showed variable efficacy. Furthermore, molecular analysis confirmed the presence of A. caninum in both groups of dogs and found differences in the genetics linked to BZ resistance on the A. caninum β-tubulin isotype 1 gene. In the isolate from the native group, both codons 167 and 200 were homozygous without the presence of single nucleotide polymorphism (SNP). In contrast, the selected isolate from the USA group, showed a homozygous allele at position 200 and a heterozygous SNP at position 167. The latter was congruent with the low efficacy in FECRT and agrees with the recent findings of USA A. caninum isolate resistant phenotype to the BZ anthelmintics. The limitations of the study include an overall low eggs-per-gram in both canine groups, and the shortage of additional fecal samples from the USA group, restraining the molecular analysis only to one out of the three Greyhounds. This study provided some insights on the efficacy of BZs against A. caninum and revealed the presence of BZ resistant isolates in imported dogs in Quebec, Canada. All this information should be considered, for choosing the best strategy in the control of A. caninum using anthelmintic drugs.
Collapse
Affiliation(s)
- Roxana Nezami
- Research Group in Animal Pharmacology of Quebec (GREPAQ) - Université de Montréal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Colombe Otis
- Research Group in Animal Pharmacology of Quebec (GREPAQ) - Université de Montréal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Alexandre Boyer
- Research Group in Animal Pharmacology of Quebec (GREPAQ) - Université de Montréal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Julie Blanchard
- Hôpital vétérinaire de Buckingham, Gatineau, QC, J8L 2H5, Canada
| | - Maxim Moreau
- Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Jean-Pierre Pelletier
- Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada
| | | | - Pablo Godoy
- Research Group in Animal Pharmacology of Quebec (GREPAQ) - Université de Montréal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada.
| | - Eric Troncy
- Research Group in Animal Pharmacology of Quebec (GREPAQ) - Université de Montréal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada; Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada.
| |
Collapse
|
15
|
Álvarez-León F, Rosado-Aguilar JA, Gamboa-Angulo M, Flota-Burgos GJ, Martin J, Reyes F. Anthelmintic activity and chemical profile of native plant extracts from the Yucatan Peninsula against Toxocara canis. Acta Trop 2024; 255:107214. [PMID: 38663537 DOI: 10.1016/j.actatropica.2024.107214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
Toxocara canis can produce the "larva migrans" syndrome in humans, and in puppies, it can cause severe digestive disorders. The most used treatments are based on anthelmintics, although there are reports of anthelmintic (AH) resistance. The Yucatan Peninsula has a great variety of plant species whose AH properties are still unknown. The objective of this study was to evaluate the in vitro AH activity of ethanolic (EE), methanolic (ME) and aqueous (AE) extracts from the leaves of five native plant species of the Yucatan Peninsula on T. canis eggs of dogs from Merida, Yucatan. As part of a screening, the EE of the plants Alseis yucatanensis, Calea jamaicensis, Cameraria latifolia, Macrocepis diademata, and Parathesis cubana were evaluated at doses of 2400 and 3600 μg/ml. The EE and AE of A. yucatanensis and M. diademata presented high percentages (≥ 91.3%) of inhibition of the larval development of T. canis after six days of exposure. The lowest LC50 and LC99 was presented by the ME from A. yucatanensis (255.5 and 629.06 µg/ml, respectively) and the ME from M. diademata (222.4 and 636.5 µg/ml, respectively), and the AE from A. yucatanenesis (LC50 of 535.9 µg/ml). Chemical profiling of the most potent AH extract (Alseis yucatanensis) was carried out by LC-UV-HRMS. Data from the ME and AE from this plant indicated the presence of the known glucosylngoumiensine, kaempferol 3,7-diglucosyde, uvaol, linoleic acid and linolenic acid together with unknown alkaloids. The EE, ME and AE from leaves of M. diademata and A. yucatanensis could be developed as natural alternatives to control T. canis.
Collapse
Affiliation(s)
- F Álvarez-León
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Yucatan, Km 15.5, Merida- Xmatkuil highway, CP 97000 Merida, Yucatan, Mexico
| | - J A Rosado-Aguilar
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Yucatan, Km 15.5, Merida- Xmatkuil highway, CP 97000 Merida, Yucatan, Mexico.
| | - M Gamboa-Angulo
- Biotechnology Unit, Scientific Research Center of Yucatan, Street 43 number 130 × 32 and 34, CP 97205 Merida, Yucatan, Mexico
| | - G J Flota-Burgos
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Yucatan, Km 15.5, Merida- Xmatkuil highway, CP 97000 Merida, Yucatan, Mexico
| | - J Martin
- Fundación MEDINA, Avenida del conocimiento, 34 Parque Tecnológico de Ciencias de la Salud, Granada 18016, España
| | - F Reyes
- Fundación MEDINA, Avenida del conocimiento, 34 Parque Tecnológico de Ciencias de la Salud, Granada 18016, España
| |
Collapse
|
16
|
Burton KW, Hegarty E, Couto CG. Retrospective analysis of canine fecal flotation and coproantigen immunoassay hookworm positive results in Greyhounds and other dog breeds. Vet Parasitol Reg Stud Reports 2024; 51:101026. [PMID: 38772642 DOI: 10.1016/j.vprsr.2024.101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 05/23/2024]
Abstract
Recent studies demonstrated that Greyhounds are commonly infected with Ancylostoma caninum and these infections have been shown to be resistant to anthelmintics. This study evaluated samples submitted to a commercial reference laboratory (IDEXX Laboratories) for canine fecal flotation zinc sulfate centrifugation and coproantigen immunoassay between January 1, 2019, and July 30, 2023 for evidence that Greyhounds were more often positive for Ancylostoma spp. (hookworms) compared to other breeds. The purpose of the study was to determine if Greyhounds were more likely to be hookworm-positive compared to other breeds, if Greyhounds on preventives with efficacy against hookworm infections are more likely to test positive than other breeds, if their infections take longer to resolve, to estimate how long this takes and to assess whether the proportion of hookworm positive tests for all breeds is increasing over time. Records of 25,440,055 fecal results were obtained representing 17,671,724 unique dogs. Of these, 49,795 (∼0.3%) were Greyhounds. The overall odds ratio (OR) of 15.3 (p < 0.001) suggests that Greyhounds are at significantly higher risk than other breeds for hookworm positive float findings, and the OR of 14.3 (p < 0.001) suggests significantly higher risk for hookworm antigen positive results. The median time to negative testing event from the Turnbull distribution estimate was in the interval of 1-2 days for other breeds and 71-72 days for Greyhounds. These results provide evidence that anthelmintic resistant A. caninum strains may be having population-level impacts on the frequency and duration of infections in Greyhounds. The findings have broader health implications beyond Greyhounds as MADR A. caninum strains could spread to other breeds and even pet owners.
Collapse
|
17
|
Leutenegger CM, Evason MD, Willcox JL, Rochani H, Richmond HL, Meeks C, Lozoya CE, Tereski J, Loo S, Mitchell K, Andrews J, Savard C. Benzimidazole F167Y polymorphism in the canine hookworm, Ancylostoma caninum: Widespread geographic, seasonal, age, and breed distribution in United States and Canada dogs. Int J Parasitol Drugs Drug Resist 2024; 24:100520. [PMID: 38237210 PMCID: PMC10825515 DOI: 10.1016/j.ijpddr.2024.100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024]
Abstract
Surveillance data for Ancylostoma spp. and the A. caninum benzimidazole treatment resistance associated F167Y polymorphism using molecular diagnostics was obtained in a large population of dogs from the United States and Canada. Real-time PCR (qPCR) for Ancylostoma spp. and allele-specific qPCR detecting a single nucleotide polymorphism (SNP) F167Y was used in 262,872 canine stool samples collected between March and December of 2022. Ancylostoma spp. was found at an overall prevalence of 2.5% (6538/262,872), with the highest prevalence in the Southern US, 4.4% (4490/103,095), and the lowest prevalence in Canada 0.6% (101/15,829). The A. caninum F167Y polymorphism was found with the highest prevalence (13.4%, n = 46/343) in the Western US and the lowest in Canada at 4.1% (4/97). The F167Y polymorphism was detected every month over the 10-month collection period. Seasonal distribution showed a peak in June for both Ancylostoma spp. (3.08%, 547/17,775) and A. caninum F167Y (12.25%, 67/547). However, the A. caninum F167Y polymorphism prevalence was highest in September (13.9%, 119/856). Age analysis indicates a higher prevalence of both hookworm infections and occurrence of resistant isolates in puppies. The breeds with the highest F167Y polymorphism prevalence in Ancylostoma spp. detected samples were poodles (28.9%), followed by Bernese Mountain dogs (25%), Cocker spaniels (23.1%), and greyhounds (22.4%). Our data set describes widespread geographic distribution of the A. caninum benzimidazole resistance associated F167Y polymorphism in the United States and Canada, with no clear seasonality compared to the Ancylostoma spp. prevalence patterns. The F167 polymorphism was present in all geographic areas with detected hookworms, including Canada. Our study highlights that the F167Y polymorphism is represented in many dog breeds, including greyhounds.
Collapse
Affiliation(s)
| | | | | | | | | | - Cathy Meeks
- Antech Diagnostics, Fountain Valley, CA, USA
| | | | | | | | | | - Jan Andrews
- Antech Diagnostics, Fountain Valley, CA, USA
| | | |
Collapse
|
18
|
Evason M, DeBess E, Culwell N, Ogeer J, Leutenegger C. Hookworm Anthelmintic Resistance: Novel Fecal Polymerase Chain Reaction Ancylostoma caninum Benzimidazole Resistance Marker Detection in a Dog. J Am Anim Hosp Assoc 2024; 60:87-91. [PMID: 38394692 DOI: 10.5326/jaaha-ms-7366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/25/2024]
Abstract
A 4 yr old castrated male greyhound presented with a history of chronic (>3 wk) intermittent diarrhea. Initial fecal analysis identified infection with Ancylostoma caninum. Despite treatment with routine anthelmintics, the dog remained persistently A caninum positive for several months. A novel fecal gastrointestinal real-time polymerase chain reaction (qPCR) parasite panel detected A caninum and the genetic benzimidazole (BZ) F167Y resistance marker in multiple samplings over 48 hr. This finding, together with the dog's clinical signs (diarrhea) and lack of response to routine anthelmintics, prompted treatment with cyclooctadepsipeptide emodepside, a drug currently not registered for dogs in the United States. The dog's clinical signs resolved and post-treatment fecal qPCR testing was negative. However, 5 mo later, retesting with fecal qPCR detected A caninum and concurrent BZ resistance marker, as well as Giardia. A presumptive diagnosis of re-infection was made and the emodepside treatment was continued. The dog again reverted to undetected (A caninum and the 167 resistance marker) on reassessment fecal qPCR. This case report describes the use of a novel fecal qPCR panel for gastrointestinal parasites, persistent hookworm and BZ F167Y resistance marker detection in a dog, and highlights the importance of a stepwise approach to clinical management, treatment, and retesting.
Collapse
Affiliation(s)
- Michelle Evason
- From Antech Diagnostics, Fountain Valley, California (Evason, Culwell, Ogeer, Leutenegger); and
| | - Emilio DeBess
- Oregon State Public Health Department, Portland, Oregon (DeBess)
| | - Nicole Culwell
- From Antech Diagnostics, Fountain Valley, California (Evason, Culwell, Ogeer, Leutenegger); and
| | - Jennifer Ogeer
- From Antech Diagnostics, Fountain Valley, California (Evason, Culwell, Ogeer, Leutenegger); and
| | - Christian Leutenegger
- From Antech Diagnostics, Fountain Valley, California (Evason, Culwell, Ogeer, Leutenegger); and
| |
Collapse
|
19
|
Dale A, Xu G, Kopp SR, Jones MK, Kotze AC, Abdullah S. Pyrantel resistance in canine hookworms in Queensland, Australia. Vet Parasitol Reg Stud Reports 2024; 48:100985. [PMID: 38316510 DOI: 10.1016/j.vprsr.2024.100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 02/07/2024]
Abstract
Hookworms are the most common intestinal nematode parasites of dogs in Australia. The control of these parasites relies mostly on regular deworming with anthelmintics, with pyrantel-based dewormers being a relatively low cost and readily-available option for dog owners. Pyrantel resistance in canine hookworms in Australia was first reported in 2007, however pyrantel-based dewormers are still used against hookworm infection in dogs across Australia. The present study was conducted to evaluate the efficacy of pyrantel against hookworms infecting dogs housed in a shelter facility in Southeast Queensland which receives rescued or surrendered animals from greyhound rescue centres and dog shelters across this region. A total of 10 dogs were examined using the faecal egg count reduction test (FECRT). There was no reduction in FEC in any of the dogs following pyrantel treatment, with drug efficacies ranging from -0.9% to -283.3%. Given that these dogs originated from various sites across Southeast Queensland, the present study suggests that pyrantel resistance is widespread in this region, and hence this anthelmintic may not be a useful option for treatment of hookworm infections in dogs.
Collapse
Affiliation(s)
- Ashley Dale
- The University of Queensland, School of Veterinary Science, Gatton, QLD 4343, Australia
| | - Geoffrey Xu
- The University of Queensland, School of Veterinary Science, Gatton, QLD 4343, Australia
| | - Steven R Kopp
- The University of Queensland, School of Veterinary Science, Gatton, QLD 4343, Australia
| | - Malcolm K Jones
- The University of Queensland, School of Veterinary Science, Gatton, QLD 4343, Australia
| | - Andrew C Kotze
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, Brisbane, QLD 4067, Australia
| | - Swaid Abdullah
- The University of Queensland, School of Veterinary Science, Gatton, QLD 4343, Australia.
| |
Collapse
|
20
|
Sarkar ER, Sikder S, Giacomin P, Loukas A. Hookworm vaccines: current and future directions. Expert Rev Vaccines 2024; 23:1029-1040. [PMID: 39350544 DOI: 10.1080/14760584.2024.2410893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
INTRODUCTION Hookworms infect about half a billion people worldwide and are responsible for the loss of more than two billion disability-adjusted life years. Mass drug administration (MDA) is the most popular preventive approach, but it does not prevent reinfection. An effective vaccine would be a major public health tool in hookworm-endemic areas. AREAS COVERED We highlight recent human studies where vaccination with irradiated larvae and repeated rounds of infection-treatment have induced partial protection. These studies have emphasized the importance of targeting the infective larvae to generate immunity to prevent adult worms from maturing in the gut. We summarize the current status of human and animal model vaccine trials. EXPERT OPINION Hookworm infection is endemic in resource-poor developing regions where polyparasitism is common, and vaccine cold chain logistics are complex. Humans do not develop sterile immunity to hookworms, and the elderly are frequently overlooked in MDA campaigns. For all these reasons, a vaccine is essential to create long-lasting protection. The lack of a robust animal model to mimic human hookworm infections is a barrier to the discovery and development of a vaccine, however, there have been major recent advances in human challenge studies which will accelerate the process.
Collapse
Affiliation(s)
- Eti R Sarkar
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland, Australia
| | - Suchandan Sikder
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Paul Giacomin
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| |
Collapse
|
21
|
Ng'etich AI, Amoah ID, Bux F, Kumari S. Anthelmintic resistance in soil-transmitted helminths: One-Health considerations. Parasitol Res 2023; 123:62. [PMID: 38114766 PMCID: PMC10730643 DOI: 10.1007/s00436-023-08088-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
The One-Health approach recognizes the intricate connection between human, animal, and environmental health, and that cooperative effort from various professionals provides comprehensive awareness and potential solutions for issues relating to the health of people, animals, and the environment. This approach has increasingly gained appeal as the standard strategy for tackling emerging infectious diseases, most of which are zoonoses. Treatment with anthelmintics (AHs) without a doubt minimizes the severe consequences of soil-transmitted helminths (STHs); however, evidence of anthelmintic resistance (AR) development to different helminths of practically every animal species and the distinct groups of AHs is overwhelming globally. In this regard, the correlation between the application of anthelmintic drugs in both human and animal populations and the consequent development of anthelmintic resistance in STHs within the context of a One-Health framework is explored. This review provides an overview of the major human and animal STHs, treatment of the STHs, AR development and drug-related factors contributing towards AR, One-Health and STHs, and an outline of some One-Health strategies that may be used in combating AR.
Collapse
Affiliation(s)
- Annette Imali Ng'etich
- Institute for Water and Wastewater Technology, Durban University of Technology (DUT), Durban, South Africa
| | - Isaac Dennis Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology (DUT), Durban, South Africa
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology (DUT), Durban, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology (DUT), Durban, South Africa.
| |
Collapse
|
22
|
Nielsen MK, Kaplan RM, Abbas G, Jabbar A. Biological implications of long-term anthelmintic treatment: what else besides resistance are we selecting for? Trends Parasitol 2023; 39:945-953. [PMID: 37633759 DOI: 10.1016/j.pt.2023.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023]
Abstract
Long-term intensive use of anthelmintics for parasite control of livestock, companion animals, and humans has resulted in widespread anthelmintic resistance, a problem of great socioeconomic significance. But anthelmintic therapy may also select for other biological traits, which could have implications for anthelmintic performance. Here, we highlight recent examples of changing parasite dynamics following anthelmintic administration, which do not fit the definition of anthelmintic resistance. We also consider other possible examples in which anthelmintic resistance has clearly established, but where coselection for other biological traits may have also occurred. We offer suggestions for collecting more information and gaining a better understanding of these phenomena. Finally, we propose research questions that require further investigation and make suggestions to help address these knowledge gaps.
Collapse
Affiliation(s)
- Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.
| | - Ray M Kaplan
- School of Veterinary Medicine, St George's University, Grenada, West Indies
| | - Ghazanfar Abbas
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Abdul Jabbar
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
23
|
Chehelgerdi M, Chehelgerdi M, Allela OQB, Pecho RDC, Jayasankar N, Rao DP, Thamaraikani T, Vasanthan M, Viktor P, Lakshmaiya N, Saadh MJ, Amajd A, Abo-Zaid MA, Castillo-Acobo RY, Ismail AH, Amin AH, Akhavan-Sigari R. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol Cancer 2023; 22:169. [PMID: 37814270 PMCID: PMC10561438 DOI: 10.1186/s12943-023-01865-0] [Citation(s) in RCA: 276] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023] Open
Abstract
The use of nanotechnology has the potential to revolutionize the detection and treatment of cancer. Developments in protein engineering and materials science have led to the emergence of new nanoscale targeting techniques, which offer renewed hope for cancer patients. While several nanocarriers for medicinal purposes have been approved for human trials, only a few have been authorized for clinical use in targeting cancer cells. In this review, we analyze some of the authorized formulations and discuss the challenges of translating findings from the lab to the clinic. This study highlights the various nanocarriers and compounds that can be used for selective tumor targeting and the inherent difficulties in cancer therapy. Nanotechnology provides a promising platform for improving cancer detection and treatment in the future, but further research is needed to overcome the current limitations in clinical translation.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Institute, Research and Development Center for Biotechnology, Shahrekord, Chaharmahal and Bakhtiari, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Chaharmahal and Bakhtiari, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Institute, Research and Development Center for Biotechnology, Shahrekord, Chaharmahal and Bakhtiari, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Chaharmahal and Bakhtiari, Iran
| | | | | | - Narayanan Jayasankar
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College Of Pharmacy, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Devendra Pratap Rao
- Department of Chemistry, Coordination Chemistry Laboratory, Dayanand Anglo-Vedic (PG) College, Kanpur-208001, U.P, India
| | - Tamilanban Thamaraikani
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College Of Pharmacy, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Manimaran Vasanthan
- Department of Pharmaceutics, SRM Institute of Science and Technology, SRM College Of Pharmacy, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Patrik Viktor
- Keleti Károly Faculty of Business and Management, Óbuda University, Tavaszmező U. 15-17, 1084, Budapest, Hungary
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Ayesha Amajd
- Faculty of Organization and Management, Silesian University of Technology, 44-100, Gliwice, Poland
- Department of Mechanical Engineering, CEMMPRE, University of Coimbra, Polo II, 3030-788, Coimbra, Portugal
| | - Mabrouk A Abo-Zaid
- Department of Biology, College of Science, Jazan University, 82817, Jazan, Saudi Arabia
| | | | - Ahmed H Ismail
- Department of Biology, College of Science, Jazan University, 82817, Jazan, Saudi Arabia
| | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
24
|
Balk JD, Mitchell ND, Hughes J, Soto Nauto P, Rossi J, Ramirez-Barrios R. Multiple anthelmintic drug resistant Ancylostoma caninum in foxhounds. Int J Parasitol Drugs Drug Resist 2023; 22:102-106. [PMID: 37481894 PMCID: PMC10391654 DOI: 10.1016/j.ijpddr.2023.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/15/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Ancylostoma caninum is the most common and important gastrointestinal nematode of dogs in the United States. Despite recent reports of A. caninum isolates resistant to all classes of anthelmintics, little is known about the frequency and extent of this anthelmintic resistance. The study aim was to evaluate the efficacy of three commercial anthelmintic products in the treatment of foxhound dogs with a history of persistent A. caninum infections. In the first phase of this study, 35 foxhounds were randomly divided into three treatment groups: moxidectin/imidacloprid (MI), pyrantel pamoate/febantel/praziquantel (PFP), and emodepside/praziquantel (EP). Fecal samples were collected on day 0, 11, and 33 post-treatment (PT), and hookworm eggs were quantified using the mini-FLOTAC technique with a multiplication factor of 5 eggs per gram (EPG). The fecal egg count reduction (FECR) on day 11 PT was 65% (95% CI: 62%-68%) for MI, 69% (95% CI: 66%-72%) for PFP, and 96% (95% CI: 94%-97%) for EP. On day 33 PT, the FEC in the MI and PFP groups returned to almost the same values as on day 0, while in the EP group, the FEC remained low. Since MI and PFP proved ineffective, 32 animals were randomly divided into two groups in the second phase. They were treated either with a combination of MI/PFP or EP. The FECR at day 13 PT for the combination MI/PFP was 89% (95% CI: 87%-91%) and 99% (95% CI: 98%-99%) for EP. These results suggest that this A. caninum population is resistant to multiple anthelmintics. Although the combination of MI/PFP improved the anthelmintic efficacy, the FECR remained below 90%. Future studies are indicated to evaluate further the epidemiology of persistent hookworm infections in dogs in the US and to identify more effective treatment protocols as they pose a significant health risk to canine and human health.
Collapse
Affiliation(s)
- Jenna D Balk
- Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Nathan D Mitchell
- Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Jake Hughes
- Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Priscila Soto Nauto
- Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | | | - Roger Ramirez-Barrios
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
25
|
Li H, Gazzola D, Hu Y, Aroian RV. An efficient method for viable cryopreservation and recovery of hookworms and other gastrointestinal nematodes in the laboratory. Int J Parasitol 2023; 53:451-458. [PMID: 37201563 PMCID: PMC10330584 DOI: 10.1016/j.ijpara.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/11/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
Hookworms (genera Ancylostoma and Necator) are amongst the most prevalent and important parasites of humans globally. These intestinal parasites ingest blood, resulting in anemia, growth stunting, malnutrition, and adverse pregnancy outcomes. They are also critical parasites of dogs and other animals. In addition, hookworms and hookworm products are being explored for their use in treatment of autoimmune and inflammatory diseases. There is thus a significant and growing interest in these mammalian host-obligate parasites. Laboratory research is hampered by the lack of good means of cryopreservation and recovery of parasites. Here, we describe a robust method for long-term (≥3 year) cryopreservation and recovery of both Ancylostoma and Necator hookworms that is also applicable to two other intestinal parasites that passage through the infective L3 stage, Strongyloides ratti and Heligmosomoides polygyrus bakeri. The key is a revised recovery method, in which cryopreserved L1s are thawed and raised to the infective L3 stage using activated charcoal mixed with uninfected feces from a permissive host. This technique will greatly facilitate research on and availability of gastrointestinal parasitic nematodes with great importance to global health, companion animal health, and autoimmune/inflammatory disease therapies.
Collapse
Affiliation(s)
- Hanchen Li
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - David Gazzola
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Yan Hu
- Department of Biology, Worcester State University, Worcester, MA, USA
| | - Raffi V Aroian
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
26
|
Marsh AE, Lakritz J. Reflecting on the past and fast forwarding to present day anthelmintic resistant Ancylostoma caninum-A critical issue we neglected to forecast. Int J Parasitol Drugs Drug Resist 2023; 22:36-43. [PMID: 37229949 PMCID: PMC10229760 DOI: 10.1016/j.ijpddr.2023.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023]
Abstract
Reports of anthelmintic resistance in Ancylostoma caninum are increasing in frequency in the United States of America (USA). In the last few years in vitro and in vivo studies characterized individual isolates, demonstrating multiple anthelmintic drug resistance (MADR). In 2021, the American Association of Veterinary Parasitologists initiated a hookworm task force to address this issue. The first report of drug resistant A. caninum occurred in 1987 in Australian racing Greyhounds. In the last five years multiple case reports and investigations show drug resistant A. caninum is becoming a much greater problem in the USA and now extends beyond racing Greyhounds into the general companion animal dog population. The literature, regarding drug resistance in livestock and equine nematodes, provides helpful guidance along with diagnostic methods to better understand the evolution and selection of canine MADR hookworms; however, there are limitations and caveats due to A. caninum's unique biology and zoonotic potential. Mass drug administration (MDA) of anthelminthic drugs to humans to reduce morbidity associated with human hookworms (Necator americanus) should consider the factors that contributed to the development of MADR A. caninum. Finally, as Greyhound racing undergoes termination in some regions and the retired dogs undergo subsequent rehoming, drug resistant parasites, if present, are carried with them. Drug resistant A. caninum requires greater recognition by the veterinary community, and small animal practitioners need to be aware of the spread into current pet dog populations. The current understanding of anthelmintic resistance, available treatments, and environmental mitigation for these drug resistant A. caninum isolates must be monitored for horizontal spread. A major goal in this emerging problem is to prevent continued dissemination.
Collapse
Affiliation(s)
| | - Jeffrey Lakritz
- Veterinary Clinical Sciences, The Ohio State University, USA
| |
Collapse
|
27
|
Harrington S, Pyche J, Burns AR, Spalholz T, Ryan KT, Baker RJ, Ching J, Rufener L, Lautens M, Kulke D, Vernudachi A, Zamanian M, Deuther-Conrad W, Brust P, Roy PJ. Nemacol is a small molecule inhibitor of C. elegans vesicular acetylcholine transporter with anthelmintic potential. Nat Commun 2023; 14:1816. [PMID: 37002199 PMCID: PMC10066365 DOI: 10.1038/s41467-023-37452-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Nematode parasites of humans and livestock pose a significant burden to human health, economic development, and food security. Anthelmintic drug resistance is widespread among parasites of livestock and many nematode parasites of humans lack effective treatments. Here, we present a nitrophenyl-piperazine scaffold that induces motor defects rapidly in the model nematode Caenorhabditis elegans. We call this scaffold Nemacol and show that it inhibits the vesicular acetylcholine transporter (VAChT), a target recognized by commercial animal and crop health groups as a viable anthelmintic target. We demonstrate that it is possible to create Nemacol analogs that maintain potent in vivo activity whilst lowering their affinity to the mammalian VAChT 10-fold. We also show that Nemacol enhances the ability of the anthelmintic Ivermectin to paralyze C. elegans and the ruminant nematode parasite Haemonchus contortus. Hence, Nemacol represents a promising new anthelmintic scaffold that acts through a validated anthelmintic target.
Collapse
Affiliation(s)
- Sean Harrington
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jacob Pyche
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Andrew R Burns
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Tina Spalholz
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318, Leipzig, Germany
| | - Kaetlyn T Ryan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Rachel J Baker
- The Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Justin Ching
- The Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Lucien Rufener
- INVENesis Sàrl, Route de Neuchâtel 15A, 2072, St Blaise (NE), Switzerland
| | - Mark Lautens
- The Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Daniel Kulke
- Research Parasiticides, Bayer Animal Health GmbH, Monheim, Germany
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
- Global Innovation, Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55218, Ingelheim am Rhein, Germany
| | | | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318, Leipzig, Germany
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318, Leipzig, Germany
- The Lübeck Institute of Experimental Dermatology, University Medical Center Schleswig-Holstein, 23562, Lübeck, Germany
| | - Peter J Roy
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
28
|
Geisshirt HA, Bonde CS, Marcussen C, Mejer H, Williams AR. Development of In Vitro Assays with the Canine Hookworm Uncinaria stenocephala and Assessment of Natural Plant Products for Anti-Parasitic Activity. Pathogens 2023; 12:pathogens12040536. [PMID: 37111422 PMCID: PMC10144190 DOI: 10.3390/pathogens12040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Enteric helminth infection is an increasing concern in companion animals due to reports of resistance to commonly used anthelmintic drugs. Thus, the assessment of new therapeutic options such as bioactive dietary additives is of high importance. Here, we adapted egg hatch, larval migration, and larval motility assays to screen extracts of several natural ingredients against the canine hookworm Uncinaria stenocephala, a prevalent parasite of dogs in northern Europe. Egg hatch and larval migration assays were established showing that the anthelmintic drugs levamisole and albendazole had strong anti-parasitic activity against U. stenocephala, validating the use of these assays for the assessment of novel anti-parasitic substances. Subsequently, we identified that extracts from the seaweed Saccharina latissima, but not extracts from grape seed or chicory, significantly inhibited both hatching and larval migration. Finally, we showed that α-linolenic acid, a putative anti-parasitic compound from S. latissima, also exhibited anti-parasitic activity. Collectively, our results established a platform for the screening for anthelmintic resistance or novel drug candidates against U. stenocephala and highlighted the potential use of seaweed extracts as a functional food component to help control hookworm infection in dogs.
Collapse
Affiliation(s)
- Heidi A Geisshirt
- Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Charlotte S Bonde
- Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Caroline Marcussen
- Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Helena Mejer
- Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| |
Collapse
|
29
|
Leutenegger CM, Lozoya CE, Tereski J, Savard C, Ogeer J, Lallier R. Emergence of Ancylostoma caninum parasites with the benzimidazole resistance F167Y polymorphism in the US dog population. Int J Parasitol Drugs Drug Resist 2023; 21:131-140. [PMID: 36958067 PMCID: PMC10068012 DOI: 10.1016/j.ijpddr.2023.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 03/15/2023]
Abstract
BACKGROUND Anthelmintic resistance to benzimidazole has been detected in the canine hookworm, Ancylostoma caninum. Benzimidazole resistance is believed to have developed originally in greyhounds, but has also been detected in non-greyhound pet dogs. The aim of this study was to validate a probe-based allele-specific real-time PCR tests for the F167Y polymorphism on the β-tubulin isotype-1 gene and to determine the geographic distribution. METHODS Allele-specific real-time PCR tests were established and validated to detect the codon 167 polymorphism in the Ancylostoma caninum β-tubulin isotype-1gene. Additionally, real-time PCR tests were validated for Ancylostoma spp. and Uncinaria stenocephala. Two nucleic acid extraction protocols were validated including mechanical disruption of parasite structures in stool. The frequency of the F167Y single nucleotide polymorphism (SNP) was determined in hookworm confirmed stool samples. Samples with the resistant 167Y genotype were confirmed by β-tubulin gene sequencing and allele frequencies were determined. RESULTS The Ancylostoma spp. and A. caninum F167Y allele-specific real-time PCR tests were highly sensitive and specific when tested against synthetic DNA, spiked samples, and characterized parasites. Using an optimized total nucleic acid extraction protocol, 54 of 511 (10.6%) were found to contain the benzimidazole resistance allele. All 55 samples containing hookworms with the resistance mutation were confirmed by β-tubulin gene sequencing. The majority of resistant hookworms (44 resistant, 183 tested; 24.4%) originated from Florida, five from California (103 tested, 4.9%), three from Idaho (40 tested, 7.5%), two from Nevada (22 tested, 9.1%), and one sample from Hawaii (13 tested, 7.7%). Resistant genotypes were found in 14 different dog breeds including eight in Greyhounds. Allele-frequency determination revealed resistance allele frequencies between 1 and 100% with 58% above 50%. CONCLUSIONS This data strongly supports recent findings of benzimidazole resistant canine hookworms present throughout the general US pet dog population.
Collapse
Affiliation(s)
| | - Cecilia E Lozoya
- Antech Diagnostics, Innovation Molecular Diagnostics R&D, Fountain Valley, CA, USA.
| | - Jeffrey Tereski
- Antech Diagnostics, Innovation Molecular Diagnostics R&D, Fountain Valley, CA, USA.
| | | | - Jennifer Ogeer
- Antech Diagnostics, Innovation Molecular Diagnostics R&D, Fountain Valley, CA, USA.
| | | |
Collapse
|
30
|
Venkatesan A, Jimenez Castro PD, Morosetti A, Horvath H, Chen R, Redman E, Dunn K, Collins JB, Fraser JS, Andersen EC, Kaplan RM, Gilleard JS. Molecular evidence of widespread benzimidazole drug resistance in Ancylostoma caninum from domestic dogs throughout the USA and discovery of a novel β-tubulin benzimidazole resistance mutation. PLoS Pathog 2023; 19:e1011146. [PMID: 36862759 PMCID: PMC10013918 DOI: 10.1371/journal.ppat.1011146] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/14/2023] [Accepted: 01/22/2023] [Indexed: 03/03/2023] Open
Abstract
Ancylostoma caninum is an important zoonotic gastrointestinal nematode of dogs worldwide and a close relative of human hookworms. We recently reported that racing greyhound dogs in the USA are infected with A. caninum that are commonly resistant to multiple anthelmintics. Benzimidazole resistance in A. caninum in greyhounds was associated with a high frequency of the canonical F167Y(TTC>TAC) isotype-1 β-tubulin mutation. In this work, we show that benzimidazole resistance is remarkably widespread in A. caninum from domestic dogs across the USA. First, we identified and showed the functional significance of a novel benzimidazole isotype-1 β-tubulin resistance mutation, Q134H(CAA>CAT). Several benzimidazole resistant A. caninum isolates from greyhounds with a low frequency of the F167Y(TTC>TAC) mutation had a high frequency of a Q134H(CAA>CAT) mutation not previously reported from any eukaryotic pathogen in the field. Structural modeling predicted that the Q134 residue is directly involved in benzimidazole drug binding and that the 134H substitution would significantly reduce binding affinity. Introduction of the Q134H substitution into the C. elegans β-tubulin gene ben-1, by CRISPR-Cas9 editing, conferred similar levels of resistance as a ben-1 null allele. Deep amplicon sequencing on A. caninum eggs from 685 hookworm positive pet dog fecal samples revealed that both mutations were widespread across the USA, with prevalences of 49.7% (overall mean frequency 54.0%) and 31.1% (overall mean frequency 16.4%) for F167Y(TTC>TAC) and Q134H(CAA>CAT), respectively. Canonical codon 198 and 200 benzimidazole resistance mutations were absent. The F167Y(TTC>TAC) mutation had a significantly higher prevalence and frequency in Western USA than in other regions, which we hypothesize is due to differences in refugia. This work has important implications for companion animal parasite control and the potential emergence of drug resistance in human hookworms.
Collapse
Affiliation(s)
- Abhinaya Venkatesan
- Faculty of Veterinary Medicine, Host-Parasite Interactions Program, University of Calgary, Alberta, Canada
| | - Pablo D. Jimenez Castro
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Zoetis, Parsippany, New Jersey, United States of America
- Grupo de Parasitología Veterinaria, Universidad Nacional de Colombia, Colombia
| | - Arianna Morosetti
- Faculty of Veterinary Medicine, Host-Parasite Interactions Program, University of Calgary, Alberta, Canada
| | - Hannah Horvath
- Faculty of Veterinary Medicine, Host-Parasite Interactions Program, University of Calgary, Alberta, Canada
| | - Rebecca Chen
- Faculty of Veterinary Medicine, Host-Parasite Interactions Program, University of Calgary, Alberta, Canada
| | - Elizabeth Redman
- Faculty of Veterinary Medicine, Host-Parasite Interactions Program, University of Calgary, Alberta, Canada
| | - Kayla Dunn
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - James Bryant Collins
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Erik C. Andersen
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Ray M. Kaplan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- St. George’s University, School of Veterinary Medicine, Grenada, West Indies
| | - John S. Gilleard
- Faculty of Veterinary Medicine, Host-Parasite Interactions Program, University of Calgary, Alberta, Canada
| |
Collapse
|
31
|
Li H, Gazzola D, Hu Y, Aroian RV. An efficient method for viable cryopreservation of hookworms and other gastrointestinal nematodes in the laboratory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526637. [PMID: 36778351 PMCID: PMC9915591 DOI: 10.1101/2023.02.01.526637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hookworms (genera Ancylostoma and Necator ) are amongst of the most prevalent and important parasites of humans globally. These intestinal parasites ingest blood, resulting in anemia, growth stunting, malnutrition, and adverse pregnancy outcomes. They are also critical parasites of dogs and other animals. In addition, hookworms and hookworm products are being explored for their use in treatment of autoimmune and inflammatory diseases. There is thus a significant and growing interest in these mammalian host-obligate parasites. Laboratory research is hampered by the lack of good means of cryopreservation. Here, we describe a robust method for long-term (≥3 year) cryoprotection and recovery of both Ancylostoma and Necator hookworms that is also applicable to two other intestinal parasites that passages through the infective third larval stage, Strongyloides ratti and H eligmosomoides polygyrus bakeri . The key is the use cryo-preserved first-staged larvae raised to the infective third larval stage using activated charcoal mixed with uninfected feces from a permissive host. This technique will greatly facilitate research on and availability of gastrointestinal parasitic nematodes with great importance to global health, companion animal health, and autoimmune/inflammatory disease therapies.
Collapse
|
32
|
Jimenez Castro PD, Durrence K, Durrence S, Gianechini LS, Collins J, Dunn K, Kaplan RM. Multiple anthelmintic drug resistance in hookworms (Ancylostoma caninum) in a Labrador breeding and training kennel in Georgia, USA. J Am Vet Med Assoc 2022; 261:342-347. [PMID: 36520649 DOI: 10.2460/javma.22.08.0377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To evaluate the efficacy of the 3 major classes of anthelmintics used for the treatment of hookworms in dogs in the US and an extralabel treatment with an FDA-approved product for use in cats in a Labrador kennel with a history of persistent hookworm infections. ANIMALS 22 dogs housed in a single kennel comprised of the following breeds: 19 Labrador Retrievers, 1 English Cocker Spaniel, 1 Chesapeake Bay Retriever, and 1 Boykin Spaniel. PROCEDURES We performed a fecal egg count (FEC) reduction test using 22 dogs that were allocated randomly to 1 of 5 treatment groups: pyrantel pamoate (Pyrantel pamoate suspension), fenbendazole (Safe-Guard suspension 10%), milbemycin oxime (Interceptor), moxidectin plus imidacloprid (Advantage Multi), and emodepside plus praziquantel (Profender topical solution for cats). FEC was performed on samples collected on days 0 and 11. RESULTS FEC reductions for the milbemycin oxime, moxidectin plus imidacloprid, and emodepside plus praziquantel groups were 43.9%, 57.4%, and 100%, respectively. The FEC increased following treatment for the pyrantel and fenbendazole groups. CLINICAL RELEVANCE These data demonstrate that the Ancylostoma caninum infecting the dogs in this kennel are highly resistant to all major anthelmintic classes approved for use in dogs in the US but are susceptible to emodepside. This was the first report of multiple anthelmintic drug-resistant A caninum in a dog kennel that does not involve Greyhounds.
Collapse
Affiliation(s)
- Pablo D Jimenez Castro
- 1Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA.,2Grupo de Parasitología Veterinaria, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | - Leonor Sicalo Gianechini
- 1Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - James Collins
- 1Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA.,4Department of Molecular Biosciences, Weinberg College of Art and Sciences, Northwestern University, Evanston, IL
| | - Kayla Dunn
- 1Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA.,5MySimplePetLab, Denver, CO
| | - Ray M Kaplan
- 1Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA.,6School of Veterinary Medicine, St. George's University, Grenada, West Indies
| |
Collapse
|
33
|
The microbial community associated with Parascaris spp. infecting juvenile horses. Parasit Vectors 2022; 15:408. [PMID: 36333754 PMCID: PMC9636743 DOI: 10.1186/s13071-022-05533-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Background Parasitic nematodes, including large roundworms colloquially known as ascarids, affect the health and well-being of livestock animals worldwide. The equine ascarids, Parascaris spp., are important parasites of juvenile horses and the first ascarids to develop widespread anthelmintic resistance. The microbiota has been shown to be an important factor in the fitness of many organisms, including parasitic nematodes, where endosymbiotic Wolbachia have been exploited for treatment of filariasis in humans. Methods This study used short-read 16S rRNA sequences and Illumina sequencing to characterize and compare microbiota of whole worm small intestinal stages and microbiota of male and female intestines and gonads. Diversity metrics including alpha and beta diversity, and the differential abundance analyses DESeq2, ANCOM-BC, corncob, and metagenomeSeq were used for comparisons. Results Alpha and beta diversity of whole worm microbiota did not differ significantly between groups, but Simpson alpha diversity was significantly different between female intestine (FI) and male gonad (MG) (P= 0.0018), and Shannon alpha diversity was significantly different between female and male gonads (P = 0.0130), FI and horse jejunum (HJ) (P = 0.0383), and FI and MG (P= 0.0001). Beta diversity (Fig. 2B) was significantly different between female and male gonads (P = 0.0006), male intestine (MI) and FG (P = 0.0093), and MG and FI (P = 0.0041). When comparing organs, Veillonella was differentially abundant for DESeq2 and ANCOM-BC (p < 0.0001), corncob (P = 0.0008), and metagenomeSeq (P = 0.0118), and Sarcina was differentially abundant across four methods (P < 0.0001). Finally, the microbiota of all individual Parascaris spp. specimens were compared to establish shared microbiota between groups. Conclusions Overall, this study provided important information regarding the Parascaris spp. microbiota and provides a first step towards determining whether the microbiota may be a viable target for future parasite control options. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05533-y.
Collapse
|
34
|
Doyle SR, Laing R, Bartley D, Morrison A, Holroyd N, Maitland K, Antonopoulos A, Chaudhry U, Flis I, Howell S, McIntyre J, Gilleard JS, Tait A, Mable B, Kaplan R, Sargison N, Britton C, Berriman M, Devaney E, Cotton JA. Genomic landscape of drug response reveals mediators of anthelmintic resistance. Cell Rep 2022; 41:111522. [PMID: 36261007 PMCID: PMC9597552 DOI: 10.1016/j.celrep.2022.111522] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/11/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
Like other pathogens, parasitic helminths can rapidly evolve resistance to drug treatment. Understanding the genetic basis of anthelmintic drug resistance in parasitic nematodes is key to tracking its spread and improving the efficacy and sustainability of parasite control. Here, we use an in vivo genetic cross between drug-susceptible and multi-drug-resistant strains of Haemonchus contortus in a natural host-parasite system to simultaneously map resistance loci for the three major classes of anthelmintics. This approach identifies new alleles for resistance to benzimidazoles and levamisole and implicates the transcription factor cky-1 in ivermectin resistance. This gene is within a locus under selection in ivermectin-resistant populations worldwide; expression analyses and functional validation using knockdown experiments support that cky-1 is associated with ivermectin survival. Our work demonstrates the feasibility of high-resolution forward genetics in a parasitic nematode and identifies variants for the development of molecular diagnostics to combat drug resistance in the field.
Collapse
Affiliation(s)
- Stephen R Doyle
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK.
| | - Roz Laing
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| | - David Bartley
- Moredun Research Institute, Penicuik, Midlothian EH26 0PZ, UK
| | - Alison Morrison
- Moredun Research Institute, Penicuik, Midlothian EH26 0PZ, UK
| | - Nancy Holroyd
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Kirsty Maitland
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Alistair Antonopoulos
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Umer Chaudhry
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Ilona Flis
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Sue Howell
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jennifer McIntyre
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary T2N 1N4, Canada
| | - Andy Tait
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Barbara Mable
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Ray Kaplan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Neil Sargison
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Collette Britton
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | | | - Eileen Devaney
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - James A Cotton
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| |
Collapse
|
35
|
The equine ascarids: resuscitating historic model organisms for modern purposes. Parasitol Res 2022; 121:2775-2791. [PMID: 35986167 PMCID: PMC9391215 DOI: 10.1007/s00436-022-07627-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022]
Abstract
The equine ascarids, Parascaris spp., are important nematode parasites of juvenile horses and were historically model organisms in the field of cell biology, leading to many important discoveries, and are used for the study of chromatin diminution. In veterinary parasitology, Parascaris spp. are important not only because they can cause clinical disease in young horses but also because they are the only ascarid parasites to have developed widespread anthelmintic resistance. Despite this, much of the general biology and mechanisms of anthelmintic resistance are poorly understood. This review condenses known basic biological information and knowledge on the mechanisms of anthelmintic resistance in Parascaris spp., highlighting the importance of foundational research programs. Although two variants of this parasite were recognized based on the number of chromosomes in the 1870s and suggested to be two species in 1890, one of these, P. univalens, appears to have been largely forgotten in the veterinary scientific literature over the past 100 years. We describe how this omission has had a century-long effect on nomenclature and data analysis in the field, highlighting the importance of proper specimen identification in public repositories. A summary of important basic biology, including life cycle, in vitro maintenance, and immunology, is given, and areas of future research for the improvement of knowledge and development of new systems are given. Finally, the limited knowledge regarding anthelmintic resistance in Parascaris spp. is summarized, along with caution regarding assumptions that resistance mechanisms can be applied across clades.
Collapse
|
36
|
Kim J, Lucio-Forster A, Ketzis JK. Ancylostoma in dogs in the Caribbean: a review and study from St. Kitts, West Indies. Parasit Vectors 2022; 15:139. [PMID: 35449121 PMCID: PMC9027451 DOI: 10.1186/s13071-022-05254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background Little is known about the prevalence of Ancylostoma in dogs in the Caribbean. In view of the number of owned free-roaming and feral dogs within the islands and the ideal subtropical climate for parasite development and environmental survival, Ancylostoma could pose a threat to the health of the dogs as well as a zoonotic risk to people. Methods To determine whether generalities about Ancylostoma in dogs in the Caribbean could be made and to obtain a better understanding of the prevalence, published (Scielo, Scopus, and PubMed databases) and gray (e.g., student theses, conference presentations) literature was reviewed. Retrieved manuscripts were screened, and relevant data (year, location, dog population, method of diagnosis, positivity rate) were extracted. Data from two dog populations on St. Kitts also were included: a 2014 field study involving dogs with limited veterinary care and data from the Ross University School of Veterinary Medicine’s Veterinary Clinic records for 2018–2019. Results Fourteen manuscripts from the 1950s to 2019, representing ten of the Caribbean islands/countries and the Bahamas, were identified. Methods of diagnosing infection status ranged from simple qualitative or quantitative flotation methods to centrifugation with Sheather’s sugar flotation solution or necropsy. Dog populations sampled included stray, owned free-roaming, and owned confined. Reported rates of Ancylostoma infection ranged from 10 to 91%. Studies from the last 10 years indicate positivity rates of 21 to 73%. Ancylostoma positivity rates in the St. Kitts’ populations were 61% and 10% for the 2014 and 2018–2019 populations, respectively. Conclusions There was no indication that hookworm prevalence has changed over time in the Caribbean, and there were no obvious differences between owned and unowned dogs or free-roaming and confined dogs. The data from St. Kitts were on par with positivity rates from the other islands within the last 10 years and reflective of the impact that veterinary care, including anthelmintic treatment, is expected to have on parasites in pets. There is a clear need to expand the available data for the region and improve control programs for Ancylostoma infections to protect both canine and human health. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05254-2.
Collapse
Affiliation(s)
- Jenny Kim
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Araceli Lucio-Forster
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Jennifer K Ketzis
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis.
| |
Collapse
|
37
|
Qiao JJ, Wang SN, Li JJ, Chen LY, Wang MM, Yi B, Liu QX, Liu YB, Zhang C, Honess P, Gao CQ. Effectiveness of treatment of bedding and feces of laboratory animal with ozone. PLoS One 2022; 17:e0266223. [PMID: 35385528 PMCID: PMC8985978 DOI: 10.1371/journal.pone.0266223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/16/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The incineration and burying of the soiled bedding of laboratory animals, as well as using detergents to treat their feces, is hazardous to the environment. This highlights the need for an alternative, environmentally friendly solution for the treatment of the waste of laboratory animal facilities. This study aims to evaluate the efficacy of ozone disinfection of the soiled bedding and feces of laboratory animals. METHODS Two grams of soiled beddings were randomly sampled from the cages of mice and rats. These samples were mixed in a beaker with 40ml saline. Ozone was piped into the beaker at a concentration of 500mg/h. Samples were taken from the beaker at time 0min, 30min, 45min and 60min after ozone treatment for microbiological culturing in an incubator for 48h. Colony form unit of each plate (CFU/plate) at each time point were counted, the mean CFU/plate at each time point after ozone treatment were compared with that present at time zero. Feces of rabbits and dogs were treated and pathogens were counted the similar way as that of bedding of the mice and rats; samples being taken at 0min, 15min, 30min, 45min and 60min. RESULTS Pathogens were observed in beddings of both mice and rats as well as in feces of rabbits and dogs. Ozone treatment for 30min killed more than 93% of pathogens in the bedding of the two rodent species and 60min of treatment killed over 99% of pathogens. Treatment of rabbit and dog feces for 30min killed over 96% pathogens present, and 60min's treatment killed nearly all the pathogens. Both Gram positive and Gram negative pathogens were sensitive to ozone treatment. CONCLUSION Ozone treatment of bedding and feces is an effective and environment friendly way to deal with the waste of animal facilities, saving energy and potentially enabling their reuse as fertilizer.
Collapse
Affiliation(s)
- Jiao-Jiao Qiao
- Department of Clinical Laboratory, Xiang-Ya Hospital, Central South University, Changsha, China
- Center for the Study of Laboratory Animals, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Shan-Ni Wang
- Department of Clinical Laboratory, Xiang-Ya Hospital, Central South University, Changsha, China
- Center for the Study of Laboratory Animals, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Jing-Jing Li
- Department of Clinical Laboratory, Xiang-Ya Hospital, Central South University, Changsha, China
- Center for the Study of Laboratory Animals, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Li-Yu Chen
- Department of Microbiology, Xiang-Ya School of Medicine, Central South University, Changsha, China
| | - Mei-Mei Wang
- Department of Clinical Laboratory, Xiang-Ya Hospital, Central South University, Changsha, China
- Center for the Study of Laboratory Animals, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Bin Yi
- Department of Clinical Laboratory, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Qing-Xia Liu
- Department of Clinical Laboratory, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Yun-Bo Liu
- Institute of Laboratory Animal Sciences, CAMS & PUMC, Beijing, China
| | - Chen Zhang
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Paul Honess
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Chang-Qing Gao
- Department of Clinical Laboratory, Xiang-Ya Hospital, Central South University, Changsha, China
- Center for the Study of Laboratory Animals, Xiang-Ya Hospital, Central South University, Changsha, China
| |
Collapse
|
38
|
Avila HG, Risso MG, Cabrera M, Ruybal P, Repetto SA, Butti MJ, Trangoni MD, Santillán G, Pérez VM, Periago MV. Development of a New LAMP Assay for the Detection of Ancylostoma caninum DNA (Copro-LAMPAc) in Dog Fecal Samples. Front Vet Sci 2021; 8:770508. [PMID: 34869740 PMCID: PMC8633310 DOI: 10.3389/fvets.2021.770508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/13/2021] [Indexed: 01/17/2023] Open
Abstract
Ancylostoma caninum is a zoonotic nematode which is able to affect animals and humans. Diagnosis in the definitive host and environmental detection are key to prevent its dissemination and achieve control. Herein, a new coprological LAMP method for the detection of A. caninum (Copro-LAMPAc) DNA was developed. DNA extraction was performed using a low-cost method and a fragment of the cox-1 gene was used for primer design. The analytical sensitivity, evaluated with serial dilutions of genomic DNA from A. caninum adult worms, was 100 fg. A specificity of 100% was obtained using genomic DNA from the host and other pathogens. The Copro-LAMPAc was evaluated using environmental canine fecal samples. When compared with gold standard optical microscopy in epidemiological studies, it proved to be more sensitive. This new LAMP assay can provide an alternative protocol for screening and identification of A. caninum for epidemiological studies in endemic areas.
Collapse
Affiliation(s)
- Héctor Gabriel Avila
- Laboratorio Provincial de Zoonosis de San Juan, Facultad de Ciencias Veterinarias, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, San Juan, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Marikena Guadalupe Risso
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marta Cabrera
- Departamento de Parasitología, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Paula Ruybal
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Analía Repetto
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Buenos Aires, Argentina.,División Infectología, Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcos Javier Butti
- Laboratorio de Parasitosis Humanas y Zoonosis Parasitarias, Cátedra de Parasitología Comparada, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Marcos David Trangoni
- Laboratorio de Brucella, Campylobacter y Microbiota del rumen, Instituto de Biotecnología/Instituto de Agrobiotecnología y Biología Molecular, Unidades Ejecutoras de Doble Dependencia (UEDD) INTA-CONICET, Investigación en Ciencias Veterinarias y Agronómicas (CICVyA), Centro Nacional de Investigaciones Agropecuarias (CNIA), INTA Castelar, Buenos Aires, Argentina
| | - Graciela Santillán
- Departamento de Parasitología, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Verónica Mirtha Pérez
- Laboratorio Provincial de Zoonosis de San Juan, Facultad de Ciencias Veterinarias, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, San Juan, Argentina.,Sección de Rabia y Zoonosis, Dirección de Epidemiología, Ministerio de Salud Pública de San Juan, San Juan, Argentina
| | - María Victoria Periago
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Fundación Mundo Sano, Buenos Aires, Argentina
| |
Collapse
|