1
|
Park K. PLGA-based long-acting injectable (LAI) formulations. J Control Release 2025; 382:113758. [PMID: 40268201 DOI: 10.1016/j.jconrel.2025.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
Long-acting injectable (LAI) formulations, which deliver drugs over weeks or months, have been in use for more than three decades. Most clinically approved LAI products are formulated using poly(lactide-co-glycolide) (PLGA) polymers. Historically, the development of PLGA-based LAI formulations has relied predominantly on trial-and-error methods, primarily due to a limited understanding of the complex factors involved in LAI formulations and insufficient analytical techniques available for characterizing individual PLGA polymers of the prepared formulations. This article offers a personal perspective on recent advancements in characterization methods for PLGA polymers within final formulations, i.e., products, as well as enhanced insights into the drug release mechanisms associated with LAI products. With a deeper understanding of PLGA polymer properties and drug release mechanisms, the formulation development process can transition from traditional trial-and-error practices to a more systematic Quality by Design (QbD) approach. Additionally, this article explores the emerging role of artificial intelligence (AI) in formulation science and its potential, when applied carefully, to enhance the future development of PLGA-based LAI formulations.
Collapse
Affiliation(s)
- Kinam Park
- Purdue University, Weldon School of Biomedical Engineering and Department of Industrial and Molecular Pharmaceutics, West Lafayette, IN 47907, USA; Akina, Inc., 3495 Kent Avenue, West Lafayette, IN 47906, USA.
| |
Collapse
|
2
|
Pöttgen S, Mazurek-Budzyńska M, Wischke C. The role of porosity in polyester microparticles for drug delivery. Int J Pharm 2025; 672:125340. [PMID: 39954970 DOI: 10.1016/j.ijpharm.2025.125340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Polymer microparticles are a cornerstone in the field of injectable sustained delivery systems: They allow the entrapment of various types of hydrophobic or hydrophilic drugs including biopharmaceuticals. Microparticles can be prepared from the material of choice and tailored to specific target sizes. Importantly, they can retain the drug at the local administration site to achieve a sustained drug release for long-term therapeutic effects. This review focuses on the role of porosity of microparticles as a tremendously important property. Principles to prepare porous carriers via different techniques and additives are discussed, emphasizing that porosity is not a static property but can be dynamic, e.g., for particles from polylactide or poly(lactide-co-glycolide). Considering the contribution of porosity in the overall assessment of drug carrier systems, as well as their manipulation/alteration post-production such as by pore closing, will enlarge the understanding of polymer microparticles as an important class of modern pharmaceutical dosage forms.
Collapse
Affiliation(s)
- Simon Pöttgen
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Kurt-Mothes-Str. 3 06120 Halle, Germany
| | | | - Christian Wischke
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Kurt-Mothes-Str. 3 06120 Halle, Germany.
| |
Collapse
|
3
|
Chen S, Wu A, Shen X, Kong J, Huang Y. Disrupting the dangerous alliance: Dual anti-inflammatory and anticoagulant strategy targets platelet-neutrophil crosstalk in sepsis. J Control Release 2025; 379:814-831. [PMID: 39848591 DOI: 10.1016/j.jconrel.2025.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Sepsis is a life-threatening disease characterized by excessive systemic inflammation and coagulopathy. Platelets and neutrophils form a "dangerous alliance" through crosstalk, promoting the inflammatory cytokine storm and coagulation disorders during sepsis. Platelet-neutrophil crosstalk leads to the formation of platelet-neutrophil complexes (PNCs), which are the central "protagonists" of this "dangerous alliance." These PNCs further enhance the crosstalk between platelets and neutrophils, amplifying immune and coagulation responses through positive feedback loops. Although some targeted therapies have been reported recently, they primarily focus on inducing neutrophil apoptosis or degrading existing neutrophil extracellular traps (NETs). Limited strategies are available for targeting platelets and suppressing sepsis-associated PNCs. Herein, we propose a two-pronged approach to intercept platelet-neutrophil crosstalk by simultaneously targeting drugs to both platelets and neutrophils of the "dangerous alliance." This strategy not only effectively alleviates inflammation induced by platelet-neutrophil crosstalk but also reduces PNC formation, thereby dismantling the structural scaffold of microthrombi. In a sepsis mouse model, this approach significantly decreased markers of platelet-neutrophil crosstalk, reduced the cytokine storm, and lowered the risk of thrombosis. Moreover, it alleviated organ damage caused by PNC infiltration and prolonged the survival of septic mice. Overall, this work combines anti-inflammatory and anticoagulant therapies to effectively disrupt the "dangerous alliance" between platelets and neutrophils, offering a promising strategy for treating sepsis.
Collapse
Affiliation(s)
- Sa Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Aijia Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xinran Shen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jinxia Kong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China..
| |
Collapse
|
4
|
Lehner E, Trutschel ML, Menzel M, Jacobs J, Kunert J, Scheffler J, Binder WH, Schmelzer CEH, Plontke SK, Liebau A, Mäder K. Enhancing drug release from PEG-PLGA implants: The role of Hydrophilic Dexamethasone Phosphate in modulating release kinetics and degradation behavior. Eur J Pharm Sci 2025; 209:107067. [PMID: 40068768 DOI: 10.1016/j.ejps.2025.107067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is a prominent biodegradable polymer used in biomedical applications, including drug delivery systems (DDS) and tissue engineering. PLGA's ability to control drug release is often hindered by nonlinear release profiles and slow initial drug release for hydrophobic drugs. This study investigates the incorporation of dexamethasone phosphate (DEXP) into polyethylene glycol-poly(lactic-co-glycolic acid) (PEG-PLGA) implants to enhance the initial release rate of dexamethasone (DEX). Implants were fabricated via hot-melt extrusion with varying DEX to DEXP ratios. X-ray diffraction (XRD) analysis confirmed that DEX remained crystalline in all formulations, whereas DEXP's crystallinity was detectable only in higher concentrations. Energy-dispersive X-ray spectroscopy (EDX) provided insights into the distribution of DEX and DEXP within the polymer matrix. Drug release studies revealed that PEG-PLGA implants accelerated initial drug release with increasing quantity of DEXP, though it also led to a shorter overall release duration. Despite these improvements, all implants exhibited a biphasic release profile. DEXP also influenced the characteristics of the polymer matrix, evidenced by increased swelling, water absorption, and mass loss. 1H NMR analysis revealed a faster decrease in glycolic acid monomers in DEXP-containing implants. These findings demonstrate that DEXP enhances early drug release of DEX-loaded PEG-PLGA implants prepared by hot-melt extrusion. However, balancing initial and sustained release profiles remains challenging.
Collapse
Affiliation(s)
- Eric Lehner
- Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40 06120 Halle (Saale), Germany; Halle Research Centre for Drug Therapy (HRCDT), Halle (Saale), Germany
| | - Marie-Luise Trutschel
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4 06120 Halle (Saale), Germany
| | - Matthias Menzel
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Straße 1 06120 Halle (Saale), Germany
| | - Jonas Jacobs
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2 06120 Halle (Saale), Germany
| | - Julian Kunert
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4 06120 Halle (Saale), Germany
| | - Jonas Scheffler
- Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40 06120 Halle (Saale), Germany
| | - Wolfgang H Binder
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4 06120 Halle (Saale), Germany
| | - Christian E H Schmelzer
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4 06120 Halle (Saale), Germany; Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Straße 1 06120 Halle (Saale), Germany
| | - Stefan K Plontke
- Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40 06120 Halle (Saale), Germany; Halle Research Centre for Drug Therapy (HRCDT), Halle (Saale), Germany
| | - Arne Liebau
- Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40 06120 Halle (Saale), Germany
| | - Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4 06120 Halle (Saale), Germany; Halle Research Centre for Drug Therapy (HRCDT), Halle (Saale), Germany.
| |
Collapse
|
5
|
Wei Z, Zhu M, Morin N, Wollsten D, Hirvonen J, Yang X, Santos HA, Li W. Polymeric Microspheres with High Mass Fraction of Therapeutics Enabled by the Manipulation of Kinetics Factor During Emulsion Droplet Solidification. ADVANCED FUNCTIONAL MATERIALS 2025; 35. [DOI: 10.1002/adfm.202417307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Indexed: 03/01/2025]
Abstract
AbstractHigh drug‐loaded polymeric microspheres hold promise in biomedical fields due to reduced excipient administration, minimized side effects, and enhanced therapeutical efficacy. Although thermodynamic factors like drug‐carrier material compatibility are well‐known to influence the drug loading capacity of microspheres, they fail to explain the huge difference in drug loading degree observed for polymers and drugs with similar interactions. Here, based on the droplet microfluidic platform, the single droplet solidification process is investigated. The results indicated that amorphous polymers can hinder drug diffusion during droplet solidification compared to crystalline polymers, resulting in a higher drug loading degree. Next, this principle is applied to improve the drug loading capability of crystalline polymers (polycaprolactone (PCL) and poly(L‐lactide) (PLLA)) by random co‐polymerization (poly(caprolactone‐co‐L‐lactide) (PCL‐PLLA)), achieving 6.2–22.2 times increased drug loading degree. Moreover, PCL‐PLLA microspheres with a high content of indomethacin exhibited superior therapeutical efficacy in the treatment of gout arthritis. Overall, these results offer insights into the impact of polymer crystallization on droplet solidification kinetics, which consequently affects the drug loading capacity. These findings provide guidelines for the development of polymers for efficient drug encapsulation.
Collapse
Affiliation(s)
- Zhenyang Wei
- National Engineering Research Center for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki 00014 Finland
| | - Mingyu Zhu
- National Engineering Research Center for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki 00014 Finland
| | - Nicolas Morin
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki 00014 Finland
| | - Daniela Wollsten
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki 00014 Finland
| | - Jouni Hirvonen
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki 00014 Finland
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
| | - Hélder A. Santos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki 00014 Finland
- Department of Biomaterials and Biomedical Technology The Personalized Medicine Research Institute (PRECISION) University Medical Center Groningen (UMCG) University of Groningen Ant. Deusinglaan 1 Groningen 9713 AV The Netherlands
| | - Wei Li
- National Engineering Research Center for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki 00014 Finland
| |
Collapse
|
6
|
Ratzinger-Stoeger G, Anzengruber M, Skoll K, Ertl DA, Hartmann G, Gabor F. Formulation and characterisation of metyrapone suppositories for the first effective long-term use in an infant with McCune-Albright syndrome-related Cushing syndrome. Eur J Hosp Pharm 2025; 32:161-165. [PMID: 38050051 DOI: 10.1136/ejhpharm-2023-003853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
OBJECTIVES The aim of this project was to develop a rectal formulation of metyrapone suitable for application in an infant hospitalised with McCune-Albright syndrome (MAS)-related Cushing syndrome and to provide a detailed description of the formulation protocol including quality control parameters. METHODS Suppositories with a drug load of up to 100 mg metyrapone were prepared. Mass variation, content uniformity and drug release were analysed according to the guidelines set out by the European Pharmacopoeia. Monitoring of the drug content for 6 weeks allowed for estimation of the storage stability at 2-8°C. RESULTS A protocol for the reproducible preparation of suppositories with intended metyrapone content of 30-100 mg was established. The suppositories were well tolerated by the patient and the clinical outcome is promising. The suppository preparations complied with the regulations from the European Pharmacopoeia. Further, a stability of the rectal formulation of at least 1 month was confirmed, facilitating medication supply for home care. CONCLUSIONS An adequate and easy to follow protocol for preparation of high-quality metyrapone suppositories, with sufficient stability for practical use and fulfilling major pharmaceutical quality parameters, was established. The protocol can be easily replicated by skilled personnel in a community pharmacy facilitating treatment of the infant in home care.
Collapse
Affiliation(s)
| | - Maria Anzengruber
- Department of Pharmaceutical Sciences, University of Vienna, Wien, Austria
| | - Katharina Skoll
- Department of Pharmaceutical Sciences, University of Vienna, Wien, Austria
| | - Diana-Alexandra Ertl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Wien, Austria
- Vienna Bone and Growth Center, Medical University of Vienna, Wien, Austria
| | - Gabriele Hartmann
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Wien, Austria
- Vienna Bone and Growth Center, Medical University of Vienna, Wien, Austria
| | - Franz Gabor
- Department of Pharmaceutical Sciences, University of Vienna, Wien, Austria
| |
Collapse
|
7
|
Nunziata G, Nava M, Lacroce E, Pizzetti F, Rossi F. Thermo-Responsive Polymer-Based Nanoparticles: From Chemical Design to Advanced Applications. Macromol Rapid Commun 2025:e2401127. [PMID: 39895239 DOI: 10.1002/marc.202401127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Thermo-responsive polymers have emerged as a cutting-edge tool in nanomedicine, paving the way for innovative approaches to targeted drug delivery and advanced therapeutic strategies. These "smart" polymers respond to temperature changes, enabling controlled drug release in pathological environments characterized by high temperatures. By exploiting their unique phase transition, occurring at the lower or upper critical solution temperatures (LCST and UCST), these systems ensure localized therapeutic action, minimizing collateral damage to healthy tissues. The integration of these polymers into nanoparticles with hydrophilic shells and hydrophobic cores enhances their stability and biocompatibility. Furthermore, advanced polymer engineering allows precise modulation of LCST and UCST through adjustments in composition and hydrophilic-lipophilic balance, optimizing their responsiveness for specific applications. In addition to drug delivery, thermo-responsive nanoparticles are gaining attention in several fields such as gene therapy and imaging. Therefore, this review explores the chemical and structural diversity of thermo-responsive nanoparticles, emphasizing their ability to encapsulate and release drugs effectively. Second, this review highlights the potential of thermo-responsive nanoparticles to redefine treatment paradigms, providing a comprehensive understanding of their mechanisms, applications, and future perspectives in biomedical research.
Collapse
Affiliation(s)
- Giuseppe Nunziata
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | - Marco Nava
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | - Elisa Lacroce
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | - Fabio Pizzetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| |
Collapse
|
8
|
Bronze-Uhle ES, Melo CCDSBD, da Silva ISP, Stuani VDT, Bueno VH, Rinaldo D, de Souza Costa CA, Lisboa Filho PN, Soares DG. Simvastatin-Loaded Chitosan Microspheres as a Biomaterial for Dentin Tissue Engineering. J Biomed Mater Res B Appl Biomater 2025; 113:e35536. [PMID: 39888107 DOI: 10.1002/jbm.b.35536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/17/2024] [Accepted: 01/06/2025] [Indexed: 02/01/2025]
Abstract
In the present study, chitosan microspheres (MSCH) loaded with different concentrations of simvastatin (2%, 5%, and 10%) were synthesized as a biomaterial for dentin tissue engineering. The microspheres were prepared by emulsion crosslinking method, and simvastatin was incorporated during the process. The microspheres were then physicochemically and morphologically characterized. Scanning electron microscopy and infrared spectroscopy confirmed the spherical morphology of synthesized microspheres and the chemical incorporation of simvastatin into MSCH, respectively. UV-visible absorption confirmed the controlled and continuous release pattern of the drug. To mimic the clinical application in vitro, the microspheres were applied onto three-dimensional (3D) cultures of human dental pulp cells (HDPCs). Cell viability, proliferation, and in situ-mineralized matrix deposition were evaluated. The results indicated no cytotoxic effects for all 3D cultures for all tested biomaterials, with cells being able to proliferate significantly over time. HDPCs showed a significant increase in the deposition of mineralization nodules when 3D cultures were in direct contact with chitosan microspheres in comparison to control; nevertheless, the highest expression was observed for MSCH encapsulated with 5% and 10% simvastatin, which was significantly higher than plain MSCH. Therefore, chitosan microsphere systems loaded with 5%-10% simvastatin provided the development of a controlled release system in bioactive dosages for dentin tissue engineering.
Collapse
Affiliation(s)
- Erika Soares Bronze-Uhle
- Department of Operative Dentistry, Endodontics, and Dental Materials, Bauru School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| | | | - Isabela Sanches Pompeo da Silva
- Department of Operative Dentistry, Endodontics, and Dental Materials, Bauru School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| | - Vitor de Toledo Stuani
- Department of Operative Dentistry, Endodontics, and Dental Materials, Bauru School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| | - Victor Hugo Bueno
- Department of Chemistry, School of Science, São Paulo State University-UNESP, Bauru, Brazil
| | - Daniel Rinaldo
- Department of Chemistry, School of Science, São Paulo State University-UNESP, Bauru, Brazil
| | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology, University Estadual Paulista-UNESP, Araraquara School of Dentistry, Araraquara, Brazil
| | | | - Diana Gabriela Soares
- Department of Operative Dentistry, Endodontics, and Dental Materials, Bauru School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| |
Collapse
|
9
|
Subhash NE, Nair S, Srinivas SP, Theruveethi N, Bhandary SV, Guru B. Development of a biodegradable polymer-based implant to release dual drugs for post-operative management of cataract surgery. Drug Deliv Transl Res 2025; 15:508-522. [PMID: 38696092 PMCID: PMC11683021 DOI: 10.1007/s13346-024-01604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 01/01/2025]
Abstract
Cataract surgery is followed by post-operative eye drops for a duration of 4-6 weeks. The multitude of ocular barriers, coupled with the discomfort experienced by both the patient and their relatives in frequently administering eye drops, significantly undermines patient compliance, ultimately impeding the recovery of the patient. This study aimed to design and develop an ocular drug delivery system as an effort to achieve a drop-free post-operative care after cataract surgery. An implant was prepared containing a biodegradable polymer Poly-lactic-co-glycolic acid (PLGA), Dexamethasone (DEX) as an anti-inflammatory drug, and Moxifloxacin(MOX) as an antibiotic. Implant characterization and drug loading analysis were conducted. In vitro drug release profile showed that the release of the two drugs are correlated with the clinical prescription for post operative eye drops. In vivo study was conducted on New Zealand albino rabbits where one eye underwent cataract surgery, and the drug delivery implant was inserted into the capsular bag after placement of the synthetic intraocular lens (IOL). Borderline increase in the intraocular pressure (IOP) was noted in the test sample group. Slit-lamp observations revealed no significant anterior chamber reaction in all study groups. Histopathology study of the operated eye revealed no significant pathology in the test samples. This work aims at developing the intra ocular drug delivery implant which will replace the post-operative eye drops and help the patient with the post-operative hassle of eye drops.
Collapse
Affiliation(s)
- Nayana E- Subhash
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Soumya Nair
- Department of Ophthalmology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Srilatha Parampalli Srinivas
- Department of Pathology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nagarajan Theruveethi
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sulatha V- Bhandary
- Department of Ophthalmology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - BharathRaja Guru
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
10
|
Fortunatus RM, Balog S, Sousa F, Vanhecke D, Rothen-Rutishauser B, Taladriz-Blanco P, Petri-Fink A. Taylor dispersion analysis and release studies of β-carotene-loaded PLGA nanoparticles and liposomes in simulated gastrointestinal fluids. RSC Adv 2025; 15:1095-1104. [PMID: 39807192 PMCID: PMC11727072 DOI: 10.1039/d4ra08138b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
β-Carotene (βC), a natural carotenoid, is the most important and effective vitamin A precursor, known also for its antioxidant properties. However, its poor water solubility, chemical instability, and low bioavailability limit its effectiveness as an orally delivered functional nutrient. Nanoparticle encapsulation improves βC's bioaccessibility by enhancing its stability and solubility. This study compares two formulations, i.e. βC-loaded poly(lactic-co-glycolic acid) (PLGA) NPs and liposomes before and after exposure to simulated gastrointestinal fluids using various methods such as Taylor dispersion analysis (TDA), cryo-transmission electron microscopy, dynamic light scattering (DLS), and nanoparticle tracking analysis (NTA). TDA, a microfluidic technique, proved more effective than DLS and NTA in determining nanoparticle size in simulated gastrointestinal fluids. This highlights TDA's potential for assessing nanoparticle colloidal stability in simulated gastro-intestinal fluids, crucial for evaluating encapsulated bioactives' bioavailability. High-performance liquid chromatography (HPLC) revealed that PLGA nanoparticles incorporate and preserve βC more effectively during long-term storage compared to liposomes. Adding ascorbic acid significantly reduced degradation in simulated gastrointestinal fluids. Release studies showed that liposomes released 52% of βC after 36 hours, while PLGA nanoparticles released only 9% over 168 hours. These results provide valuable insights for selecting an appropriate βC nanocarrier for oral delivery based on desired release rates.
Collapse
Affiliation(s)
- Roman M Fortunatus
- Adolphe Merkle Institute, University of Fribourg 1700 Fribourg Switzerland
| | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg 1700 Fribourg Switzerland
| | - Flávia Sousa
- Adolphe Merkle Institute, University of Fribourg 1700 Fribourg Switzerland
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen 9713 AV Groningen The Netherlands
| | - Dimitri Vanhecke
- Adolphe Merkle Institute, University of Fribourg 1700 Fribourg Switzerland
| | | | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg 1700 Fribourg Switzerland
- Department of Chemistry, University of Fribourg 1700 Fribourg Switzerland
| |
Collapse
|
11
|
Gomes FL, Conceição F, Teixeira LM, Leijten J, Jonkheijm P. Production of Hydrophobic Microparticles at Safe-To-Inject Sizes for Intravascular Administration. Pharmaceutics 2025; 17:64. [PMID: 39861712 PMCID: PMC11768317 DOI: 10.3390/pharmaceutics17010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Hydrophobic microparticles are one of the most versatile structures in drug delivery and tissue engineering. These constructs offer a protective environment for hydrophobic or water-sensitive compounds (e.g., drugs, peroxides), providing an optimal solution for numerous biomedical purposes, such as drug delivery or oxygen therapeutics. The intravascular administration of hydrophobic microparticles requires a safe-to-flow particle profile, which typically corresponds to a maximum size of 5 µm-the generally accepted diameter for the thinnest blood vessels in humans. However, the production of hydrophobic microparticles below this size range remains largely unexplored. In this work, we investigate the fabrication of hydrophobic microparticles at safe-to-inject and safe-to-flow sizes (<5 µm) for intravascular administration. Methods: Polycaprolactone microparticles (PCL MPs) are produced using a double-emulsification method with tip ultrasonication, for which various production parameters (PCL molecular weight, PCL concentration, type of stabilizer, and filtration) are optimized to obtain particles at sizes below 5 µm. Results: We achieve a PCL MP size distribution of 99.8% below this size limit, and prove that these particles can flow without obstruction through a microfluidic model emulating a thin human blood capillary (4.1 µm × 3.0 µm width × heigh). Conclusions: Overall, we demonstrate that hydrophobic microparticles can be fabricated at safe-to-flow sizes using a simple and scalable setup, paving the way towards their applicability as new intravascular injectables.
Collapse
Affiliation(s)
- Francisca L. Gomes
- Laboratory of Biointerface Chemistry, Department of Molecules and Materials, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, 7522NB Enschede, The Netherlands;
- Leijten Laboratory, Department of BioEngineering Technologies, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522NB Enschede, The Netherlands
| | - Francisco Conceição
- Department of BioEngineering Technologies, Advanced Organ Bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522NB Enschede, The Netherlands; (F.C.); (L.M.T.)
| | - Liliana Moreira Teixeira
- Department of BioEngineering Technologies, Advanced Organ Bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522NB Enschede, The Netherlands; (F.C.); (L.M.T.)
- Organ-on-Chip Centre Twente, MESA+ Institute, University of Twente, 7522NB Enschede, The Netherlands
| | - Jeroen Leijten
- Leijten Laboratory, Department of BioEngineering Technologies, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522NB Enschede, The Netherlands
| | - Pascal Jonkheijm
- Laboratory of Biointerface Chemistry, Department of Molecules and Materials, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, 7522NB Enschede, The Netherlands;
- Organ-on-Chip Centre Twente, MESA+ Institute, University of Twente, 7522NB Enschede, The Netherlands
| |
Collapse
|
12
|
Garner J, Skidmore S, Overdorf G, Hadar J, Park H, Park K, Wang Y, Jhon YK, Smith WC, Zhang D, Zou Y. A New Analytical Method for Quantifying Acid-End-Cap PLGA in Sub-Milligram Quantities. Mol Pharm 2025; 22:446-458. [PMID: 39566092 DOI: 10.1021/acs.molpharmaceut.4c01057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Characterization of PLGA polymers used in FDA-approved drug products is critical for quality control and qualitative/quantitative (Q1/Q2) evaluation of potential generic formulations. Various techniques have been developed and used to characterize the molecular properties of PLGA polymers, such as molecular weight, molecular composition, and molecular structure. Commonly used techniques include gel permeation chromatography (GPC), nuclear magnetic resonance (NMR), semisolvent methods, and GPC-based intrinsic viscosity measurement. It is noted that the existing analytical methods may not be able to separate and quantify PLGA polymers when used as a mixture in a drug product (e.g., Durysta and Ozurdex). In particular, one assay method still lacking is quantitating the PLGA polymer with acid-end-cap (PLGA-A) in the mixture containing PLGA with ester-end-cap (PLGA-E), especially when the sample quantity is below the submilligram level. The total PLGA quantities available in Durysta and Ozurdex formulations are too small (<1 mg) to use existing assay methods to quantify the PLGA-A content. A new assay method was developed to quantitate PLGA-A in the mixture with PLGA-E. The acid end-cap was modified with pyrene methylamine (a UV dye) to enhance the signal and compared with the total PLGA quantity measured with the refractive index (RI) after a sample was run through a GPC. This GPC-UV/RI approach is based on measuring the total acid number (TAN) of PLGA-A and converting it to the PLGA-A quantity to compare with the total PLGA. Unlike conventional methods of measuring TAN, the GPC-UV/RI methods enables TAN measurements of submilligram PLGA quantities. Application of this method to Ozurdex-similar samples showed the expected acid:ester ratio of PLGAs. This new approach provides another powerful tool for characterizing PLGA polymers in FDA-approved drug products. This is especially significant considering that the PLGAs of commercial products are likely to have molecular properties different from those of the raw PLGAs before going through the manufacturing process.
Collapse
Affiliation(s)
- John Garner
- Akina, Inc., 3495 Kent Avenue, West Lafayette, Indiana 47906, United States
| | - Sarah Skidmore
- Akina, Inc., 3495 Kent Avenue, West Lafayette, Indiana 47906, United States
| | - Gary Overdorf
- Akina, Inc., 3495 Kent Avenue, West Lafayette, Indiana 47906, United States
| | - Justin Hadar
- Akina, Inc., 3495 Kent Avenue, West Lafayette, Indiana 47906, United States
| | - Haesun Park
- Akina, Inc., 3495 Kent Avenue, West Lafayette, Indiana 47906, United States
| | - Kinam Park
- Akina, Inc., 3495 Kent Avenue, West Lafayette, Indiana 47906, United States
- Biomedical Engineering and Pharmaceutics, Purdue University, 206 South Martin Jischke Drive, West Lafayette, Indiana 47907, United States
| | - Yan Wang
- Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| | - Young Kuk Jhon
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| | - William C Smith
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| | - Deyi Zhang
- Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| | - Yuan Zou
- Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| |
Collapse
|
13
|
Cheung CV, Atube KJ, Colonna NA, Carter GJ, Marchena T, McCarthy S, Krusen KE, McCain RS, Frizzell N, Gower RM. A microparticle delivery system for extended release of all-trans retinoic acid and its impact on macrophage insulin-like growth factor 1 release and myotube formation. Int J Pharm 2024; 666:124821. [PMID: 39396656 PMCID: PMC11706047 DOI: 10.1016/j.ijpharm.2024.124821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Muscle atrophy secondary to disuse, aging, or illness increases the risk of injury, prolonged recovery, and permanent disability. The recovery process involves macrophages and their secretions, such as insulin-like growth factor 1 (IGF-1), which direct muscle to regenerate and grow. Retinoic acid receptor (RAR) activation in macrophages increases IGF-1 expression and can be achieved with all-trans retinoic acid (ATRA). However, poor bioavailability limits its clinical application. Thus, we encapsulated ATRA into poly(lactide-co-glycolide) microparticles (ATRA-PLG) to maintain bioactivity and achieve extended release. ATRA-PLG induces IGF-1 release by RAW 264.7 macrophages, and conditioned media from these cells enhances C2C12 myotube formation through IGF-1. Additionally, ATRA released from ATRA-PLG enhances myotube formation in the absence of macrophages. Toward clinical translation, we envision that ATRA-PLG will be injected in the vicinity of debilitated muscle where it can be taken up by macrophages and induce IGF-1 release over a predetermined therapeutic window. Along these lines, we demonstrate that ATRA-PLG microparticles are readily taken up by bone marrow-derived macrophages and reside within the cytosol for at least 12 days with no toxicity. Interestingly, ATRA-PLG induced IGF-1 secretion by thioglycolate-elicited macrophages, but not bone marrow derived macrophages. We found that the RAR isoforms present in lysate differed between the macrophages studied, which could explain the different IGF-1 responses to ATRA. Given that ATRA-PLG enhances myotube formation directly (through ATRA) and indirectly (through macrophage IGF-1) this study supports the further testing of this promising pharmaceutical using rodent models of muscle regeneration and growth.
Collapse
Affiliation(s)
- Candice V Cheung
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Kidochukwu J Atube
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Nicholas A Colonna
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Griffin J Carter
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Tristan Marchena
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Samantha McCarthy
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Kelsey E Krusen
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Richard S McCain
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Norma Frizzell
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - R Michael Gower
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA; Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA; Veterans Affairs Medical Center, Columbia, SC 29209, USA.
| |
Collapse
|
14
|
Pohjola J, Jokinen M, Soukka T, Stolt M. Polymer microsphere inks for semi-solid extrusion 3D printing at ambient conditions. J Mech Behav Biomed Mater 2024; 160:106783. [PMID: 39486301 DOI: 10.1016/j.jmbbm.2024.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Extrusion-based 3D printing methods have great potential for manufacturing of personalized polymer-based drug-releasing systems. However, traditional melt-based extrusion techniques are often unsuitable for processing thermally labile molecules. Consequently, methods that utilize the extrusion of semi-solid inks under mild conditions are frequently employed. The rheological properties of the semi-solid inks have a substantial impact on the 3D printability, making it necessary to evaluate and tailor these properties. Here, we report a novel semi-solid extrusion 3D printing method based on utilization of a Carbopol gel matrix containing various concentrations of polymeric microspheres. We also demonstrate the use of a solvent vapor-based post-processing method for enhancing the mechanical strength of the printed objects. As our approach enables room-temperature processing of polymers typically used in the pharmaceutical industry, it may also facilitate the broader application of 3D printing and microsphere technologies in preparation of personalized medicine.
Collapse
Affiliation(s)
- Juuso Pohjola
- Biotechnology, Department of Life Technologies, Faculty of Technology, University of Turku, FI-20014 Turku, Finland; Pharmaceutical Sciences, Bayer Oy, FI-20210 Turku, Finland.
| | | | - Tero Soukka
- Biotechnology, Department of Life Technologies, Faculty of Technology, University of Turku, FI-20014 Turku, Finland
| | - Mikael Stolt
- Pharmaceutical Sciences, Bayer Oy, FI-20210 Turku, Finland
| |
Collapse
|
15
|
Cárdenas PA, Alves IA, De Araujo BV, Aragón DM. Effect of poly(ε-caprolactone) microspheres on population pharmacokinetic/pharmacodynamic model of a simple coumarin. J Microencapsul 2024; 41:739-753. [PMID: 39460601 DOI: 10.1080/02652048.2024.2418606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
This study aims to evaluated the impact of poly(ε-caprolactone) (PCL) microspheres on the pharmacokinetics and pharmacodynamics (PopPK/PD) of 6-methylcoumarin (6MC). For this, PCL microspheres loaded with 6MC were prepared using the emulsification-evaporation method. Particle size, zeta potential, drug loading, and entrapment efficiency were characterised by dynamic light scattering and UV spectrophotometry. In vitro release and pharmacokinetics in Wistar rats were assessed for free and encapsulated 6MC. Anti-inflammatory activity was evaluated using the carrageenan-induced paw edoema model, with PopPK and PopPK/PD models developed. Microspheres showed diameters between 2.9 and 7.1 µm, zeta potentials of -10 to -15 mV, and drug loading of 0.24 mg/mg. Encapsulation efficiency was 45.5% to 75.9%. PopPK models showed enhanced absorption and distribution, with increased anti-inflammatory potency of encapsulated 6MC. PCL microspheres significantly improved the pharmacokinetic and pharmacodynamic profiles of 6MC, enhancing its therapeutic potential for lipophilic drugs.
Collapse
Affiliation(s)
- Paola A Cárdenas
- Departamento de Farmacia, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Izabel Almeida Alves
- Faculdade de Farmácia, Universidade Federal de Bahia, Salvador, BA, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Estado da Bahia, Salvador, BA, Brazil
| | - Bibiana Verlindo De Araujo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | |
Collapse
|
16
|
Rodponthukwaji K, Thongchot S, Deureh S, Thongkleang T, Thaweesuvannasak M, Srichan K, Srisawat C, Thuwajit P, Nguyen KT, Tadpetch K, Thuwajit C, Punnakitikashem P. Development of cancer-associated fibroblasts-targeting polymeric nanoparticles loaded with 8- O-methylfusarubin for breast cancer treatment. Int J Pharm X 2024; 8:100294. [PMID: 39507587 PMCID: PMC11539325 DOI: 10.1016/j.ijpx.2024.100294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are abundant stromal cells residing in a tumor microenvironment (TME) which are associated with the progression of tumor. Herein, we developed novel CAFs-targeting polymeric nanoparticles encapsulating a synthetic 8-O-methylfusarubin (OMF) compound (OMF@NPs-anti-FAP). Anti-FAP/fibroblast activation protein antibody was employed as a CAFs-targeting ligand. The physicochemical properties of the synthesized nanomaterials were firstly investigated with various techniques. The cytocompatibility of polymeric nanoparticles (NPs) was elicited through cell viability of CAFs and human breast epithelial cells, MCF-10A. Additionally, the anti-FAP-conjugated NPs displayed different degrees of cellular internalization regarding the FAP expression level on the CAFs' surface. However, CAFs exposed to NPs containing OMF demonstrated significant cell death which were associated with the apoptotic pathway as confirmed by caspase-3/7 activity. Upon OMF@NPs-anti-FAP treatment, an enhanced toxicity was clearly observed in 3D spheroid models. High FAP-expressed PC-B-132CAFs demonstrated a high percentage of cell death compared to other cells with a low level of FAP expression analyzed by flow cytometry (e.g. MCF-10A, HDFa, and PC-B-142CAFs). This result emphasized the importance of anti-FAP antibody as a targeting ligand. These findings suggest that the fabricated nanosystem of OMF-loaded polymeric NPs with CAFs' high specificity holds a potential NP-based platform for improvement in breast cancer treatment.
Collapse
Affiliation(s)
- Kamonlatth Rodponthukwaji
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence in Theranostic Nanomedicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suttikiat Deureh
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Tanva Thongkleang
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Mattika Thaweesuvannasak
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kornrawee Srichan
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chatchawan Srisawat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence in Theranostic Nanomedicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Kwanruthai Tadpetch
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Primana Punnakitikashem
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence in Theranostic Nanomedicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
17
|
Long Y, Hu J, Liu Y, Wu D, Zheng Z, Gui S, He N. Development of puerarin-loaded poly(lactic acid) microspheres for sustained ocular delivery: In vitro/vivo evaluation. Eur J Pharm Biopharm 2024; 204:114524. [PMID: 39370056 DOI: 10.1016/j.ejpb.2024.114524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/07/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Diabetic retinopathy, an ocular complication of diabetes, is an important cause of blindness in adults. Puerarin is considered to have promising potential for clinical use in treating diabetic retinopathy. In this study, we designed a novel puerarin-loaded poly(lactic acid) sustained-release microspheres suitable for ocular administration, and we assessed itsin vitro and in vivo properties. The preparation of puerarin-loaded microspheres was optimized by Box-Behnken response surface design. The encapsulation efficiency and drug loading of microspheres were 35.71% and 3.85%, respectively. The microspheres exhibited good dispersion and high safety, making it suitable for ocular drug delivery. In vitro release demonstrated that microspheres had a well-sustained release effectiveness, and its release behavior complied with the zero-order kinetic characteristics. The results of ocular tissue distribution revealed that the CmaxandAUC0-∞ of the microspheres group in the retina and choroid were considerably higher than those of the solution group and the intravenous injection group. This research revealed that intravitreal injection of microspheres can significantly prolong the half-life of puerarin in eye tissues and achieve sustained drug release. Therefore, intravitreal injection of microspheres has positive implications for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Yanqiu Long
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jie Hu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yan Liu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Danqing Wu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhiyun Zheng
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, China
| | - Shuangying Gui
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, China
| | - Ning He
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, China.
| |
Collapse
|
18
|
Kadyr S, Zhuraliyeva A, Yermekova A, Makhambetova A, Kaldybekov DB, Mun EA, Bulanin D, Askarova SN, Umbayev BA. PLGA-PEG Nanoparticles Loaded with Cdc42 Inhibitor for Colorectal Cancer Targeted Therapy. Pharmaceutics 2024; 16:1301. [PMID: 39458630 PMCID: PMC11510643 DOI: 10.3390/pharmaceutics16101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: An inhibitor of small Rho GTPase Cdc42, CASIN, has been shown to reduce cancer cell proliferation, migration, and invasion, yet it has several limitations, including rapid drug elimination and low bioavailability, which prevents its systemic administration. In this study, we designed and characterized a nanoparticle-based delivery system for CASIN encapsulated within poly(lactide-co-glycolide)-block-poly(ethylene glycol)-carboxylic acid endcap nanoparticles (PLGA-PEG-COOH NPs) for targeted inhibition of Cdc42 activity in colon cancer. Methods: We applied DLS, TEM, and UV-vis spectroscopy methods to characterize the size, polydispersity index, zeta potential, encapsulation efficiency, loading capacity, and in vitro drug release of the synthesized nanoparticles. The CCK-8 cell viability test was used to study colorectal cancer cell growth in vitro. Results: We showed that CASIN-PLGA-PEG-COOH NPs were smooth, spherical, and had a particle size of 86 ± 1 nm, with an encapsulation efficiency of 66 ± 5% and a drug-loading capacity of 5 ± 1%. CASIN was gradually released from NPs, reaching its peak after 24 h, and could effectively inhibit the proliferation of HT-29 (IC50 = 19.55 µM), SW620 (IC50 = 9.33 µM), and HCT116 (IC50 = 10.45 µM) cells in concentrations ranging between 0.025-0.375 mg/mL. CASIN-PLGA-PEG-COOH NPs demonstrated low hemolytic activity with a hemolytic ratio of less than 1% for all tested concentrations. Conclusion: CASIN-PLGA-PEG-COOH NPs have high encapsulation efficiency, sustained drug release, good hemocompatibility, and antitumor activity in vitro. Our results suggest that PLGA-PEG-COOH nanoparticles loaded with CASIN show potential as a targeted treatment for colorectal cancer and could be recommended for further in vivo evaluation.
Collapse
Affiliation(s)
- Sanazar Kadyr
- School of Medicine, Nazarbayev University, 010000 Astana, Kazakhstan; (S.K.); (D.B.)
| | - Altyn Zhuraliyeva
- Laboratory of Bioengineering and Regenerative Medicine, National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan; (A.Z.); (A.Y.); (A.M.); (S.N.A.)
| | - Aislu Yermekova
- Laboratory of Bioengineering and Regenerative Medicine, National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan; (A.Z.); (A.Y.); (A.M.); (S.N.A.)
| | - Aigerim Makhambetova
- Laboratory of Bioengineering and Regenerative Medicine, National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan; (A.Z.); (A.Y.); (A.M.); (S.N.A.)
| | - Daulet B. Kaldybekov
- Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan;
| | - Ellina A. Mun
- School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan;
| | - Denis Bulanin
- School of Medicine, Nazarbayev University, 010000 Astana, Kazakhstan; (S.K.); (D.B.)
| | - Sholpan N. Askarova
- Laboratory of Bioengineering and Regenerative Medicine, National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan; (A.Z.); (A.Y.); (A.M.); (S.N.A.)
| | - Bauyrzhan A. Umbayev
- Laboratory of Bioengineering and Regenerative Medicine, National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan; (A.Z.); (A.Y.); (A.M.); (S.N.A.)
| |
Collapse
|
19
|
Alidori S, Subramanian R, Holm R. Patient-Centric Long-Acting Injectable and Implantable Platforms─An Industrial Perspective. Mol Pharm 2024; 21:4238-4258. [PMID: 39160132 PMCID: PMC11372838 DOI: 10.1021/acs.molpharmaceut.4c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The increasing focus on patient centricity in the pharmaceutical industry over the past decade and the changing healthcare landscape, driven by factors such as increased access to information, social media, and evolving patient demands, has necessitated a shift toward greater connectivity and understanding of patients' unique treatment needs. One pharmaceutical technology that has supported these efforts is long acting injectables (LAIs), which lower the administration frequency for the patient's provided convenience, better compliance, and hence better therapeutical treatment for the patients. Furthermore, patients with conditions like the human immunodeficiency virus and schizophrenia have positively expressed the desire for less frequent dosing, such as that obtained through LAI formulations. In this work, a comprehensive analysis of marketed LAIs across therapeutic classes and technologies is conducted. The analysis demonstrated an increasing number of new LAIs being brought to the market, recently most as aqueous suspensions and one as a solution, but many other technology platforms were applied as well, in particular, polymeric microspheres and in situ forming gels. The analysis across the technologies provided an insight into to the physicochemical properties the compounds had per technology class as well as knowledge of the excipients typically used within the individual formulation technology. The principle behind the formulation technologies was discussed with respect to the release mechanism, manufacturing approaches, and the possibility of defining predictive in vitro release methods to obtain in vitro in vivo correlations with an industrial angle. The gaps in the field are still numerous, including better systematic formulation and manufacturing investigations to get a better understanding of potential innovations, but also development of new polymers could facilitate the development of additional compounds. The biggest and most important gaps, however, seem to be the development of predictive in vitro dissolution methods utilizing pharmacopoeia described equipment to enable their use for product development and later in the product cycle for quality-based purposes.
Collapse
Affiliation(s)
- Simone Alidori
- Independent Researcher, Havertown, Pennsylvania 19083, United States
| | - Raju Subramanian
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94403, United States
| | - René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
20
|
Safdar A, Wang P, Muhaymin A, Nie G, Li S. From bench to bedside: Platelet biomimetic nanoparticles as a promising carriers for personalized drug delivery. J Control Release 2024; 373:128-144. [PMID: 38977134 DOI: 10.1016/j.jconrel.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
In recent decades, there has been a burgeoning interest in cell membrane coating strategies as innovative approach for targeted delivery systems in biomedical applications. Platelet membrane-coated nanoparticles (PNPs), in particular, are gaining interest as a new route for targeted therapy due to their advantages over conventional drug therapies. Their stepwise approach blends the capabilities of the natural platelet membrane (PM) with the adaptable nature of manufactured nanomaterials, resulting in a synergistic combination that enhances drug delivery and enables the development of innovative therapeutics. In this context, we present an overview of the latest advancements in designing PNPs with various structures tailored for precise drug delivery. Initially, we describe the types, preparation methods, delivery mechanisms, and specific advantages of PNPs. Next, we focus on three critical applications of PNPs in diseases: vascular disease therapy, cancer treatment, and management of infectious diseases. This review presents our knowledge of PNPs, summarizes their advancements in targeted therapies and discusses the promising potential for clinical translation of PNPs.
Collapse
Affiliation(s)
- Ammara Safdar
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Peina Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Department of Histology and Embryology, College of Basic Medical Sciences, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China.
| | - Abdul Muhaymin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
21
|
Bentley ER, Subick S, Pezzillo M, Balmert SC, Herbert A, Little SR. Identification and Characterization of Critical Processing Parameters in the Fabrication of Double-Emulsion Poly(lactic-co-glycolic) Acid Microparticles. Pharmaceutics 2024; 16:796. [PMID: 38931917 PMCID: PMC11207479 DOI: 10.3390/pharmaceutics16060796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
In the past several decades, polymeric microparticles (MPs) have emerged as viable solutions to address the limitations of standard pharmaceuticals and their corresponding delivery methods. While there are many preclinical studies that utilize polymeric MPs as a delivery vehicle, there are limited FDA-approved products. One potential barrier to the clinical translation of these technologies is a lack of understanding with regard to the manufacturing process, hindering batch scale-up. To address this knowledge gap, we sought to first identify critical processing parameters in the manufacturing process of blank (no therapeutic drug) and protein-loaded double-emulsion poly(lactic-co-glycolic) acid MPs through a quality by design approach. We then utilized the design of experiments as a tool to systematically investigate the impact of these parameters on critical quality attributes (e.g., size, surface morphology, release kinetics, inner occlusion size, etc.) of blank and protein-loaded MPs. Our results elucidate that some of the most significant CPPs impacting many CQAs of double-emulsion MPs are those within the primary or single-emulsion process (e.g., inner aqueous phase volume, solvent volume, etc.) and their interactions. Furthermore, our results indicate that microparticle internal structure (e.g., inner occlusion size, interconnectivity, etc.) can heavily influence protein release kinetics from double-emulsion MPs, suggesting it is a crucial CQA to understand. Altogether, this study identifies several important considerations in the manufacturing and characterization of double-emulsion MPs, potentially enhancing their translation.
Collapse
Affiliation(s)
- Elizabeth R. Bentley
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15260, USA;
| | - Stacia Subick
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15213, USA; (S.S.); (M.P.)
| | - Michael Pezzillo
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15213, USA; (S.S.); (M.P.)
| | - Stephen C. Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, W1150 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15213, USA;
| | - Aidan Herbert
- DigiM Solution—Pixel Perfect Therapeutics, 500 W Cummings Park, Suite 3650, Woburn, MA 01801, USA;
| | - Steven R. Little
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15260, USA;
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15213, USA; (S.S.); (M.P.)
- Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA
- Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
- Department of Pharmaceutical Sciences, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15213, USA
- Department of Ophthalmology, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
22
|
Rongala DS, Patil SM, Kunda NK. Design of Experiment (DoE) Approach for Developing Inhalable PLGA Microparticles Loaded with Clofazimine for Tuberculosis Treatment. Pharmaceuticals (Basel) 2024; 17:754. [PMID: 38931422 PMCID: PMC11206430 DOI: 10.3390/ph17060754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Tuberculosis (TB) is an airborne bacterial infection caused by Mycobacterium tuberculosis (M. tb), resulting in approximately 1.3 million deaths in 2022 worldwide. Oral therapy with anti-TB drugs often fails to achieve therapeutic concentrations at the primary infection site (lungs). In this study, we developed a dry powder inhalable formulation (DPI) of clofazimine (CFZ) to provide localized drug delivery and minimize systemic adverse effects. Poly (lactic acid-co-glycolic acid) (PLGA) microparticles (MPs) containing CFZ were developed through a single emulsion solvent evaporation technique. Clofazimine microparticles (CFZ MPs) displayed entrapment efficiency and drug loading of 66.40 ± 2.22 %w/w and 33.06 ± 1.45 µg/mg, respectively. To facilitate pulmonary administration, MPs suspension was spray-dried to yield a dry powder formulation (CFZ SD MPs). Spray drying had no influence on particle size (~1 µm), zeta potential (-31.42 mV), and entrapment efficiency. Solid state analysis (PXRD and DSC) of CFZ SD MPs studies demonstrated encapsulation of the drug in the polymer. The drug release studies showed a sustained drug release. The optimized formulation exhibited excellent aerosolization properties, suggesting effective deposition in the deeper lung region. The in vitro antibacterial studies against H37Ra revealed improved (eight-fold) efficacy of spray-dried formulation in comparison to free drug. Hence, clofazimine dry powder formulation presents immense potential for the treatment of tuberculosis with localized pulmonary delivery and improved patient compliance.
Collapse
Affiliation(s)
| | | | - Nitesh K. Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Jamaica, NY 11439, USA; (D.S.R.); (S.M.P.)
| |
Collapse
|
23
|
Nozal V, Fernández-Gómez P, García-Rubia A, Martínez-González L, Cuevas EP, Carro E, Palomo V, Martínez A. Designing multitarget ligands for neurodegenerative diseases with improved permeability trough PLGA nanoencapsulation. Biomed Pharmacother 2024; 175:116626. [PMID: 38663103 DOI: 10.1016/j.biopha.2024.116626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 06/03/2024] Open
Abstract
Multitarget ligands (MTLs) have emerged as an interesting alternative for addressing complex multifactorial pathologies such as neurodegenerative diseases. However, a common challenge associated with these compounds is often their high molecular weight and low solubility, which becomes a hurdle when trying to permeate over the blood-brain barrier (BBB). In this study, we have designed two new MTLs that modulate three pharmacological targets simultaneously (tau, beta-amyloid and TAR DNA-binding protein 43). To enhance their brain penetration, we have formulated organic polymeric nanoparticles using poly(lactic-co-glycolic acid). The characterization of the formulations, evaluation of their permeability through an in vitro BBB model, and assessment of their activity on disease-representative cellular models, such as Alzheimer's disease and amyotrophic lateral sclerosis, have been conducted. The results demonstrate the potential of the new MTLs and their nanoparticle encapsulation for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Vanesa Nozal
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Paula Fernández-Gómez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid 28049, Spain
| | - Alfonso García-Rubia
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Loreto Martínez-González
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain
| | - Eva P Cuevas
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain
| | - Eva Carro
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain; Neurobiology of Alzheimer's Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Valle Palomo
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid 28049, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain; Unidad de Nanobiotecnología Asociada al Centro Nacional de Biotecnología (CSIC), Madrid 28049, Spain.
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain.
| |
Collapse
|
24
|
Block M, Sieger P, Truenkle C, Saal C, Simon R, Truebenbach I. Miniaturized screening and performance prediction of tailored subcutaneous extended-release formulations for preclinical in vivo studies. Eur J Pharm Sci 2024; 196:106733. [PMID: 38408709 DOI: 10.1016/j.ejps.2024.106733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Microencapsulation of active pharmaceutical ingredients (APIs) for preparation of long acting injectable (LAI) formulations is an auspicious technique to enable preclinical characterization of a broad variety of APIs, ideally independent of their physicochemical and pharmacokinetic (PK) characteristics. During early API discovery, tunable LAI formulations may enable pharmacological proof-of-concept for the given variety of candidates by tailoring the level of plasma exposure over the duration of various timespans. Although numerous reports on small scale preparation methods for LAIs utilizing copolymers of lactic and glycolic acid (PLGA) and polymers of lactic acid (PLA) highlight their potential, application in formulation screening and use in preclinical in vivo studies is yet very limited. Transfer from downscale formulation preparation to in vivo experiments is hampered in early preclinical API screening by the large number of API candidates with simultaneously very limited available amount in the lower sub-gram scale, lack of formulation stability and deficient tunability of sustained release. We hereby present a novel comprehensive platform tool for tailored extended-release formulations, aiming to support a variety of preclinical in vivo experiments with ranging required plasma exposure levels and timespans. A novel small-scale spray drying process was successfully implemented by using an air brush based instrument for preparation of PLGA and PLA based formulations. Using Design of Experiments (DoE), required API amount of 250 mg was demonstrated to suffice for identification of dominant polymer characteristics with largest impact on sustained release capability for an individual API. BI-3231, a hydrophilic and weakly acidic small compound with good water solubility and permeability, but low metabolic stability, was used as an exemplary model for one of the many candidates during API discovery. Furthermore, an in vitro to in vivo correlation (IVIVC) of API release rate was established in mice, which enabled the prediction of in vivo plasma concentration plateaus after single subcutaneous injection, using only in vitro dissolution profiles of screened formulations. By tailoring LAI formulations and their doses for acute and sub-chronic preclinical experiments, we exemplary demonstrate the practical use for BI-3231. Pharmacological proof-of-concept could be enabled whilst circumventing the need of multiple administration as result of extensive hepatic metabolism and simultaneously superseding numerous in vivo experiments for formulation tailoring.
Collapse
Affiliation(s)
- Marco Block
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany
| | - Peter Sieger
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany
| | - Cornelius Truenkle
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany
| | - Christoph Saal
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany
| | - Roman Simon
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany
| | - Ines Truebenbach
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany.
| |
Collapse
|
25
|
McCoubrey LE, Ferraro F, Seegobin N, Verin J, Alfassam HA, Awad A, Marzorati M, Verstrepen L, Ghyselinck J, De Munck J, De Medts J, Steppe E, De Vleeschhauwer V, De Rocker G, Droesbeke A, De Rijck M, Vanthoor S, Moens F, Siepmann J, Siepmann F, Gaisford S, Orlu M, Basit AW. Poly(D,l-lactide-co-glycolide) particles are metabolised by the gut microbiome and elevate short chain fatty acids. J Control Release 2024; 369:163-178. [PMID: 38521168 DOI: 10.1016/j.jconrel.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/17/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
The production of short chain fatty acids (SCFAs) by the colonic microbiome has numerous benefits for human health, including maintenance of epithelial barrier function, suppression of colitis, and protection against carcinogenesis. Despite the therapeutic potential, there is currently no optimal approach for elevating the colonic microbiome's synthesis of SCFAs. In this study, poly(D,l-lactide-co-glycolide) (PLGA) was investigated for this application, as it was hypothesised that the colonic microbiota would metabolise PLGA to its lactate monomers, which would promote the resident microbiota's synthesis of SCFAs. Two grades of spray dried PLGA, alongside a lactate bolus control, were screened in an advanced model of the human colon, known as the M-SHIME® system. Whilst the high molecular weight (Mw) grade of PLGA was stable in the presence of the microbiota sourced from three healthy humans, the low Mw PLGA (PLGA 2) was found to be metabolised. This microbial degradation led to sustained release of lactate over 48 h and increased concentrations of the SCFAs propionate and butyrate. Further, microbial synthesis of harmful ammonium was significantly reduced compared to untreated controls. Interestingly, both types of PLGA were found to influence the composition of the luminal and mucosal microbiota in a donor-specific manner. An in vitro model of an inflamed colonic epithelium also showed the polymer to affect the expression of pro- and anti-inflammatory markers, such as interleukins 8 and 10. The findings of this study reveal PLGA's sensitivity to enzymatic metabolism in the gut, which could be harnessed for therapeutic elevation of colonic SCFAs.
Collapse
Affiliation(s)
- Laura E McCoubrey
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Fabiana Ferraro
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - Nidhi Seegobin
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Jérémy Verin
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - Haya A Alfassam
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom; Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), 114422 Riyadh, Saudi Arabia
| | - Atheer Awad
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom; Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | | | | | | | | | | | - Evi Steppe
- ProDigest BVB, Technologiepark 73, 9052 Ghent, Belgium
| | | | | | | | | | - Sara Vanthoor
- ProDigest BVB, Technologiepark 73, 9052 Ghent, Belgium
| | | | | | | | - Simon Gaisford
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Mine Orlu
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
26
|
Cristelo C, Sá AF, Lúcio M, Sarmento B, Gama FM. Vitamin D loaded into lipid nanoparticles shows insulinotropic effect in INS-1E cells. Eur J Pharm Sci 2024; 196:106758. [PMID: 38570054 DOI: 10.1016/j.ejps.2024.106758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/15/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Increasing evidence suggests a beneficial role of vitamin D (VitD) supplementation in addressing the widespread VitD deficiency, but currently used VitD3 formulations present low bioavailability and toxicity constrains. Hence, poly(L-lactide-co-glycolide) (PLGA) nanoparticles (NPs), solid-lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) were investigated to circumvent these issues. PLGA NPs prepared by emulsification or nanoprecipitation presented 74 or 200 nm, and association efficiency (AE) of 68 % and 17 %, respectively, and a rapid burst release of VitD3. Both SLN and NLCs presented higher polydispersity and larger NPs size, around 500 nm, which could be reduced to around 200 nm by use of hot high-pressure homogenization in the case of NLCs. VitD3 was efficiently loaded in both SLNs and NLCs with an AE of 82 and 99 %, respectively. While SLNs showed burst release, NLCs allowed a sustained release of VitD3 for nearly one month. Furthermore, NLCs showed high stability with maintenance of VitD3 loading for up to one month at 4 °C and no cytotoxic effects on INS-1E cells up to 72 h. A trending increase (around 30 %) on glucose-dependent insulin secretion was observed by INS-1E cells pre-treated with VitD3. This effect was consistently observed in the free form and after loading on NLCs. Overall, this work contributed to further elucidation on a suitable delivery system for VitD3 and on the effects of this metabolite on β cell function.
Collapse
Affiliation(s)
- Cecília Cristelo
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, Braga, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana Filipa Sá
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, Braga, Portugal
| | - Marlene Lúcio
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Universidade do Minho, Campus de Gualtar, Braga, Portugal; CBMA, Centro de Biologia Molecular e Ambiental, Universidade do Minho, Campus de Gualtar, Braga, Portugal
| | - Bruno Sarmento
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IUCS-CESPU, Instituto Universitário de Ciências da Saúde, Gandra, Portugal
| | - Francisco Miguel Gama
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, Braga, Portugal.
| |
Collapse
|
27
|
Chen Y, He Q, Lu H, Yang J, Han J, Zhu Y, Hu P. Visualization and correlation of drug release of risperidone/clozapine microspheres in vitro and in vivo based on FRET mechanism. Int J Pharm 2024; 653:123885. [PMID: 38325621 DOI: 10.1016/j.ijpharm.2024.123885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/13/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
This study addresses the challenging task of quantitatively investigating drug release from PLGA microspheres after in vivo administration. The objective is to employ Förster resonance energy transfer (FRET) to visualize drug-encapsulated microspheres in both in vitro and in vivo settings. The primary goal is to establish a quantitative correlation between FRET fluorescence changes and microsphere drug release. The study selects drugs with diverse structures and lipid solubility to explore release mechanisms, using PLGA as the matrix material. Clozapine and risperidone serve as model drugs. FRET molecules, Cy5 and Cy5.5, along with Cy7 derivatives, create FRET donor-acceptor pairs. In vitro results show that FRET fluorescence changes align closely with microsphere drug release, particularly for the Cy5.5-Cy7 pair. In vivo experiments involve subcutaneous administration of microspheres to rats, tracking FRET fluorescence changes while collecting blood samples. Pharmacokinetic studies on clozapine and risperidone reveal in vivo absorption fractions using the Loo-Riegelman method. Correlating FRET and in vivo absorption data establishes an in vitro-in vivo relationship (IVIVR). The study demonstrates that FRET-based fluorescence changes quantitatively link to microsphere drug release, offering an innovative method for visualizing and monitoring release in both in vitro and in vivo settings, potentially advancing clinical applications of such formulations.
Collapse
Affiliation(s)
- Yuying Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Qingwei He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Huangjie Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Jie Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Jiongming Han
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; International School, Jinan University, Guangzhou 510006, China
| | - Ying Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Ping Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China.
| |
Collapse
|
28
|
Zhou J, Tang H, Wang R. Co-assembly of Amphiphilic Triblock Copolymers with Nanodrugs and Drug Release Kinetics in Solution. J Phys Chem B 2024; 128:2841-2852. [PMID: 38452254 DOI: 10.1021/acs.jpcb.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Polymeric vesicles present great potential in disease treatment as they can be featured as a structurally stable and easily functionalized drug carrier that can simultaneously encapsulate multiple drugs and release them on-demand. Based on the dissipative particle dynamics (DPD) simulation, the drug-loaded vesicles were designed by the co-assembly process of linear amphiphilic triblock copolymers and hydrophobic nanodrugs in solvents, and most importantly, the drug release behavior of drug-loaded vesicles were intensively investigated. The drug-loaded aggregates, such as vesicles, spherical micelles, and disk-like micelles, were observed by varying the size and concentration of nanodrugs and the length of the hydrophobic block. The distribution of nanodrugs in the vesicles was intensively analyzed. As the size of the nanodrugs increases, the localization of nanodrugs change from being unable to fully wrap in the vesicle wall to the uniform distribution and finally to the aggregation in the vesicles at the fixed concentration of nanodrugs. The membrane thickness of the drug-loaded polymeric vesicle can be increased, and the nanodrugs localized closer to the center of the vesicle by increasing the length of the hydrophobic block. The nanodrugs will be released from vesicles by varying the interactions between the nanodrug and the solvent or the hydrophobic block and the solvent, respectively. We found that the release kinetics conforms to the first-order kinetic model, which can be used to fit the cumulative release rate of nanodrugs over time. The results showed that increasing the size of nanodrugs, the length of hydrophobic block, and the interaction parameters between the hydrophobic block and the solvent will slow down the release rate of the nanodrug and change the drug release process from monophasic to biphasic release model.
Collapse
Affiliation(s)
- Junwei Zhou
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao Tang
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rong Wang
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
29
|
Sunazuka Y, Ueda K, Higashi K, Wada K, Moribe K. Mechanistic Analysis of Temperature-Dependent Curcumin Release from Poly(lactic-co-glycolic acid)/Poly(lactic acid) Polymer Nanoparticles. Mol Pharm 2024; 21:1424-1435. [PMID: 38324797 DOI: 10.1021/acs.molpharmaceut.3c01066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
In this study, we investigated the mechanism of curcumin (CUR) release from poly(lactic-co-glycolic acid) (PLGA) and poly(lactic acid) (PLA) nanoparticles (NPs) by evaluating the temperature-dependent CUR release. NPs were prepared by the nanoprecipitation method using various PLGA/PLA polymers with different lactic:glycolic ratios (L:G ratios) and molecular weights. Increasing the polymer molecular weight resulted in a decrease in the particle size of NPs. The wet glass transition temperature (Tg) of PLGA/PLA NPs was lower than the intrinsic polymer Tg, which can be derived from the water absorption and nanosizing of the polymer. The reduction in Tg was more significant for the PLGA/PLA NPs with lower polymer L:G ratios and lower polymer molecular weight. The greater decrease of Tg in the lower polymer L:G ratios was possibly caused by the higher water absorption due to the more hydrophilic nature of the glycolic acid segment than that of the lactic acid segment. The efficient water absorption in PLGA/PLA NPs with lower molecular weight could cause a significant reduction of Tg as it has lower hydrophobicity. CUR release tests from the PLGA/PLA NPs exhibited enhanced CUR release with increasing temperatures, irrespective of polymer species. By fitting the CUR release profiles into mathematical models, the CUR release process was well described by an initial burst release followed by a diffusion-controlled release. The wet Tg and particle size of the PLGA/PLA NPs affected the amount and temperature dependence of the initial burst release of CUR. Above the wet Tg of NPs, the initial burst release of CUR increased sharply. Smaller particle sizes of PLGA/PLA NPs led to a higher fraction of initial CUR burst release, which was more pronounced above the wet Tg of NPs. The wet Tg and particle sizes of the PLGA/PLA NPs also influenced the diffusion-controlled CUR release. The diffusion rate of CUR in the NPs increased as the wet Tg values of the NPs decreased. The diffusion path length of CUR was affected by the particle size, with larger particle size resulting in a prolonged diffusion-controlled release of CUR. This study highlighted that for the formulation development of PLGA/PLA NPs, suitable PLGA/PLA polymers should be selected considering the physicochemical properties of PLGA/PLA NPs and their correlation with the release behavior of encapsulated drugs at the application temperature.
Collapse
Affiliation(s)
- Yushi Sunazuka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Nippon Boehringer Ingelheim Co. Ltd., 6-7-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Koichi Wada
- Nippon Boehringer Ingelheim Co. Ltd., 6-7-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
30
|
Sobel D, Ramasubramanian B, Sawhney P, Parmar K. Preparation of PLGA Microspheres Using the Non-Toxic Glycofurol as Polymer Solvent by a Modified Phase Inversion Methodology. Polymers (Basel) 2024; 16:434. [PMID: 38337323 DOI: 10.3390/polym16030434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Poly(D,L-lactide-co-glycolide is a biodegradable copolymer that can release pharmaceuticals. These pharmaceuticals can provide local therapy and also avert the clinical issues that occur when a drug must be given continuously and/or automatically. However, the drawbacks of using poly(D,L-lactide-co-glycolide include the kinetics and duration of time of poly(D,L-lactide-co-glycolide drug release, the denaturing of the drug loaded drug, and the potential clinical side effects. These drawbacks are mainly caused by the volatile organic solvents needed to prepare poly(D,L-lactide-co-glycolide spheres. Using the non-toxic solvent glycofurol solvent instead of volatile organic solvents to construct poly(D,L-lactide-co-glycolide microspheres may deter the issues of using volatile organic solvents. Up to now, preparation of such glycofurol spheres has previously met with limited success. We constructed dexamethasone laden poly(D,L-lactide-co-glycolide microspheres utilizing glycofurol as the solvent within a modified phase inversion methodology. These prepared microspheres have a higher drug load and a lower rate of water diffusion. This prolongs drug release compared to dichloromethane constructed spheres. The glycofurol-generated spheres are also not toxic to target cells as is the case for dichloromethane-constructed spheres. Further, glycofurol-constructed spheres do not denature the dexamethasone molecule and have kinetics of drug release that are more clinically advantageous, including a lower drug burst and a prolonged drug release.
Collapse
Affiliation(s)
- Douglas Sobel
- Medical School, Georgetown University, Washington, DC 20057, USA
| | | | - Puja Sawhney
- Medical School, Georgetown University, Washington, DC 20057, USA
| | - Keerat Parmar
- Medical School, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
31
|
Wang T, Li Y, Luo G, Ren D, Wu X, Xu D. Polylactic acid-based microcapsules for moisture-triggered release of chlorine dioxide and its application in cherry tomatoes preservation. Int J Biol Macromol 2024; 258:128662. [PMID: 38065456 DOI: 10.1016/j.ijbiomac.2023.128662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Polylactic acid (PLA)-based microcapsules, capable of releasing chlorine dioxide (ClO2) upon exposure to moisture, have been developed for fruits and vegetables preservation. The microcapsules were prepared by emulsion solvent evaporation, utilizing PLA as the wall material, and NaClO2 as the core material. After optimization, NaClO2 microcapsules exhibited an encapsulation efficiency of 55.75% and an average particle size of 498.08 μm. Citric acid microcapsules were prepared using the same process, but with citric acid as the core material. When the two kinds of microcapsules were mixed, gaseous ClO2 was released in a highly humid environment. The release rate could be adjusted by temperature and the ratio between the two microcapsules, and the release period could be as long as 17 days at 20 °C. With a certain amount of microcapsules placed in the package of cherry tomatoes, the decay rate and weight loss rate of the fruits were reduced by 63 % and 34 %, respectively, compared to the control group. The microcapsules also helped to maintain the good appearance, hardness, and the content of total soluble solid content and titratable acid content of cherry tomatoes. Therefore, the PLA-based microcapsules have satisfied convenience and effectiveness for application in fruit and vegetables preservation.
Collapse
Affiliation(s)
- Tao Wang
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Yuanyuan Li
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Guorong Luo
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Dan Ren
- College of Food Science, Southwest University, Chongqing 400700, China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400700, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Xiyu Wu
- College of Food Science, Southwest University, Chongqing 400700, China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400700, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Dan Xu
- College of Food Science, Southwest University, Chongqing 400700, China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400700, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
32
|
Oliveira Silva R, Counil H, Rabanel JM, Haddad M, Zaouter C, Ben Khedher MR, Patten SA, Ramassamy C. Donepezil-Loaded Nanocarriers for the Treatment of Alzheimer's Disease: Superior Efficacy of Extracellular Vesicles Over Polymeric Nanoparticles. Int J Nanomedicine 2024; 19:1077-1096. [PMID: 38317848 PMCID: PMC10843980 DOI: 10.2147/ijn.s449227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/07/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Drug delivery across the blood-brain barrier (BBB) is challenging and therefore severely restricts neurodegenerative diseases therapy such as Alzheimer's disease (AD). Donepezil (DNZ) is an acetylcholinesterase (AChE) inhibitor largely prescribed to AD patients, but its use is limited due to peripheral adverse events. Nanodelivery strategies with the polymer Poly (lactic acid)-poly(ethylene glycol)-based nanoparticles (NPs-PLA-PEG) and the extracellular vesicles (EVs) were developed with the aim to improve the ability of DNZ to cross the BBB, its brain targeting and efficacy. Methods EVs were isolated from human plasma and PLA-PEG NPs were synthesized by nanoprecipitation. The toxicity, brain targeting capacity and cholinergic activities of the formulations were evaluated both in vitro and in vivo. Results EVs and NPs-PLA-PEG were designed to be similar in size and charge, efficiently encapsulated DNZ and allowed sustained drug release. In vitro study showed that both formulations EVs-DNZ and NPs-PLA-PEG-DNZ were highly internalized by the endothelial cells bEnd.3. These cells cultured on the Transwell® model were used to analyze the transcytosis of both formulations after validation of the presence of tight junctions, the transendothelial electrical resistance (TEER) values and the permeability of the Dextran-FITC. In vivo study showed that both formulations were not toxic to zebrafish larvae (Danio rerio). However, hyperactivity was evidenced in the NPs-PLA-PEG-DNZ and free DNZ groups but not the EVs-DNZ formulations. Biodistribution analysis in zebrafish larvae showed that EVs were present in the brain parenchyma, while NPs-PLA-PEG remained mainly in the bloodstream. Conclusion The EVs-DNZ formulation was more efficient to inhibit the AChE enzyme activity in the zebrafish larvae head. Thus, the bioinspired delivery system (EVs) is a promising alternative strategy for brain-targeted delivery by substantially improving the activity of DNZ for the treatment of AD.
Collapse
Affiliation(s)
- Rummenigge Oliveira Silva
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Hermine Counil
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | | | - Mohamed Haddad
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Charlotte Zaouter
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Mohamed Raâfet Ben Khedher
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
- Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Shunmoogum A Patten
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Charles Ramassamy
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| |
Collapse
|
33
|
Meng T, Sudarjat H, Momin M, Ma JX, Xu Q. Development of uniform fenofibrate-loaded biodegradable microparticle by membrane emulsification. Int J Pharm 2024; 650:123675. [PMID: 38061500 PMCID: PMC10843658 DOI: 10.1016/j.ijpharm.2023.123675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/09/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Fenofibrate has shown therapeutic effects on diabetic retinopathy. However, fenofibrate can be rapidly cleared from the eye after a single intravitreal injection. Here, we aim to develop fenofibrate loaded PLGA microparticles (Feno-MP) with high drug loading and sustained in vitro release up to 6 months suitable for intravitreal injection. First, orthogonal array experimental design was applied for formulation optimization. The selected formulation parameters were used to formulate Feno-MP using homogenization method and direct membrane emulsification method. Both methods generated Feno-MP with high drug loading and sustained in vitro drug release more than 140 days. Unlike the polydisperse Feno-MP prepared using homogenization method, membrane emulsification method generated Feno-MP with uniform size distribution. By controlling the membrane pore size, 1.5 µm, 8 µm and 16 µm Feno-MP were formulated and we found that larger Feno-MP demonstrated higher drug loading, more sustained drug release in vitro with less burst drug release than the smaller Feno-MP. In conclusion, we developed Feno-MP with high drug loading and sustained release profile, and elucidated that changing the particle size could have notable impacts on drug loading and release kinetics. Formulating Feno-MP with uniform size distribution by membrane emulsification method would benefit the batch-to-batch repeatability.
Collapse
Affiliation(s)
- Tuo Meng
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Hadi Sudarjat
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mohammad Momin
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Qingguo Xu
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Ophthalmology, Virginia Commonwealth University, Richmond, VA 23298, USA; Center for Pharmaceutical Engineering, and Institute for Structural Biology, Drug Discovery & Development (ISB3D), Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
34
|
Giram P, Nimma R, Bulbule A, Yadav AS, Gorain M, Venkata Radharani NN, Kundu GC, Garnaik B. Poly(d,l-lactide- co-glycolide) Surface-Anchored Biotin-Loaded Irinotecan Nanoparticles for Active Targeting of Colon Cancer. ACS OMEGA 2024; 9:3807-3826. [PMID: 38284072 PMCID: PMC10809773 DOI: 10.1021/acsomega.3c07833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
A poly(d,l-lactide-co-glycolide) (PLGA) copolymer was synthesized using the ring-opening polymerization of d,l-lactide and glycolide monomers in the presence of zinc proline complex in bulk through the green route and was well characterized using attenuated total reflectance-Fourier transform infrared, 1H and 13C nuclear magnetic resonance, gel permeation chromatography, differential scanning calorimetry, X-ray diffraction, matrix-assisted laser desorption/ionization time-of-flight, etc. Furthermore, PLGA-conjugated biotin (PLGA-B) was synthesized using the synthesized PLGA and was employed to fabricate nanoparticles for irinotecan (Ir) delivery. These nanoparticles (PLGA-NP-Ir and PLGA-B-NP-Ir) were tested for physicochemical and biological characteristics. PLGA-B-NP-Ir exhibited a stronger cellular uptake and anticancer activity as compared to PLGA-NP-Ir in CT-26 cancer cells (log p < 0.05). The accumulation and retention of fluorescence-labeled nanoparticles were observed to be better in CT-26-inoculated solid tumors in Balb/c mice. The PLGA-B-NP-Ir-treated group inhibited tumor growth significantly more (log p < 0.001) than the untreated control, PLGA-NP-Ir, and Ir-treated groups. Furthermore, no body weight loss, hematological, and blood biochemical tests demonstrated the nanocarriers' nontoxic nature. This work presents the use of safe PLGA and the demonstration of a proof-of-concept of biotin surface attached PLGA nanoparticle-mediated active targeted Ir administration to combat colon cancer. To treat colon cancer, PLGA-B-NP-Ir performed better due to specific active tumor targeting and greater cellular uptake due to biotin.
Collapse
Affiliation(s)
- Prabhanjan
S. Giram
- Polymer
Science and Engineering Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research AcSIR Headquarters, CSIR-HRDC Campus Sector 19, Kamla
Nehru Nagar, Ghaziabad, Uttar
Pradesh 201 002, India
| | - Ramakrishna Nimma
- Laboratory
of Tumor, Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411007, India
| | - Anuradha Bulbule
- Laboratory
of Tumor, Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411007, India
| | - Amit Singh Yadav
- Laboratory
of Tumor, Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411007, India
| | - Mahadeo Gorain
- Laboratory
of Tumor, Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411007, India
| | | | - Gopal C. Kundu
- School
of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Institute of Eminence, Bhubaneswar 751 024, India
| | - Baijayantimala Garnaik
- Polymer
Science and Engineering Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research AcSIR Headquarters, CSIR-HRDC Campus Sector 19, Kamla
Nehru Nagar, Ghaziabad, Uttar
Pradesh 201 002, India
| |
Collapse
|
35
|
Tabandeh S, Ateeq T, Leon L. Drug Encapsulation via Peptide-Based Polyelectrolyte Complexes. Chembiochem 2024; 25:e202300440. [PMID: 37875787 DOI: 10.1002/cbic.202300440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Peptide-based polyelectrolyte complexes are biocompatible materials that can encapsulate molecules with different polarities due to their ability to be precisely designed. Here we use UV-Vis spectroscopy, fluorescence microscopy, and infrared spectroscopy to investigate the encapsulation of model drugs, doxorubicin (DOX) and methylene blue (MB) using a series of rationally designed polypeptides. For both drugs, we find an overall higher encapsulation efficiency with sequences that have higher charge density, highlighting the importance of ionic interactions between the small molecules and the peptides. However, comparing molecules with the same charge density, illustrated that the most hydrophobic sequence pairs had the highest encapsulation of both DOX and MB molecules. The phase behavior and stability of DOX-containing complexes did not change compared to the complexes without drugs. However, MB encapsulation caused changes in the stabilities of the complexes. The sequence pair with the highest charge density and hydrophobicity had the most dramatic increase in stability, which coincided with a phase change from liquid to solid. This study illustrates how multiple types of molecular interactions are required for efficient encapsulation of poorly soluble drugs and provides insights into the molecular design of delivery carriers.
Collapse
Affiliation(s)
- Sara Tabandeh
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Dr, Orlando, FL-32816, USA
| | - Tahoora Ateeq
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Dr, Orlando, FL-32816, USA
| | - Lorraine Leon
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Dr, Orlando, FL-32816, USA
- NanoScience Technology Center, University of Central Florida, 12424 Research Pkwy #400, Orlando, FL-32826, USA
| |
Collapse
|
36
|
Ng F, Nicoulin V, Peloso C, Curia S, Richard J, Lopez-Noriega A. In Vitro and In Vivo Hydrolytic Degradation Behaviors of a Drug-Delivery System Based on the Blend of PEG and PLA Copolymers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55495-55509. [PMID: 38011651 DOI: 10.1021/acsami.2c13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
This paper presents the in vitro and in vivo degradation of BEPO, a marketed in situ forming depot technology used for the formulation of long-acting injectables. BEPO is composed of a solution of a blend of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) triblock and diblock in an organic solvent, where a therapeutic agent may be dissolved or suspended. Upon contact with an aqueous environment, the solvent diffuses and the polymers precipitate, entrapping the drug and forming a reservoir. Two representative BEPO compositions were subjected to a 3-month degradation study in vitro by immersion in phosphate-buffered saline at 37 °C and in vivo after subcutaneous injection in minipig. The material erosion rate, as a surrogate of the bioresorption, determined via the depot weight loss, changed substantially, depending on the composition and content of polymers within the test item. The swelling properties and internal morphology of depots were shown to be highly dependent on the solvent exchange rate during the precipitation step. Thermal analyses displayed an increase of the depot glass transition temperature over the degradation process, with no crystallinity observed at any stage. The chemical composition of degraded depots was determined by 1H NMR and gel permeation chromatography and demonstrated an enrichment in homopolymers, i.e., free PLA and (m)PEG, to the detriment of (m)PEG-PLA copolymers in both formulations. It was observed that the relative ratio of the degradants within the depot is driven by the initial polymer composition. Interestingly, in vitro and in vivo results showed very good qualitative consistency. Taken together, the outcomes from this study demonstrate that the different hydrolytic degradation behaviors of the BEPO compositions can be tuned by adjusting the polymer composition of the formulation.
Collapse
Affiliation(s)
- Feifei Ng
- MedinCell S.A., 3 Rue des Frères Lumière, 34830 Jacou, France
| | - Victor Nicoulin
- MedinCell S.A., 3 Rue des Frères Lumière, 34830 Jacou, France
| | | | - Silvio Curia
- MedinCell S.A., 3 Rue des Frères Lumière, 34830 Jacou, France
| | - Joël Richard
- MedinCell S.A., 3 Rue des Frères Lumière, 34830 Jacou, France
| | | |
Collapse
|
37
|
Bassand C, Siepmann F, Benabed L, Verin J, Freitag J, Charlon S, Soulestin J, Siepmann J. 3D printed PLGA implants: How the filling density affects drug release. J Control Release 2023; 363:1-11. [PMID: 37714435 DOI: 10.1016/j.jconrel.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/22/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Different types of ibuprofen-loaded, poly (D,L lactic-co-glycolic acid) (PLGA)-based implants were prepared by 3D printing (Droplet Deposition Modeling). The theoretical filling density of the mesh-shaped implants was varied from 10 to 100%. Drug release was measured in agarose gels and in well agitated phosphate buffer pH 7.4. The key properties of the implants (and dynamic changes thereof upon exposure to the release media) were monitored using gravimetric measurements, optical microscopy, Differential Scanning Calorimetry, Gel Permeation Chromatography, and Scanning Electron Microscopy. Interestingly, drug release was similar for implants with 10 and 30% filling density, irrespective of the experimental set-up. In contrast, implants with 100% filling density showed slower release kinetics, and the shape of the release curve was altered in agarose gels. These observations could be explained by the existence (or absence) of a continuous aqueous phase between the polymeric filaments and the "orchestrating role" of substantial system swelling for the control of drug release. At lower filling densities, it is sufficient for the drug to be released from a single filament. In contrast, at high filling densities, the ensemble of filaments acts as a much larger (more or less homogeneous) polymeric matrix, and the average diffusion pathway to be overcome by the drug is much longer. Agarose gel (mimicking living tissue) hinders substantial PLGA swelling and delays the onset of the final rapid drug release phase. This improved mechanistic understanding of the control of drug release from PLGA-based 3D printed implants can help to facilitate the optimization of this type of advanced drug delivery systems.
Collapse
Affiliation(s)
- C Bassand
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - F Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - L Benabed
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J Verin
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J Freitag
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - S Charlon
- IMT Lille Douai, Dept Polymers & Composites Technol & Mech Engn, F-59500 Douai, France
| | - J Soulestin
- IMT Lille Douai, Dept Polymers & Composites Technol & Mech Engn, F-59500 Douai, France
| | - J Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.
| |
Collapse
|
38
|
Sheikhi M, Sharifzadeh M, Hennink WE, Firoozpour L, Hajimahmoodi M, Khoshayand MR, Shirangi M. Design of experiments approach for the development of a validated method to determine the exenatide content in poly(lactide-co-glycolide) microspheres. Eur J Pharm Biopharm 2023; 192:56-61. [PMID: 37783361 DOI: 10.1016/j.ejpb.2023.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Due to the lack of pharmacopeia guidelines for injectable microspheres based on poly (D, L-lactide-co-glycolide) (PLGA), an internal method validation is a critical prerequisite for quality assurance. One of the essential issues of developing peptide-based drugs loaded PLGA microspheres is the precise determination of the amount of peptide drug entrapped in the microspheres. The aim of this study is the development and optimization of a method for measuring the drug content loading of PLGA microspheres using exenatide as a model peptide drug. Exenatide-loaded PLGA microspheres were prepared by a double emulsion solvent evaporation method. The extraction method to determine exenatide content in microspheres was optimized using Design of Experiments (DoE) approach. After the initial screening of six factors, using Fractional Factorial design (FFD), four of them, including type of organic solvent, buffer/organic solvent ratio (v/v), shaking time and pH, exhibited significant effects on the response, namely the exenatide loading, and a Box-Behnken design (BBD) was subsequently applied to obtain its optimum level. The optimum level for organic solvent volume, buffer/organic solvent ratio, shaking time, and pH were 4 ml, 1, 5.6 hrs, and pH 6, respectively. The exenatide content in microspheres under these conditions was 6.4 ± 0.0 (%w/w), whereas a value of 6.1% was predicted by the derived equation. This excellent agreement between the actual and the predicted value demonstrates that the fitted model can thus be used to determine the exenatide content.
Collapse
Affiliation(s)
- Mojgan Sheikhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mannan Hajimahmoodi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Iran
| | - Mohammad Reza Khoshayand
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Iran.
| | - Mehrnoosh Shirangi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Iran.
| |
Collapse
|
39
|
Movahedpour A, Taghvaeefar R, Asadi‐Pooya A, Karami Y, Tavasolian R, Khatami SH, Soltani Fard E, Taghvimi S, Karami N, Rahimi Jaberi K, Taheri‐Anganeh M, Ghasemi H. Nano-delivery systems as a promising therapeutic potential for epilepsy: Current status and future perspectives. CNS Neurosci Ther 2023; 29:3150-3159. [PMID: 37452477 PMCID: PMC10580365 DOI: 10.1111/cns.14355] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Epilepsy is a common chronic neurological disorder caused by aberrant neuronal electrical activity. Antiseizure medications (ASMs) are the first line of treatment for people with epilepsy (PWE). However, their effectiveness may be limited by their inability to cross the blood-brain barrier (BBB), among many other potential underpinnings for drug resistance in epilepsy. Therefore, there is a need to overcome this issue and, hopefully, improve the effectiveness of ASMs. Recently, synthetic nanoparticle-based drug delivery systems have received attention for improving the effectiveness of ASMs due to their ability to cross the BBB. Furthermore, exosomes have emerged as a promising generation of drug delivery systems because of their potential benefits over synthetic nanoparticles. In this narrative review, we focus on various synthetic nanoparticles that have been studied to deliver ASMs. Furthermore, the benefits and limitations of each nano-delivery system have been discussed. Finally, we discuss exosomes as potentially promising delivery tools for treating epilepsy.
Collapse
Affiliation(s)
| | | | - Ali‐Akbar Asadi‐Pooya
- Epilepsy Research CenterShiraz University of Medical SciencesShirazIran
- Department of Neurology, Jefferson Comprehensive Epilepsy CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Yousof Karami
- Department of Clinical Science, Faculty of Veterinary MedicineShahid Bahonar University of KermanKermanIran
| | - Ronia Tavasolian
- Department of Clinical Science and NutritionUniversity of ChesterChesterUK
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
| | - Sina Taghvimi
- Department of Biology, Faculty of ScienceShahid Chamran University of AhvazAhvazIran
| | - Neda Karami
- TU Wien, Institute of Solid State ElectronicsViennaAustria
| | - Khojaste Rahimi Jaberi
- Department of Neuroscience, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| | - Mortaza Taheri‐Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research InstituteUrmia University of Medical SciencesUrmiaIran
| | | |
Collapse
|
40
|
Zhang C, Bodmeier R. Direct drug milling in organic PLGA solution facilitates the encapsulation of nanosized drug into PLGA microparticles. Eur J Pharm Biopharm 2023; 191:1-11. [PMID: 37579890 DOI: 10.1016/j.ejpb.2023.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
The objective of this study was to prepare poly(lactide-co-glycolide) (PLGA) microparticles loaded with nanosized drug by combining non-aqueous wet bead milling and microencapsulation. 200-300 nm dexamethasone, hydrocortisone and dexamethasone sodium phosphate nanosuspensions were successfully prepared by wet bead milling the drug in dichloromethane using PLGA as a stabilizer. PLGA microparticles loaded with nanosized drugs were then prepared by a solid-in-oil-in-water (S/O/W) solvent evaporation method or solid-in-oil-in-oil (S/O/O) organic phase separation method. The microparticles were characterized by laser diffraction (LD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD) and in vitro drug release. The nanosized drugs were homogeneously distributed within the microparticle matrix and remained crystalline, however, with a decrease in crystallinity. High drug encapsulation efficiencies >80 % were achieved at theoretical drug loadings between 5 and 30 %. Drug release profiles could be controlled by varying PLGA grades/blends, microparticle size and drug loadings. Quasi-linear release profiles without the PLGA-typical slow release phase were achieved with PLGA encapsulated nanosized drug.
Collapse
Affiliation(s)
- Chenghao Zhang
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany
| | - Roland Bodmeier
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany.
| |
Collapse
|
41
|
Huang L, Chen L, Chen H, Wang M, Jin L, Zhou S, Gao L, Li R, Li Q, Wang H, Zhang C, Wang J. Biomimetic Scaffolds for Tendon Tissue Regeneration. Biomimetics (Basel) 2023; 8:246. [PMID: 37366841 DOI: 10.3390/biomimetics8020246] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Tendon tissue connects muscle to bone and plays crucial roles in stress transfer. Tendon injury remains a significant clinical challenge due to its complicated biological structure and poor self-healing capacity. The treatments for tendon injury have advanced significantly with the development of technology, including the use of sophisticated biomaterials, bioactive growth factors, and numerous stem cells. Among these, biomaterials that the mimic extracellular matrix (ECM) of tendon tissue would provide a resembling microenvironment to improve efficacy in tendon repair and regeneration. In this review, we will begin with a description of the constituents and structural features of tendon tissue, followed by a focus on the available biomimetic scaffolds of natural or synthetic origin for tendon tissue engineering. Finally, we will discuss novel strategies and present challenges in tendon regeneration and repair.
Collapse
Affiliation(s)
- Lvxing Huang
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Le Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| | - Hengyi Chen
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Manju Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310000, China
| | - Letian Jin
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Shenghai Zhou
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Lexin Gao
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Ruwei Li
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Quan Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| | - Hanchang Wang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Can Zhang
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Junjuan Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| |
Collapse
|
42
|
Louis L, Chee BS, McAfee M, Nugent M. Electrospun Drug-Loaded and Gene-Loaded Nanofibres: The Holy Grail of Glioblastoma Therapy? Pharmaceutics 2023; 15:1649. [PMID: 37376095 DOI: 10.3390/pharmaceutics15061649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
To date, GBM remains highly resistant to therapies that have shown promising effects in other cancers. Therefore, the goal is to take down the shield that these tumours are using to protect themselves and proliferate unchecked, regardless of the advent of diverse therapies. To overcome the limitations of conventional therapy, the use of electrospun nanofibres encapsulated with either a drug or gene has been extensively researched. The aim of this intelligent biomaterial is to achieve a timely release of encapsulated therapy to exert the maximal therapeutic effect simultaneously eliminating dose-limiting toxicities and activating the innate immune response to prevent tumour recurrence. This review article is focused on the developing field of electrospinning and aims to describe the different types of electrospinning techniques in biomedical applications. Each technique describes how not all drugs or genes can be electrospun with any method; their physico-chemical properties, site of action, polymer characteristics and the desired drug or gene release rate determine the strategy used. Finally, we discuss the challenges and future perspectives associated with GBM therapy.
Collapse
Affiliation(s)
- Lynn Louis
- Materials Research Institute, Faculty of Engineering, Technological University of the Shannon, Midlands Midwest, Athlone Main Campus, N37HD68 Athlone, Ireland
| | - Bor Shin Chee
- Materials Research Institute, Faculty of Engineering, Technological University of the Shannon, Midlands Midwest, Athlone Main Campus, N37HD68 Athlone, Ireland
| | - Marion McAfee
- Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, F91YW50 Sligo, Ireland
| | - Michael Nugent
- Materials Research Institute, Faculty of Engineering, Technological University of the Shannon, Midlands Midwest, Athlone Main Campus, N37HD68 Athlone, Ireland
| |
Collapse
|
43
|
Mahr K, Anzengruber M, Hellerschmid A, Slezacek J, Hoi H, Subbiahdoss G, Gabor F, Lendvai ÁZ. Biocompatible polymeric microparticles serve as novel and reliable vehicles for exogenous hormone manipulations in passerines. Gen Comp Endocrinol 2023; 336:114234. [PMID: 36791824 DOI: 10.1016/j.ygcen.2023.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The administration of exogenous hormones emerged as an essential tool for field studies in endocrinology. However, working with wild animals remains challenging, because under field conditions not every available method meets the necessary requirements. Achieving a sustained elevation in hormone levels, while simultaneously minimising handling time and invasiveness of the procedure is a difficult task in field endocrinology. Facing this challenge, we have investigated the suitability of biocompatible polymeric microparticles, a novel method for drug-administration, as a tool to manipulate hormones in small songbirds. We chose the insulin-like growth factor-1 (IGF-1) as target hormone, because it receives great interest from the research community due to its important role in shaping life-history traits. Moreover, its short half-life and hydrophilic properties imply a major challenge in finding a suitable method to achieve a sustained, systemic long-term release. To study the release kinetics, we injected either IGF-1 loaded polylactic-co-glycolic acid (PLGA) microparticles or dispersion medium (control group) in the skin pocket of the interscapular region of captive bearded reedlings (Panurus biarmicus). We collected blood samples for 7 consecutive days plus an additional sampling period after two weeks and complemented these with an in vitro experiment. Our results show that in vitro, PLGA microparticles allowed a stable IGF-1 release for more than 15 days, following a burst release at the beginning of the measurement. In vivo, the initial burst was followed by a drop to still elevated levels in circulating IGF-1 until the effect vanished by 16 days post-treatment. This study is the first to describe the use of PLGA-microparticles as a novel tool for exogenous hormone administration in a small passerine. We suggest that this method is highly suitable to achieve the systemic long-term release of hydrophilic hormones with short half-life and reduces overall handling time, as it requires only one subcutaneous injection.
Collapse
Affiliation(s)
- Katharina Mahr
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria.
| | - Maria Anzengruber
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Austria
| | - Anna Hellerschmid
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Julia Slezacek
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Herbert Hoi
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Guruprakash Subbiahdoss
- Institute of Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Franz Gabor
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Austria
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
44
|
Anzengruber M, Nepustil LM, Kurtaj F, Tahir A, Skoll K, Sami H, Wirth M, Gabor F. A Versatile Brij-Linker for One-Step Preparation of Targeted Nanoparticles. Pharmaceutics 2023; 15:pharmaceutics15051403. [PMID: 37242645 DOI: 10.3390/pharmaceutics15051403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Background: Most frequently the functionalization of nanoparticles is hampered by time-consuming, sometimes harsh conjugation and purification procedures causing premature drug release and/or degradation. A strategy to circumvent multi-step protocols is to synthesize building blocks with different functionalities and to use mixtures thereof for nanoparticle preparation in one step. Methods: BrijS20 was converted into an amine derivative via a carbamate linkage. The Brij-amine readily reacts with pre-activated carboxyl-containing ligands such as folic acid. The structures of the building blocks were confirmed by different spectroscopic methods and their utility was assessed by one-step preparation and characterization of nanoparticles applying PLGA as a matrix polymer. Results: Nanoparticles were about 200 nm in diameter independent of the composition. Experiments with human folate expressing single cells and monolayer revealed that the nanoparticle building block Brij mediates a "stealth" effect and the Brij-amine-folate a "targeting" effect. As compared to plain nanoparticles, the stealth effect decreased the cell interaction by 13%, but the targeting effect increased the cell interaction by 45% in the monolayer. Moreover, the targeting ligand density and thus the cell association of the nanoparticles is easily fine-tuned by selection of the initial ratio of the building blocks. Conclusions: This strategy might be a first step towards the one-step preparation of nanoparticles with tailored functionalities. Relying on a non-ionic surfactant is a versatile approach as it might be extended to other hydrophobic matrix polymers and promising targeting ligands from the biotech pipeline.
Collapse
Affiliation(s)
- Maria Anzengruber
- Division of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Lisa Marie Nepustil
- Division of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Fatlinda Kurtaj
- Division of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Ammar Tahir
- Division of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Katharina Skoll
- Division of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Haider Sami
- Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Michael Wirth
- Division of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Franz Gabor
- Division of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
45
|
Essa D, Kondiah PPD, Kumar P, Choonara YE. Design of Chitosan-Coated, Quercetin-Loaded PLGA Nanoparticles for Enhanced PSMA-Specific Activity on LnCap Prostate Cancer Cells. Biomedicines 2023; 11:biomedicines11041201. [PMID: 37189819 DOI: 10.3390/biomedicines11041201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Nanoparticles are designed to entrap drugs at a high concentration, escape clearance by the immune system, be selectively taken up by cancer cells, and release bioactives in a rate-modulated manner. In this study, quercetin-loaded PLGA nanoparticles were prepared and optimized to determine whether coating with chitosan would increase the cellular uptake of the nanoparticles and if the targeting ability of folic acid as a ligand can provide selective toxicity and enhanced uptake in model LnCap prostate cancer cells, which express high levels of the receptor prostate-specific membrane antigen (PSMA), compared to PC-3 cells, that have relatively low PSMA expression. A design of experiments approach was used to optimize the PLGA nanoparticles to have the maximum quercetin loading, optimal cationic charge, and folic acid coating. We examined the in vitro release of quercetin and comparative cytotoxicity and cellular uptake of the optimized PLGA nanoparticles and revealed that the targeted nano-system provided sustained, pH-dependent quercetin release, and higher cytotoxicity and cellular uptake, compared to the non-targeted nano-system on LnCap cells. There was no significant difference in the cytotoxicity or cellular uptake between the targeted and non-targeted nano-systems on PC-3 cells (featured by low levels of PSMA), pointing to a PSMA-specific mechanism of action of the targeted nano-system. The findings suggest that the nano-system can be used as an efficient nanocarrier for the targeted delivery and release of quercetin (and other similar chemotherapeutics) against prostate cancer cells.
Collapse
Affiliation(s)
- Divesha Essa
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
46
|
Deng J, Ye Z, Zheng W, Chen J, Gao H, Wu Z, Chan G, Wang Y, Cao D, Wang Y, Lee SMY, Ouyang D. Machine learning in accelerating microsphere formulation development. Drug Deliv Transl Res 2023; 13:966-982. [PMID: 36454434 DOI: 10.1007/s13346-022-01253-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2022] [Indexed: 12/03/2022]
Abstract
Microspheres have gained much attention from pharmaceutical and medical industry due to the excellent biodegradable and long controlled-release characteristics. However, the drug release behavior of microspheres is influenced by complicated formulation and manufacturing factors. The traditional formulation development of microspheres is intractable and inefficient by the experimentally trial-and-error methods. This research aims to build a prediction model to accelerate microspheres product development for small-molecule drugs by machine learning (ML) techniques. Two hundred eighty-six microsphere formulations with small-molecule drugs were collected from the publications and pharmaceutical company, including the dissolution temperature at both 37 ℃ and 45 ℃. After the comparison of fourteen ML approaches, the consensus model achieved accurate predictions for the validation set at 37 ℃ and 45 ℃ (R2 = 0.880 vs. R2 = 0.958), indicating the good performance to predict the in vitro drug release profiles at both 37 ℃ and 45 ℃. Meanwhile, the models revealed the feature importance of formulations, which offered meaningful insights to the microspheres development. Experiments of microsphere formulations further validated the accuracy of the consensus model. Furthermore, molecular dynamics (MD) simulation provided a microscopic view of the preparation process of microspheres. In conclusion, the prediction model of microsphere formulations for small-molecule drugs was successfully built with high accuracy, which is able to accelerate microspheres product development and promote the quality control of microspheres for the pharmaceutical industry.
Collapse
Affiliation(s)
- Jiayin Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Zhuyifan Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Wenwen Zheng
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jian Chen
- Zhuhai Livzon Microsphere Technology Co., Ltd, Zhuhai, China
| | - Haoshi Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China
| | - Zheng Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Ging Chan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yanqing Wang
- Zhuhai Livzon Microsphere Technology Co., Ltd, Zhuhai, China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China.
- Faculty of Health Sciences, University of Macau, Macau, China.
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China.
- Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
47
|
Eriksson V, Mistral J, Yang Nilsson T, Andersson Trojer M, Evenäs L. Microcapsule functionalization enables rate-determining release from cellulose nonwovens for long-term performance. J Mater Chem B 2023; 11:2693-2699. [PMID: 36807389 DOI: 10.1039/d2tb02485c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Functional textiles is a rapidly growing product segment in which sustained release of actives often plays a key role. Failure to sustain the release results in costs due to premature loss of functionality and resource inefficiency. Conventional application methods such as impregnation lead to an excessive and uncontrolled release, which - for biocidal actives - results in environmental pollution. In this study, microcapsules are presented as a means of extending the release from textile materials. The hydrophobic model substance pyrene is encapsulated in poly(D,L-lactide-co-glycolide) microcapsules which subsequently are loaded into cellulose nonwovens using a solution blowing technique. The release of encapsulated pyrene is compared to that of two conventional functionalization methods: surface and bulk impregnation. The apparent diffusion coefficient is 100 times lower for encapsulated pyrene compared to impregnated pyrene. This clearly demonstrates the rate-limiting barrier properties added by the microcapsules, extending the potential functionality from hours to weeks.
Collapse
Affiliation(s)
- Viktor Eriksson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| | - Jules Mistral
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, F-69622, Villeurbanne Cédex, France
| | - Ting Yang Nilsson
- Department of Polymers, Fibers and Composites, Fiber Development, RISE, 431 53, Mölndal, Sweden
| | - Markus Andersson Trojer
- Department of Polymers, Fibers and Composites, Fiber Development, RISE, 431 53, Mölndal, Sweden
| | - Lars Evenäs
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
- Wallenberg Wood Science Center, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| |
Collapse
|
48
|
Dimiou S, McCabe J, Booth R, Booth J, Nidadavole K, Svensson O, Sparén A, Lindfors L, Paraskevopoulou V, Mead H, Coates L, Workman D, Martin D, Treacher K, Puri S, Taylor LS, Yang B. Selecting Counterions to Improve Ionized Hydrophilic Drug Encapsulation in Polymeric Nanoparticles. Mol Pharm 2023; 20:1138-1155. [PMID: 36653946 DOI: 10.1021/acs.molpharmaceut.2c00855] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hydrophobic ion pairing (HIP) can successfully increase the drug loading and control the release kinetics of ionizable hydrophilic drugs, addressing challenges that prevent these molecules from reaching the clinic. Nevertheless, polymeric nanoparticle (PNP) formulation development requires trial-and-error experimentation to meet the target product profile, which is laborious and costly. Herein, we design a preformulation framework (solid-state screening, computational approach, and solubility in PNP-forming emulsion) to understand counterion-drug-polymer interactions and accelerate the PNP formulation development for HIP systems. The HIP interactions between a small hydrophilic molecule, AZD2811, and counterions with different molecular structures were investigated. Cyclic counterions formed amorphous ion pairs with AZD2811; the 0.7 pamoic acid/1.0 AZD2811 complex had the highest glass transition temperature (Tg; 162 °C) and the greatest drug loading (22%) and remained as phase-separated amorphous nanosized domains inside the polymer matrix. Palmitic acid (linear counterion) showed negligible interactions with AZD2811 (crystalline-free drug/counterion forms), leading to a significantly lower drug loading despite having similar log P and pKa with pamoic acid. Computational calculations illustrated that cyclic counterions interact more strongly with AZD2811 than linear counterions through dispersive interactions (offset π-π interactions). Solubility data indicated that the pamoic acid/AZD2811 complex has a lower organic phase solubility than AZD2811-free base; hence, it may be expected to precipitate more rapidly in the nanodroplets, thus increasing drug loading. Our work provides a generalizable preformulation framework, complementing traditional performance-indicating parameters, to identify optimal counterions rapidly and accelerate the development of hydrophilic drug PNP formulations while achieving high drug loading without laborious trial-and-error experimentation.
Collapse
Affiliation(s)
- Savvas Dimiou
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, CambridgeCB21 6GH, U.K
- UCL School of Pharmacy, 29-39 Brunswick Square, LondonWC1N 1AX, U.K
| | - James McCabe
- Early Product Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, MacclesfieldSK10 2NA, U.K
| | - Rebecca Booth
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, MacclesfieldSK10 2NA, U.K
| | - Jonathan Booth
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, MacclesfieldSK10 2NA, U.K
| | - Kalyan Nidadavole
- Early Product Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, MacclesfieldSK10 2NA, U.K
| | - Olof Svensson
- Pharmaceutical Technology & Development, Operations, AstraZeneca, GothenburgSE-43183, Sweden
| | - Anders Sparén
- Pharmaceutical Technology & Development, Operations, AstraZeneca, GothenburgSE-43183, Sweden
| | - Lennart Lindfors
- Advanced Drug Delivery, Pharmaceutical Science, R&D AstraZeneca, GothenburgSE-43183, Sweden
| | - Vasiliki Paraskevopoulou
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, MacclesfieldSK10 2NA, U.K
| | - Heather Mead
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, MacclesfieldSK10 2NA, U.K
| | - Lydia Coates
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, MacclesfieldSK10 2NA, U.K
| | - David Workman
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, CambridgeCB21 6GH, U.K
| | - Dave Martin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, MacclesfieldSK10 2NA, U.K
| | - Kevin Treacher
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, MacclesfieldSK10 2NA, U.K
| | - Sanyogitta Puri
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, CambridgeCB21 6GH, U.K
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana47907, United States
| | - Bin Yang
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, CambridgeCB21 6GH, U.K
| |
Collapse
|
49
|
Polymeric nanoformulation prototype based on a natural extract for the potential treatment of type 2 diabetes mellitus. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
50
|
Ho E, Deng Y, Akbar D, Da K, Létourneau M, Morshead CM, Chatenet D, Shoichet MS. Tunable Surface Charge Enables the Electrostatic Adsorption-Controlled Release of Neuroprotective Peptides from a Hydrogel-Nanoparticle Drug Delivery System. ACS APPLIED MATERIALS & INTERFACES 2023; 15:91-105. [PMID: 36520607 DOI: 10.1021/acsami.2c17631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We exploit the electrostatic interactions between the positively charged neuroprotective peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), and negatively charged poly(lactic-co-glycolic acid) (PLGA) nanoparticles to control PACAP release from the surface of nanoparticles dispersed in a hyaluronan-methylcellulose (HAMC) hydrogel composite. PACAP is a promising therapeutic for the treatment of neurological disorders, yet it has been difficult to deliver in vivo. Herein, the PACAP release rate was tuned by manipulating peptide adsorption onto the surface of blank nanoparticles by modifying either nanoparticle loading in the hydrogel or nanoparticle surface charge. This peptide-nanoparticle interaction was controlled by the pH-responsive carboxylic acid end terminal groups of PLGA. We further validated this system with the controlled release of a novel stabilized PACAP analog: Ac-[Ala15, Ala20]PACAP-propylamide, which masks its recognition to peptidases in circulation. Both wild-type and stabilized PACAP released from the vehicle increased the production of neuroprotective Interleukin-6 from cultured primary astrocytes. Using computational fluid dynamics methods, PACAP release from the composite was predicted based on experimentally derived adsorption isotherms, which exhibited similar release profiles to experimental data. This versatile adsorption-based system was used to deliver PACAP locally to the brains of stroke-injured mice over a 10 day period in vivo, highlighting its effectiveness for the controlled release of PACAP to the central nervous system.
Collapse
Affiliation(s)
- Eric Ho
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, OntarioM5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
| | - Yaoqi Deng
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
| | - Dania Akbar
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
| | - Kevin Da
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
| | - Myriam Létourneau
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QuebecH7 V 1B7, Canada
| | - Cindi M Morshead
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, OntarioM5S 3G9, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, OntarioM5S 3E1, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, OntarioM5S 3E1, Canada
| | - David Chatenet
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QuebecH7 V 1B7, Canada
| | - Molly S Shoichet
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, OntarioM5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, OntarioM5S 3E1, Canada
| |
Collapse
|