1
|
El-Melegy MG, El-Kamel AH, Mehanna RA, Gaballah A, Eltaher HM. Stable self-assembled oral metformin-bridged nanocochleates against hepatocellular carcinoma. Drug Deliv Transl Res 2024:10.1007/s13346-024-01724-5. [PMID: 39537911 DOI: 10.1007/s13346-024-01724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Despite its established anti-diabetic activity, Metformin hydrochloride (MET) has been repurposed for the management of hepatocellular carcinoma (HCC). Owing to MET high aqueous solubility and poor oral permeability, a novel nanoplatform is sought to overcome the current challenges of traditional formulations. In this study, we developed MET-bridged nanocochleates (MET-CO) using a direct bridging method followed by optimization and assessment using various in-vitro and in-vivo pharmacokinetic methods. The optimized nanocochleates MET-CODCP 19, containing dicetyl phosphate (DCP), displayed uniform snail-shaped nano-rolls measuring 136.41 ± 2.11 nm with a PDI of 0.241 ± 0.005 and a highly negative ζ-potential of -61.93 ± 2.57 mV. With an impressive MET encochleation efficiency (> 75%), MET-CODCP 19 exhibited a controlled biphasic release profile, with minimal initial burst followed by prolonged release for 24 h. Importantly, they showed significant MET permeation in both in-vitro Caco-2 and ex-vivo intestinal models compared to non-DCP containing formula or MET solution. The in-vivo oral bioavailability study demonstrated pronounced improvements in the pharmacokinetic parameters with a 5.5 relative bioavailability compared to MET solution. Notably, a significant reduction in IC50 values in HepG2 cells after 24 h of treatment was observed. Furthermore, the optimized formulation showed a significant downregulation of anti-apoptotic and cancer stemness genes, with 12- and 2-fold lower expression compared to MET solution. These promising results highlight the efficacy of the novel MET-bridged nanocochleates as a stable nanoplatform for enhancing the oral bioavailability of MET and boosting its anticancer potential against HCC.
Collapse
Affiliation(s)
- Mohamed G El-Melegy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications CERRMA, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ahmed Gaballah
- Microbiology Department, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Hoda M Eltaher
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| |
Collapse
|
2
|
Verekar R, Dessai S, Ayyanar M, Nadaf S, Gurav S. Nanocochleates: Revolutionizing lipid-based drug delivery with enhanced bioavailability, a review. HYBRID ADVANCES 2024; 6:100215. [DOI: 10.1016/j.hybadv.2024.100215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Goo YT, Kim MS, Choi JY, Sin GH, Hong SH, Kim CH, Choi YW. A cochleate formulation optimized by D-optimal mixture design enhances oral bioavailability of Revaprazan. J Liposome Res 2024; 34:31-43. [PMID: 37158827 DOI: 10.1080/08982104.2023.2209171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/09/2022] [Indexed: 05/10/2023]
Abstract
A cochleate formulation was developed to enhance the oral bioavailability of revaprazan (RVP). Dimyristoyl phosphatidylcholine (DMPC) liposome containing dicetyl phosphate (DCP) successfully formed a cochleate after treatment with CaCl2, whereas that containing sodium deoxycholate did not. Cochleate was optimised using a D-optimal mixture design with three independent variables-DMPC (X1, 70.58 mol%), cholesterol (X2, 22.54 mol%), and DCP (X3, 6.88 mol%)-and three response variables: encapsulation efficiency (Y1, 76.92%), released amount of free fatty acid at 2 h (Y2, 39.82%), and released amount of RVP at 6 h (Y3, 73.72%). The desirability function was 0.616, showing an excellent agreement between the predicted and experimental values. The cylindrical morphology of the optimised cochleate was visualised, and laurdan spectroscopy confirmed the dehydrated membrane interface, showing an increased generalised polarisation value (approximately 0.5) over small unilamellar vesicle of RVP (RVP-SUV; approximately 0.1). The optimised cochleate showed greater resistance to pancreatic enzyme than RVP-SUV. RVP was released in a controlled manner, achieving approximately 94% release in 12 h. Following oral administration in rats, the optimised cochleate improved the relative bioavailability of RVP by approximately 274%, 255%, and 172% compared to RVP suspension, a physical mixture of RVP and the cochleate, and RVP-SUV, respectively. Thus, the optimised cochleate formulation might be a good candidate for the practical development of RVP.
Collapse
Affiliation(s)
- Yoon Tae Goo
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Min Song Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Ji Yeh Choi
- Department of Psychology, York University, Toronto, Canada
| | - Gi Hyeong Sin
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Sun Ho Hong
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Chang Hyun Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Cochleate drug delivery systems: An approach to their characterization. Int J Pharm 2021; 610:121225. [PMID: 34710542 DOI: 10.1016/j.ijpharm.2021.121225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/02/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
Cochleate systems formed from phospholipids have very useful properties as drug delivery systems with sustained release capabilities, which are able to improve bioavailability and efficacy, reduce toxicity and increase the shelf-life of encapsulated molecules. These nanometric or micrometric structures are usually obtained after interaction of negatively charged liposomes with a positively charged bridging agent. Many different methods are now available to prepare cochleates and there are also numerous techniques that can be used to characterize them, some of which can be easily applied while others require more sophisticated equipment or analysis. The present review describes the important features of this drug delivery system; including their structural properties and potential applications, as well as a brief account of methods for their preparation and an extensive description of the techniques used for their characterization. This information could guide formulators in their choice of methods of characterization that would be best suited to their needs in terms of time, precision and technological difficulty.
Collapse
|
5
|
Enhanced oral permeability of Trans-Resveratrol using nanocochleates for boosting anticancer efficacy; in-vitro and ex-vivo appraisal. Eur J Pharm Biopharm 2021; 168:166-183. [PMID: 34481049 DOI: 10.1016/j.ejpb.2021.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 11/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent liver cancer representing the fourth most lethal cancer worldwide. Trans-Resveratrol (T-R) possesses a promising anticancer activity against HCC. However, it suffers from poor bioavailability because of the low solubility, chemical instability, and hepatic metabolism. Herein, we developed T-R-loaded nanocochleates using a simple trapping method. Nanocarriers were optimized using a comprehensive in-vitro characterization toolset and evaluated for the anticancer activity against HepG2 cell line. T-R-loaded nanocochleates demonstrated monodispersed cylinders (163.27 ± 2.68 nm and 0.25 ± 0.011 PDI) and -46.6 mV ζ-potential. They exhibited a controlled biphasic pattern with minimal burst followed by sustained release for 72 h. Significant enhancements of Caco-2 transport and ex-vivo intestinal permeation over liposomes, with 1.8 and 2.1-folds respectively, were observed. Nanocochleates showed significant reduction of 24 h IC50 values compared to liposomes and free T-R. Moreover, an efficient knockdown of anti-apoptotic (Bcl-2) and cancer stemness (NANOG) genes was demonstrated. To the best of our knowledge, we are the first to develop T-R loaded nanocochleates and scrutinize its potential in suppressing NANOG expression, 2-folds lower, compared to free T-R. According to these auspicious outcomes, nanocochleates represent a promising nanoplatform to enhance T-R oral permeability and augment its anticancer efficacy in the treatment of HCC.
Collapse
|
6
|
Shuddhodana, Judeh Z. Insights into the mechanism of formation of non-conventional cochleates and its impact on their functional properties. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
|
8
|
Shanmugam T, Joshi N, Ahamad N, Deshmukh A, Banerjee R. Enhanced absorption, and efficacy of oral self-assembled paclitaxel nanocochleates in multi-drug resistant colon cancer. Int J Pharm 2020; 586:119482. [PMID: 32492505 DOI: 10.1016/j.ijpharm.2020.119482] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/15/2020] [Accepted: 05/25/2020] [Indexed: 11/18/2022]
Abstract
Chemotherapy in drug-resistant cancers remains a challenge. Owing to associated poor bioavailability, oral administration of hydrophobic anticancer drugs like paclitaxel has been quite challenging, with the scenario being further complicated by Pgp efflux in drug-resistant tumours. We developed a novel nanocochleates (CPT) system encapsulating paclitaxel (PTX) to treat resistant colon cancer by oral administration. PTX encapsulated nanocochleates (PTX-CPT), made up of phosphatidylserine in size range of 350-600 nm with -20 ± 5.2 mV zeta potential were protected from degradation at acidic gastric pH and showed sustained PTX release over 48 h under intestinal pH condition. In vitro cytotoxicity studies on HCT-116 & HCT-15 cells (multi-drug resistant) established IC50 value of <10 and 69 nM, respectively, which was significantly lower when compared to commercial Taxol formulation. Further, the in vivo efficacy with five oral doses of 30 mg/kg PTX-CPT in an HCT-15 drug-resistant colon cancer xenograft mouse model showed more than 25 fold reduction in the tumour growth inhibition as compared to intravenous Taxol which showed just 1.94% inhibition. Interestingly, PTX-CPT treated mice also showed significantly lower proliferation index and microvessel density when compared to Taxol treated mice. Nanocochleates showed lower toxicity with at LD-50 value greater than 300 mg/kg as described in OECD 423 guideline. The enhanced efficacy of PTX-CPT speculated due to its internalization by active endocytosis, ability to escape Pgp efflux, and due to a combined effect of the pro-apoptotic and antiangiogenic role. Taken together, the results suggested the PTX-CPT a promising strategy for efficiently treating drug-resistant colon cancer orally.
Collapse
Affiliation(s)
- Thanigaivel Shanmugam
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Nitin Joshi
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Nadim Ahamad
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Atul Deshmukh
- Oral & Maxillofacial Pathology & Immunohistochemistry Centre, Mumbai 400003, India
| | - Rinti Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India.
| |
Collapse
|
9
|
Machín L, Tamargo B, Piñón A, Atíes RC, Scull R, Setzer WN, Monzote L. Bixa orellana L. (Bixaceae) and Dysphania ambrosioides (L.) Mosyakin & Clemants (Amaranthaceae) Essential Oils Formulated in Nanocochleates against Leishmania amazonensis. Molecules 2019; 24:E4222. [PMID: 31757083 PMCID: PMC6930544 DOI: 10.3390/molecules24234222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 01/19/2023] Open
Abstract
Leishmaniasis is a group of neglected tropical diseases caused by protozoan parasites of the Leishmania genus. The absence of effective vaccines and the limitations of current treatments make the search for effective therapies a real need. Different plant-derived essential oils (EOs) have shown antileishmanial effects, in particular from Bixa orellana L. (EO-Bo) and Dysphania ambrosioides (L.) Mosyakin & Clemants (EO-Da). In the present study, the EO-Bo and EO-Da, formulated in nanocochleates (EO-Bo-NC and EO-Da-NC, respectively), were evaluated in vitro and in vivo against L. amazonensis. The EO-Bo-NC and EO-Da-NC did not increase the in vitro inhibitory activity of the EOs, although the EO-Bo-NC showed reduced cytotoxic effects. In the animal model, both formulations (30 mg/kg/intralesional route/every 4 days/4 times) showed no deaths or weight loss greater than 10%. In the animal (mouse) model, EO-Bo-NC contributed to the control of infection (p < 0.05) in comparison with EO-Bo treatment, while the mice treated with EO-Da-NC exhibited larger lesions (p < 0.05) compared to those treated with EO-Da. The enhanced in vivo activity observed for EO-Bo-NC suggests that lipid-based nanoformulations like nanocochleates should be explored for their potential in the proper delivery of drugs, and in particular, the delivery of hydrophobic materials for effective cutaneous leishmaniasis treatment.
Collapse
Affiliation(s)
- Laura Machín
- Department of Pharmacy, Institute of Pharmacy and Food, Havana University, Havana 17100, Cuba; (L.M.); (R.C.A.); (R.S.)
| | - Beatriz Tamargo
- Department of Physiological Science, Latin American School of Medical Sciences, Havana 11300, Cuba;
| | - Abel Piñón
- Department of Parasitology, Institute of Tropical Medicine Pedro Kourí, Havana 17100, Cuba;
| | - Regla C. Atíes
- Department of Pharmacy, Institute of Pharmacy and Food, Havana University, Havana 17100, Cuba; (L.M.); (R.C.A.); (R.S.)
| | - Ramón Scull
- Department of Pharmacy, Institute of Pharmacy and Food, Havana University, Havana 17100, Cuba; (L.M.); (R.C.A.); (R.S.)
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
- Research Network: Natural Products against Neglected Diseases (ResNet NPND)
| | - Lianet Monzote
- Department of Parasitology, Institute of Tropical Medicine Pedro Kourí, Havana 17100, Cuba;
- Research Network: Natural Products against Neglected Diseases (ResNet NPND)
| |
Collapse
|
10
|
Gonzalez-Lara MF, Sifuentes-Osornio J, Ostrosky-Zeichner L. Drugs in Clinical Development for Fungal Infections. Drugs 2019; 77:1505-1518. [PMID: 28840541 DOI: 10.1007/s40265-017-0805-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite increasing rates of invasive fungal infections being reported globally, only a single antifungal drug has been approved during the last decade. Resistance, toxicity, drug interactions and restricted routes of administration remain unresolved issues. This review focuses on new antifungal compounds which are currently in various clinical phases of development. We discuss two azoles with a tetrazole moiety that allows selective activity against the fungal CYP: VT-1161 for Candida infections and VT-1129 for cryptococcal meningoencephalitis. We also discuss two glucan synthesis inhibitors: CD101, an echinocandin with an increased half-life, and SCY-078 with oral bioavailability and increased activity against echinocandin-resistant isolates. Among the polyenes, we discuss MAT023, an encochleated amphotericin B formulation that allows oral administration. Two novel classes of antifungal drugs are also described: glycosylphosphatidylinositol inhibitors, and the leading drug APX001, which disrupt the integrity of the fungal wall; and the orotomides, inhibitors of pyrimidine synthesis with the leading drug F901318. Finally, a chitin synthesis inhibitor and progress on human monoclonal antifungal antibodies are discussed.
Collapse
Affiliation(s)
- Maria F Gonzalez-Lara
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Zip Code 14080, Mexico City, Mexico.
| | - Jose Sifuentes-Osornio
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, Zip Code 14080, Mexico City, Mexico
| | - Luis Ostrosky-Zeichner
- Division of Infectious Diseases, McGovern Medical School, Medical Director of Epidemiology, Memorial Hermann Texas Medical Center, 6431 Fanning MSB 2.112, Houston, TX, USA
| |
Collapse
|
11
|
Asprea M, Tatini F, Piazzini V, Rossi F, Bergonzi MC, Bilia AR. Stable, Monodisperse, and Highly Cell-Permeating Nanocochleates from Natural Soy Lecithin Liposomes. Pharmaceutics 2019; 11:pharmaceutics11010034. [PMID: 30654435 PMCID: PMC6359122 DOI: 10.3390/pharmaceutics11010034] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 01/07/2023] Open
Abstract
(1) Background: Andrographolide (AN), the main diterpenoid constituent of Andrographis paniculata, has a wide spectrum of biological activities. The aim of this study was the development of nanocochleates (NCs) loaded with AN and based on phosphatidylserine (PS) or phosphatidylcholine (PC), cholesterol and calcium ions in order to overcome AN low water solubility, its instability under alkaline conditions and its rapid metabolism in the intestine. (2) Methods: The AN-loaded NCs (AN⁻NCs) were physically and chemically characterised. The in vitro gastrointestinal stability and biocompatibility of AN⁻NCs in J77A.1 macrophage and 3T3 fibroblasts cell lines were also investigated. Finally, the uptake of nanocarriers in macrophage cells was studied. (3) Results: AN⁻NCs obtained from PC nanoliposomes were suitable nanocarriers in terms of size and homogeneity. They had an extraordinary stability after lyophilisation without the use of lyoprotectants and after storage at room temperature. The encapsulation efficiency was 71%, while approximately 95% of AN was released in PBS after 24 h, with kinetics according to the Hixson⁻Crowell model. The in vitro gastrointestinal stability and safety of NCs, both in macrophages and 3T3 fibroblasts, were also assessed. Additionally, NCs had extraordinary uptake properties in macrophages. (4) Conclusions: NCs developed in this study could be suitable for both AN oral and parental administration, amplifying its therapeutic value.
Collapse
Affiliation(s)
- Martina Asprea
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Francesca Tatini
- Institute of Applied Physics "N. Carrara" (IFAC-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
| | - Vieri Piazzini
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Francesca Rossi
- Institute of Applied Physics "N. Carrara" (IFAC-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Anna Rita Bilia
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
12
|
Kotla NG, Chandrasekar B, Rooney P, Sivaraman G, Larrañaga A, Krishna KV, Pandit A, Rochev Y. Biomimetic Lipid-Based Nanosystems for Enhanced Dermal Delivery of Drugs and Bioactive Agents. ACS Biomater Sci Eng 2017; 3:1262-1272. [PMID: 33440514 DOI: 10.1021/acsbiomaterials.6b00681] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Clinical utility of conventional oral therapies is limited by their inability to deliver therapeutic molecules at the local or targeted site, causing a variety of side effects. Transdermal delivery has made a significant contribution in the management of skin diseases with enhanced therapeutic activities over the past two decades. In the modern era, various biomimetic and biocompatible polymer-lipid hybrid systems have been used to augment the transdermal delivery of therapeutics such as dermal patches, topical gels, iontophoresis, electroporation, sonophoresis, thermal ablation, microneedles, cavitational ultrasound, and nano or microlipid vesicular systems. Nevertheless, the stratum corneum still represents the main barrier to the delivery of vesicles into the skin. Lipid based formulations applied to the skin are at the center of attention and are anticipated to be increasingly functional as the skin offers many advantages for the direction of such systems. Accordingly, this review provides an overview of the development of conventional to advanced biomimetic lipid vesicles for skin delivery of a variety of therapeutics, with special emphasis on recent developments in this field including the development of transferosomes, niosomes, aquasomes, cubosomes, and other new generation lipoidal carriers.
Collapse
Affiliation(s)
- Niranjan G Kotla
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Research Building, National University of Ireland Galway, Newcastle, Galway, Ireland
| | - Bhargavi Chandrasekar
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK PO, Bellary Road, Bangalore 560065, India
| | - Peadar Rooney
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Research Building, National University of Ireland Galway, Newcastle, Galway, Ireland
| | - Gandhi Sivaraman
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK PO, Bellary Road, Bangalore 560065, India
| | - Aitor Larrañaga
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Research Building, National University of Ireland Galway, Newcastle, Galway, Ireland
| | - K Vijaya Krishna
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Research Building, National University of Ireland Galway, Newcastle, Galway, Ireland
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Research Building, National University of Ireland Galway, Newcastle, Galway, Ireland
| | - Yury Rochev
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Research Building, National University of Ireland Galway, Newcastle, Galway, Ireland.,School of Chemistry, National University of Ireland Galway, Newcastle, Galway, Ireland.,Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russian Federation
| |
Collapse
|
13
|
Batista-Duharte A, Lastre M, Romeu B, Portuondo D, Téllez-Martínez D, Manente F, Pérez O, Carlos I. Antifungal and immunomodulatory activity of a novel cochleate for amphotericin B delivery against Sporothrix schenckii. Int Immunopharmacol 2016; 40:277-287. [DOI: 10.1016/j.intimp.2016.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/23/2022]
|
14
|
Ağardan NBM, Değim Z, Yılmaz Ş, Altıntaş L, Topal T. The Effectiveness of Raloxifene-Loaded Liposomes and Cochleates in Breast Cancer Therapy. AAPS PharmSciTech 2016; 17:968-77. [PMID: 26729527 DOI: 10.1208/s12249-015-0429-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/04/2015] [Indexed: 11/30/2022] Open
Abstract
Liposome (spherical vesicles) and cochleate (multilayer crystalline, spiral structure) formulations containing raloxifene have been developed having dimethyl-β-cyclodextrin (DM-β-CD) or sodium taurocholate (NaTC). Raloxifene was approved initially for the treatment of osteoporosis but it is also effective on breast tissue and endometrial cells. Raloxifene inhibits matrix metalloproteinase-2 (MMP-2) enzyme, which is known to be responsible for tumor invasion and the initiation of angiogenesis during the tumor growth. Therefore, raloxifene was selected as a model drug. A series of raloxifene-loaded liposome and cochleate formulations were prepared. In vitro release studies and in vivo tests were performed. Breast cancer cell lines (MCF-7) were also used to find the most effective formulation. Highest antitumor activity was observed, and MMP-2 enzyme was also found to be inhibited with raloxifene-loaded cochleates containing DM-β-CD. These developed formulations can be helpful for further treatment alternatives and new strategies for cancer therapy.
Collapse
|
15
|
Nagarsekar K, Ashtikar M, Steiniger F, Thamm J, Schacher FH, Fahr A. Micro-spherical cochleate composites: method development for monodispersed cochleate system. J Liposome Res 2016; 27:32-40. [DOI: 10.3109/08982104.2016.1149865] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kalpa Nagarsekar
- Lehrstuhl für Pharmazeutische Technologie, Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Jena, Germany,
| | - Mukul Ashtikar
- Lehrstuhl für Pharmazeutische Technologie, Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Jena, Germany,
| | - Frank Steiniger
- Elektronenmikroskopisches Zentrum, Universitätsklinikum Jena, Jena, Germany,
| | - Jana Thamm
- Lehrstuhl für Pharmazeutische Technologie, Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Jena, Germany,
| | - Felix H. Schacher
- Institut für Organische Chemie und Makromolekulare Chemie, Friedrich-Schiller-Universität Jena, Jena, Germany, and
- Jena Center for Soft Matter, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Alfred Fahr
- Lehrstuhl für Pharmazeutische Technologie, Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Jena, Germany,
| |
Collapse
|
16
|
Hollander A, Danino D. Cochleate characterization by cryogenic electron microscopy methods: Cryo-TEM and Cryo-SEM. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.07.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, Deng Y. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci 2015. [DOI: 10.1016/j.ajps.2014.09.004] [Citation(s) in RCA: 334] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
18
|
Bozó T, Brecska R, Gróf P, Kellermayer MSZ. Extreme resilience in cochleate nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:839-845. [PMID: 25521248 DOI: 10.1021/la504428x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cochleates, prospective nanoscale drug delivery vehicles, are rolls of negatively charged phospholipid membrane layers. The membrane layers are held together by calcium ions; however, neither the magnitude of membrane interaction forces nor the overall mechanical properties of cochleates have been known. Here, we manipulated individual nanoparticles with atomic force microscopy to characterize their nanomechanical behavior. Their stiffness (4.2-12.5 N/m) and membrane-rupture forces (45.3-278 nN) are orders of magnitude greater than those of the tough viral nanoshells. Even though the fundamental building material of cochleates is a fluid membrane, the combination of supramolecular geometry, the cross-linking action of calcium, and the tight packing of the ions apparently lead to extreme mechanical resilience. The supramolecular design of cochleates may provide efficient protection for encapsulated materials and give clues to understanding biomolecular structures of similar design, such as the myelinated axon.
Collapse
Affiliation(s)
- Tamás Bozó
- Department of Biophysics and Radiation Biology, and ‡MTA-SE Molecular Biophysics Research Group, Semmelweis University , Tűzoltó utca 37-47, Budapest 1094, Hungary
| | | | | | | |
Collapse
|
19
|
Pawar A, Bothiraja C, Shaikh K, Mali A. An insight into cochleates, a potential drug delivery system. RSC Adv 2015. [DOI: 10.1039/c5ra08550k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cochleates are solid particulates made up of large continuous lipid bilayer sheets rolled up in a spiral structure with little or no internal aqueous phase. Cochleates improve the oral bioavailability and efficacy of the drugs by decreasing side effects.
Collapse
Affiliation(s)
- Atmaram Pawar
- Department of Pharmaceutics
- Bharati Vidyapeeth University
- Poona College of Pharmacy
- Pune 411038
- India
| | - C. Bothiraja
- Department of Pharmaceutics
- Bharati Vidyapeeth University
- Poona College of Pharmacy
- Pune 411038
- India
| | | | - Ashwin Mali
- Department of Pharmaceutics
- Bharati Vidyapeeth University
- Poona College of Pharmacy
- Pune 411038
- India
| |
Collapse
|
20
|
Melo AM, Loura LMS, Fernandes F, Villalaín J, Prieto M, Coutinho A. Electrostatically driven lipid-lysozyme mixed fibers display a multilamellar structure without amyloid features. SOFT MATTER 2014; 10:840-850. [PMID: 24651998 DOI: 10.1039/c3sm52586d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Understanding the interactions between anionic lipid membranes and amyloidogenic proteins/peptides is key to elucidate the molecular mechanisms underlying the membrane-driven amyloid fiber formation. Here, hen egg-white lysozyme was used as a model protein to test whether this same process also occurs with non-amyloidogenic lipid-binding proteins/peptides. A complementary set of biophysical techniques was employed to study the structure and dynamics of the lipid-lysozyme mixed fibers produced at a low lipid/protein molar ratio that have been proposed earlier to present "amyloid-like" characteristics. The multilamellar architecture of these elongated mesoscopic structures was established by performing time-resolved Förster resonance energy transfer measurements, at both bulk (ensemble) and single-fiber level. The predominantly oligomeric lysozyme and phospholipids were both found to display significantly decreased lateral mobility when embedded in these mixed fibers. Notably, two-photon microscopy of Laurdan revealed that a pronounced membrane surface dehydration/increased molecular interfacial packing was produced exclusively in these elongated mixed supramolecular fibers present in the highly polymorphic samples. Infrared spectroscopic studies of lysozyme in these samples further showed that this protein did not exhibit a rich β-sheet structure characteristic of amyloid fibrils. These results support the conclusion that negatively charged lipid membranes do not have the general ability to trigger amyloid fibril formation of non-amyloidogenic proteins.
Collapse
Affiliation(s)
- Ana M Melo
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | | | | | | | | | | |
Collapse
|
21
|
Metallic nanoparticles and their medicinal potential. Part II: aluminosilicates, nanobiomagnets, quantum dots and cochleates. Ther Deliv 2013; 4:1179-96. [DOI: 10.4155/tde.13.74] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Metallic miniaturization techniques have taken metals to nanoscale size where they can display fascinating properties and their potential applications in medicine. In recent years, metal nanoparticles such as aluminium, silicon, iron, cadmium, selenium, indium and calcium, which find their presence in aluminosilicates, nanobiomagnets, quantum dots (Q-dots) and cochleates, have caught attention of medical industries. The increasing impact of metallic nanoparticles in life sciences has significantly advanced the production techniques for these nanoparticles. In this Review, the various methods for the synthesis of nanoparticles are outlined, followed by their physicochemical properties, some recent applications in wound healing, diagnostic imaging, biosensing, assay labeling, antimicrobial activity, cancer therapy and drug delivery are listed, and finally their toxicological impacts are revised. The first half of this article describes the medicinal uses of two noble nanoparticles – gold and silver. This Review provides further information on the ability of aluminum, silicon, iron, selenium, indium, calcium and zinc to be used as nanoparticles in biomedical sciences. Aluminosilicates find their utility in wound healing and antibacterial growth. Iron-oxide nanoparticles enhance the properties of MRI contrast agents and are also used as biomagnets. Cadmium, selenium, tellurium and indium form the core nanostructures of tiny Q-dots used in cellular assay labeling, high-resolution cell imaging and biosensing. Cochleates have the bivalent nano ions calcium, magnesium or zinc imbedded in their structures and are considered to be highly effective agents for drug and gene delivery. The aluminosilicates, nanobiomagnets, Q-dots and cochleates are discussed in the light of their properties, synthesis and utility.
Collapse
|
22
|
Nanostructured self assembled lipid materials for drug delivery and tissue engineering. Ther Deliv 2012; 2:1485-516. [PMID: 22826876 DOI: 10.4155/tde.11.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Every living organism comprises of lipids as basic building blocks in addition to other components. Utilizing these lipids for pharmaceutical and biomedical applications can overcome biocompatibility and biodegradability issues. A well known example is liposomes (lipids arranged in lamellar structures), but other than that there are additional unique mesophasic structures of lipids formed as a result of lipid polymorphisms, which include cubic-, hexagonal- or sponge-phase structures. These structures provide the advantages of stability and production feasibility compared with liposomes. Cubosomes, which exist in a cubic structure, have improved stability, bioadhesivity and biocompatibility. Hexagonal phases or hexosomes exhibit hexagonal arrangements and can encapsulate different drugs with high stability. Lipids also forms tube-like structures known as tubules and ribbons that are also utilized in different biomedical applications, especially in tissue engineering. Immune stimulating complexes are nanocage-like structures formed as a result of interactions of lipid, antigen and Quillaja saponin. These lipidic mesophasic structures have been utilized for gene, vaccine and drug delivery. This article addresses lipid self-assembled supramolecular nanostructures, including cubosomes, hexosomes, tubules, ribbons, cochleates, lipoplexes and immune stimulating complexes and their biomedical applications.
Collapse
|
23
|
Epand RF, Mor A, Epand RM. Lipid complexes with cationic peptides and OAKs; their role in antimicrobial action and in the delivery of antimicrobial agents. Cell Mol Life Sci 2011; 68:2177-88. [PMID: 21573783 PMCID: PMC11114973 DOI: 10.1007/s00018-011-0711-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 12/31/2022]
Abstract
Antimicrobial agents are toxic to bacteria by a variety of mechanisms. One mechanism that is very dependent on the lipid composition of the bacterial membrane is the clustering of anionic lipid by cationic antimicrobial agents. Certain species of oligo-acyl-lysine (OAK) antimicrobial agents are particularly effective in clustering anionic lipids in mixtures mimicking the composition of bacterial membranes. The clustering of anionic lipids by certain cationic antimicrobial agents contributes to the anti-bacterial action of these agents. Bacterial membrane lipids are a determining factor, resulting in some species of bacteria being more susceptible than others. In addition, lipids can be used to increase the effectiveness of antimicrobial agents when administered in vivo. Therefore, we review some of the structures in which lipid mixtures can assemble, to more effectively be utilized as antimicrobial delivery systems. We describe in more detail the complexes formed between mixtures of lipids mimicking bacterial membranes and an OAK and their usefulness in synergizing with antibiotics to overcome bacterial multidrug resistance.
Collapse
Affiliation(s)
- Raquel F Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| | | | | |
Collapse
|
24
|
Sesana AM, Monti-Rocha R, Vinhas SA, Morais CG, Dietze R, Lemos EM. In vitro activity of amphotericin B cochleates against Leishmania chagasi. Mem Inst Oswaldo Cruz 2011; 106:251-3. [DOI: 10.1590/s0074-02762011000200022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/12/2010] [Indexed: 11/21/2022] Open
|
25
|
Epand RF, Sarig H, Ohana D, Papahadjopoulos-Sternberg B, Mor A, Epand RM. Physical Properties Affecting Cochleate Formation and Morphology Using Antimicrobial Oligo-acyl-lysyl Peptide Mimetics and Mixtures Mimicking the Composition of Bacterial Membranes in the Absence of Divalent Cations. J Phys Chem B 2011; 115:2287-93. [DOI: 10.1021/jp111242q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R. F. Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - H. Sarig
- Department of Biotechnology & Food Engineering, Technion−Israel Institute of Technology, Haifa, Israel
| | - D. Ohana
- Department of Biotechnology & Food Engineering, Technion−Israel Institute of Technology, Haifa, Israel
| | | | - A. Mor
- Department of Biotechnology & Food Engineering, Technion−Israel Institute of Technology, Haifa, Israel
| | - R. M. Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
26
|
Livne L, Epand RF, Papahadjopoulos-Sternberg B, Epand RM, Mor A. OAK-based cochleates as a novel approach to overcome multidrug resistance in bacteria. FASEB J 2010. [PMID: 20720156 DOI: 10.1096/fj.10.167809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Antibiotic resistance has become a worldwide medical problem. To find new ways of overcoming this phenomenon, we investigated the role of the membrane-active oligo-acyl-lysyl (OAK) sequence C(12)K-7α(8), in combination with essentially ineffective antibiotics. Determination of minimal inhibitory concentration (MIC) against gram-negative multidrug-resistant strains of Escherichia coli revealed combinations with sub-MIC OAK levels that acted synergistically with several antibiotics, thus lowering their MICs by several orders of magnitude. To shed light into the molecular basis for this synergism, we used both mutant strains and biochemical assays. Our results suggest that bacterial sensitization to antibiotics was derived mainly from the OAK's capacity to overcome the efflux-enhanced resistance mechanism, by promoting backdoor entry of otherwise excluded antibiotics. To facilitate simultaneous delivery of the pooled drugs to an infection site, we developed a novel OAK-based cochleate system with demonstrable stability in whole blood. To assess the potential therapeutic use of such cochleates, we performed preliminary experiments that imitate systemic treatment of neutropenic mice infected with lethal inoculums of multidrug resistance E. coli. Single-dose administration of erythromycin coencapsulated in OAK-based cochleates has decreased drug toxicity and increased therapeutic efficacy in a dose-dependent manner. Collectively, our findings suggest a potentially useful approach for fighting efflux-enhanced resistance mechanisms.
Collapse
Affiliation(s)
- L Livne
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
27
|
Livne L, Epand RF, Papahadjopoulos-Sternberg B, Epand RM, Mor A. OAK-based cochleates as a novel approach to overcome multidrug resistance in bacteria. FASEB J 2010; 24:5092-101. [PMID: 20720156 DOI: 10.1096/fj.10-167809] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Antibiotic resistance has become a worldwide medical problem. To find new ways of overcoming this phenomenon, we investigated the role of the membrane-active oligo-acyl-lysyl (OAK) sequence C(12)K-7α(8), in combination with essentially ineffective antibiotics. Determination of minimal inhibitory concentration (MIC) against gram-negative multidrug-resistant strains of Escherichia coli revealed combinations with sub-MIC OAK levels that acted synergistically with several antibiotics, thus lowering their MICs by several orders of magnitude. To shed light into the molecular basis for this synergism, we used both mutant strains and biochemical assays. Our results suggest that bacterial sensitization to antibiotics was derived mainly from the OAK's capacity to overcome the efflux-enhanced resistance mechanism, by promoting backdoor entry of otherwise excluded antibiotics. To facilitate simultaneous delivery of the pooled drugs to an infection site, we developed a novel OAK-based cochleate system with demonstrable stability in whole blood. To assess the potential therapeutic use of such cochleates, we performed preliminary experiments that imitate systemic treatment of neutropenic mice infected with lethal inoculums of multidrug resistance E. coli. Single-dose administration of erythromycin coencapsulated in OAK-based cochleates has decreased drug toxicity and increased therapeutic efficacy in a dose-dependent manner. Collectively, our findings suggest a potentially useful approach for fighting efflux-enhanced resistance mechanisms.
Collapse
Affiliation(s)
- L Livne
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
28
|
Harris JR, Lewis RJ, Baik C, Pokrajac L, Billington SJ, Palmer M. Cholesterol microcrystals and cochleate cylinders: attachment of pyolysin oligomers and domain 4. J Struct Biol 2010; 173:38-45. [PMID: 20682347 DOI: 10.1016/j.jsb.2010.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/16/2010] [Accepted: 07/27/2010] [Indexed: 11/15/2022]
Abstract
Using an established organic solvent injection procedure for the preparation of aqueous cholesterol microcrystal suspensions, it has now been shown that a new, hollow, cylindrical, tightly-coiled, multi-bilayer form of cholesterol can be generated, termed the cochleate cylinder. Cholesterol cochleate cylinders are formed in larger numbers at intermediate temperatures (40-75°C) but are not formed at 100°C. The structure of the cholesterol microcrystals and cochleate cylinders is shown in negatively stained electron micrographs. Oligomerization and attachment of pyolysin to cholesterol microcrystals and cochleate cylinders is shown, as is the attachment of the pyolysin "cholesterol-binding" domain 4 (D4) fragment. The bound D4 domain forms a linear array on the two planar surfaces and edges of the cholesterol microcrystals and a quasi helical array on the surface of the cochleate cylinders. Little evidence has been obtained to support the possibility that interaction or hetero-oligomerization can occur between intact pyolysin and the pyolysin D4 fragment on the surface of cholesterol microcrystals. Using immobilized cholesterol crystals attached to a carbon support film, single-sided linear labelling of the cholesterol surface with pyolysin D4 has been achieved, which correlates well with the images from the microcrystal suspensions and our earlier data using non-cytolytic streptolysin O mutants.
Collapse
Affiliation(s)
- J Robin Harris
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle-upon-Tyne NE2 4HH, UK.
| | | | | | | | | | | |
Collapse
|