1
|
Hang K, Wang Y, Bai J, Wang Z, Wu W, Zhu W, Liu S, Pan Z, Chen J, Chen W. Chaperone-mediated autophagy protects the bone formation from excessive inflammation through PI3K/AKT/GSK3β/β-catenin pathway. FASEB J 2024; 38:e23646. [PMID: 38795328 DOI: 10.1096/fj.202302425r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 05/27/2024]
Abstract
Multiple regulatory mechanisms are in place to ensure the normal processes of bone metabolism, encompassing both bone formation and absorption. This study has identified chaperone-mediated autophagy (CMA) as a critical regulator that safeguards bone formation from the detrimental effects of excessive inflammation. By silencing LAMP2A or HSCA8, we observed a hindrance in the osteoblast differentiation of human bone marrow mesenchymal stem cells (hBMSCs) in vitro. To further elucidate the role of LAMP2A, we generated LAMP2A gene knockdown and overexpression of mouse BMSCs (mBMSCs) using adenovirus. Our results showed that LAMP2A knockdown led to a decrease in osteogenic-specific proteins, while LAMP2A overexpression favored the osteogenesis of mBMSCs. Notably, active-β-catenin levels were upregulated by LAMP2A overexpression. Furthermore, we found that LAMP2A overexpression effectively protected the osteogenesis of mBMSCs from TNF-α, through the PI3K/AKT/GSK3β/β-catenin pathway. Additionally, LAMP2A overexpression significantly inhibited osteoclast hyperactivity induced by TNF-α. Finally, in a murine bone defect model, we demonstrated that controlled release of LAMP2A overexpression adenovirus by alginate sodium capsule efficiently protected bone healing from inflammation, as confirmed by imaging and histological analyses. Collectively, our findings suggest that enhancing CMA has the potential to safeguard bone formation while mitigating hyperactivity in bone absorption.
Collapse
Affiliation(s)
- Kai Hang
- Department of Orthopaedics, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China
| | - YiBo Wang
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - JinWu Bai
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - ZhongXiang Wang
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - WeiLiang Wu
- Department of Orthopaedics, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China
| | - WeiWei Zhu
- Department of Orthopaedics, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China
| | - ShuangAi Liu
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - ZhiJun Pan
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - JianSong Chen
- Department of Orthopaedics, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China
| | - WenHao Chen
- Department of Orthopaedics, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China
| |
Collapse
|
2
|
Kurashina Y, Kurihara S, Kubota T, Takatsuka S, Hirabayashi M, Shimmura H, Miyahara H, Hioki A, Matsushita Y, Muramatsu J, Ogawa Y, Fujioka M, Okano HJ, Onoe H. Adeno-Associated Virus-Encapsulated Alginate Microspheres Loaded in Collagen Gel Carriers for Localized Gene Transfer. Adv Healthc Mater 2024; 13:e2303546. [PMID: 38224572 DOI: 10.1002/adhm.202303546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Indexed: 01/17/2024]
Abstract
This work reports localized in vivo gene transfer by biodegradation of the adeno-associated virus-encapsulating alginate microspheres (AAV-AMs) loaded in collagen gel carriers. AAV-AMs are centrifugally synthesized by ejecting a mixed pre-gel solution of alginate and AAV to CaCl2 solution to form an ionically cross-linked hydrogel microsphere immediately. The AAV-AMs are able to preserve the AAV without diffusing out even after spreading them on the cells, and the AAV is released and transfected by the degradation of the alginate microsphere. In addition, AAV-AMs can be stored by cryopreservation until use. By implanting this highly convenient AAV-encapsulated hydrogel, AAV-AMs can be loaded into collagen gel carriers to fix the position of the implanted AAV-AMs and achieve localized gene transfer in vivo. In vivo experiments show that the AAV-AMs loaded in collagen gel carriers are demonstrated to release the encapsulated AAV for gene transfer in the buttocks muscles of mice. While conventional injections caused gene transfer to the entire surrounding tissue, the biodegradation of AAV-AMs shows that gene transfer is achieved locally to the muscles. This means that the proposed AAV-loaded system is shown to be a superior method for selective gene transfer.
Collapse
Affiliation(s)
- Yuta Kurashina
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
- Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Sho Kurihara
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
| | - Takeshi Kubota
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Shuhei Takatsuka
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Motoki Hirabayashi
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
| | - Hajime Shimmura
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
| | - Hideo Miyahara
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Aiki Hioki
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yutaka Matsushita
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
| | - Jumpei Muramatsu
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yuki Ogawa
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
| | - Masato Fujioka
- Department of Molecular Genetics, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
- Clinical and Translational Research Center, Keio University Hospital, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hirotaka J Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
| | - Hiroaki Onoe
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
3
|
Liu W, Venkatesan JK, Amini M, Oláh T, Schmitt G, Madry H, Cucchiarini M. Effects of rAAV-Mediated Overexpression of sox9 and TGF- ß via Alginate Hydrogel-Guided Vector Delivery on the Chondroreparative Activities of Human Bone Marrow-Derived Mesenchymal Stromal Cells. J Tissue Eng Regen Med 2023; 2023:4495697. [PMID: 40226403 PMCID: PMC11919174 DOI: 10.1155/2023/4495697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/28/2023] [Accepted: 07/22/2023] [Indexed: 04/15/2025]
Abstract
Recombinant adeno-associated virus (rAAV) vectors have a strong potential to promote the healing of traumatic cartilage defects and osteoarthritic lesions upon delivery and overexpression of therapeutic genes from suitable biomaterials that support a controlled release of the candidate constructs. The goal of the present work is to examine whether the administration of chondrogenic rAAV sox9 and rAAV TGF-ß gene vehicles via alginate hydrogel-guided vector delivery stimulates the biological and chondroreparative activities of human bone marrow-derived mesenchymal stromal cells (hMSCs) as a source of improved reparative cells for future implantation in sites of cartilage damage. The delivery of rAAV using an alginate (AlgPH155) hydrogel system is successfully achieved in hMSCs over time (21 days), leading to the effective overexpression of sox9 and TGF-ß that significantly increases the proliferation and chondrogenic differentiation activities of the cells relative to control (marker lacZ) gene transfer while advantageously preventing premature hypertrophy, osteogenesis, and mineralization. This study reveals the potential of alginate hydrogel-based systems to control the delivery of rAAV (sox9 and TGF-ß) gene vectors to adeptly trigger the chondroreparative activities of hMSCs for future applications that aim at improving cartilage repair.
Collapse
Affiliation(s)
- Wei Liu
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg/Saar, Germany
| | - Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg/Saar, Germany
| | - Mahnaz Amini
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg/Saar, Germany
| | - Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg/Saar, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
4
|
Takatsuka S, Kubota T, Kurashina Y, Kurihara S, Hirabayashi M, Fujioka M, Okano HJ, Onoe H. Controlled release of adeno-associated virus from alginate hydrogel microbeads with enhanced sensitivity to ultrasound. Biotechnol Bioeng 2023. [PMID: 37366284 DOI: 10.1002/bit.28482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
Adeno-associated virus (AAV)-based gene therapy holds promise as a fundamental treatment for genetic disorders. For clinical applications, it is necessary to control AAV release timing to avoid an immune response to AAV. Here we propose an ultrasound (US)-triggered on-demand AAV release system using alginate hydrogel microbeads (AHMs) with a release enhancer. By using a centrifuge-based microdroplet shooting device, the AHMs encapsulating AAV with tungsten microparticles (W-MPs) are fabricated. Since W-MPs work as release enhancers, the AHMs have high sensitivity to the US with localized variation in acoustic impedance for improving the release of AAV. Furthermore, AHMs were coated with poly-l-lysine (PLL) to adjust the release of AAV. By applying US to the AAV encapsulating AHMs with W-MPs, the AAV was released on demand, and gene transfection to cells by AAV was confirmed without loss of AAV activity. This proposed US-triggered AAV release system expands methodological possibilities in gene therapy.
Collapse
Affiliation(s)
- Shuhei Takatsuka
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, Yokohama, Japan
| | - Takeshi Kubota
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, Yokohama, Japan
| | - Yuta Kurashina
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama, Japan
- Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Sho Kurihara
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Motoki Hirabayashi
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Masato Fujioka
- Department of Molecular Genetics, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroaki Onoe
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, Yokohama, Japan
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama, Japan
| |
Collapse
|
5
|
Takatsuka S, Kubota T, Kurashina Y, Onoe H. Near-Infrared-Triggered On-Demand Controlled Release of Adeno-Associated Virus from Alginate Hydrogel Microbeads with Heat Transducer for Gene Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204139. [PMID: 36494160 DOI: 10.1002/smll.202204139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Gene therapy using adeno-associated virus (AAV) has potential as a radical treatment modality for genetic diseases such as sensorineural deafness. To establish clinical applications, it is necessary to avoid immune response to AAV by controlled release system of AAV. Here, a near-infrared (NIR)-triggered on-demand AAV release system using alginate hydrogel microbeads with a heat transducer is proposed. By using a centrifuge-based microdroplet shooting device, the microbeads encapsulating AAV with Fe3 O4 microparticles (Fe3 O4 -MPs) as a heat transducer are fabricated. Fe3 O4 -MPs generated heat by NIR enhanced the diffusion speed of the AAV, resulting in the AAV being released from the microbeads. By irradiating the microbeads encapsulating fluorescent polystyrene nanoparticles (FP-NPs) (viral model) with NIR, the fluorescence intensity decreased only for FP-NPs with a diameter of 20 nm and not for 100 or 200 nm, confirming that this system can release virus with a diameter of several tens of nanometers. By irradiating NIR to the AAV-encapsulating microbeads with Fe3 O4 -MPs, the AAV is released on demand, and gene transfection to cells by AAV is confirmed without loss of viral activity. The NIR-triggered AAV release system proposed in this study increases the number of alternatives for the method of drug release in gene therapy.
Collapse
Affiliation(s)
- Shuhei Takatsuka
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Takeshi Kubota
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yuta Kurashina
- Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Hanamachi, Koganei-shi, Tokyo, 184-8588, Japan
| | - Hiroaki Onoe
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
6
|
Application of Alginate Hydrogels for Next-Generation Articular Cartilage Regeneration. Int J Mol Sci 2022; 23:ijms23031147. [PMID: 35163071 PMCID: PMC8835677 DOI: 10.3390/ijms23031147] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/28/2022] Open
Abstract
The articular cartilage has insufficient intrinsic healing abilities, and articular cartilage injuries often progress to osteoarthritis. Alginate-based scaffolds are attractive biomaterials for cartilage repair and regeneration, allowing for the delivery of cells and therapeutic drugs and gene sequences. In light of the heterogeneity of findings reporting the benefits of using alginate for cartilage regeneration, a better understanding of alginate-based systems is needed in order to improve the approaches aiming to enhance cartilage regeneration with this compound. This review provides an in-depth evaluation of the literature, focusing on the manipulation of alginate as a tool to support the processes involved in cartilage healing in order to demonstrate how such a material, used as a direct compound or combined with cell and gene therapy and with scaffold-guided gene transfer procedures, may assist cartilage regeneration in an optimal manner for future applications in patients.
Collapse
|
7
|
Maihöfer J, Madry H, Rey‐Rico A, Venkatesan JK, Goebel L, Schmitt G, Speicher‐Mentges S, Cai X, Meng W, Zurakowski D, Menger MD, Laschke MW, Cucchiarini M. Hydrogel-Guided, rAAV-Mediated IGF-I Overexpression Enables Long-Term Cartilage Repair and Protection against Perifocal Osteoarthritis in a Large-Animal Full-Thickness Chondral Defect Model at One Year In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008451. [PMID: 33734514 PMCID: PMC11468525 DOI: 10.1002/adma.202008451] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The regeneration of focal articular cartilage defects is complicated by the reduced quality of the repair tissue and the potential development of perifocal osteoarthritis (OA). Biomaterial-guided gene therapy may enhance cartilage repair by controlling the release of therapeutic sequences in a spatiotemporal manner. Here, the benefits of delivering a recombinant adeno-associated virus (rAAV) vector coding for the human insulin-like growth factor I (IGF-I) via an alginate hydrogel (IGF-I/AlgPH155) to enhance repair of full-thickness chondral defects following microfracture surgery after one year in minipigs versus control (lacZ/AlgPH155) treatment are reported. Sustained IGF-I overexpression is significantly achieved in the repair tissue of defects treated with IGF-I/AlgPH155 versus those receiving lacZ/AlgPH155 for one year and in the cartilage surrounding the defects. Administration of IGF-I/AlgPH155 significantly improves parameters of cartilage repair at one year relative to lacZ/AlgPH155 (semiquantitative total histological score, cell densities, matrix deposition) without deleterious or immune reactions. Remarkably, delivery of IGF-I/AlgPH155 also significantly reduces perifocal OA and inflammation after one year versus lacZ/AlgPH155 treatment. Biomaterial-guided rAAV gene transfer represents a valuable clinical approach to promote cartilage repair and to protect against OA.
Collapse
Affiliation(s)
- Johanna Maihöfer
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterD‐66421Homburg/SaarGermany
| | - Henning Madry
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterD‐66421Homburg/SaarGermany
| | - Ana Rey‐Rico
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterD‐66421Homburg/SaarGermany
| | - Jagadeesh K. Venkatesan
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterD‐66421Homburg/SaarGermany
| | - Lars Goebel
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterD‐66421Homburg/SaarGermany
| | - Gertrud Schmitt
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterD‐66421Homburg/SaarGermany
| | - Susanne Speicher‐Mentges
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterD‐66421Homburg/SaarGermany
| | - Xiaoyu Cai
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterD‐66421Homburg/SaarGermany
| | - Weikun Meng
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterD‐66421Homburg/SaarGermany
| | - David Zurakowski
- Departments of Anesthesia and SurgeryChildren's Hospital BostonHarvard Medical SchoolBostonMA02115USA
| | - Michael D. Menger
- Institute for Clinical and Experimental SurgerySaarland UniversityD‐66421Homburg/SaarGermany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental SurgerySaarland UniversityD‐66421Homburg/SaarGermany
| | - Magali Cucchiarini
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterD‐66421Homburg/SaarGermany
| |
Collapse
|
8
|
Abstract
Therapeutic viral gene delivery is an emerging technology which aims to correct genetic mutations by introducing new genetic information to cells either to correct a faulty gene or to initiate cell death in oncolytic treatments. In recent years, significant scientific progress has led to several clinical trials resulting in the approval of gene therapies for human treatment. However, successful therapies remain limited due to a number of challenges such as inefficient cell uptake, low transduction efficiency (TE), limited tropism, liver toxicity and immune response. To adress these issues and increase the number of available therapies, additives from a broad range of materials like polymers, peptides, lipids, nanoparticles, and small molecules have been applied so far. The scope of this review is to highlight these selected delivery systems from a materials perspective.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
9
|
Szwedowski D, Szczepanek J, Paczesny Ł, Pękała P, Zabrzyński J, Kruczyński J. Genetics in Cartilage Lesions: Basic Science and Therapy Approaches. Int J Mol Sci 2020; 21:E5430. [PMID: 32751537 PMCID: PMC7432875 DOI: 10.3390/ijms21155430] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022] Open
Abstract
Cartilage lesions have a multifactorial nature, and genetic factors are their strongest determinants. As biochemical and genetic studies have dramatically progressed over the past decade, the molecular basis of cartilage pathologies has become clearer. Several homeostasis abnormalities within cartilaginous tissue have been found, including various structural changes, differential gene expression patterns, as well as altered epigenetic regulation. However, the efficient treatment of cartilage pathologies represents a substantial challenge. Understanding the complex genetic background pertaining to cartilage pathologies is useful primarily in the context of seeking new pathways leading to disease progression as well as in developing new targeted therapies. A technology utilizing gene transfer to deliver therapeutic genes to the site of injury is quickly becoming an emerging approach in cartilage renewal. The goal of this work is to provide an overview of the genetic basis of chondral lesions and the different approaches of the most recent systems exploiting therapeutic gene transfer in cartilage repair. The integration of tissue engineering with viral gene vectors is a novel and active area of research. However, despite promising preclinical data, this therapeutic concept needs to be supported by the growing body of clinical trials.
Collapse
Affiliation(s)
- Dawid Szwedowski
- Orthopedic Arthroscopic Surgery International (O.A.S.I.) Bioresearch Foundation, Gobbi N.P.O., 20133 Milan, Italy;
- Department of Orthopaedics and Trauma Surgery, Provincial Polyclinical Hospital, 87100 Torun, Poland
| | - Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87100 Torun, Poland
| | - Łukasz Paczesny
- Orvit Clinic, Citomed Healthcare Center, 87100 Torun, Poland; (Ł.P.); (J.Z.)
| | - Przemysław Pękała
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30705 Krakow, Poland;
| | - Jan Zabrzyński
- Orvit Clinic, Citomed Healthcare Center, 87100 Torun, Poland; (Ł.P.); (J.Z.)
| | - Jacek Kruczyński
- Department of General Orthopaedics, Musculoskeletal Oncology and Trauma Surgery, Poznan University of Medical Sciences, 60512 Poznań, Poland;
| |
Collapse
|
10
|
Meng W, Rey-Rico A, Claudel M, Schmitt G, Speicher-Mentges S, Pons F, Lebeau L, Venkatesan JK, Cucchiarini M. rAAV-Mediated Overexpression of SOX9 and TGF-β via Carbon Dot-Guided Vector Delivery Enhances the Biological Activities in Human Bone Marrow-Derived Mesenchymal Stromal Cells. NANOMATERIALS 2020; 10:nano10050855. [PMID: 32354138 PMCID: PMC7712756 DOI: 10.3390/nano10050855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Abstract
Scaffold-assisted gene therapy is a highly promising tool to treat articular cartilage lesions upon direct delivery of chondrogenic candidate sequences. The goal of this study was to examine the feasibility and benefits of providing highly chondroreparative agents, the cartilage-specific sex-determining region Y-type high-mobility group 9 (SOX9) transcription factor or the transforming growth factor beta (TGF-β), to human bone marrow-derived mesenchymal stromal cells (hMSCs) via clinically adapted, independent recombinant adeno-associated virus (rAAV) vectors formulated with carbon dots (CDs), a novel class of carbon-dominated nanomaterials. Effective complexation and release of a reporter rAAV-lacZ vector was achieved using four different CDs elaborated from 1-citric acid and pentaethylenehexamine (CD-1); 2-citric acid, poly(ethylene glycol) monomethyl ether (MW 550 Da), and N,N-dimethylethylenediamine (CD-2); 3-citric acid, branched poly(ethylenimine) (MW 600 Da), and poly(ethylene glycol) monomethyl ether (MW 2 kDa) (CD-3); and 4-citric acid and branched poly(ethylenimine) (MW 600 Da) (CD-4), allowing for the genetic modification of hMSCs. Among the nanoparticles, CD-2 showed an optimal ability for rAAV delivery (up to 2.2-fold increase in lacZ expression relative to free vector treatment with 100% cell viability for at least 10 days, the longest time point examined). Administration of therapeutic (SOX9, TGF-β) rAAV vectors in hMSCs via CD-2 led to the effective overexpression of each independent transgene, promoting enhanced cell proliferation (TGF-β) and cartilage matrix deposition (glycosaminoglycans, type-II collagen) for at least 21 days relative to control treatments (CD-2 lacking rAAV or associated to rAAV-lacZ), while advantageously restricting undesirable type-I and -X collagen deposition. These results reveal the potential of CD-guided rAAV gene administration in hMSCs as safe, non-invasive systems for translational strategies to enhance cartilage repair.
Collapse
Affiliation(s)
- Weikun Meng
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg, Germany
| | - Ana Rey-Rico
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, ES-15071 A Coruña, Spain
| | - Mickaël Claudel
- Laboratoire de Conception et Application de Molécules Bioactives, Faculty of Pharmacy, UMR 7199 CNRS—University of Strasbourg, F-67401 Illkirch, France
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg, Germany
| | - Susanne Speicher-Mentges
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg, Germany
| | - Françoise Pons
- Laboratoire de Conception et Application de Molécules Bioactives, Faculty of Pharmacy, UMR 7199 CNRS—University of Strasbourg, F-67401 Illkirch, France
| | - Luc Lebeau
- Laboratoire de Conception et Application de Molécules Bioactives, Faculty of Pharmacy, UMR 7199 CNRS—University of Strasbourg, F-67401 Illkirch, France
| | - Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg, Germany
- Correspondence: ; Tel.: +49-6841-1624-987; Fax: +49-6841-1624-988
| |
Collapse
|
11
|
Venkatesan JK, Falentin-Daudré C, Leroux A, Migonney V, Cucchiarini M. Biomaterial-Guided Recombinant Adeno-associated Virus Delivery from Poly(Sodium Styrene Sulfonate)-Grafted Poly(ɛ-Caprolactone) Films to Target Human Bone Marrow Aspirates. Tissue Eng Part A 2020; 26:450-459. [DOI: 10.1089/ten.tea.2019.0165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | | | - Amélie Leroux
- Université Paris 13-UMR CNRS 7244-CSPBAT-LBPS-UFR SMBH, Bobigny, France
| | | | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
12
|
Venkatesan JK, Meng W, Rey-Rico A, Schmitt G, Speicher-Mentges S, Falentin-Daudré C, Leroux A, Madry H, Migonney V, Cucchiarini M. Enhanced Chondrogenic Differentiation Activities in Human Bone Marrow Aspirates via sox9 Overexpression Mediated by pNaSS-Grafted PCL Film-Guided rAAV Gene Transfer. Pharmaceutics 2020; 12:pharmaceutics12030280. [PMID: 32245159 PMCID: PMC7151167 DOI: 10.3390/pharmaceutics12030280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The delivery of therapeutic genes in sites of articular cartilage lesions using non-invasive, scaffold-guided gene therapy procedures is a promising approach to stimulate cartilage repair while protecting the cargos from detrimental immune responses, particularly when targeting chondroreparative bone marrow-derived mesenchymal stromal cells in a natural microenvironment like marrow aspirates. METHODS Here, we evaluated the benefits of providing a sequence for the cartilage-specific sex-determining region Y-type high-mobility group box 9 (SOX9) transcription factor to human marrow aspirates via recombinant adeno-associated virus (rAAV) vectors delivered by poly(ε-caprolactone) (PCL) films functionalized via grafting with poly(sodium styrene sulfonate) (pNaSS) to enhance the marrow chondrogenic potential over time. RESULTS Effective sox9 overexpression was observed in aspirates treated with pNaSS-grafted or ungrafted PCL films coated with the candidate rAAV-FLAG-hsox9 (FLAG-tagged rAAV vector carrying a human sox9 gene sequence) vector for at least 21 days relative to other conditions (pNaSS-grafted and ungrafted PCL films without vector coating). Overexpression of sox9 via rAAV sox9/pNaSS-grafted or ungrafted PCL films led to increased biological and chondrogenic differentiation activities (matrix deposition) in the aspirates while containing premature osteogenesis and hypertrophy without impacting cell proliferation, with more potent effects noted when using pNaSS-grafted films. CONCLUSIONS These findings show the benefits of targeting patients' bone marrow via PCL film-guided therapeutic rAAV (sox9) delivery as an off-the-shelf system for future strategies to enhance cartilage repair in translational applications.
Collapse
Affiliation(s)
- Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
| | - Weikun Meng
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
| | - Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
| | - Susanne Speicher-Mentges
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
| | - Céline Falentin-Daudré
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, F-93430 Villetaneuse, France; (C.F.-D.); (A.L.); (V.M.)
| | - Amélie Leroux
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, F-93430 Villetaneuse, France; (C.F.-D.); (A.L.); (V.M.)
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
- Department of Orthopaedic Surgery, Saarland University Medical Center, D-66421 Homburg/Saar, Germany
| | - Véronique Migonney
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, F-93430 Villetaneuse, France; (C.F.-D.); (A.L.); (V.M.)
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
- Correspondence: ; Tel.: +49-6841-1624-987; Fax: +49-6841-1624-988
| |
Collapse
|
13
|
Madry H, Gao L, Rey-Rico A, Venkatesan JK, Müller-Brandt K, Cai X, Goebel L, Schmitt G, Speicher-Mentges S, Zurakowski D, Menger MD, Laschke MW, Cucchiarini M. Thermosensitive Hydrogel Based on PEO-PPO-PEO Poloxamers for a Controlled In Situ Release of Recombinant Adeno-Associated Viral Vectors for Effective Gene Therapy of Cartilage Defects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906508. [PMID: 31763733 DOI: 10.1002/adma.201906508] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Indexed: 05/06/2023]
Abstract
Advanced biomaterial-guided delivery of gene vectors is an emerging and highly attractive therapeutic solution for targeted articular cartilage repair, allowing for a controlled and minimally invasive delivery of gene vectors in a spatiotemporally precise manner, reducing intra-articular vector spread and possible loss of the therapeutic gene product. As far as it is known, the very first successful in vivo application of such a biomaterial-guided delivery of a potent gene vector in an orthotopic large animal model of cartilage damage is reported here. In detail, an injectable and thermosensitive hydrogel based on poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO poloxamers, capable of controlled release of a therapeutic recombinant adeno-associated virus (rAAV) vector overexpressing the chondrogenic sox9 transcription factor in full-thickness chondral defects, is applied in a clinically relevant minipig model in vivo. These comprehensive analyses of the entire osteochondral unit with multiple standardized evaluation methods indicate that rAAV-FLAG-hsox9/PEO-PPO-PEO hydrogel-augmented microfracture significantly improves cartilage repair with a collagen fiber orientation more similar to the normal cartilage and protects the subchondral bone plate from early bone loss.
Collapse
Affiliation(s)
- Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
- Department of Orthopaedic Surgery, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
| | - Liang Gao
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
| | - Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
| | - Kathrin Müller-Brandt
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
| | - Xiaoyu Cai
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
| | - Lars Goebel
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
- Department of Orthopaedic Surgery, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
| | - Susanne Speicher-Mentges
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
| | - David Zurakowski
- Department of Anaesthesia, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
| |
Collapse
|
14
|
Venkatesan JK, Rey-Rico A, Cucchiarini M. Current Trends in Viral Gene Therapy for Human Orthopaedic Regenerative Medicine. Tissue Eng Regen Med 2019; 16:345-355. [PMID: 31413939 PMCID: PMC6675832 DOI: 10.1007/s13770-019-00179-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 12/29/2022] Open
Abstract
Background Viral vector-based therapeutic gene therapy is a potent strategy to enhance the intrinsic reparative abilities of human orthopaedic tissues. However, clinical application of viral gene transfer remains hindered by detrimental responses in the host against such vectors (immunogenic responses, vector dissemination to nontarget locations). Combining viral gene therapy techniques with tissue engineering procedures may offer strong tools to improve the current systems for applications in vivo. Methods The goal of this work is to provide an overview of the most recent systems exploiting biomaterial technologies and therapeutic viral gene transfer in human orthopaedic regenerative medicine. Results Integration of tissue engineering platforms with viral gene vectors is an active area of research in orthopaedics as a means to overcome the obstacles precluding effective viral gene therapy. Conclusions In light of promising preclinical data that may rapidly expand in a close future, biomaterial-guided viral gene therapy has a strong potential for translation in the field of human orthopaedic regenerative medicine.
Collapse
Affiliation(s)
- Jagadeesh Kumar Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr, Bldg 37, 66421 Homburg/Saar, Germany
| | - Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr, Bldg 37, 66421 Homburg/Saar, Germany
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr, Bldg 37, 66421 Homburg/Saar, Germany
| |
Collapse
|
15
|
Madrigal JL, Shams S, Stilhano RS, Silva EA. Characterizing the encapsulation and release of lentivectors and adeno-associated vectors from degradable alginate hydrogels. Biomater Sci 2019; 7:645-656. [PMID: 30534722 DOI: 10.1039/c8bm01218k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gene therapy using viral vectors has been licensed for clinical use both in the European Union and the United States. Lentivectors (LV) and adeno-associated vectors (AAV) are two promising and FDA approved gene-therapy viral vectors. Many future applications of these vectors will benefit from targeting specific regions of interest within the body. Therefore, building on the early success of these vectors may depend on finding effective delivery systems to localize therapeutic administration. Degradable alginate hydrogels have been tested as appealing delivery vehicles for the controlled delivery of vector payloads. In this study, we compare the ability of two different degradable alginate hydrogel formulations to efficiently deliver LV and AAV. We propose that release rates of viral vectors are dependent on the physical properties of both the hydrogels and vectors. Here, we demonstrate that the initial strength and degradation rate of alginate hydrogels provides levers of control for tuning LV release but do not provide control in the release of AAV. While both alginate formulations used showed sustained release of both LV and AAV, LV release was shown to be dependent on alginate hydrogel degradation, while AAV release was largely governed by diffusive mechanisms. Altogether, this study demonstrates alginate's use as a possible delivery platform for LV and, for the first time, AAV - highlighting the potential of injectable degradable alginate hydrogels to be used as a versatile delivery tool in gene therapy applications.
Collapse
Affiliation(s)
- Justin L Madrigal
- Department of Biomedical Engineering, University of California, Davis, CA, USA.
| | | | | | | |
Collapse
|
16
|
Abstract
Polymeric matrices inherently protect viral vectors from pre-existing immune conditions, limit dissemination to off-target sites, and can sustain vector release. Advancing methodologies in development of particulate based vehicles have led to improved encapsulation of viral vectors. Polymeric delivery systems have contributed to increasing cellular transduction, responsive release mechanisms, cellular infiltration, and cellular signaling. Synthetic polymers are easily customizable, and are capable of balancing matrix retention with cellular infiltration. Natural polymers contain inherent biorecognizable motifs adding therapeutic efficacy to the incorporated viral vector. Recombinant polymers use highly conserved motifs to carefully engineer matrices, allowing for precise design including elements of vector retention and responsive release mechanisms. Composite polymer systems provide opportunities to create matrices with unique properties. Carefully designed matrices can control spatiotemporal release patterns that synergize with approaches in regenerative medicine and antitumor therapies.
Collapse
Affiliation(s)
- Douglas Steinhauff
- Utah Center for Nanomedicine , Nano Institute of Utah , 36 South Wasatch Drive , Salt Lake City , Utah 84112 , United States
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine , Nano Institute of Utah , 36 South Wasatch Drive , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
17
|
Biomaterial-guided delivery of gene vectors for targeted articular cartilage repair. Nat Rev Rheumatol 2018; 15:18-29. [DOI: 10.1038/s41584-018-0125-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Rey-Rico A, Cucchiarini M. PEO-PPO-PEO Tri-Block Copolymers for Gene Delivery Applications in Human Regenerative Medicine-An Overview. Int J Mol Sci 2018. [PMID: 29518011 PMCID: PMC5877636 DOI: 10.3390/ijms19030775] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Lineal (poloxamers or Pluronic®) or X-shaped (poloxamines or Tetronic®) amphiphilic tri-block copolymers of poly(ethylene oxide) and poly(propylene oxide) (PEO-PPO-PEO) have been broadly explored for controlled drug delivery in different regenerative medicine approaches. The ability of these copolymers to self-assemble as micelles and to undergo sol-to-gel transitions upon heating has endowed the denomination of “smart” or “intelligent” systems. The use of PEO-PPO-PEO copolymers as gene delivery systems is a powerful emerging strategy to improve the performance of classical gene transfer vectors. This review summarizes the state of art of the application of PEO-PPO-PEO copolymers in both nonviral and viral gene transfer approaches and their potential as gene delivery systems in different regenerative medicine approaches.
Collapse
Affiliation(s)
- Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg/Saar, Germany.
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain.
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg/Saar, Germany.
| |
Collapse
|
19
|
Cucchiarini M. New cell engineering approaches for cartilage regenerative medicine. Biomed Mater Eng 2017; 28:S201-S207. [DOI: 10.3233/bme-171642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr, Bldg 37, D-66421 Homburg/Saar, Germany
| |
Collapse
|
20
|
Rey-Rico A, Cucchiarini M. Recent tissue engineering-based advances for effective rAAV-mediated gene transfer in the musculoskeletal system. Bioengineered 2017; 7:175-88. [PMID: 27221233 DOI: 10.1080/21655979.2016.1187347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Musculoskeletal tissues are diverse and significantly different in their ability to repair upon injury. Current treatments often fail to reproduce the natural functions of the native tissue, leading to an imperfect healing. Gene therapy might improve the repair of tissues by providing a temporarily and spatially defined expression of the therapeutic gene(s) at the site of the injury. Several gene transfer vehicles have been developed to modify various human cells and tissues from musculoskeletal system among which the non-pathogenic, effective, and relatively safe recombinant adeno-associated viral (rAAV) vectors that have emerged as the preferred gene delivery system to treat human disorders. Adapting tissue engineering platforms to gene transfer approaches mediated by rAAV vectors is an attractive tool to circumvent both the limitations of the current therapeutic options to promote an effective healing of the tissue and the natural obstacles from these clinically adapted vectors to achieve an efficient and durable gene expression of the therapeutic sequences within the lesions.
Collapse
Affiliation(s)
- Ana Rey-Rico
- a Center of Experimental Orthopaedics , Saarland University Medical Center , Homburg/Saar , Germany
| | - Magali Cucchiarini
- a Center of Experimental Orthopaedics , Saarland University Medical Center , Homburg/Saar , Germany
| |
Collapse
|
21
|
Frisch J, Cucchiarini M. Gene- and Stem Cell-Based Approaches to Regulate Hypertrophic Differentiation in Articular Cartilage Disorders. Stem Cells Dev 2016; 25:1495-1512. [DOI: 10.1089/scd.2016.0106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Janina Frisch
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
22
|
Hydrogel-Based Controlled Delivery Systems for Articular Cartilage Repair. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1215263. [PMID: 27642587 PMCID: PMC5011507 DOI: 10.1155/2016/1215263] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/12/2016] [Indexed: 12/19/2022]
Abstract
Delivery of bioactive factors is a very valuable strategy for articular cartilage repair. Nevertheless, the direct supply of such biomolecules is limited by several factors including rapid degradation, the need for supraphysiological doses, the occurrence of immune and inflammatory responses, and the possibility of dissemination to nontarget sites that may impair their therapeutic action and raise undesired effects. The use of controlled delivery systems has the potential of overcoming these hurdles by promoting the temporal and spatial presentation of such factors in a defined target. Hydrogels are promising materials to develop delivery systems for cartilage repair as they can be easily loaded with bioactive molecules controlling their release only where required. This review exposes the most recent technologies on the design of hydrogels as controlled delivery platforms of bioactive molecules for cartilage repair.
Collapse
|