1
|
You C, Wang C, Ma Z, Yu Q, Liu S. Review on application of silk fibroin hydrogels in the management of wound healing. Int J Biol Macromol 2025; 298:140082. [PMID: 39832605 DOI: 10.1016/j.ijbiomac.2025.140082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/06/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Wounds are regarded as disruptions in the integrity of human skin tissues, and the process of wound healing is often characterized as protracted and complex, primarily due to the potential infection or inflammation caused by microorganisms. The quest for innovative solutions that accelerate wound healing while prioritizing patient safety and comfort has emerged as a focal point. Within this pursuit, silkworm silk fibroin-a natural polymer extracted from silk cocoons-exhibits a distinctive combination of properties including biocompatibility, biodegradability, superior mechanical strength, water absorption, and low immunogenicity, which align closely with the demands of contemporary wound care. Its remarkable biocompatibility facilitates seamless integration with host tissues, thereby minimizing the risk of rejection or adverse reactions. Furthermore, its intrinsic degradability permits controlled release of therapeutic agents, promoting an optimal microenvironment conducive to healing. This review investigates the multifaceted potential of silk fibroin specifically as a wound dressing material and examines the intricate nuances associated with its application in hydrogels for wound healing, aiming to furnish a thorough overview for both researchers and clinicians. By scrutinizing underlying mechanisms, current applications, and prospective directions, we aspire to cultivate new insights and inspire innovative strategies within this rapidly evolving field.
Collapse
Affiliation(s)
- Chang You
- Westa college, Southwest University, Chongqing 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Changkun Wang
- Westa college, Southwest University, Chongqing 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Zhenghao Ma
- Westa college, Southwest University, Chongqing 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Qianhui Yu
- Westa college, Southwest University, Chongqing 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China.
| |
Collapse
|
2
|
Xiong H, Zhang P, Wang D, Zhou Z, Sun J, Diao M. A silk-based hydrogel containing dexamethasone and lipoic acid microcrystals for local delivery to the inner ear. Colloids Surf B Biointerfaces 2024; 237:113855. [PMID: 38513298 DOI: 10.1016/j.colsurfb.2024.113855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Local drug delivery has been exploited recently to treat hearing loss, as this method can both bypass the blood-labyrinth barrier and provide sustained drug release. Combined drug microcrystals (MCs) offer additional advantages for sensorineural hearing loss treatment via intratympanic (IT) injection due to their shape effect and combination strategy. In this study, to endow viscous effects of hydrogels, nonspherical dexamethasone (DEX) and lipoic acid (LA) MCs were incorporated into silk fibroin (SF) hydrogels, which were subsequently administered to the tympanic cavity to investigate their pharmaceutical properties. First, we prepared DEX and LA MCs by a traditional precipitation technique followed by SF hydrogel incorporation (SF+DEX+LA). After characterization of the physicochemical features, including morphology, rheology, and dissolution, both a suspension of combined DEX and LA MCs (DEX+LA) and SF+DEX+LA were administered to guinea pigs by IT injection, after which the pharmacokinetics, biodegradation and biocompatibility were evaluated. To our surprise, compared to the DEX+LA group, the pharmacokinetics of the SF+DEX+LA hydrogel group did not improve significantly, which may be ascribed to their nonspherical shape and deposition effects of the drugs MCs. The cochlear tissue in each group displayed good morphology, with no obvious inflammatory reactions. This combined MC suspension has the clear advantages of no vehicle, easy scale-up preparation, and good biocompatibility and outcomes, which paves the way for practical treatment of hearing loss via local drug delivery.
Collapse
Affiliation(s)
- Haixia Xiong
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing 100048, China
| | - Peili Zhang
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing 100048, China
| | - Dongcheng Wang
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Zhimin Zhou
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Jianjun Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University International Hospital, Beijing 102206, China.
| | - Mingfang Diao
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing 100048, China.
| |
Collapse
|
3
|
Micaletti F, Escoffre JM, Kerneis S, Bouakaz A, Galvin JJ, Boullaud L, Bakhos D. Microbubble-assisted ultrasound for inner ear drug delivery. Adv Drug Deliv Rev 2024; 204:115145. [PMID: 38042259 DOI: 10.1016/j.addr.2023.115145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Treating pathologies of the inner ear is a major challenge. To date, a wide range of procedures exists for administering therapeutic agents to the inner ear, with varying degrees of success. The key is to deliver therapeutics in a way that is minimally invasive, effective, long-lasting, and without adverse effects on vestibular and cochlear function. Microbubble-assisted ultrasound ("sonoporation") is a promising new modality that can be adapted to the inner ear. Combining ultrasound technology with microbubbles in the middle ear can increase the permeability of the round window, enabling therapeutic agents to be delivered safely and effectively to the inner ear in a targeted manner. As such, sonoporation is a promising new approach to treat hearing loss and vertigo. This review summarizes all studies on the delivery of therapeutic molecules to the inner ear using sonoporation.
Collapse
Affiliation(s)
- Fabrice Micaletti
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
| | | | - Sandrine Kerneis
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - John J Galvin
- Faculty of medicine, Université de Tours, 10 boulevard Tonnellé, 37044 Tours, France; House Institute Foundation, 2100 W 3rd Street, Suite 111, Los Angeles, CA 90057, USA
| | - Luc Boullaud
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - David Bakhos
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France; UMR 1253, iBrain, Université de Tours, Inserm, Tours, France; Faculty of medicine, Université de Tours, 10 boulevard Tonnellé, 37044 Tours, France; House Institute Foundation, 2100 W 3rd Street, Suite 111, Los Angeles, CA 90057, USA
| |
Collapse
|
4
|
Zou J. Controlled release of dexamethasone from fibrin sealant for intratympanic administration in inner ear therapy. J Otol 2024; 19:55-58. [PMID: 38313763 PMCID: PMC10837558 DOI: 10.1016/j.joto.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 02/06/2024] Open
Abstract
The aim of the present work was to show the sustainability of fibrin sealant in releasing dexamethasone and adjust the protocol for clinical application of the novel method in the treatment of Meniere's disease (MD) and sudden sensorineural hearing loss (SSHL). Gelation occurred shortly after mixing dexamethasone-containing fibrinogen with thrombin. Dexamethasone was constantly released for at least 16 d at a stable level after 7 d in protocol 1 (low-dose), while it was robustly released within 4 d and slowed afterward until 10 d in protocol 2 (high-dose). There were significant differences among the time points in Protocol 2 (p < 0.01, ANOVA), and the exponential model with the formula y = 15.299 * e-0.483 *t fits the association. The estimated concentration of dexamethasone released on 7 d in protocol 2 was slightly lower than that observed in protocol 1. The fibrin sealant is capable of constantly releasing dexamethasone with adjustable dynamics. Targeted and minimally invasive administration of the material can be achieved in the clinic by sequential injections of the fluids using a soft-tipped catheter.
Collapse
Affiliation(s)
- Jing Zou
- Department of Otolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
- Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland
| |
Collapse
|
5
|
Zhai T, Ai P, Tang Z, He C, Chen X, Yang S, Wu N. Intratympanic injection of hydrogel nanodrug for the prevention and treatment of sensorineural hearing loss. J Otol 2023; 18:235-239. [PMID: 37877070 PMCID: PMC10593563 DOI: 10.1016/j.joto.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
Safe and efficient drug delivery to the inner ear has always been the focus of prevention and treatment of sensorineural deafness. The rapid development of nanodrug delivery systems based on hydrogel has provided a new opportunity. Among them, thermo-sensitive hydrogels promote the development of new dosage form for intratympanic injection. This smart biomaterial could transform to semisolid phase when the temperature increased. Thermo-sensitive hydrogel nanodrug delivery system is expected to achieve safe, efficient, and sustained inner ear drug administration. This article introduces the key techniques and the latest progress in this field.
Collapse
Affiliation(s)
- Tianying Zhai
- Senior Department of Otolaryngology-Head & Neck Surgery, PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Disease, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention & Treatment, Beijing, China
| | - Pingping Ai
- Senior Department of Otolaryngology-Head & Neck Surgery, PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Disease, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention & Treatment, Beijing, China
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhaohui Tang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Chaoliang He
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Xuesi Chen
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shiming Yang
- Senior Department of Otolaryngology-Head & Neck Surgery, PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Disease, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention & Treatment, Beijing, China
| | - Nan Wu
- Senior Department of Otolaryngology-Head & Neck Surgery, PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Disease, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention & Treatment, Beijing, China
| |
Collapse
|
6
|
Kempfle JS, Jung DH. Experimental drugs for the prevention or treatment of sensorineural hearing loss. Expert Opin Investig Drugs 2023; 32:643-654. [PMID: 37598357 DOI: 10.1080/13543784.2023.2242253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Sensorineural hearing loss results in irreversible loss of inner ear hair cells and spiral ganglion neurons. Reduced sound detection and speech discrimination can span all ages, and sensorineural hearing rehabilitation is limited to amplification with hearing aids or cochlear implants. Recent insights into experimental drug treatments for inner ear regeneration and otoprotection have paved the way for clinical trials in order to restore a more physiological hearing experience. Paired with the development of innovative minimally invasive approaches for drug delivery to the inner ear, new, emerging treatments for hearing protection and restoration are within reach. AREAS COVERED This expert opinion provides an overview of the latest experimental drug therapies to protect from and to restore sensorineural hearing loss. EXPERT OPINION The degree and type of cellular damage to the cochlea, the responsiveness of remaining, endogenous cells to regenerative treatments, and the duration of drug availability within cochlear fluids will determine the success of hearing protection or restoration.
Collapse
Affiliation(s)
- Judith S Kempfle
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology, UMass Memorial Medical Center, Worcester, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - David H Jung
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Wang X, Xiong H, Zhang P, Liu Y, Gao C, Zhou Z, Sun J, Diao M. Intratympanic microcrystals of dexamethasone and lipoic acid for the treatment of cisplatin-induced inner ear injury. Colloids Surf B Biointerfaces 2023; 223:113191. [PMID: 36739674 DOI: 10.1016/j.colsurfb.2023.113191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Steroids (anti-inflammatory drugs) combined with antioxidants are frequently prescribed to treat cisplatin (CP)-induced hearing loss in the clinic. Compared to systemic administration of free drugs, local drug delivery systems offer better therapeutic qualities and patient compliance since they not only can bypass the blood-labyrinth barrier but also can perform sustained release. In this work, dexamethasone (DEX) and lipoic acid (LA) non-spherical microcrystals (MCs) were prepared without complicated chemical modification. Following a series of physical characterizations, including morphology, stability and injectability, dissolution and round window membrane distribution of MCs, DEX MCs, LA MCs and the simple mixture of DEX MCs + LA MCs (combination group) were administered in guinea pigs by intratympanic injection. We found that LA MCs enabled improvement of DEX absorption in the combination group compared to a single dose. In addition, no significant morphological changes or inflammatory responses were observed in cochlear tissue, indicating good biocompatibility. Finally, the combination group also demonstrated synergistic therapeutic effect for protecting hair cells against CP-induced damage. The local co delivery of DEX MCs and LA MCs offers a new strategy for the treatment of CP-induced inner ear injury since they provide sustained anti-inflammatory and antioxidant effects simultaneously.
Collapse
Affiliation(s)
- Xiangxiang Wang
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Haixia Xiong
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Peili Zhang
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Ya Liu
- Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; National Clinical Medical Research Center for Otolaryngology Diseases, Beijing 100048, China
| | - Chang Gao
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Zhimin Zhou
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Jianjun Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University International Hospital, Beijing 102206, China.
| | - Mingfang Diao
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; National Clinical Medical Research Center for Otolaryngology Diseases, Beijing 100048, China.
| |
Collapse
|
8
|
Mfoafo K, Mittal R, Eshraghi A, Omidi Y, Omidian H. Improved inner ear drug delivery using hydrogel carriers. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Dash S, Zuo J, Steyger PS. Local Delivery of Therapeutics to the Cochlea Using Nanoparticles and Other Biomaterials. Pharmaceuticals (Basel) 2022; 15:1115. [PMID: 36145336 PMCID: PMC9504900 DOI: 10.3390/ph15091115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
Hearing loss negatively impacts the well-being of millions of people worldwide. Systemic delivery of ototherapeutics has limited efficacy due to severe systemic side effects and the presence of the blood-labyrinth barrier that selectively limits or enables transfer of molecules between plasma and inner ear tissues and fluids. Local drug delivery into the middle and inner ear would be preferable for many newly emerging classes of drugs. Although the cochlea is a challenging target for drug delivery, recent technologies could provide a safe and efficacious delivery of ototherapeutics. Local drug delivery routes include topical delivery via the external auditory meatus, retroauricular, transtympanic, and intracochlear delivery. Many new drug delivery systems specifically for the inner ear are under development or undergoing clinical studies. Future studies into these systems may provide a means for extended delivery of drugs to preserve or restore hearing in patients with hearing disorders. This review outlines the anatomy of the (inner) ear, describes the various local delivery systems and routes, and various quantification methodologies to determine the pharmacokinetics of the drugs in the inner ear.
Collapse
Affiliation(s)
| | | | - Peter S. Steyger
- Translational Hearing Center, Department of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
10
|
Nguyen TN, Park JS. Intratympanic drug delivery systems to treat inner ear impairments. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Injectable PEG-induced silk nanofiber hydrogel for vancomycin delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Barbara M, Margani V, Covelli E, Filippi C, Volpini L, El-Borady OM, El-Kemary M, Elzayat S, Elfarargy HH. The Use of Nanoparticles in Otoprotection. Front Neurol 2022; 13:912647. [PMID: 35968304 PMCID: PMC9364836 DOI: 10.3389/fneur.2022.912647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
The inner ear can be insulted by various noxious stimuli, including drugs (cisplatin and aminoglycosides) and over-acoustic stimulation. These stimuli damage the hair cells giving rise to progressive hearing loss. Systemic drugs have attempted protection from ototoxicity. Most of these drugs poorly reach the inner ear with consequent ineffective action on hearing. The reason for these failures resides in the poor inner ear blood supply, the presence of the blood-labyrinthine barrier, and the low permeability of the round window membrane (RWM). This article presents a review of the use of nanoparticles (NPs) in otoprotection. NPs were recently used in many fields of medicine because of their ability to deliver drugs to the target organs or cells. The studies included in the review regarded the biocompatibility of the used NPs by in vitro and in vivo experiments. In most studies, NPs proved safe without a significant decrease in cell viability or signs of ototoxicity. Many nano-techniques were used to improve the drugs' kinetics and efficiency. These techniques included encapsulation, polymerization, surface functionalization, and enhanced drug release. In such a way, it improved drug transmission through the RWM with increased and prolonged intra-cochlear drug concentrations. In all studies, the fabricated drug-NPs effectively preserved the hair cells and the functioning hearing from exposure to different ototoxic stimuli, simulating the actual clinical circumstances. Most of these studies regarded cisplatin ototoxicity due to the wide use of this drug in clinical oncology. Dexamethasone (DEX) and antioxidants represent the most used drugs in most studies. These drugs effectively prevented apoptosis and reactive oxygen species (ROS) production caused by ototoxic stimuli. These various successful experiments confirmed the biocompatibility of different NPs and made it successfully to human clinical trials.
Collapse
Affiliation(s)
- Maurizio Barbara
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Valerio Margani
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Edoardo Covelli
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Chiara Filippi
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Luigi Volpini
- Otolaryngology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Ola M. El-Borady
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Maged El-Kemary
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Saad Elzayat
- Otolaryngology Department, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Haitham H. Elfarargy
- Otolaryngology Department, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
- *Correspondence: Haitham H. Elfarargy ;
| |
Collapse
|
13
|
Liu SS, Yang R. Inner Ear Drug Delivery for Sensorineural Hearing Loss: Current Challenges and Opportunities. Front Neurosci 2022; 16:867453. [PMID: 35685768 PMCID: PMC9170894 DOI: 10.3389/fnins.2022.867453] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/02/2022] [Indexed: 12/20/2022] Open
Abstract
Most therapies for treating sensorineural hearing loss are challenged by the delivery across multiple tissue barriers to the hard-to-access anatomical location of the inner ear. In this review, we will provide a recent update on various pharmacotherapy, gene therapy, and cell therapy approaches used in clinical and preclinical studies for the treatment of sensorineural hearing loss and approaches taken to overcome the drug delivery barriers in the ear. Small-molecule drugs for pharmacotherapy can be delivered via systemic or local delivery, where the blood-labyrinth barrier hinders the former and tissue barriers including the tympanic membrane, the round window membrane, and/or the oval window hinder the latter. Meanwhile, gene and cell therapies often require targeted delivery to the cochlea, which is currently achieved via intra-cochlear or intra-labyrinthine injection. To improve the stability of the biomacromolecules during treatment, e.g., RNAs, DNAs, proteins, additional packing vehicles are often required. To address the diverse range of biological barriers involved in inner ear drug delivery, each class of therapy and the intended therapeutic cargoes will be discussed in this review, in the context of delivery routes commonly used, delivery vehicles if required (e.g., viral and non-viral nanocarriers), and other strategies to improve drug permeation and sustained release (e.g., hydrogel, nanocarriers, permeation enhancers, and microfluidic systems). Overall, this review aims to capture the important advancements and key steps in the development of inner ear therapies and delivery strategies over the past two decades for the treatment and prophylaxis of sensorineural hearing loss.
Collapse
Affiliation(s)
- Sophie S. Liu
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Rong Yang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
14
|
Madamsetty VS, Mohammadinejad R, Uzieliene I, Nabavi N, Dehshahri A, García-Couce J, Tavakol S, Moghassemi S, Dadashzadeh A, Makvandi P, Pardakhty A, Aghaei Afshar A, Seyfoddin A. Dexamethasone: Insights into Pharmacological Aspects, Therapeutic Mechanisms, and Delivery Systems. ACS Biomater Sci Eng 2022; 8:1763-1790. [PMID: 35439408 PMCID: PMC9045676 DOI: 10.1021/acsbiomaterials.2c00026] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dexamethasone (DEX) has been widely used to treat a variety of diseases, including autoimmune diseases, allergies, ocular disorders, cancer, and, more recently, COVID-19. However, DEX usage is often restricted in the clinic due to its poor water solubility. When administered through a systemic route, it can elicit severe side effects, such as hypertension, peptic ulcers, hyperglycemia, and hydro-electrolytic disorders. There is currently much interest in developing efficient DEX-loaded nanoformulations that ameliorate adverse disease effects inhibiting advancements in scientific research. Various nanoparticles have been developed to selectively deliver drugs without destroying healthy cells or organs in recent years. In the present review, we have summarized some of the most attractive applications of DEX-loaded delivery systems, including liposomes, polymers, hydrogels, nanofibers, silica, calcium phosphate, and hydroxyapatite. This review provides our readers with a broad spectrum of nanomedicine approaches to deliver DEX safely.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, Florida 32224, United States
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7618866749, Iran
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
| | - Noushin Nabavi
- Department of Urologic Sciences, Vancouver Prostate Centre, Vancouver, British Columbia, Canada V6H 3Z6
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Jomarien García-Couce
- Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
- Department of Polymeric Biomaterials, Biomaterials Center (BIOMAT), University of Havana, Havana 10600, Cuba
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1417755469, Iran
| | - Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7618866748, Iran
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7618866749, Iran
| | - Ali Seyfoddin
- Drug Delivery Research Group, Auckland University of Technology (AUT), School of Science, Auckland 1010, New Zealand
| |
Collapse
|
15
|
Zhang Y, Li Q, Hu J, Wang C, Wan D, Li Q, Jiang Q, Du L, Jin Y. Nasal Delivery of Cinnarizine Thermo- and Ion-Sensitive In Situ Hydrogels for Treatment of Microwave-Induced Brain Injury. Gels 2022; 8:gels8020108. [PMID: 35200489 PMCID: PMC8872061 DOI: 10.3390/gels8020108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
(1) Background: When the body is exposed to microwave radiation, the brain is more susceptible to damage than other organs. However, few effective drugs are available for the treatment of microwave-induced brain injury (MIBI) because most drugs are difficult to cross the blood–brain barrier (BBB) to reach the brain. (2) Methods: Nasal cinnarizine inclusion complexes with thermo-and ion-sensitive hydrogels (cinnarizine ISGs) were prepared to treat MIBI and the characteristics of the inclusion complexes and their thermo-and ion-sensitive hydrogels were evaluated. (3) Results: Due to high viscosity, cinnarizine ISGs can achieve long-term retention in the nasal cavity to achieve a sustained release effect. Compared with the model, the intranasal thermo-and ion-sensitive cinnarizine ISGs significantly improved the microwave-induced spatial memory and spontaneous exploration behavior with Morris water maze and open field tests. Cinnarizine ISGs inhibited the expression of calcineurin and calpain 1 in the brain, which may be related to the inhibition of calcium overload by cinnarizine. (4) Conclusion: Intranasal thermo- and ion-sensitive cinnarizine ISGs are a promising brain-targeted pharmaceutical preparation against MIBI.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (Q.L.); (C.W.); (D.W.); (Q.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
| | - Qian Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (Q.L.); (C.W.); (D.W.); (Q.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
| | - Jinglu Hu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Chunqing Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (Q.L.); (C.W.); (D.W.); (Q.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
| | - Delian Wan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (Q.L.); (C.W.); (D.W.); (Q.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
| | - Qi Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (Q.L.); (C.W.); (D.W.); (Q.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
| | - Qingwei Jiang
- Key Laboratory of Natural Medicine of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
- Correspondence: (Q.J.); (L.D.)
| | - Lina Du
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (Q.L.); (C.W.); (D.W.); (Q.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
- School of Pharmacy, Henan University, Kaifeng 475004, China
- Correspondence: (Q.J.); (L.D.)
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
- School of Pharmacy, Henan University, Kaifeng 475004, China
| |
Collapse
|
16
|
Martineau RL, Bayles AV, Hung CS, Reyes KG, Helgeson ME, Gupta MK. Engineering Gelation Kinetics in Living Silk Hydrogels by Differential Dynamic Microscopy Microrheology and Machine Learning. Adv Biol (Weinh) 2021; 6:e2101070. [PMID: 34811969 DOI: 10.1002/adbi.202101070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/20/2021] [Indexed: 12/20/2022]
Abstract
Microbes embedded in hydrogels comprise one form of living material. Discovering formulations that balance potentially competing for mechanical and biological properties in living hydrogels-for example, gel time of the hydrogel formulation and viability of the embedded organisms-can be challenging. In this study, a pipeline is developed to automate the characterization of the gel time of hydrogel formulations. Using this pipeline, living materials comprised of enzymatically crosslinked silk and embedded E. coli-formulated from within a 4D parameter space-are engineered to gel within a pre-selected timeframe. Gelation time is estimated using a novel adaptation of microrheology analysis using differential dynamic microscopy (DDM). In order to expedite the discovery of gelation regime boundaries, Bayesian machine learning models are deployed with optimal decision-making under uncertainty. The rate of learning is observed to vary between artificial intelligence (AI)-assisted planning and human planning, with the fastest rate occurring during AI-assisted planning following a round of human planning. For a subset of formulations gelling within a targeted timeframe of 5-15 min, fluorophore production within the embedded cells is substantially similar across treatments, evidencing that gel time can be tuned independent of other material properties-at least over a finite range-while maintaining biological activity.
Collapse
Affiliation(s)
- Rhett L Martineau
- Materials and Manufacturing Directorate, Air Force Research Laboratory, 2179 12th St. B652/R122, WPAFB, OH, 45433-7717, USA
| | - Alexandra V Bayles
- Department of Chemical Engineering, University of California Santa Barbara, 3357 Engineering II, Santa Barbara, CA, 93106, USA
| | - Chia-Suei Hung
- Materials and Manufacturing Directorate, Air Force Research Laboratory, 2179 12th St. B652/R122, WPAFB, OH, 45433-7717, USA
| | - Kristofer G Reyes
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, 14260, USA
| | - Matthew E Helgeson
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106-5080, USA
| | - Maneesh K Gupta
- Materials and Manufacturing Directorate, Air Force Research Laboratory, 2179 12th St. B652/R122, WPAFB, OH, 45433-7717, USA
| |
Collapse
|
17
|
Zhang Z, Li X, Zhang W, Kohane DS. Drug Delivery across Barriers to the Middle and Inner Ear. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2008701. [PMID: 34795553 PMCID: PMC8594847 DOI: 10.1002/adfm.202008701] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 05/28/2023]
Abstract
The prevalence of ear disorders has spurred efforts to develop drug delivery systems to treat these conditions. Here, recent advances in drug delivery systems that access the ear through the tympanic membrane (TM) are reviewed. Such methods are either non-invasive (placed on the surface of the TM), or invasive (placed in the middle ear, ideally on the round window [RW]). The major hurdles to otic drug delivery are identified and highlighted the representative examples of drug delivery systems used for drug delivery across the TM to the middle and (crossing the RW also) inner ear.
Collapse
Affiliation(s)
- Zipei Zhang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiyu Li
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Zhang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Modulating surface charge of dexamethasone non-spherical microcrystals for improved inner ear delivery. Colloids Surf B Biointerfaces 2021; 204:111806. [PMID: 33957492 DOI: 10.1016/j.colsurfb.2021.111806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022]
Abstract
It is important to achieve precise surface charge manipulation of non-spherical drug microcrystals using facile and time-efficient methods for local drug delivery. In this study, silk-coated dexamethasone (DEX) non-spherical microcrystals were synthesized by precipitation technique followed by alternate deposition of poly(allylamine hydrochloride) (PAH) (or PAH-coated Fe3O4) and silk fibroin (SF) via layer-by-layer assembly. EDC and glutaraldehyde were employed to manipulate positive or negative charge of particles by simple chemical cross-linking reactions, respectively. In vivo assessment was carried out by intratympanic (IT) injection of DEX non-spherical microcrystals in guinea pigs. In vivo pharmacokinetic results demonstrate that negatively charged DEX microcrystals appeared to improve outcomes of inner ear delivery in comparison to positively-charged counterparts. This is partly because of the adhesive features of the SF. The present study may provide new ideas to construct surface charge-tunable drug delivery vehicles that are capable of crossing biological barriers, especially for inner ear delivery due to the simple and practical strategy.
Collapse
|
19
|
Schurzig D, Fröhlich M, Raggl S, Scheper V, Lenarz T, Rau TS. Uncoiling the Human Cochlea-Physical Scala Tympani Models to Study Pharmacokinetics Inside the Inner Ear. Life (Basel) 2021; 11:life11050373. [PMID: 33919445 PMCID: PMC8143569 DOI: 10.3390/life11050373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
In the field of cochlear implantation, artificial/physical models of the inner ear are often employed to investigate certain phenomena like the forces occurring during implant insertions. Up to now, no such models are available for the analysis of diffusion processes inside the cochlea although drug delivery is playing an increasingly important role in this field. For easy access of the cochlea along its whole profile, e.g., for sequential sampling in an experimental setting, such a model should ideally be longitudinal/uncoiled. Within this study, a set of 15 micro-CT imaging datasets of human cochleae was used to derive an average representation of the scala tympani. The spiral profile of this model was then uncoiled along different trajectories, showing that these trajectories influence both length and volume of the resulting longitudinal model. A volumetric analysis of the average spiral model was conducted to derive volume-to-length interrelations for the different trajectories, which were then used to generate two tubular, longitudinal scala tympani models with volume and length properties matching the original, spiral profile. These models can be downloaded for free and used for reproducible and comparable simulative and experimental investigations of diffusion processes within the inner ear.
Collapse
Affiliation(s)
- Daniel Schurzig
- MED-EL Research Center, 30625 Hannover, Germany;
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.L.); (T.S.R.)
- Correspondence: ; Tel.: +49-511-1659-4795
| | - Max Fröhlich
- MED-EL Research Center, 30625 Hannover, Germany;
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.L.); (T.S.R.)
| | - Stefan Raggl
- MED-EL Medical Electronics, 6020 Innsbruck, Austria;
| | - Verena Scheper
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.L.); (T.S.R.)
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.L.); (T.S.R.)
| | - Thomas S. Rau
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.L.); (T.S.R.)
| |
Collapse
|
20
|
Silk-coated dexamethasone non-spherical microcrystals for local drug delivery to inner ear. Eur J Pharm Sci 2020; 150:105336. [DOI: 10.1016/j.ejps.2020.105336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/26/2020] [Accepted: 03/30/2020] [Indexed: 11/21/2022]
|
21
|
Gangrade A, Gawali B, Jadi PK, Naidu VGM, Mandal BB. Photo-Electro Active Nanocomposite Silk Hydrogel for Spatiotemporal Controlled Release of Chemotherapeutics: An In Vivo Approach toward Suppressing Solid Tumor Growth. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27905-27916. [PMID: 32469499 DOI: 10.1021/acsami.0c02470] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conventional systemic chemotherapeutic regimens suffer from challenges such as nonspecificity, shorter half-life, clearance of drugs, and dose-limiting toxicity. Localized delivery of chemotherapeutic drugs through noninvasive spatiotemporally controllable stimuli-responsive drug delivery systems could overcome these drawbacks while utilizing drugs approved for cancer treatment. In this regard, we developed photoelectro active nanocomposite silk-based drug delivery systems (DDS) exhibiting on-demand drug release in vivo. A functionally modified single-walled carbon nanotube loaded with doxorubicin (DOX) was embedded within a cross-linker free silk hydrogel. The resultant nanocomposite silk hydrogel showed electrical field responsiveness and near-infrared (NIR) laser-induced hyperthermal effect. The remote application of these stimuli in tandem or independent manner led to the increased thermal and electrical conductivity of nanocomposite hydrogel, which effectively triggered the intermittent on-demand drug release. In a proof-of-concept in vivo tumor regression study, the nanocomposite hydrogel was administered in a minimally invasive way at the periphery of the tumor by covering most of it. During the 21-day study, drastic tumor regression was recorded upon regular stimulation of nanocomposite hydrogel with simultaneous or individual external application of an electric field and NIR laser. Tumor cell death marker expression analysis uncovered the induction of apoptosis in tumor cells leading to its shrinkage. Heart ultrasound and histology revealed no cardiotoxicity associated with localized DOX treatment. To our knowledge, this is also the first report to show the simultaneous application of electric field and NIR laser in vivo for localized tumor therapy, and our results suggested that such strategy might have high clinical translational potential.
Collapse
Affiliation(s)
- Ankit Gangrade
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Basveshwar Gawali
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781125, India
| | - Praveen Kumar Jadi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Vegi G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781125, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
22
|
Kita A, Saldate J, Chang C, Chellappa N, Jong J, Matsuda R, Schmidt A, Shih B, Shafqat I, Schoettler K, Acharya S, Seidlits S, Hoffman L. Implantable Drug Reservoir Devices for Inner Ear Delivery of Pharmacotherapeutics. Otolaryngol Head Neck Surg 2020; 163:791-798. [DOI: 10.1177/0194599820930229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective Cisplatin is a platinum-based chemotherapeutic drug that secondarily induces toxicity in inner ear sensory epithelia, contributing to auditory and vestibular dysfunction. We describe the creation of a drug reservoir device (DRD) to combat this ototoxicity for the duration of chemotherapy. As ototoxic side effects of chemotherapy may limit an oncologist’s ability to prescribe first-line agents such as cisplatin, mitigating such devastating effects through prolonged topical therapy would be tremendously valuable. Study Design We investigated (1) the ability of an electrospun polylactic acid DRD to provide prolonged delivery of the posited otoprotectant metformin and (2) the development of an in vitro model utilizing Sh-Sy5y human neuroblastoma cells to assess the efficacy of metformin in reducing cisplatin-induced toxicity. Setting Neurophysiology laboratory. Methods Basic science experiments were performed to assess DRD properties and metformin’s effects on cisplatin toxicity in culture. Results We found that DRDs with increasing polylactic acid concentrations exhibited metformin release for up to 8 weeks. In modeling elution across the round window in vitro, continued elution of metformin was observed for at least 6 weeks, as quantified by spectrophotometry. Unfortunately, metformin did not exhibit protective efficacy in this model using Sh-Sy5y cells. Conclusion While metformin was not found to be protective in Sh-Sy5y cells, these results suggest that an electrospun DRD can provide a tailorable drug delivery system providing medication for the duration of chemotherapy treatment. This represents a novel drug delivery system and efficacy screening assay with broad clinical applications in personalized delivery of inner ear therapies.
Collapse
Affiliation(s)
- Ashley Kita
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Johnny Saldate
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Courtney Chang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Nitika Chellappa
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Jeremy Jong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Riley Matsuda
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Andrew Schmidt
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Brandon Shih
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Iram Shafqat
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kari Schoettler
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Shiv Acharya
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Stephanie Seidlits
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Larry Hoffman
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
23
|
Poly-Lactic Acid-Based Biopolymer Formulations Are Safe for Sustained Intratympanic Dexamethasone Delivery. Otol Neurotol 2020; 40:e739-e746. [PMID: 31295207 DOI: 10.1097/mao.0000000000002305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS AND BACKGROUND The clinical treatment of sudden sensorineural hearing loss currently relies on the administration of steroids, either systemically or via intratympanic injections. Intratympanic injections bypass the hemato-cochlear barrier, reducing its systemic side effects. The efficacy of the injections is limited through rapid drug clearance via the Eustachian tube, and through nonoptimal properties of slow-release drug carriers. A new slow-release drug delivery vehicle based on hexyl-substituted-poly-lactic-acid (HexPLA), with the highest possible safety profile and complete bio-degradability, has been evaluated for safety and efficacy in a standardized guinea pig model of intratympanic injection. METHODS A total of 83 animals received through retrobullar injection either empty Nile-red-colored HexPLA vehicle, 5%-dexamethasone-HexPLA, 5%-dexamethasone suspension, or a sham operation. Long-term residence time of vehicle, biocompatibility, click- and pure-tone hearing thresholds, and dexamethasone levels in the perilymph were prospectively assessed. RESULTS At 1 week after injection, HexPLA vehicle was morphologically present in the middle ear and perilymph levels in the 5%-dexamethasone-HexPLA were on average 2 to 3 μg/ml and one order of magnitude higher compared with those of the 5%-dexamethasone suspension group. No significant postoperative morphological or functional changes were observed up to 3 months postdelivery. CONCLUSIONS HexPLA is safe, fully biocompatible, and efficient for sustained high-dose, intratympanic delivery of dexamethasone at least for 1 week and therefore of high interest for the treatment of sudden sensorineural hearing loss and other acute inner ear diseases. Due to the favorable chemical properties, a wide range of other drugs can be loaded into the vehicle further increasing its potential value for otological applications.
Collapse
|
24
|
Askari E, Seyfoori A, Amereh M, Gharaie SS, Ghazali HS, Ghazali ZS, Khunjush B, Akbari M. Stimuli-Responsive Hydrogels for Local Post-Surgical Drug Delivery. Gels 2020; 6:E14. [PMID: 32397180 PMCID: PMC7345431 DOI: 10.3390/gels6020014] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Currently, surgical operations, followed by systemic drug delivery, are the prevailing treatment modality for most diseases, including cancers and trauma-based injuries. Although effective to some extent, the side effects of surgery include inflammation, pain, a lower rate of tissue regeneration, disease recurrence, and the non-specific toxicity of chemotherapies, which remain significant clinical challenges. The localized delivery of therapeutics has recently emerged as an alternative to systemic therapy, which not only allows the delivery of higher doses of therapeutic agents to the surgical site, but also enables overcoming post-surgical complications, such as infections, inflammations, and pain. Due to the limitations of the current drug delivery systems, and an increasing clinical need for disease-specific drug release systems, hydrogels have attracted considerable interest, due to their unique properties, including a high capacity for drug loading, as well as a sustained release profile. Hydrogels can be used as local drug performance carriers as a means for diminishing the side effects of current systemic drug delivery methods and are suitable for the majority of surgery-based injuries. This work summarizes recent advances in hydrogel-based drug delivery systems (DDSs), including formulations such as implantable, injectable, and sprayable hydrogels, with a particular emphasis on stimuli-responsive materials. Moreover, clinical applications and future opportunities for this type of post-surgery treatment are also highlighted.
Collapse
Affiliation(s)
- Esfandyar Askari
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran P.O. Box 1517964311, Iran;
| | - Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (M.A.); (S.S.G.); (B.K.)
| | - Meitham Amereh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (M.A.); (S.S.G.); (B.K.)
| | - Sadaf Samimi Gharaie
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (M.A.); (S.S.G.); (B.K.)
| | - Hanieh Sadat Ghazali
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran P.O. Box 16846-13114, Iran;
| | - Zahra Sadat Ghazali
- Biomedical Engineering Department, Amirkabir University of Technology (AUT), Tehran P.O. Box 158754413, Iran;
| | - Bardia Khunjush
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (M.A.); (S.S.G.); (B.K.)
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (M.A.); (S.S.G.); (B.K.)
- Center for Biomedical Research, University of Victoria, Victoria, BC V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
25
|
Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2020; 140:100543. [DOI: 10.1016/j.mser.2020.100543] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
State-of-the-art methods in clinical intracochlear drug delivery. Curr Opin Otolaryngol Head Neck Surg 2020; 27:381-386. [PMID: 31460985 DOI: 10.1097/moo.0000000000000566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Increasing awareness and prevalence of disorders in hearing and balance have placed emphasis on treatment strategies. With the rapid evolution in molecular, gene, and nanotechnology, alternate delivery methods have advanced intracochlear drug delivery. This review aims to raise awareness of recent developments in technologies to augment current clinical practices. RECENT FINDINGS Intracochlear drug delivery research has expanded with the familiarity and accessibility to cochlear implantation. Various therapeutics are closely studied for both safety and efficacy as well as biologic effect. Agents including neurotrophins, antiapoptotics, cell therapy, gene therapy, and anti-inflammatory drugs are on the forefront of preclinical research. Cochlear implant electrode modification and drug administration at the time of implantation is a major focus of research. Improvements in study design have focused on overcoming barriers including elucidating the role of the blood-perilymph barrier. SUMMARY Inner ear drug delivery methods include systemic, intratympanic, and intracochlear administration. Therapeutic technologies aim to overcome delivery barriers and to improve overall biologic effect while minimizing toxicity. Precision of drug application through intratympanic and intracochlear administration with minimal trauma is the future of inner ear drug development.
Collapse
|
27
|
Janani G, Kumar M, Chouhan D, Moses JC, Gangrade A, Bhattacharjee S, Mandal BB. Insight into Silk-Based Biomaterials: From Physicochemical Attributes to Recent Biomedical Applications. ACS APPLIED BIO MATERIALS 2019; 2:5460-5491. [DOI: 10.1021/acsabm.9b00576] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Chronic Lead Exposure Results in Auditory Deficits and Disruption of Hair Cells in Postweaning Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4289169. [PMID: 31217838 PMCID: PMC6536999 DOI: 10.1155/2019/4289169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/28/2019] [Indexed: 01/24/2023]
Abstract
Objective The effects of lead exposure on cognitive function have been studied intensively over the past decade, but less attention has focused on its impact on auditory function. This study is aimed at investigating the effect of lead on the cochlea and the molecular mechanisms responsible for its actions. Methods 0.2% lead acetate was administered to rats in drinking water for 30, 60, and 90 days. Brainstem auditory evoked responses (ABR) were recorded, and morphological changes in the hair cells were observed. We also measured glutathione (GSH) and malondialdehyde (MDA) concentrations and antioxidant enzyme activities such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione reductase (GR) activities in the cochlea. Results Lead exposure increased the ABR threshold and slightly prolonged the latencies of wave II and wave IV in rats. Abnormally shaped hair cells and loss of hair cells were found in the cochlea basilar membrane, together with degenerative changes in spiral ganglion neurons following lead exposure. The activities of some antioxidant enzymes were also reduced in association with upregulation of MDA expression. These effects may be caused by impaired catalytic function of the enzymes as a result of lead interaction. Conclusion The antioxidant system of the cochlea in the immature rat brain is highly vulnerable to developmental lead exposure. Oxidative stress may therefore represent a possible mechanism for lead-induced auditory deficits.
Collapse
|
29
|
Chen Y, Gu J, Liu J, Tong L, Shi F, Wang X, Wang X, Yu D, Wu H. Dexamethasone-loaded injectable silk-polyethylene glycol hydrogel alleviates cisplatin-induced ototoxicity. Int J Nanomedicine 2019; 14:4211-4227. [PMID: 31239676 PMCID: PMC6559256 DOI: 10.2147/ijn.s195336] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/21/2019] [Indexed: 12/28/2022] Open
Abstract
Background: Cisplatin is an extensively used anti-neoplastic agent for the treatment of various solid tumors. However, a high incidence of severe ototoxicity is accompanied by its use in the clinic. Currently, no drugs or therapeutic strategies have been approved for the treatment of cisplatin-induced ototoxicity by the FDA. Purpose: The purpose of this study was to investigate the otoprotective effects of dexamethasone (DEX)-loaded silk-polyethylene hydrogel (DEX-SILK) following round window membrane administration in the cisplatin-induced ototoxicity mouse model. Methods: The morphology, gelation kinetics, viscosity and secondary structure of the DEX-SILK hydrogel were analyzed. DEX concentration in the perilymph was tested at different time points following hydrogel injection on the RWM niche. Cultured cells (HEI-OC1), organ of Corti explants (C57/BL6, P0-2), and cisplatin-induced hearing loss mice model (C57/BL6) were used as in vitro and in vivo models for investigating the otoprotective effects of DEX-SILK hydrogel against cisplatin. Results: Encapsulation of DEX with a loading of 8% (w/v) did not significantly change the silk gelation time, and DEX was evenly distributed in the Silk-PEG hydrogel as visualized by scanning electron microscopy (SEM). The concentration of Silk majorly influenced DEX distribution, morphological characteristics, viscosity, and gelation time. The optimized DEX-SILK hydrogel (8% w/v loading, 15% silk concentration, 10 μl) was administered directly onto the RWM of the guinea pigs. The DEX concentration in the perilymph was maintained above 1 μg/ml for at least 21 days for the DEX-SILK, while it was maintained for less than 6 h in the control sample of free DEX. DEX-SILK (5-60 ng/ml) exhibited significant protective effects against cisplatin-induced cellular ototoxicity and notably reduced the production of reactive oxygen species (ROS). Eventually, pretreatment with DEX-SILK effectively preserved outer hair cells in the cultured organ of Corti explants and demonstrated significant hearing protection at 4, 8, and 16 kHz in the cisplatin-induced hearing loss mice as compared to the effects noted following pretreatment with DEX. Conclusion: These results demonstrated the clinical value of DEX-SILK for the therapy of cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Yuming Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300) , Shanghai 200011, People's Republic of China
| | - Jiayi Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300) , Shanghai 200011, People's Republic of China
| | - Jian Liu
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, People's Republic of China
| | - Ling Tong
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
| | - Fuxin Shi
- Department of Otology and Laryngology, Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Decibel Therapeutics , Boston, MA, 02215, USA
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, People's Republic of China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300) , Shanghai 200011, People's Republic of China
| | - Dehong Yu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300) , Shanghai 200011, People's Republic of China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300) , Shanghai 200011, People's Republic of China
| |
Collapse
|
30
|
Gangrade A, Mandal BB. Injectable Carbon Nanotube Impregnated Silk Based Multifunctional Hydrogel for Localized Targeted and On-Demand Anticancer Drug Delivery. ACS Biomater Sci Eng 2019; 5:2365-2381. [DOI: 10.1021/acsbiomaterials.9b00416] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ankit Gangrade
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Biman B. Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
31
|
Hao J, Li SK. Inner ear drug delivery: Recent advances, challenges, and perspective. Eur J Pharm Sci 2019; 126:82-92. [DOI: 10.1016/j.ejps.2018.05.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 10/16/2022]
|
32
|
Musazzi UM, Franzé S, Cilurzo F. Innovative pharmaceutical approaches for the management of inner ear disorders. Drug Deliv Transl Res 2018; 8:436-449. [PMID: 28462501 DOI: 10.1007/s13346-017-0384-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The sense of hearing is essential for permitting human beings to interact with the environment, and its dysfunctions can strongly impact on the quality of life. In this context, the cochlea plays a fundamental role in the transformation of the airborne sound waves into electrical signals, which can be processed by the brain. However, several diseases and external stimuli (e.g., noise, drugs) can damage the sensorineural structures of cochlea, inducing progressive hearing dysfunctions until deafness. In clinical practice, the current pharmacological approaches to treat cochlear diseases are based on the almost exclusive use of systemic steroids. In the last decades, the efficacy of novel therapeutic molecules has been proven, taking advantage from a better comprehension of the pathological mechanisms underlying many cochlear diseases. In addition, the feasibility of intratympanic administration of drugs also permitted to overcome the pharmacokinetic limitations of the systemic drug administration, opening new frontiers in drug delivery to cochlea. Several innovative drug delivery systems, such as in situ gelling systems or nanocarriers, were designed, and their efficacy has been proven in vitro and in vivo in cochlear models. The current review aims to describe the art of state in the cochlear drug delivery, highlighting lights and shadows and discussing the most critical aspects still pending in the field.
Collapse
Affiliation(s)
- Umberto M Musazzi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via G. Colombo, 71, 20133, Milan, Italy.
| | - Silvia Franzé
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via G. Colombo, 71, 20133, Milan, Italy
| | - Francesco Cilurzo
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via G. Colombo, 71, 20133, Milan, Italy
| |
Collapse
|
33
|
Frisina RD, Budzevich M, Zhu X, Martinez GV, Walton JP, Borkholder DA. Animal model studies yield translational solutions for cochlear drug delivery. Hear Res 2018; 368:67-74. [PMID: 29793764 PMCID: PMC6165691 DOI: 10.1016/j.heares.2018.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 11/18/2022]
Abstract
The field of hearing and deafness research is about to enter an era where new cochlear drug delivery methodologies will become more innovative and plentiful. The present report provides a representative review of previous studies where efficacious results have been obtained with animal models, primarily rodents, for protection against acute hearing loss such as acoustic trauma due to noise overexposure, antibiotic use and cancer chemotherapies. These approaches were initiated using systemic injections or oral administrations of otoprotectants. Now, exciting new options for local drug delivery, which opens up the possibilities for utilization of novel otoprotective drugs or compounds that might not be suitable for systemic use, or might interfere with the efficacious actions of chemotherapeutic agents or antibiotics, are being developed. These include interesting use of nanoparticles (with or without magnetic field supplementation), hydrogels, cochlear micropumps, and new transtympanic injectable compounds, sometimes in combination with cochlear implants.
Collapse
Affiliation(s)
- R D Frisina
- Dept. Chemical & Biomedical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA; Dept. Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA; Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA.
| | - M Budzevich
- Small Animal Imaging Lab, Moffitt Cancer Center, Tampa, FL, USA
| | - X Zhu
- Dept. Chemical & Biomedical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA; Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| | - G V Martinez
- Small Animal Imaging Lab, Moffitt Cancer Center, Tampa, FL, USA
| | - J P Walton
- Dept. Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA; Dept. Chemical & Biomedical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| | - D A Borkholder
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
34
|
Potential of rhBMP-2 and dexamethasone-loaded Zein/PLLA scaffolds for enhanced in vitro osteogenesis of mesenchymal stem cells. Colloids Surf B Biointerfaces 2018; 169:384-394. [DOI: 10.1016/j.colsurfb.2018.05.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/25/2018] [Accepted: 05/18/2018] [Indexed: 01/09/2023]
|
35
|
Liu X, Li M, Smyth H, Zhang F. Otic drug delivery systems: formulation principles and recent developments. Drug Dev Ind Pharm 2018; 44:1395-1408. [PMID: 29659300 DOI: 10.1080/03639045.2018.1464022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Disorders of the ear severely impact the quality of life of millions of people, but the treatment of these disorders is an ongoing, but often overlooked challenge particularly in terms of formulation design and product development. The prevalence of ear disorders has spurred significant efforts to develop new therapeutic agents, but perhaps less innovation has been applied to new drug delivery systems to improve the efficacy of ear disease treatments. This review provides a brief overview of physiology, major diseases, and current therapies used via the otic route of administration. The primary focuses are on the various administration routes and their formulation principles. The article also presents recent advances in otic drug deliveries as well as potential limitations. Otic drug delivery technology will likely evolve in the next decade and more efficient or specific treatments for ear disease will arise from the development of less invasive drug delivery methods, safe and highly controlled drug delivery systems, and biotechnology targeting therapies.
Collapse
Affiliation(s)
- Xu Liu
- a College of Pharmacy , The University of Texas at Austin , Austin , TX , USA
| | - Mingshuang Li
- b Department of Communication Sciences and Disorders , The University of Texas at Austin , Austin , TX , USA
| | - Hugh Smyth
- a College of Pharmacy , The University of Texas at Austin , Austin , TX , USA
| | - Feng Zhang
- a College of Pharmacy , The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
36
|
Mäder K, Lehner E, Liebau A, Plontke SK. Controlled drug release to the inner ear: Concepts, materials, mechanisms, and performance. Hear Res 2018; 368:49-66. [PMID: 29576310 DOI: 10.1016/j.heares.2018.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/21/2018] [Accepted: 03/06/2018] [Indexed: 12/01/2022]
Abstract
Progress in drug delivery to the ear has been achieved over the last few years. This review illustrates the main mechanisms of controlled drug release and the resulting geometry- and size-dependent release kinetics. The potency, physicochemical properties, and stability of the drug molecules are key parameters for designing the most suitable drug delivery system. The most important drug delivery systems for the inner ear include solid foams, hydrogels, and different nanoscale drug delivery systems (e.g., nanoparticles, liposomes, lipid nanocapsules, polymersomes). Their main characteristics (i.e., general structure and materials) are discussed, with special attention given to underlining the link between the physicochemical properties (e.g., surface areas, glass transition temperature, microviscosity, size, and shape) and release kinetics. An appropriate characterization of the drug, the excipients used, and the formulated drug delivery systems is necessary to achieve a deeper understanding of the release process and decrease variability originating from the drug delivery system. This task cannot be solved by otologists alone. The interdisciplinary cooperation between otology/neurotology, pharmaceutics, physics, and other disciplines will result in improved drug delivery systems for the inner ear.
Collapse
Affiliation(s)
- Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany.
| | - Eric Lehner
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | - Arne Liebau
- Department of Otorhinolaryngology, Head & Neck Surgery, Martin Luther University Halle-Wittenberg, University Medicine Halle, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Stefan K Plontke
- Department of Otorhinolaryngology, Head & Neck Surgery, Martin Luther University Halle-Wittenberg, University Medicine Halle, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| |
Collapse
|
37
|
Guo J, Li Y, Lu H, Li Y, Li X, Qin L, Dong G. PCEC hydrogel used on sustained-release hyaluronic acid delivery with lubrication effect. J Appl Polym Sci 2018. [DOI: 10.1002/app.46228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Junde Guo
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering; Xi'an Jiaotong University; Xi'an Shaanxi 710049 China
| | - Yue Li
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering; Xi'an Jiaotong University; Xi'an Shaanxi 710049 China
| | - Hailin Lu
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering; Xi'an Jiaotong University; Xi'an Shaanxi 710049 China
| | - Yu Li
- Department of Applied Chemistry; School of Science Xi'an Jiaotong University; Xi'an Shaanxi 710049 China
| | - Xing Li
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering; Xi'an Jiaotong University; Xi'an Shaanxi 710049 China
| | - Liguo Qin
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering; Xi'an Jiaotong University; Xi'an Shaanxi 710049 China
| | - Guangneng Dong
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering; Xi'an Jiaotong University; Xi'an Shaanxi 710049 China
| |
Collapse
|
38
|
Wu W, Zhang Z, Xiong T, Zhao W, Jiang R, Chen H, Li X. Calcium ion coordinated dexamethasone supramolecular hydrogel as therapeutic alternative for control of non-infectious uveitis. Acta Biomater 2017; 61:157-168. [PMID: 28501709 DOI: 10.1016/j.actbio.2017.05.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/02/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022]
Abstract
Supramolecular hydrogels formed by the self-assembly of therapeutic agents have received considerable attention due to their high drug payload and carrier-free features. Herein, we constructed a dexamethasone sodium phosphate (Dex) supramolecular hydrogel in combination with Dex and calcium ion (Ca2+) and further demonstrated its therapeutic efficacy in the control of ocular inflammation. The developed supramolecular hydrogel was thoroughly characterized by rheology, TEM, FTIR and XRD. Calcium ions and Dex concentration had a marked influence on the sol-gel transition behaviour of hydrogel and the proposed Dex supramolecular hydrogel displayed thixotropic properties. The drug release rate from Dex supramolecular hydrogel was dependent on the Ca2+ concentration. In comparison with Dex aqueous solution, single intravitreal injections of Dex supramolecular hydrogel up to 30μg/eye were well tolerated without causing undesirable complications of fundus blood vessel tortuosity and lens opacity, as indicated by electroretinograms (ERGs), fundus photography and histopathology. Moreover, the administration by Dex supramolecular hydrogel exhibited a comparable anti-inflammatory efficacy to native Dex solution on an experimental autoimmune uveitis (EAU) model induced in Lewis rats with IRBP peptide and the therapeutic efficacy had in a dosage-dependent manner. Histological observation and cytokines measurements indicated that both Dex solution and Dex supramolecular hydrogel (30μg/eye) treatment could significantly attenuate the inflammatory response in both anterior and posterior chambers via the downregulation of Th1 and Th17 effector responses. All these data suggested that the developed Dex supramolecular hydrogel might be a therapeutic alternative for non-infectious uveitis with minimal risk of the induction of lens opacity and fundus blood vessel tortuosity. STATEMENT OF SIGNIFICANCE A facile ionic cross-linking strategy was exploited to construct a dexamethasone sodium phosphate (Dex) supramolecular hydrogel composed of Dex and calcium ion. Intravitreal injection of Dex hydrogel displayed excellent intraocular biocompatibility without causing the complications of fundus blood vessel tortuosity and lens opacity. More importantly, the proposed Dex hydrogel exhibited a comparative anti-inflammatory response to native Dex formulation on an experimental autoimmune uveitis (EAU) model via the downregulation of Th1 and Th17 effector responses.
Collapse
|
39
|
Dai J, Long W, Liang Z, Wen L, Yang F, Chen G. A novel vehicle for local protein delivery to the inner ear: injectable and biodegradable thermosensitive hydrogel loaded with PLGA nanoparticles. Drug Dev Ind Pharm 2017; 44:89-98. [PMID: 28851247 DOI: 10.1080/03639045.2017.1373803] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Delivery of biomacromolecular drugs into the inner ear is challenging, mainly because of their inherent instability as well as physiological and anatomical barriers. Therefore, protein-friendly, hydrogel-based delivery systems following local administration are being developed for inner ear therapy. Herein, biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) containing interferon α-2 b (IFN α-2 b) were loaded in chitosan/glycerophosphate (CS/GP)-based thermosensitive hydrogel for IFN delivery by intratympanic injection. The injectable hydrogel possessed a physiological pH and formed semi-solid gel at 37 °C, with good swelling and deswelling properties. The CS/GP hydrogel could slowly degrade as visualized by scanning electron microscopy (SEM). The presence of NPs in CS/GP gel largely influenced in vitro drug release. In the guinea pig cochlea, a 1.5- to 3-fold increase in the drug exposure time of NPs-CS/GP was found than those of the solution, NPs and IFN-loaded hydrogel. Most importantly, a prolonged residence time was attained without obvious histological changes in the inner ear. This biodegradable, injectable, and thermosensitive NPs-CS/GP system may allow longer delivery of protein drugs to the inner ear, thus may be a potential novel vehicle for inner ear therapy.
Collapse
Affiliation(s)
- Juan Dai
- a School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Advanced Drug Delivery , Guangdong Pharmaceutical University , Guangzhou , China
| | - Wei Long
- a School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Advanced Drug Delivery , Guangdong Pharmaceutical University , Guangzhou , China
| | - Zhongping Liang
- a School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Advanced Drug Delivery , Guangdong Pharmaceutical University , Guangzhou , China
| | - Lu Wen
- a School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou , China
| | - Fan Yang
- a School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Advanced Drug Delivery , Guangdong Pharmaceutical University , Guangzhou , China
| | - Gang Chen
- a School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Advanced Drug Delivery , Guangdong Pharmaceutical University , Guangzhou , China
| |
Collapse
|
40
|
Chen C, Zhao XL, Li ZH, Zhu ZG, Qian SH, Flewitt AJ. Current and Emerging Technology for Continuous Glucose Monitoring. SENSORS 2017; 17:s17010182. [PMID: 28106820 PMCID: PMC5298755 DOI: 10.3390/s17010182] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/16/2022]
Abstract
Diabetes has become a leading cause of death worldwide. Although there is no cure for diabetes, blood glucose monitoring combined with appropriate medication can enhance treatment efficiency, alleviate the symptoms, as well as diminish the complications. For point-of-care purposes, continuous glucose monitoring (CGM) devices are considered to be the best candidates for diabetes therapy. This review focuses on current growth areas of CGM technologies, specifically focusing on subcutaneous implantable electrochemical glucose sensors. The superiority of CGM systems is introduced firstly, and then the strategies for fabrication of minimally-invasive and non-invasive CGM biosensors are discussed, respectively. Finally, we briefly outline the current status and future perspective for CGM systems.
Collapse
Affiliation(s)
- Cheng Chen
- School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai 201209, China.
| | - Xue-Ling Zhao
- School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai 201209, China.
| | - Zhan-Hong Li
- School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai 201209, China.
| | - Zhi-Gang Zhu
- School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai 201209, China.
| | - Shao-Hong Qian
- Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200231, China.
| | - Andrew J Flewitt
- Electrical Engineering Division, Department of Engineering, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0FA, UK.
| |
Collapse
|
41
|
Rangel-Argote M, Claudio-Rizo JA, Castellano LE, Vega-González A, Mata-Mata JL, Mendoza-Novelo B. ECM–oligourethene–silica hydrogels as a local drug release system of dexamethasone for stimulating macrophages. RSC Adv 2017. [DOI: 10.1039/c6ra25989h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The incorporation of silica particles inside of extracellular matrix hydrogels supports the loading and releasing of dexamethasone, a therapeutic for modulating macrophage.
Collapse
Affiliation(s)
| | - Jesús A. Claudio-Rizo
- Departamento de Ingenierías Química
- Electrónica y Biomédica
- DCI
- Universidad de Guanajuato
- León
| | - Laura E. Castellano
- Departamento de Ingenierías Química
- Electrónica y Biomédica
- DCI
- Universidad de Guanajuato
- León
| | - Arturo Vega-González
- Departamento de Ingenierías Química
- Electrónica y Biomédica
- DCI
- Universidad de Guanajuato
- León
| | - José L. Mata-Mata
- Departamento de Química
- DCNE
- Universidad de Guanajuato
- Guanajuato
- Mexico
| | | |
Collapse
|
42
|
Kumar M, Coburn J, Kaplan DL, Mandal BB. Immuno-Informed 3D Silk Biomaterials for Tailoring Biological Responses. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29310-29322. [PMID: 27726371 DOI: 10.1021/acsami.6b09937] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Macrophages, the key players in immunoregulation, are actively involved in tissue remodelling and vascularization. Recent advances in tissue engineering and regenerative medicine illustrate the importance of "immuno-informed" biomaterials to regulate the microenvironment of biomedical implants. In the current study, silk-based 3D hydrogels were utilized to regulate cytokine delivery for macrophage, a type of immune cell, differentiation and polarization. Three different hydrogel variants, silk-poly(ethylene glycol) (PEG) (SP), silk-horseradish peroxidase (HRP) (SH) and silk-sonicated (SS) hydrogels were studied. Hydrogels were loaded with the M1 and M2 polarizing cytokines interferon-γ (IFN-γ) and interleukin-4 (IL-4), respectively. Functional cytokine release and macrophage polarization studies were conducted using three cytokine exposure approaches: only cytokine encapsulation (macrophage in culture well), only macrophage encapsulation (cytokine in culture media) and cytokine with macrophage encapsulation. The extent of macrophage polarization by cytokine-eluting and macrophage-encapsulating hydrogels was investigated using gene expression analysis for C-C chemokine receptor 7 (CCR7), Interleukin-1 beta (IL-1β), cluster of differentiation 206 (CD206) and cluster of differentiation 209 (CD209). The released cytokines polarized macrophages from an M0 phenotype to an M1/M2 phenotype. Also, lineage committed M1/M2 macrophages could be "switched" to their M2/M1 counterparts (M1-to-M2 or M2-to-M1 transition) exhibiting their well-established plasticity. When macrophages were encapsulated in hydrogels, polarization could be induced to the lineage committed M1 or M2 phenotypes either in polarizing media or when coencapsulated with cytokines. Through this study, silk hydrogels demonstrated utility as a novel system for focal delivery of cytokines and macrophages as "immuno-informed" 3D silk-biomaterials.
Collapse
Affiliation(s)
- Manishekhar Kumar
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG) , Guwahati, 781039, India
| | - Jeannine Coburn
- Department of Biomedical Engineering, Tufts University , Medford, Massachusetts United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University , Medford, Massachusetts United States
| | - Biman B Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG) , Guwahati, 781039, India
| |
Collapse
|