1
|
Cao VP, Dinh KHT, Dinh TD, Bui PH, Tran TH, Van Bui H. Stable dispersion and prolonged dissolution of hydrophilic pharmaceutical achieved by room-temperature atmospheric pressure atomic layer deposition. Chem Commun (Camb) 2025; 61:6186-6189. [PMID: 40165583 DOI: 10.1039/d4cc06707j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
We demonstrate atomic layer deposition of SiO2 films on hydrophilic diclofenac sodium pharmaceutical powder under ambient conditions. We reveal that the SiO2 layer not only prolongs the dissolution but also enhances the surface zeta potential of the coated products, preventing sedimentation and enabling a highly stable dispersion in water.
Collapse
Affiliation(s)
- Viet Phuong Cao
- Faculty of Materials Science and Engineering, Phenikaa University, Yen Nghia, Ha Dong District, Hanoi 12116, Vietnam.
| | - Kim-Hue Thi Dinh
- Faculty of Materials Science and Engineering, Phenikaa University, Yen Nghia, Ha Dong District, Hanoi 12116, Vietnam.
| | - Truong Duc Dinh
- Faculty of Materials Science and Engineering, Phenikaa University, Yen Nghia, Ha Dong District, Hanoi 12116, Vietnam.
| | - Phi Huu Bui
- Faculty of Materials Science and Engineering, Phenikaa University, Yen Nghia, Ha Dong District, Hanoi 12116, Vietnam.
| | - Tuan Hiep Tran
- Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong District, Hanoi 12116, Vietnam
| | - Hao Van Bui
- Faculty of Materials Science and Engineering, Phenikaa University, Yen Nghia, Ha Dong District, Hanoi 12116, Vietnam.
| |
Collapse
|
2
|
Benson EG, Moseson DE, Bhalla S, Wang F, Wang M, Zheng K, Narwankar PK, Taylor LS. Dissolution of copovidone-based amorphous solid dispersions: Influence of atomic layer coating, hydration kinetics, and formulation. J Pharm Sci 2025; 114:323-335. [PMID: 39389537 DOI: 10.1016/j.xphs.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Atomic layer coating (ALC) is an emerging, solvent-free technique to coat amorphous solid dispersion (ASD) particles with a nanolayer ceramic coating that has been shown to improve powder characteristics and limit drug crystallization. Herein, we evaluate the impact of aluminum oxide coatings with varying thickness and conformality on the release behavior of ritonavir/copovidone ASDs. Release performance of powders, neat tablets, and formulated tablets was studied. Confocal fluorescence microscopy (CFM) was used to visualize particle hydration and phase separation during immersion of the ASD in aqueous media. CFM revealed particle hydration requires defects for solvent penetration, but coatings, regardless of thickness, had minor impacts on powder dissolution provided defects were present. In tablets where less surface area is exposed to the dissolution media due to gel formation, slowed hydration kinetics resulted in phase separation of the drug from the polymer in coated samples, limiting release. Formulation with two superdisintegrants, crospovidone and croscarmellose sodium, as well as lactose achieved ∼90% release in less than 10 minutes, matching the uncoated ASD particles of the same formulation. This study highlights the importance of hydration rate, as well as the utility of confocal fluorescence microscopy to provide insight into release and phase behavior of ASDs.
Collapse
Affiliation(s)
- Emily G Benson
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Dana E Moseson
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Shradha Bhalla
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Fei Wang
- Applied Materials, Inc., 3100 Bowers Ave, Santa Clara, CA 95054, United States
| | - Miaojun Wang
- Applied Materials, Inc., 3100 Bowers Ave, Santa Clara, CA 95054, United States
| | - Kai Zheng
- Applied Materials, Inc., 3100 Bowers Ave, Santa Clara, CA 95054, United States
| | - Pravin K Narwankar
- Applied Materials, Inc., 3100 Bowers Ave, Santa Clara, CA 95054, United States
| | - Lynne S Taylor
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
3
|
Schenck L, Risteen B, Johnson LM, Koynov A, Bonaga L, Orr R, Hancock B. A Commentary on Co-Processed API as a Promising Approach to Improve Sustainability for the Pharmaceutical Industry. J Pharm Sci 2024; 113:306-313. [PMID: 38065243 DOI: 10.1016/j.xphs.2023.11.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024]
Abstract
Pharmaceutical products represent a meaningful target for sustainability improvement and emissions reduction. It is proposed here that rethinking the standard, and often linear, approach to the synthesis of Active Pharmaceutical Ingredients (API) and subsequent formulation and drug product processing will deliver transformational sustainability opportunities. The greatest potential arguably involves API that have challenging physico-chemical properties. These can require the addition of excipients that can significantly exceed the weight of the API in the final dosage unit, require multiple manufacturing steps to achieve materials amenable to delivering final dosage units, and need highly protective packaging for final product stability. Co-processed API are defined as materials generated via addition of non-covalently bonded, non-active components during drug substance manufacturing steps, differing from salts, solvates and co-crystals. They are an impactful example of provocative re-thinking of historical regulatory and quality precedents, blurring drug substance and drug product operations, with sustainability opportunities. Successful examples utilizing co-processed API can modify properties with use of less excipient, while simultaneously reducing processing requirements by delivering material amenable to continuous manufacturing. There are also opportunities for co-processed API to reduce the need for highly protective packaging. This commentary will detail the array of sustainability impacts that can be delivered, inclusive of business, regulatory, and quality considerations, with discussion on potential routes to more comprehensively commercialize co-processed API technologies.
Collapse
Affiliation(s)
- Luke Schenck
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States.
| | - Bailey Risteen
- Pharma Solutions, BASF Corporation, Florham Park, New Jersey 07932, United States
| | | | - Athanas Koynov
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Llorente Bonaga
- CMC Pharmaceutical Development and New Products, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Robert Orr
- CMC Pharmaceutical Development and New Products, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Bruno Hancock
- Drug Product Development, Pfizer Inc., Groton CT 06340, United States
| |
Collapse
|
4
|
Mamidi H, Palekar S, Patel H, Nukala PK, Patel K. Formulation strategies for the development of high drug-loaded amorphous solid dispersions. Drug Discov Today 2023; 28:103806. [PMID: 37890714 DOI: 10.1016/j.drudis.2023.103806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Amorphous solid dispersions (ASD) have gained tremendous attention over the past two decades as one of the most promising techniques for enhancing the solubility of poorly water-soluble drugs. However, low drug loading is one of the major challenges of ASD technology that limits its commercialization to only a few drug candidates. Increasing the drug loading increases the risk of recrystallization during storage (solid state) and/or during dissolution (solution state). Various formulation and process-related strategies have been explored that open the possibility of formulating high drug-loaded ASDs without the risk of recrystallization. Here, we review various formulation approaches, such as the use of surfactants, mesoporous silicas, polymer combinations, in situ thermal crosslinking, structural modification of polymeric carriers, and surface nanocoating using minerals. We also discuss the mechanisms by which these approaches inhibit solid state and/or solution state recrystallization.
Collapse
Affiliation(s)
- Hemanth Mamidi
- College of Pharmacy and Health Sciences, St John's University, Queens, NY, USA; Continuus Pharmaceuticals Inc, Woburn, MA, USA
| | - Siddhant Palekar
- College of Pharmacy and Health Sciences, St John's University, Queens, NY, USA
| | - Henis Patel
- College of Pharmacy and Health Sciences, St John's University, Queens, NY, USA
| | - Pavan Kumar Nukala
- College of Pharmacy and Health Sciences, St John's University, Queens, NY, USA
| | - Ketan Patel
- College of Pharmacy and Health Sciences, St John's University, Queens, NY, USA.
| |
Collapse
|
5
|
Barros CHN, Alfaro M, Costello C, Wang F, Sapre K, Rastogi S, Chiruvolu S, Connolly J, Topp EM. Effect of Atomic Layer Coating on the Stability of Solid Myoglobin Formulations. Mol Pharm 2023; 20:4086-4099. [PMID: 37466053 DOI: 10.1021/acs.molpharmaceut.3c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The effects of atomic layer (ALC) coating on physical properties and storage stability were examined in solid powders containing myoglobin, a model protein. Powders containing myoglobin and mannitol (1:1 w/w) were prepared by lyophilization or spray drying and subjected to aluminum oxide or silicon oxide ALC coating. Uncoated samples of these powders as well as coated and uncoated samples of myoglobin as received served as controls. After preparation (t0), samples were analyzed for moisture content, reconstitution time, myoglobin secondary structure, crystallinity, and protein aggregate content. Samples were stored for 3 months (t3) under controlled conditions (53% RH, 40 °C) in both open and closed vials and then analyzed as above. At t3, the recovery of soluble native (i.e., monomeric) protein depended on formulation, coating type, and drying method and was up to 2-fold greater in coated samples than in uncoated controls. Promisingly, some samples with high recovery also showed low soluble aggregate content (<10%) at t3 and low total monomer loss; the latter was correlated to sample moisture content. Overall, the results demonstrate that ALC coatings can stabilize solid protein formulations during storage, providing benefits over uncoated controls.
Collapse
Affiliation(s)
- Caio H N Barros
- National Institution for Bioprocessing Research and Training (NIBRT), Dublin A94 X099, Ireland
| | - Manuel Alfaro
- National Institution for Bioprocessing Research and Training (NIBRT), Dublin A94 X099, Ireland
| | - Cormac Costello
- National Institution for Bioprocessing Research and Training (NIBRT), Dublin A94 X099, Ireland
| | - Fei Wang
- Applied Materials, Inc., Santa Clara, California 58039, United States
| | - Kedar Sapre
- Applied Materials, Inc., Santa Clara, California 58039, United States
| | - Suneel Rastogi
- Applied Materials, Inc., Santa Clara, California 58039, United States
| | | | - James Connolly
- Applied Materials, Inc., Santa Clara, California 58039, United States
| | - Elizabeth M Topp
- National Institution for Bioprocessing Research and Training (NIBRT), Dublin A94 X099, Ireland
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Sosa J, Berriel SN, Feit C, Currie TM, Shultz LR, Rudawski NG, Jurca T, Banerjee P. Release Rate Studies of 5-Aminosalacylic Acid Coated with Atomic Layer-Deposited Al 2O 3 and ZnO in an Acidic Environment. ACS APPLIED BIO MATERIALS 2023; 6:93-103. [PMID: 36515998 DOI: 10.1021/acsabm.2c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
5-Aminosalicylic acid (5-ASA) is a first-line defense drug used to treat mild cases of inflammatory bowel disease. When administered orally, the active pharmaceutical ingredient is released throughout the gastrointestinal tract relieving chronic inflammation. However, delayed and targeted released systems for 5-ASA to achieve optimal dose volumes in acidic environments remain a challenge. Here, we demonstrate the application of atomic layer deposition (ALD) as a technique to synthesize nanoscale coatings on 5-ASA to control its release in acidic media. ALD Al2O3 (38.0 nm) and ZnO (24.7 nm) films were deposited on 1 g batch powders of 5-ASA in a rotatory thermal ALD system. Fourier transform infrared spectroscopy, scanning electron microscopy, and scanning/transmission electron microscopy establish the interfacial chemistry and conformal nature of ALD coating over the 5-ASA particles. While Al2O3 forms a sharp interface with 5-ASA, ZnO appears to diffuse inside 5-ASA. The release of 5-ASA is studied in a pH 4 solution via UV-vis spectroscopy. Dynamic stirring, mimicking gut peristalsis, causes mechanical attrition of the Al2O3-coated particles, thereby releasing 5-ASA. However, under static conditions lasting 5000 s, the Al2O3-coated particles release only 17.5% 5-ASA compared to 100% release with the ZnO coating. Quartz crystal microbalance-based etch studies confirm the stability of Al2O3 in pH 4 media, where the ZnO films etch 41× faster than Al2O3. Such results are significant in achieving a nanoscale coating-based drug delivery system for 5-ASA with controlled release in acidic environments.
Collapse
Affiliation(s)
- Jaynlynn Sosa
- NanoScience and Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - S Novia Berriel
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Corbin Feit
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Taylor M Currie
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Lorianne R Shultz
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Nicholas G Rudawski
- Research Service Centers, University of Florida, Gainesville, Florida 32611, United States
| | - Titel Jurca
- NanoScience and Technology Center, University of Central Florida, Orlando, Florida 32826, United States.,Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States.,REACT Faculty Cluster, University of Central Florida, Orlando, Florida 32816, United States
| | - Parag Banerjee
- NanoScience and Technology Center, University of Central Florida, Orlando, Florida 32826, United States.,Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States.,REACT Faculty Cluster, University of Central Florida, Orlando, Florida 32816, United States.,Florida Solar Energy Center, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
7
|
Moseson DE, Benson EG, Cao Z, Bhalla S, Wang F, Wang M, Zheng K, Narwankar PK, Simpson GJ, Taylor LS. Impact of Aluminum Oxide Nanocoating on Drug Release from Amorphous Solid Dispersion Particles. Mol Pharm 2023; 20:593-605. [PMID: 36346665 DOI: 10.1021/acs.molpharmaceut.2c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Atomic layer coating (ALC) is emerging as a particle engineering strategy to inhibit surface crystallization of amorphous solid dispersions (ASDs). In this study, we turn our attention to evaluating drug release behavior from ALC-coated ASDs, and begin to develop a mechanistic framework. Posaconazole/hydroxypropyl methylcellulose acetate succinate was used as a model system at both 25% and 50% drug loadings. ALC-coatings of aluminum oxide up to 40 nm were evaluated for water sorption kinetics and dissolution performance under a range of pH conditions. Scanning electron microscopy with energy dispersive X-ray analysis was used to investigate the microstructure of partially released ASD particles. Coating thickness and defect density (inferred from deposition rates) were found to impact water sorption kinetics. Despite reduced water sorption kinetics, the presence of a coating was not found to impact dissolution rates under conditions where rapid drug release was observed. Under slower releasing conditions, underlying matrix crystallization was reduced by the coating, enabling greater levels of drug release. These results demonstrate that water was able to penetrate through the ALC coating, hydrating the amorphous solid, which can initiate dissolution of drug and/or polymer (depending on pH conditions). Swelling of the ASD substrate subsequently occurs, disrupting and cracking the coating, which serves to facilitate rapid drug release. Water sorption kinetics are highlighted as a potential predictive tool to investigate the coating quality and its potential impact on dissolution performance. This study has implications for formulation design and evaluation of ALC-coated ASD particles.
Collapse
Affiliation(s)
- Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Emily G Benson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ziyi Cao
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shradha Bhalla
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Fei Wang
- Applied Materials, Inc., 3100 Bowers Ave, Santa Clara, California 95054, United States
| | - Miaojun Wang
- Applied Materials, Inc., 3100 Bowers Ave, Santa Clara, California 95054, United States
| | - Kai Zheng
- Applied Materials, Inc., 3100 Bowers Ave, Santa Clara, California 95054, United States
| | - Pravin K Narwankar
- Applied Materials, Inc., 3100 Bowers Ave, Santa Clara, California 95054, United States
| | - Garth J Simpson
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Moseson DE, Benson EG, Nguyen HT, Wang F, Wang M, Zheng K, Narwankar PK, Taylor LS. Atomic Layer Coating to Inhibit Surface Crystallization of Amorphous Pharmaceutical Powders. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40698-40710. [PMID: 36054111 DOI: 10.1021/acsami.2c12666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Preventing crystallization is a primary concern when developing amorphous drug formulations. Recently, atomic layer coatings (ALCs) of aluminum oxide demonstrated crystallization inhibition of high drug loading amorphous solid dispersions (ASDs) for over 2 years. The goal of the current study was to probe the breadth and mechanisms of this exciting finding through multiple drug/polymer model systems, as well as particle and coating attributes. The model ASD systems selected provide for a range of hygroscopicity and chemical functional groups, which may contribute to the crystallization inhibition effect of the ALC coatings. Atomic layer coating was performed to apply a 5-25 nm layer of aluminum oxide or zinc oxide onto ASD particles, which imparted enhanced micromeritic properties, namely, reduced agglomeration and improved powder flowability. ASD particles were stored at 40 °C and a selected relative humidity level between 31 and 75%. Crystallization was monitored by X-ray powder diffraction and scanning electron microscopy (SEM) up to 48 weeks. Crystallization was observable by SEM within 1-2 weeks for all uncoated samples. After ALC, crystallization was effectively delayed or completely inhibited in some systems up to 48 weeks. The delay achieved was demonstrated regardless of polymer hygroscopicity, presence or absence of hydroxyl functional groups in drugs and/or polymers, particle size, or coating properties. The crystallization inhibition effect is attributed primarily to decreased surface molecular mobility. ALC has the potential to be a scalable strategy to enhance the physical stability of ASD systems to enable high drug loading and enhanced robustness to temperature or relative humidity excursions.
Collapse
Affiliation(s)
- Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Emily G Benson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hanh Thuy Nguyen
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Fei Wang
- Applied Materials, Inc., 3100 Bowers Avenue, Santa Clara, California 95054, United States
| | - Miaojun Wang
- Applied Materials, Inc., 3100 Bowers Avenue, Santa Clara, California 95054, United States
| | - Kai Zheng
- Applied Materials, Inc., 3100 Bowers Avenue, Santa Clara, California 95054, United States
| | - Pravin K Narwankar
- Applied Materials, Inc., 3100 Bowers Avenue, Santa Clara, California 95054, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
Nederstigt TAP, Peijnenburg WJGM, Schrama M, van Ommen JR, Vijver MG. Impacts of a novel controlled-release TiO 2-coated (nano-) formulation of carbendazim and its constituents on freshwater macroinvertebrate communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156554. [PMID: 35691359 DOI: 10.1016/j.scitotenv.2022.156554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Recently, the delivery of pesticides through novel controlled-release (nano-)formulations has been proposed intending to reduce (incidental) pesticide translocation to non-target sites. Concerns have however been raised with regards to the potentially enhanced toxicity of controlled-release (nano-)formulations to non-target organisms and ecosystems. We evaluated long-term (i.e. 1 and 3 month-) impacts of a novel controlled-release pesticide formulation (nano-TiO2-coated carbendazim) and its individual and combined constituents (i.e. nano-sized TiO2 and carbendazim) on naturally established freshwater macroinvertebrate communities. In doing so, we simultaneously assessed impacts of nano-sized TiO2 (nTiO2), currently one of the most used and emitted engineered nanomaterials world-wide. We determined ecological impacts on diversity (i.e. β-diversity), structure (i.e. rank abundance parameters), and functional composition (i.e. feeding guilds & trophic groups) of communities and underlying effects at lower organizational levels (i.e. population dynamics of individual taxa). Freshwater macroinvertebrate communities were negligibly impacted by nTiO2 at environmentally realistic concentrations. The controlled-release (nano-)formulation significantly delayed release of carbendazim to the water column. Nevertheless, conventional- (i.e. un-coated-) and nTiO2-coated carbendazim induced a similar set of adverse impacts at all investigated levels of ecological organization and time points. Our findings show fundamental restructuring of the taxonomic- and functional composition of macroinvertebrate communities as a result of low-level pesticide exposure, and thereby highlight the need for mitigating measures to reduce pesticide-induced stress on freshwater ecosystems.
Collapse
Affiliation(s)
- Tom A P Nederstigt
- Institute of Environmental Sciences, University of Leiden, Leiden, the Netherlands.
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, University of Leiden, Leiden, the Netherlands; National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Maarten Schrama
- Institute of Environmental Sciences, University of Leiden, Leiden, the Netherlands
| | - J Ruud van Ommen
- Department of Chemical Engineering, TU Delft Process & Product Technology Institute, Delft University of Technology, Delft, the Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences, University of Leiden, Leiden, the Netherlands
| |
Collapse
|
10
|
Gupta S, Mittal M, Rathore AS. Atomic Layer Deposition Coating on the Surface of Active Pharmaceutical Ingredients to Reduce Surface Charge Build-Up. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27195-27202. [PMID: 35656880 DOI: 10.1021/acsami.2c05761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Active pharmaceutical ingredients (APIs) typically consist of solid therapeutic particles that may acquire electrostatic charge during milling and grinding operations. This may result in the agglomeration of particles, thereby reducing the flowability and affecting the homogeneity of the drug formulation. Electrostatic charge build-up may also lead to fire explosions. To avoid charge build-up, APIs are often coated with polymers. In this paper, atomic layer deposition (ALD) using metal oxides such as Al2O3 and TiO2 on APIs, namely, palbociclib and pazopanib HCl, has been utilized to demonstrate a uniform coating that results in a significant reduction in the surface charge of the drug particles. Kelvin probe force microscopy (KPFM) shows a 4-fold decrease in the surface contact potential of uncoated pazopanib HCl (2.3 V) to 0.52 and 0.82 V in TiO2-and Al2O3-coated APIs, respectively. Also, the ζ potential indicated a 4-fold decrease in the surface charge on coating pazopanib HCl, i.e., from -32.9 mV to -7.51 and -8.51 mV in Al2O3 and TiO2, respectively. Surface morphology, thermal stability, dissolution studies, and cytotoxicity of the drug particles after coating were also examined. Thermal analysis indicated no change in the melting temperature (Tm) after coating. ALD coating was found to be uniform and conformal as observed in images obtained from scanning electron microscopy (SEM) and scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS). The rate of dissolution was found to be delayed by the coating, and thus ALD offers slower drug release. Coating APIs with TiO2 and Al2O3 did not induce statistically significant cytotoxicity compared to the uncoated samples. The results presented in this study demonstrate that ALD coating can be used to reduce surface charge build-up and enhance the bulk properties of the drug particles without affecting their physicochemical properties.
Collapse
Affiliation(s)
- Surbhi Gupta
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Manya Mittal
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
11
|
Surface nanocoating of high drug-loading spray-dried amorphous solid dispersions by atomic layer coating: Excellent physical stability under accelerated storage conditions for two years. Int J Pharm 2022; 620:121747. [DOI: 10.1016/j.ijpharm.2022.121747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 12/24/2022]
|
12
|
Sosnov EA, Malkov AA, Malygin AA. Nanotechnology of Molecular Layering in Production of Inorganic and Hybrid Materials for Various Functional Purposes: II. Molecular Layering Technology and Prospects for Its Commercialization and Development in the XXI Century. RUSS J APPL CHEM+ 2021. [DOI: 10.1134/s1070427221090020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
La Zara D, Sun F, Zhang F, Franek F, Balogh Sivars K, Horndahl J, Bates S, Brännström M, Ewing P, Quayle MJ, Petersson G, Folestad S, van Ommen JR. Controlled Pulmonary Delivery of Carrier-Free Budesonide Dry Powder by Atomic Layer Deposition. ACS NANO 2021; 15:6684-6698. [PMID: 33769805 PMCID: PMC8155342 DOI: 10.1021/acsnano.0c10040] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Ideal controlled pulmonary drug delivery systems provide sustained release by retarding lung clearance mechanisms and efficient lung deposition to maintain therapeutic concentrations over prolonged time. Here, we use atomic layer deposition (ALD) to simultaneously tailor the release and aerosolization properties of inhaled drug particles without the need for lactose carrier. In particular, we deposit uniform nanoscale oxide ceramic films, such as Al2O3, TiO2, and SiO2, on micronized budesonide particles, a common active pharmaceutical ingredient for the treatment of respiratory diseases. In vitro dissolution and ex vivo isolated perfused rat lung tests demonstrate dramatically slowed release with increasing nanofilm thickness, regardless of the nature of the material. Ex situ transmission electron microscopy at various stages during dissolution unravels mostly intact nanofilms, suggesting that the release mechanism mainly involves the transport of dissolution media through the ALD films. Furthermore, in vitro aerosolization testing by fast screening impactor shows a ∼2-fold increase in fine particle fraction (FPF) for each ALD-coated budesonide formulation after 10 ALD process cycles, also applying very low patient inspiratory pressures. The higher FPFs after the ALD process are attributed to the reduction in the interparticle force arising from the ceramic surfaces, as evidenced by atomic force microscopy measurements. Finally, cell viability, cytokine release, and tissue morphology analyses verify a safe and efficacious use of ALD-coated budesonide particles at the cellular level. Therefore, surface nanoengineering by ALD is highly promising in providing the next generation of inhaled formulations with tailored characteristics of drug release and lung deposition, thereby enhancing controlled pulmonary delivery opportunities.
Collapse
Affiliation(s)
- Damiano La Zara
- Department
of Chemical Engineering, Delft University
of Technology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
| | - Feilong Sun
- Department
of Chemical Engineering, Delft University
of Technology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
| | - Fuweng Zhang
- Department
of Chemical Engineering, Delft University
of Technology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
| | - Frans Franek
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Kinga Balogh Sivars
- Clinical
Testing and Precision Medicine, Global Procurement, Operations, AstraZeneca, Gothenburg, Sweden
| | - Jenny Horndahl
- Bioscience
COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stephanie Bates
- Functional
and Mechanistic Safety, Clinical Pharmacology
and Safety Sciences, R&D, AstraZeneca, Cambridge U.K.
| | - Marie Brännström
- Drug
Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D,
AstraZeneca, Gothenburg, Sweden
| | - Pär Ewing
- Drug
Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D,
AstraZeneca, Gothenburg, Sweden
| | - Michael J. Quayle
- New Modalities
and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Gunilla Petersson
- Innovation
Strategy and External Liaison, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Staffan Folestad
- Innovation
Strategy and External Liaison, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - J. Ruud van Ommen
- Department
of Chemical Engineering, Delft University
of Technology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
| |
Collapse
|
14
|
Hu Y, Lu J, Feng H. Surface modification and functionalization of powder materials by atomic layer deposition: a review. RSC Adv 2021; 11:11918-11942. [PMID: 35423751 PMCID: PMC8697040 DOI: 10.1039/d1ra00326g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/05/2021] [Indexed: 11/21/2022] Open
Abstract
Powder materials are a class of industrial materials with many important applications. In some circumstances, surface modification and functionalization of these materials are essential for achieving or enhancing their expected performances. However, effective and precise surface modification of powder materials remains a challenge due to a series of problems such as high surface area, diffusion limitation, and particle agglomeration. Atomic layer deposition (ALD) is a cutting-edge thin film coating technology traditionally used in the semiconductor industry. ALD enables layer by layer thin film growth by alternating saturated surface reactions between the gaseous precursors and the substrate. The self-limiting nature of ALD surface reaction offers angstrom level thickness control as well as exceptional film conformality on complex structures. With these advantages, ALD has become a powerful tool to effectively fabricate powder materials for applications in many areas other than microelectronics. This review focuses on the unique capability of ALD in surface engineering of powder materials, including recent advances in the design of ALD reactors for powder fabrication, and applications of ALD in areas such as stabilization of particles, catalysts, energetic materials, batteries, wave absorbing materials and medicine. We intend to show the versatility and efficacy of ALD in fabricating various kinds of powder materials, and help the readers gain insights into the principles, methods, and unique effects of powder fabrication by ALD.
Collapse
Affiliation(s)
- Yiyun Hu
- Science and Technology on Combustion and Explosion Laboratory, Xi'an Modern Chemistry Research Institute 168 E. Zhangba Road Xi'an 710065 Shanxi PR China
- Laboratory of Material Surface Engineering and Nanofabrication, Xi'an Modern Chemistry Research Institute 168 E. Zhangba Road Xi'an 710065 Shanxi PR China
| | - Jian Lu
- State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute 168 E. Zhangba Road Xi'an 710065 Shanxi PR China
| | - Hao Feng
- Science and Technology on Combustion and Explosion Laboratory, Xi'an Modern Chemistry Research Institute 168 E. Zhangba Road Xi'an 710065 Shanxi PR China
- Laboratory of Material Surface Engineering and Nanofabrication, Xi'an Modern Chemistry Research Institute 168 E. Zhangba Road Xi'an 710065 Shanxi PR China
- State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute 168 E. Zhangba Road Xi'an 710065 Shanxi PR China
| |
Collapse
|
15
|
Knemeyer K, Baumgarten R, Ingale P, Naumann d'Alnoncourt R, Driess M, Rosowski F. Toolbox for atomic layer deposition process development on high surface area powders. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:025115. [PMID: 33648082 DOI: 10.1063/5.0037844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Atomic layer deposition (ALD) is an industrially applied technique for thin film deposition. The vast majority of processes target flat substrates rather than powders. For ALD on powders, new processes are needed, as different reaction conditions are required. Here, two setups are described in detail, which enhance the ALD process development for powders. The first setup described is capable of directly measuring the vapor pressure of a given precursor by a capacitance diaphragm gauge. Promising precursors can be pre-selected, and suitable precursor saturation temperatures can be determined. The second setup consists of four parallel reactors with individual temperature zones to screen the optimal ALD temperature window in a time efficient way. Identifying the precursor saturation temperature beforehand and subsequently performing the first ALD half cycle in the parallel setup at four different reactor temperatures simultaneously will drastically reduce process development times. Validation of both setups is shown for the well-known ALD precursors, trimethylaluminum to deposit aluminum oxide and diethyl zinc to deposit zinc oxide, both on amorphous silica powder.
Collapse
Affiliation(s)
- K Knemeyer
- BasCat-UniCat BASF JointLab, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - R Baumgarten
- BasCat-UniCat BASF JointLab, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - P Ingale
- BasCat-UniCat BASF JointLab, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - R Naumann d'Alnoncourt
- BasCat-UniCat BASF JointLab, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - M Driess
- BasCat-UniCat BASF JointLab, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - F Rosowski
- BasCat-UniCat BASF JointLab, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| |
Collapse
|
16
|
Shah D, Patel DI, Major GH, Argyle MD, Linford MR. A new holder/container with a porous cover for atomic layer deposition on particles, with transport analysis and detailed characterization of the resulting materials. SURF INTERFACE ANAL 2020. [DOI: 10.1002/sia.6895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dhruv Shah
- Department of Chemistry and Biochemistry Brigham Young University Provo UT 84602 USA
| | - Dhananjay I. Patel
- Department of Chemistry and Biochemistry Brigham Young University Provo UT 84602 USA
| | - George H. Major
- Department of Chemistry and Biochemistry Brigham Young University Provo UT 84602 USA
| | - Morris D. Argyle
- Department of Chemical Engineering Brigham Young University Provo UT 84602 USA
| | - Matthew R. Linford
- Department of Chemistry and Biochemistry Brigham Young University Provo UT 84602 USA
| |
Collapse
|
17
|
Karimzadeh S, Safaei B, Jen TC. Investigate the importance of mechanical properties of SWCNT on doxorubicin anti-cancer drug adsorption for medical application: A molecular dynamic study. J Mol Graph Model 2020; 101:107745. [PMID: 32977299 DOI: 10.1016/j.jmgm.2020.107745] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/07/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Sina Karimzadeh
- Department of Mechanical Engineering Science, University of Johannesburg, Gauteng, 2006, South Africa.
| | - Babak Safaei
- Department of Mechanical Engineering, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey.
| | - Tien-Chien Jen
- Department of Mechanical Engineering Science, University of Johannesburg, Gauteng, 2006, South Africa.
| |
Collapse
|
18
|
An JK, Choi E, Shim S, Kim H, Kang G, Yun JY. Thermal Decomposition In Situ Monitoring System of the Gas Phase Cyclopentadienyl Tris(dimethylamino) Zirconium (CpZr(NMe 2) 3) Based on FT-IR and QMS for Atomic Layer Deposition. NANOSCALE RESEARCH LETTERS 2020; 15:175. [PMID: 32886281 PMCID: PMC7474051 DOI: 10.1186/s11671-020-03400-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
We developed a newly designed system based on in situ monitoring with Fourier transform infrared (FT-IR) spectroscopy and quadrupole mass spectrometry (QMS) for understanding decomposition mechanism and by-products of vaporized Cyclopentadienyl Tris(dimethylamino) Zirconium (CpZr(NMe2)3) during the move to process chamber at various temperatures because thermal decomposition products of unwanted precursors can affect process reliability. The FT-IR data show that the -CH3 peak intensity decreases while the -CH2- and C=N peak intensities increase as the temperature is increased from 100 to 250 °C. This result is attributed to decomposition of the dimethylamido ligands. Based on the FT-IR data, it can also be assumed that a new decomposition product is formation at 250 °C. While in situ QMS analysis demonstrates that vaporized CpZr(NMe2)3 decomposes to N-ethylmethanimine rather than methylmethyleneimine. The in situ monitoring with FT-IR spectroscopy and QMS provides useful information for understanding the behavior and decomposes of CpZr(NMe2)3 in the gas phase, which was not proven before. The study to understand the decomposition of vaporized precursor is the first attempt and can be provided as useful information for improving the reliability of a high- advanced ultra-thin film deposition process using atomic layer deposition in the future.
Collapse
Affiliation(s)
- Jong-Ki An
- New Product Development Department, Wonik IPS, 75, Jinwisandan-ro, Jinwi-myeon, Pyeongtaek-si, Gyeonggi-do 17709 Republic of Korea
| | - Eunmi Choi
- Vacuum Materials Measurement Team, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113 Republic of Korea
| | - Seob Shim
- Liquid Processing & Casting R&D Group, Korea Institute of Industrial Technology, 156, Gaetbeol-ro, Yeonsu-gu, Incheon, 21999 Republic of Korea
| | - Hayeong Kim
- Vacuum Materials Measurement Team, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113 Republic of Korea
- Nanomaterials Science & Engineering, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Goru Kang
- Vacuum Materials Measurement Team, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113 Republic of Korea
| | - Ju-Young Yun
- Vacuum Materials Measurement Team, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113 Republic of Korea
- Nanomaterials Science & Engineering, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| |
Collapse
|
19
|
Schenck L, Erdemir D, Saunders Gorka L, Merritt JM, Marziano I, Ho R, Lee M, Bullard J, Boukerche M, Ferguson S, Florence AJ, Khan SA, Sun CC. Recent Advances in Co-processed APIs and Proposals for Enabling Commercialization of These Transformative Technologies. Mol Pharm 2020; 17:2232-2244. [DOI: 10.1021/acs.molpharmaceut.0c00198] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luke Schenck
- Process Research and Development, Merck & Co. Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Deniz Erdemir
- Drug Product Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick New Jersey 08903, United States
| | | | - Jeremy M. Merritt
- Small Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46221, United States
| | - Ivan Marziano
- Pfizer R&D UK Limited, Discovery Park, Ramsgate Road, Sandwich CT13 9NJ, United Kingdom
| | - Raimundo Ho
- Solid State Chemistry, AbbVie Inc., 1 North Waukegan Road, Chicago, Illinois 60064, United States
| | - Mei Lee
- Chemical Development, Product Development and Supply, GlaxoSmithKline, Gunnelswood Road, Stevenage SG1 2NY, United Kingdom
| | - Joseph Bullard
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Moussa Boukerche
- Center of Excellence for Isolation and Separation Technologies, AbbVie Inc., 1 North Waukegan Road, Chicago, Illinois 60064, United States
| | - Steven Ferguson
- SSPC, The SFI Centre for Pharmaceuticals, School of Chemical and Bioprocess Engineering, University College Dublin, Belifield, Dublin 4, Ireland
| | - Alastair J. Florence
- EPSRC Future Continuous Manufacturing and Advanced Crystallization Hub, CMAC, University of Strathclyde Glasgow, Glasgow, United Kingdom
| | - Saif A. Khan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
20
|
Mathematical Modelling of Acetaminophen Release in HPC/PAAm Hydrogel: Synthesis and Application. INT J POLYM SCI 2019. [DOI: 10.1155/2019/9306459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydrogels are commonly used as Drug Delivery Systems (DDS) as patches due to its ability to store drug molecules within their structures. The release can be activated under certain stimuli, such as temperature and pH. In this paper, the mathematical modelling of acetaminophen release in hydroxypropyl cellulose with polyacrylamide (HPC/PAAm) is reported. The HPC/PAAm gel was synthesized in proportions of 25/75 wt% and was characterized by FTIR, DSC, optical microscopy, SEM, and TGA, with and without acetaminophen. The release tests were performed for hypothermic, normal, and febrile human body conditions, at 35, 37, and 39°C, respectively, on two release media: water and phosphate buffer solution. In order to describe the release of acetaminophen in HPC/PAAm gel, a genetic programming algorithm was used to accomplish Multigene Symbolic Regression (MSR). Characterization results showed that the drug was crystallized on the surface of the HPC/PAAm gel. Release test results showed that several simultaneous processes occurred in the acetaminophen diffusion phenomenon. A unique mathematical model was obtained by MSR. This model was able to describe the release of acetaminophen in HPC/PAAm gel with high values of R2 and adjusted R2 and to simulate the drug release at times beyond the end of the experiment. High values of R2 and low values of Coefficient of Variation (CV), Root-Mean-Square Error (RMSE), and Mean Absolute Error (MAE) were obtained from the comparison between the simulated and the experimental data. This allows to conclude that the mathematical model is reliable to represent and simulate the acetaminophen release in HPC/PAAm gel at 35, 37, and 39°C.
Collapse
|
21
|
Hirschberg C, Jensen NS, Boetker J, Madsen AØ, Kääriäinen TO, Kääriäinen ML, Hoppu P, George SM, Murtomaa M, Sun CC, Risbo J, Rantanen J. Improving Powder Characteristics by Surface Modification Using Atomic Layer Deposition. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cosima Hirschberg
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Nikolaj Sølvkær Jensen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Johan Boetker
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anders Østergaard Madsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Tommi O. Kääriäinen
- NovaldMedical Ltd Oy, Telkäntie 5, 82500 Kitee, Finland
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | | | - Pekka Hoppu
- NovaldMedical Ltd Oy, Telkäntie 5, 82500 Kitee, Finland
| | - Steven M. George
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Matti Murtomaa
- Department of Physics and Astronomy, University of Turku, 20014 Turku, Finland
| | - Changquan Calvin Sun
- Department of Pharmaceutics, University of Minnesota, 308 Harvard St. SE, Minneapolis, Minnesota 55455, United States
| | - Jens Risbo
- Department of Food Sciences, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
22
|
Oviroh PO, Akbarzadeh R, Pan D, Coetzee RAM, Jen TC. New development of atomic layer deposition: processes, methods and applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:465-496. [PMID: 31164953 PMCID: PMC6534251 DOI: 10.1080/14686996.2019.1599694] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 05/11/2023]
Abstract
Atomic layer deposition (ALD) is an ultra-thin film deposition technique that has found many applications owing to its distinct abilities. They include uniform deposition of conformal films with controllable thickness, even on complex three-dimensional surfaces, and can improve the efficiency of electronic devices. This technology has attracted significant interest both for fundamental understanding how the new functional materials can be synthesized by ALD and for numerous practical applications, particularly in advanced nanopatterning for microelectronics, energy storage systems, desalinations, catalysis and medical fields. This review introduces the progress made in ALD, both for computational and experimental methodologies, and provides an outlook of this emerging technology in comparison with other film deposition methods. It discusses experimental approaches and factors that affect the deposition and presents simulation methods, such as molecular dynamics and computational fluid dynamics, which help determine and predict effective ways to optimize ALD processes, hence enabling the reduction in cost, energy waste and adverse environmental impacts. Specific examples are chosen to illustrate the progress in ALD processes and applications that showed a considerable impact on other technologies.
Collapse
Affiliation(s)
- Peter Ozaveshe Oviroh
- Mechanical Engineering Science Department, Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg, South Africa
| | - Rokhsareh Akbarzadeh
- Mechanical Engineering Science Department, Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg, South Africa
| | - Dongqing Pan
- Department of Engineering Technology, University of North Alabama, Florence, AL, USA
| | - Rigardt Alfred Maarten Coetzee
- Mechanical Engineering Science Department, Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg, South Africa
| | - Tien-Chien Jen
- Mechanical Engineering Science Department, Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
23
|
Hellrup J, Rooth M, Mårtensson E, Sigfridsson K, Johansson A. Nanoshells prepared by atomic layer deposition - Long acting depots of indomethacin. Eur J Pharm Biopharm 2019; 140:60-66. [PMID: 31055064 DOI: 10.1016/j.ejpb.2019.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/20/2019] [Accepted: 04/30/2019] [Indexed: 11/19/2022]
Abstract
There is a trend in pharmaceutical research and development to develop depot formulations with dosing once weekly, once monthly, or even less frequently. A novel approach to achieve long acting injectable suspensions is to produce dense inorganic nanoshells with atomic layer deposition (ALD) on active pharmaceutical ingredients. Such particles can be suspended in an aqueous vehicle and administered subcutaneously. The purpose of this work was to study the release of a model drug, indomethacin, coated with aluminium oxide nanoshells. Indomethacin was ball-milled to a median particle size of 6 µm. The nanoshells were produced with a proprietary ALD process that is trademarked as PharmaShell® by Nanexa AB. The drug load was determined with HPLC-UV to 82 wt%. The test materials were administered subcutaneously in rats (1, 10, and 100 mg/kg) from which blood samples were collected during 12 weeks. Plasma was generated and analyzed with regards to indomethacin using UPLC-MS/MS. The release rate was dramatically slower for the nanoshell coated indomethacin compared with uncoated indomethacin. Drug was released in vivo during more than 12 weeks for the 10 and 100 mg/kg doses, and during 10 weeks for the 1 mg/kg dose, while uncoated indomethacin was eliminated with a half-life of 15 h, as calculated from the release data by fitting a one phase decay function. The exposure levels were similar as earlier reported for therapeutic indomethacin doses, but significantly sustained in the present study using coated drug particles in rats. In conclusion, this is the first long-term in vivo evaluation of nanoshell depot formulations. The stable plasma concentrations for more than 12 weeks demonstrate that nanoshells can enable long-term depot injections with high drug load.
Collapse
Affiliation(s)
- Joel Hellrup
- Nanexa AB, Virdings allé 32B, SE-75450 Uppsala, Sweden
| | - Mårten Rooth
- Nanexa AB, Virdings allé 32B, SE-75450 Uppsala, Sweden
| | | | - Kalle Sigfridsson
- Advanced Drug Delivery, Pharmaceutical Science, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | | |
Collapse
|
24
|
Zhang D, La Zara D, Quayle MJ, Petersson G, van Ommen JR, Folestad S. Nanoengineering of Crystal and Amorphous Surfaces of Pharmaceutical Particles for Biomedical Applications. ACS APPLIED BIO MATERIALS 2019; 2:1518-1530. [DOI: 10.1021/acsabm.8b00805] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Di Zhang
- AstraZeneca R&D Gothenburg, Pepparedsleden 1, Mölndal SE-431 83, Sweden
| | - Damiano La Zara
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Michael J. Quayle
- AstraZeneca R&D Gothenburg, Pepparedsleden 1, Mölndal SE-431 83, Sweden
| | - Gunilla Petersson
- AstraZeneca R&D Gothenburg, Pepparedsleden 1, Mölndal SE-431 83, Sweden
| | - J. Ruud van Ommen
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Staffan Folestad
- AstraZeneca R&D Gothenburg, Pepparedsleden 1, Mölndal SE-431 83, Sweden
| |
Collapse
|
25
|
Grillo F, La Zara D, Mulder P, Kreutzer MT, Ruud van Ommen J. Oriented Attachment and Nanorod Formation in Atomic Layer Deposition of TiO 2 on Graphene Nanoplatelets. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:19981-19991. [PMID: 30197725 PMCID: PMC6120748 DOI: 10.1021/acs.jpcc.8b05572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Understanding the spontaneous organization of atoms on well-defined surfaces promises to enable control over the shape and size of supported nanostructures. Atomic layer deposition (ALD) boasts atomic-scale control in the synthesis of thin films and nanoparticles. Yet, the possibility to control the shape of ALD-grown nanostructures remains mostly unexplored. Here, we report on the bottom-up formation of both linear and V-shaped anatase TiO2 nanorods (NRs) on graphene nanoplatelets during TiCl4/H2O ALD carried out at 300 °C. NRs as large as 200 nm form after only five ALD cycles, indicating that diffusional processes rather than layer-by-layer growth are behind the NR formation. In particular, high-resolution transmission electron microscopy reveals that the TiO2 NRs and graphene nanoplatelets are in rotational alignment as a result of lattice matching. Crucially, we also show that individual nanocrystals can undergo in-plane oriented attachment.
Collapse
Affiliation(s)
| | | | - Paul Mulder
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Michiel T. Kreutzer
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - J. Ruud van Ommen
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
26
|
Perrotta A, Werzer O, Coclite AM. Strategies for Drug Encapsulation and Controlled Delivery Based on Vapor‐Phase Deposited Thin Films. ADVANCED ENGINEERING MATERIALS 2018; 20. [DOI: 10.1002/adem.201700639] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Vapor‐phase deposition methods allow the synthesis and engineering of organic and inorganic thin films, with high control on the chemical composition, physical properties, and conformality. In this review, the recent applications of vapor‐phase deposition methods such as initiated chemical vapor deposition (iCVD), plasma enhanced chemical vapor deposition (PE‐CVD), and atomic layer deposition (ALD), for the encapsulation of active pharmaceutical drugs are reported. The strategies and emergent routes for the application of vapor‐deposited thin films on the drug controlled release and for the engineering of advanced release nanostructured devices are presented.
Collapse
Affiliation(s)
- Alberto Perrotta
- Institute of Solid State Physics NAWI Graz Graz University of Technology 8010 Graz Austria
| | - Oliver Werzer
- Institute of Pharmaceutical Science NAWI Graz Department of Pharmaceutical Technology University of Graz 8010 Graz Austria
| | - Anna Maria Coclite
- Institute of Solid State Physics NAWI Graz Graz University of Technology 8010 Graz Austria
| |
Collapse
|
27
|
Atomic-layered Mn clusters deposited on palygorskite as powerful adsorbent for recovering valuable REEs from wastewater with superior regeneration stability. J Colloid Interface Sci 2018; 509:395-405. [DOI: 10.1016/j.jcis.2017.09.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 11/21/2022]
|
28
|
Sakeer K, Ispas-Szabo P, Benyerbah N, Mateescu MA. Ampholytic starch excipients for high loaded drug formulations: Mechanistic insights. Int J Pharm 2017; 535:201-216. [PMID: 29128422 DOI: 10.1016/j.ijpharm.2017.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/12/2023]
Abstract
Ampholytic starch derivatives are proposed as a new class of excipients carrying simultaneously anionic carboxymethyl (CM) and cationic aminoethyl (AE) groups on starch (St) polymeric chains. Three different types of derivatives were obtained by using the same reagents and varying only the order of their addition in the reaction medium: in one step method (OS) the two reactants were added simultaneously, whereas in two steps method (TS) either CMSt or AESt were prepared separately in the first step, followed by subsequent addition of the second reactant. It was found that all ampholytic derivatives were able to generate monolithic tablets by direct compression and allowed 60% loading of acidic (Acetylsalicylic acid), basic (Metformin), zwitterion (Mesalamine) or neutral (Acetaminophen) as drug models. The in vitro dissolution tests followed for 2 h in SGF and then in SIF, showed that the mentioned starch derivatives were stabilized by self-assembling and generated matrices able to control the release of drugs for about 24 h. The addition order of reagents has an impact on ampholytic starch properties offering thus a high versatility of this new class of starch excipients that can be tailored for challenging formulations with high dosages of several drugs.
Collapse
Affiliation(s)
- Khalil Sakeer
- Department of Chemistry and Pharmaqam Center, Université du Québec à Montréal, C.P. 8888, Branch A, Montréal, Québec H3C 3P8, Canada
| | - Pompilia Ispas-Szabo
- Department of Chemistry and Pharmaqam Center, Université du Québec à Montréal, C.P. 8888, Branch A, Montréal, Québec H3C 3P8, Canada
| | - Nassim Benyerbah
- Department of Chemistry and Pharmaqam Center, Université du Québec à Montréal, C.P. 8888, Branch A, Montréal, Québec H3C 3P8, Canada
| | - Mircea Alexandru Mateescu
- Department of Chemistry and Pharmaqam Center, Université du Québec à Montréal, C.P. 8888, Branch A, Montréal, Québec H3C 3P8, Canada.
| |
Collapse
|
29
|
Zhang D, Quayle MJ, Petersson G, van Ommen JR, Folestad S. Atomic scale surface engineering of micro- to nano-sized pharmaceutical particles for drug delivery applications. NANOSCALE 2017; 9:11410-11417. [PMID: 28678265 DOI: 10.1039/c7nr03261g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Atomic layer deposition on pharmaceutical particles for drug delivery applications is demonstrated using assisted fluidized bed dry powder processing. Complete and conformal layering is achieved on particle sizes from the lower micron to upper nanometer range under near ambient conditions. As few as 2-14 atomic alumina layers alter particle properties: dissolution, dispersibility and heat transfer.
Collapse
Affiliation(s)
- D Zhang
- AstraZeneca R&D Gothenburg, Pepparedsleden 1, Mölndal, SE-431 83, Sweden.
| | | | | | | | | |
Collapse
|