1
|
Allkja J, Roudbary M, Alves AMV, Černáková L, Rodrigues CF. Biomaterials with antifungal strategies to fight oral infections. Crit Rev Biotechnol 2024; 44:1151-1163. [PMID: 37587010 DOI: 10.1080/07388551.2023.2236784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 08/18/2023]
Abstract
Oral fungal infections pose a threat to human health and increase the economic burden of oral diseases by prolonging and complicating treatment. A cost-effective strategy is to try to prevent these infections from happening in the first place. With this purpose, biomaterials with antifungal properties are a crucial element to overcome fungal infections in the oral cavity. In this review, we go through different kinds of biomaterials and coatings that can be used to functionalize them. We also review their potential as a therapeutic approach in addition to prophylaxis, by going through traditional and alternative antifungal compounds, e.g., essential oils, that could be incorporated in them, to enhance their efficacy against fungal pathogens. We aim to highlight the potential of these technologies and propose questions that need to be addressed in prospective research. Finally, we intend to concatenate the key aspects and technologies on the use of biomaterials in oral health, to create an easy to find summary of the current state-of-the-art for researchers in the field.
Collapse
Affiliation(s)
- Jontana Allkja
- Faculty of Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Oral Sciences Research Group, Glasgow Dental School, University of Glasgow, Glasgow, UK
| | - Maryam Roudbary
- Sydney Infectious Disease Institute, University of Sydney, Sydney, Australia
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Anelise Maria Vasconcelos Alves
- Faculty of Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| | - Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Célia Fortuna Rodrigues
- Faculty of Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
- 1H-TOXRUN - One Health Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário - CESPU, Gandra PRD, Portugal
| |
Collapse
|
2
|
Syed-Abdul MM, Tian L, Samuel T, Wong A, Hong YK, Dacosta RS, Lewis GF. Glucagon-Like-Peptide-2 Stimulates Lacteal Contractility and Enhances Chylomicron Transport in the Presence of an Intact Enteric Nervous System. GASTRO HEP ADVANCES 2024; 3:954-964. [PMID: 39286622 PMCID: PMC11403421 DOI: 10.1016/j.gastha.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/24/2024] [Indexed: 09/19/2024]
Abstract
Background and Aims Secretion and transport of intestinal chylomicrons (CMs) via lymphatics to the blood circulation is stimulated primarily by fat ingestion, whereas several other factors have also been shown to play important roles in regulating CM secretion rate. Among these factors, active regulation of lymphatic pumping has not been appreciated to date. The gut peptide and intestinal growth factor glucagon-like peptide-2 (GLP-2) has emerged as a robust enhancer of intestinal lipid mobilization and secretion. The present study aims to elucidate GLP-2's impact on lacteal contractility and assess enteric nervous system (ENS) involvement in GLP-2-induced effects on lipid mobilization. Methods Using intravital imaging of a prospero-related homeobox 1-enhanced green fluorescent protein rat model, we assessed GLP-2's effect on lacteal contractility, in the presence and absence of the ENS inhibitor mecamylamine (MEC). Concurrently, to explore the physiological relevance, we examined GLP-2's impact on lymph flow and triglyceride (TG) output in vivo in a rat lymph fistula model. Results GLP-2 significantly increased lacteal contractility, and this effect was inhibited by MEC. In the rat lymph fistula model, GLP-2 increased lymph flow, lymph volume, cumulative lymph volume, and TG output while reducing lymph TG concentration. MEC administration blocked these effects of GLP-2. Peak enhancement of lacteal contractility and enhancement of lymph flow in vivo occurred simultaneously with maximal effect at 15-20 minutes post GLP-2 administration, suggesting that GLP-2 enhances lipid transport by stimulating lymphatic contractility. Conclusion For the first time, through imaging and concurrent rat lymphatic fistula studies, we demonstrated active regulation of lymphatic contractility as a key determinant of CM secretion and that intact ENS was required to observe this effect.
Collapse
Affiliation(s)
- Majid Mufaqam Syed-Abdul
- Division of Endocrinology, Department of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Lili Tian
- Division of Endocrinology, Department of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Timothy Samuel
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Alex Wong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Young-Kwon Hong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ralph S Dacosta
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Gary F Lewis
- Division of Endocrinology, Department of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Maher S, Geoghegan C, Brayden DJ. Safety of surfactant excipients in oral drug formulations. Adv Drug Deliv Rev 2023; 202:115086. [PMID: 37739041 DOI: 10.1016/j.addr.2023.115086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Surfactants are a diverse group of compounds that share the capacity to adsorb at the boundary between distinct phases of matter. They are used as pharmaceutical excipients, food additives, emulsifiers in cosmetics, and as household/industrial detergents. This review outlines the interaction of surfactant-type excipients present in oral pharmaceutical dosage forms with the intestinal epithelium of the gastrointestinal (GI) tract. Many surfactants permitted for human consumption in oral products reduce intestinal epithelial cell viability in vitro and alter barrier integrity in epithelial cell monolayers, isolated GI tissue mucosae, and in animal models. This suggests a degree of mis-match for predicting safety issues in humans from such models. Recent controversial preclinical research also infers that some widely used emulsifiers used in oral products may be linked to ulcerative colitis, some metabolic disorders, and cancers. We review a wide range of surfactant excipients in oral dosage forms regarding their interactions with the GI tract. Safety data is reviewed across in vitro, ex vivo, pre-clinical animal, and human studies. The factors that may mitigate against some of the potentially abrasive effects of surfactants on GI epithelia observed in pre-clinical studies are summarised. We conclude with a perspective on the overall safety of surfactants in oral pharmaceutical dosage forms, which has relevance for delivery system development.
Collapse
Affiliation(s)
- Sam Maher
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland.
| | - Caroline Geoghegan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
4
|
Spoorthi Shetty S, Halagali P, Johnson AP, Spandana KMA, Gangadharappa HV. Oral insulin delivery: Barriers, strategies, and formulation approaches: A comprehensive review. Int J Biol Macromol 2023:125114. [PMID: 37263330 DOI: 10.1016/j.ijbiomac.2023.125114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Diabetes Mellitus is characterized by a hyperglycemic condition which can either be caused by the destruction of the beta cells or by the resistance developed against insulin in the cells. Insulin is a peptide hormone that regulates the metabolism of carbohydrates, proteins, and fats. Type 1 Diabetes Mellitus needs the use of Insulin for efficient management. However invasive methods of administration may lead to reduced adherence by the patients. Hence there is a need for a non-invasive method of administration. Oral Insulin has several merits over the conventional method including patient compliance, and reduced cost, and it also mimics endogenous insulin and hence reaches the liver by the portal vein at a higher concentration and thereby showing improved efficiency. However oral Insulin must pass through several barriers in the gastrointestinal tract. Some strategies that could be utilized to bypass these barriers include the use of permeation enhancers, absorption enhancers, use of suitable polymers, use of suitable carriers, and other agents. Several formulation types have been explored for the oral delivery of Insulin like hydrogels, capsules, tablets, and patches which have been described briefly by the article. A lot of attempts have been made for developing oral insulin delivery however none of them have been commercialized due to numerous shortcomings. Currently, there are several formulations from the companies that are still in the clinical phase, the success or failure of some is yet to be seen in the future.
Collapse
Affiliation(s)
- S Spoorthi Shetty
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Praveen Halagali
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Asha P Johnson
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - K M Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - H V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India.
| |
Collapse
|
5
|
Novel food drug interaction mechanism involving acyclovir, chitosan and endogenous mucus. Drug Metab Pharmacokinet 2023; 49:100491. [PMID: 36805824 DOI: 10.1016/j.dmpk.2023.100491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
Drug absorption from drug products may be affected by pharmaceutical excipients and/or food additives through different mechanisms. Chitosan is a recognized nutraceutical, with potential as an excipient due to its permeability enhancer properties. While chitosan properties have been evaluated in in vitro and pre-clinical models, studies in humans are scarce. Unexpectedly, a controlled clinical trial showed chitosan actually reduced acyclovir bioavailability. The effect seems to be related to an interaction with gastrointestinal mucus that prevents further absorption, although more in depth research is needed to unravel the mechanism. In this paper, we propose a mechanism underlying this excipient effect. The mucus - chitosan interaction was characterized and its effect on acyclovir diffusion, permeation and bioaccessibility was investigated. Further, pharmacokinetic modeling was used to assess the clinical relevance of our findings. Results suggest that in situ coacervation between endogenous mucus and chitosan rapidly entrap 20-30% of acyclovir dissolved dose in the intestinal lumen. This local reduction of acyclovir concentration together with its short absorption window in the small intestine would explain the reduction in acyclovir Cmax and AUC. This study highlights the importance of considering mucus in any biorelevant absorption model attempting to anticipate the effect of chitosan on drug absorption.
Collapse
|
6
|
Nagar S, Radice C, Tuohy R, Stevens R, Bennyhoff D, Korzekwa K. The Rat Continuous Intestine Model Predicts the Impact of Particle Size and Transporters on the Oral Absorption of Glyburide. Mol Pharm 2023; 20:219-231. [PMID: 36541850 DOI: 10.1021/acs.molpharmaceut.2c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oral drug absorption is known to be impacted by the physicochemical properties of drugs, properties of oral formulations, and physiological characteristics of the intestine. The goal of the present study was to develop a mathematical model to predict the impact of particle size, feeding time, and intestinal transporter activity on oral absorption. A previously published rat continuous intestine absorption model was extended for solid drug absorption. The impact of active pharmaceutical ingredient particle size was evaluated with glyburide (GLY) as a model drug. Two particle size suspensions of glyburide were prepared with average particle sizes of 42.7 and 4.1 μm. Each suspension was dosed as a single oral gavage to male Sprague Dawley rats, and concentration-time (C-t) profiles of glyburide were measured with liquid chromatography coupled with tandem mass spectrometry. A continuous rat intestine absorption model was extended to include drug dissolution and was used to predict the absorption kinetics of GLY depending on particle size. Additional literature datasets of rat GLY formulations with particle sizes ranging from 0.25 to 4.0 μm were used for model predictions. The model predicted reasonably well the absorption profiles of GLY based on varying particle size and varying feeding time. The model predicted inhibition of intestinal uptake or efflux transporters depending on the datasets. The three datasets used formulations with different excipients, which may impact the transporter activity. Model simulations indicated that the model provides a facile framework to predict the impact of transporter inhibition on drug C-t profiles. Model simulations can also be conducted to evaluate the impact of an altered intestinal lumen environment. In conclusion, the rat continuous intestine absorption model may provide a useful tool to predict the impact of varying drug formulations on rat oral absorption profiles.
Collapse
Affiliation(s)
- Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania19140, United States
| | - Casey Radice
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania19140, United States
| | - Robert Tuohy
- Pace Analytical Life Sciences LLC, Norristown, Pennsylvania19401, United States
| | - Raymond Stevens
- Particle Solutions LLC, West Chester, Pennsylvania19382, United States
| | - Dale Bennyhoff
- Particle Solutions LLC, West Chester, Pennsylvania19382, United States
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania19140, United States
| |
Collapse
|
7
|
Dahlgren D, Nylander O, Sjöblom M. Hypotonicity-Induced Increase in Duodenal Mucosal Permeability Is Regulated by Cholinergic Receptors in Rats. Dig Dis Sci 2022; 68:1815-1823. [PMID: 36436156 PMCID: PMC10133373 DOI: 10.1007/s10620-022-07764-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/08/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The role of cholinergic receptors in the regulation of duodenal mucosal permeability in vivo is currently not fully described. AIMS To elucidate the impact of nicotinic and muscarinic acetylcholine receptor signaling in response to luminal hypotonicity (50 mM NaCl) in the proximal small intestine of rat. METHODS The effect on duodenal blood-to-lumen clearance of 51Cr-EDTA (i.e., mucosal permeability) and motility was studied in the absence and presence of nicotinic and muscarinic receptor agonists and antagonists, a sodium channel blocker (tetrodotoxin), and after bilateral cervical vagotomy. RESULTS Rats with duodenal contractions responded to luminal hypotonicity by substantial increase in intestinal permeability. This response was absent in animals given a non-selective nicotinic receptor antagonist (mecamylamine) or agonist (epibatidine). Pretreatment with tetrodotoxin reduced the increase in mucosal permeability in response to luminal hypotonicity. Further, the non-selective muscarinic receptor antagonist (atropine) and agonist (bethanechol) reduced the hypotonicity-induced increase in mucosal permeability, while vagotomy was without an effect, suggesting that local enteric reflexes dominate. Finally, neither stimulating nor blocking the α7-nicotinic receptor had any significant effects on duodenal permeability in response to luminal hypotonicity, suggesting that this receptor is not involved in regulation of duodenal permeability. The effect of the different drugs on mucosal permeability was similar to the effect observed for duodenal motility. CONCLUSIONS A complex enteric intramural excitatory neural reflex involving both nicotinic and muscarinic receptor subtypes mediates an increase in mucosal permeability induced by luminal hypotonicity.
Collapse
Affiliation(s)
- David Dahlgren
- Department of Medical Cell Biology, Uppsala University, 751 23, Uppsala, Sweden.
| | - Olof Nylander
- Department of Medical Cell Biology, Uppsala University, 751 23, Uppsala, Sweden
| | - Markus Sjöblom
- Department of Medical Cell Biology, Uppsala University, 751 23, Uppsala, Sweden
| |
Collapse
|
8
|
Considerations in the developability of peptides for oral administration when formulated together with transient permeation enhancers. Int J Pharm 2022; 628:122238. [PMID: 36174850 DOI: 10.1016/j.ijpharm.2022.122238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/10/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022]
Abstract
This paper reviews many of the properties of a peptide that need to be considered prior to development as an oral dosage form when co-formulated with a permeation enhancer to improve oral bioavailability, including the importance and implications of peptide half-life on variability in pharmacokinetic profiles. Clinical considerations in terms of food and drug-drug interactions are also discussed. The paper further gives a brief overview how permeation enhancers overcome barriers that limit oral absorption of peptides and thereby improve their oral bioavailability, albeit bioavailabilities are still low single digit and variability is high.
Collapse
|
9
|
Protective Effects of Melatonin and Misoprostol against Experimentally Induced Increases in Intestinal Permeability in Rats. Int J Mol Sci 2022; 23:ijms23062912. [PMID: 35328333 PMCID: PMC8950185 DOI: 10.3390/ijms23062912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 01/27/2023] Open
Abstract
Intestinal mucosal barrier dysfunction caused by disease and/or chemotherapy lacks an effective treatment, which highlights a strong medical need. Our group has previously demonstrated the potential of melatonin and misoprostol to treat increases in intestinal mucosal permeability induced by 15-min luminal exposure to a surfactant, sodium dodecyl sulfate (SDS). However, it is not known which luminal melatonin and misoprostol concentrations are effective, and whether they are effective for a longer SDS exposure time. The objective of this single-pass intestinal perfusion study in rats was to investigate the concentration-dependent effect of melatonin and misoprostol on an increase in intestinal permeability induced by 60-min luminal SDS exposure. The cytoprotective effect was investigated by evaluating the intestinal clearance of 51Cr-labeled EDTA in response to luminal SDS as well as a histological evaluation of the exposed tissue. Melatonin at both 10 and 100 µM reduced SDS-induced increase in permeability by 50%. Misoprostol at 1 and 10 µM reduced the permeability by 50 and 75%, respectively. Combination of the two drugs at their respective highest concentrations had no additive protective effect. These in vivo results support further investigations of melatonin and misoprostol for oral treatments of a dysfunctional intestinal barrier.
Collapse
|
10
|
Peters K, Dahlgren D, Lennernäs H, Sjöblom M. Melatonin-Activated Receptor Signaling Pathways Mediate Protective Effects on Surfactant-Induced Increase in Jejunal Mucosal Permeability in Rats. Int J Mol Sci 2021; 22:10762. [PMID: 34639101 PMCID: PMC8509405 DOI: 10.3390/ijms221910762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/22/2022] Open
Abstract
A well-functional intestinal mucosal barrier can be compromised as a result of various diseases, chemotherapy, radiation, and chemical exposures including surfactants. Currently, there are no approved drugs targeting a dysfunctional intestinal barrier, which emphasizes a significant medical need. One candidate drug reported to regulate intestinal mucosal permeability is melatonin. However, it is still unclear if its effect is primarily receptor mediated or antioxidative, and if it is associated with enteric neural pathways. The aim of this rat intestinal perfusion study was to investigate the mechanisms of melatonin and nicotinic acetylcholine receptors on the increase in intestinal mucosal clearance of 51Cr-labeled ethylenediaminetetraacetate induced by 15 min luminal exposure to the anionic surfactant, sodium dodecyl sulfate. Our results show that melatonin abolished the surfactant-induced increase in intestinal permeability and that this effect was inhibited by luzindole, a melatonin receptor antagonist. In addition, mecamylamine, an antagonist of nicotinic acetylcholine receptors, reduced the surfactant-induced increase in mucosal permeability, using a signaling pathway not influenced by melatonin receptor activation. In conclusion, our results support melatonin as a potentially potent candidate for the oral treatment of a compromised intestinal mucosal barrier, and that its protective effect is primarily receptor-mediated.
Collapse
Affiliation(s)
- Karsten Peters
- Department of Neuroscience, Gastrointestinal Physiology, Uppsala University, 751 24 Uppsala, Sweden;
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, 752 37 Uppsala, Sweden; (D.D.); (H.L.)
| | - David Dahlgren
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, 752 37 Uppsala, Sweden; (D.D.); (H.L.)
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, 752 37 Uppsala, Sweden; (D.D.); (H.L.)
| | - Markus Sjöblom
- Department of Neuroscience, Gastrointestinal Physiology, Uppsala University, 751 24 Uppsala, Sweden;
| |
Collapse
|
11
|
Formulation strategies to improve the efficacy of intestinal permeation enhancers . Adv Drug Deliv Rev 2021; 177:113925. [PMID: 34418495 DOI: 10.1016/j.addr.2021.113925] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
The use of chemical permeation enhancers (PEs) is the most widely tested approach to improve oral absorption of low permeability active agents, as represented by peptides. Several hundred PEs increase intestinal permeability in preclinical bioassays, yet few have progressed to clinical testing and, of those, only incremental increases in oral bioavailability (BA) have been observed. Still, average BA values of ~1% were sufficient for two recent FDA approvals of semaglutide and octreotide oral formulations. PEs are typically screened in static in vitro and ex-vivo models where co-presentation of active agent and PE in high concentrations allows the PE to alter barrier integrity with sufficient contact time to promote flux across the intestinal epithelium. The capacity to maintain high concentrations of co-presented agents at the epithelium is not reached by standard oral dosage forms in the upper GI tract in vivo due to dilution, interference from luminal components, fast intestinal transit, and possible absorption of the PE per se. The PE-based formulations that have been assessed in clinical trials in either immediate-release or enteric-coated solid dosage forms produce low and variable oral BA due to these uncontrollable physiological factors. For PEs to appreciably increase intestinal permeability from oral dosage forms in vivo, strategies must facilitate co-presentation of PE and active agent at the epithelium for a sustained period at the required concentrations. Focusing on peptides as examples of a macromolecule class, we review physiological impediments to optimal luminal presentation, discuss the efficacy of current PE-based oral dosage forms, and suggest strategies that might be used to improve them.
Collapse
|
12
|
Dahlgren D, Olander T, Sjöblom M, Hedeland M, Lennernäs H. Effect of paracellular permeation enhancers on intestinal permeability of two peptide drugs, enalaprilat and hexarelin, in rats. Acta Pharm Sin B 2021; 11:1667-1675. [PMID: 34221875 PMCID: PMC8245904 DOI: 10.1016/j.apsb.2020.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 12/29/2022] Open
Abstract
Transcellular permeation enhancers are known to increase the intestinal permeability of enalaprilat, a 349 Da peptide, but not hexarelin (887 Da). The primary aim of this paper was to investigate if paracellular permeability enhancers affected the intestinal permeation of the two peptides. This was investigated using the rat single-pass intestinal perfusion model with concomitant blood sampling. These luminal compositions included two paracellular permeation enhancers, chitosan (5 mg/mL) and ethylenediaminetetraacetate (EDTA, 1 and 5 mg/mL), as well as low luminal tonicity (100 mOsm) with or without lidocaine. Effects were evaluated by the change in lumen-to-blood permeability of hexarelin and enalaprilat, and the blood-to-lumen clearance of 51chromium-labeled EDTA (CLCr-EDTA), a clinical marker for mucosal barrier integrity. The two paracellular permeation enhancers increased the mucosal permeability of both peptide drugs to a similar extent. The data in this study suggests that the potential for paracellular permeability enhancers to increase intestinal absorption of hydrophilic peptides with low molecular mass is greater than for those with transcellular mechanism-of-action. Further, the mucosal blood-to-lumen flux of 51Cr-EDTA was increased by the two paracellular permeation enhancers and by luminal hypotonicity. In contrast, luminal hypotonicity did not affect the lumen-to-blood transport of enalaprilat and hexarelin. This suggests that hypotonicity affects paracellular solute transport primarily in the mucosal crypt region, as this area is protected from luminal contents by a constant water flow from the crypts.
Collapse
Affiliation(s)
- David Dahlgren
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, Uppsala 752 36, Sweden
| | - Tobias Olander
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, Uppsala 752 36, Sweden
| | - Markus Sjöblom
- Department of Neuroscience, Division of Physiology, Uppsala University, Uppsala 752 36, Sweden
| | - Mikael Hedeland
- Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Uppsala University, Uppsala 752 36, Sweden
- Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), Uppsala 751 89, Sweden
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, Uppsala 752 36, Sweden
| |
Collapse
|
13
|
Dahlgren D, Sjöblom M, Hellström PM, Lennernäs H. Chemotherapeutics-Induced Intestinal Mucositis: Pathophysiology and Potential Treatment Strategies. Front Pharmacol 2021; 12:681417. [PMID: 34017262 PMCID: PMC8129190 DOI: 10.3389/fphar.2021.681417] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal tract is particularly vulnerable to off-target effects of antineoplastic drugs because intestinal epithelial cells proliferate rapidly and have a complex immunological interaction with gut microbiota. As a result, up to 40-100% of all cancer patients dosed with chemotherapeutics experience gut toxicity, called chemotherapeutics-induced intestinal mucositis (CIM). The condition is associated with histological changes and inflammation in the mucosa arising from stem-cell apoptosis and disturbed cellular renewal and maturation processes. In turn, this results in various pathologies, including ulceration, pain, nausea, diarrhea, and bacterial translocation sepsis. In addition to reducing patient quality-of-life, CIM often leads to dose-reduction and subsequent decrease of anticancer effect. Despite decades of experimental and clinical investigations CIM remains an unsolved clinical issue, and there is a strong consensus that effective strategies are needed for preventing and treating CIM. Recent progress in the understanding of the molecular and functional pathology of CIM had provided many new potential targets and opportunities for treatment. This review presents an overview of the functions and physiology of the healthy intestinal barrier followed by a summary of the pathophysiological mechanisms involved in the development of CIM. Finally, we highlight some pharmacological and microbial interventions that have shown potential. Conclusively, one must accept that to date no single treatment has substantially transformed the clinical management of CIM. We therefore believe that the best chance for success is to use combination treatments. An optimal combination treatment will likely include prophylactics (e.g., antibiotics/probiotics) and drugs that impact the acute phase (e.g., anti-oxidants, apoptosis inhibitors, and anti-inflammatory agents) as well as the recovery phase (e.g., stimulation of proliferation and adaptation).
Collapse
Affiliation(s)
- David Dahlgren
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Markus Sjöblom
- Department of Neuroscience, Division of Physiology, Uppsala University, Uppsala, Sweden
| | - Per M Hellström
- Department of Medical Sciences, Gastroenterology/Hepatology, Uppsala University, Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Ruiz-Picazo A, Lozoya-Agullo I, González-Álvarez I, Bermejo M, González-Álvarez M. Effect of excipients on oral absorption process according to the different gastrointestinal segments. Expert Opin Drug Deliv 2020; 18:1005-1024. [PMID: 32842776 DOI: 10.1080/17425247.2020.1813108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Excipients are necessary to develop oral dosage forms of any Active Pharmaceutical Ingredient (API). Traditionally, excipients have been considered inactive and inert substances, but, over the years, numerous studies have contradicted this belief. This review focuses on the effect of excipients on the physiological variables affecting oral absorption along the different segments of the gastrointestinal tract. The effect of excipients on the segmental absorption variables are illustrated with examples to help understand the complexity of predicting their in vivo effects. AREAS COVERED The effects of excipients on disintegration, solubility and dissolution, transit time, and absorption are analyzed in the context of the different gastrointestinal segments and the physiological factors affecting release and membrane permeation. The experimental techniques used to study excipient effects and their human predictive ability are reviewed. EXPERT OPINION The observed effects of excipient in oral absorption process have been characterized in the past, mainly in vitro (i.e. in dissolution studies, in vitro cell culture methods or in situ animal studies). Unfortunately, a clear link with their effects in vivo, i.e. their impact on Cmax or AUC, which need a mechanistic approach is still missing. The information compiled in this review leads to the conclusion that the effect of excipients in API oral absorption and bioavailability is undeniable and shows the need of implementing standardized and reproducible preclinical tools coupled with mechanistic and predictive physiological-based models to improve the current empirical retrospective approach.
Collapse
Affiliation(s)
- Alejandro Ruiz-Picazo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Isabel Lozoya-Agullo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Isabel González-Álvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Marival Bermejo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Marta González-Álvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| |
Collapse
|
15
|
Berg S, Krause J, Björkbom A, Walter K, Harun S, Granfeldt A, Janzén D, Nunes SF, Antonsson M, Van Zuydam N, Skrtic S, Hugerth A, Weitschies W, Davies N, Abrahamsson B, Bergström CAS. In Vitro and In Vivo Evaluation of 3D Printed Capsules with Pressure Triggered Release Mechanism for Oral Peptide Delivery. J Pharm Sci 2020; 110:228-238. [PMID: 33212160 DOI: 10.1016/j.xphs.2020.10.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 01/26/2023]
Abstract
In this study a 3D printed capsule designed to break from the physiological pressures in the antropyloric region was evaluated for its ability to deliver the synthetic octapeptide octreotide in beagle dogs when co-formulated with the permeation enhancer sodium caprate. The pressure sensitive capsules were compared to traditional enteric coated hard gelatin capsules and enteric coated tablets. Paracetamol, which is completely absorbed in dogs, was included in the formulations and used as an absorption marker to give information about the in vivo performance of the dosage forms. The pressure sensitive capsules released drug in 50% of the dogs. In the cases where drug was released, there was no difference in octreotide bioavailability or Cmax compared to the enteric coated dosage forms. When comparing all dosage forms, a correlation was seen between paracetamol Cmax and octreotide bioavailability, suggesting that a high drug release rate may be beneficial for peptide absorption when delivered together with sodium caprate.
Collapse
Affiliation(s)
- Staffan Berg
- The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, BMC P.O. Box 580, SE-751 23 Uppsala, Sweden; Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Julius Krause
- Department of Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Greifswald, Germany
| | - Anders Björkbom
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Katrin Walter
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca Gothenburg, Sweden
| | - Said Harun
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Andreas Granfeldt
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca Gothenburg, Sweden
| | - David Janzén
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sandro Filipe Nunes
- Animal Sciences and Technologies, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, Astrazeneca, Gothenburg, Sweden
| | - Malin Antonsson
- Animal Sciences and Technologies, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, Astrazeneca, Gothenburg, Sweden
| | - Natalie Van Zuydam
- Data Science and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stanko Skrtic
- Innovation Sciences & External Liaison, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden; Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | - Andreas Hugerth
- Ferring Pharmaceuticals A/S Global Pharmaceutical R&D, Copenhagen, Denmark
| | - Werner Weitschies
- Department of Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Greifswald, Germany
| | - Nigel Davies
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Bertil Abrahamsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca Gothenburg, Sweden
| | - Christel A S Bergström
- The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, BMC P.O. Box 580, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
16
|
Maher S, Geoghegan C, Brayden DJ. Intestinal permeation enhancers to improve oral bioavailability of macromolecules: reasons for low efficacy in humans. Expert Opin Drug Deliv 2020; 18:273-300. [PMID: 32937089 DOI: 10.1080/17425247.2021.1825375] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Intestinal permeation enhancers (PEs) are substances that transiently alter the intestinal epithelial barrier to facilitate permeation of macromolecules with low oral bioavailability (BA). While a number of PEs have progressed to clinical testing in conventional formulations with macromolecules, there has been only low single digit increases in oral BA, irrespective of whether the drug met primary or secondary clinical endpoints. AREAS COVERED This article considers the causes of sub-optimal BA of macromolecules from PE dosage forms and suggests approaches that may improve performance in humans. EXPERT OPINION Permeation enhancement is most effective when the PE is co-localized with the macromolecule at the epithelial surface. Conditions in the GI tract impede optimal co-localization. Novel delivery systems that limit dilution and spreading of the PE and macromolecule in the small intestine have attempted to replicate promising enhancement efficacy observed in static drug delivery models.
Collapse
Affiliation(s)
- Sam Maher
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Caroline Geoghegan
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Dahlgren D, Cano-Cebrián MJ, Olander T, Hedeland M, Sjöblom M, Lennernäs H. Regional Intestinal Drug Permeability and Effects of Permeation Enhancers in Rat. Pharmaceutics 2020; 12:pharmaceutics12030242. [PMID: 32182653 PMCID: PMC7150977 DOI: 10.3390/pharmaceutics12030242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/25/2022] Open
Abstract
Sufficient colonic absorption is necessary for all systemically acting drugs in dosage forms that release the drug in the large intestine. Preclinically, colonic absorption is often investigated using the rat single-pass intestinal perfusion model. This model can determine intestinal permeability based on luminal drug disappearance, as well as the effect of permeation enhancers on drug permeability. However, it is uncertain how accurate the rat single-pass intestinal perfusion model predicts regional intestinal permeability and absorption in human. There is also a shortage of systematic in vivo investigations of the direct effect of permeation enhancers in the small and large intestine. In this rat single-pass intestinal perfusion study, the jejunal and colonic permeability of two low permeability drugs (atenolol and enalaprilat) and two high-permeability ones (ketoprofen and metoprolol) was determined based on plasma appearance. These values were compared to already available corresponding human data from a study conducted in our lab. The colonic effect of four permeation enhancers—sodium dodecyl sulfate, chitosan, ethylenediaminetetraacetic acid (EDTA), and caprate—on drug permeability and transport of chromium EDTA (an established clinical marker for intestinal barrier integrity) was determined. There was no difference in jejunal and colonic permeability determined from plasma appearance data of any of the four model drugs. This questions the validity of the rat single-pass intestinal perfusion model for predicting human regional intestinal permeability. It was also shown that the effect of permeation enhancers on drug permeability in the colon was similar to previously reported data from the rat jejunum, whereas the transport of chromium EDTA was significantly higher (p < 0.05) in the colon than in jejunum. Therefore, the use of permeation enhancers for increasing colonic drug permeability has greater risks than potential medical rewards, as indicated by the higher permeation of chromium EDTA compared to the drugs.
Collapse
Affiliation(s)
- David Dahlgren
- Department of Pharmacy, Division of Biopharmaceutics, Uppsala University, 752 36 Uppsala, Sweden; (D.D.); (T.O.)
| | - Maria-Jose Cano-Cebrián
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46010 València, Spain;
| | - Tobias Olander
- Department of Pharmacy, Division of Biopharmaceutics, Uppsala University, 752 36 Uppsala, Sweden; (D.D.); (T.O.)
| | - Mikael Hedeland
- Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Uppsala University, 752 36 Uppsala, Sweden;
- Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden
| | - Markus Sjöblom
- Department of Neuroscience, Division of Physiology, Uppsala University, 752 36 Uppsala, Sweden;
| | - Hans Lennernäs
- Department of Pharmacy, Division of Biopharmaceutics, Uppsala University, 752 36 Uppsala, Sweden; (D.D.); (T.O.)
- Correspondence:
| |
Collapse
|
18
|
Dahlgren D, Sjöblom M, Hedeland M, Lennernäs H. The In Vivo Effect of Transcellular Permeation Enhancers on the Intestinal Permeability of Two Peptide Drugs Enalaprilat and Hexarelin. Pharmaceutics 2020; 12:pharmaceutics12020099. [PMID: 31991924 PMCID: PMC7076382 DOI: 10.3390/pharmaceutics12020099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Permeation enhancers like sodium dodecyl sulfate (SDS) and caprate increase the intestinal permeability of small model peptide compounds, such as enalaprilat (349 Da). However, their effects remain to be investigated for larger low-permeability peptide drugs, such as hexarelin (887 Da). The objective of this single-pass perfusion study in rat was to investigate the effect of SDS at 5 mg/mL and of caprate administered at different luminal concentrations (5, 10, and 20 mg/mL) and pH (6.5 and 7.4). The small intestinal permeability of enalaprilat increased by 8- and 9-fold with SDS at 5 mg/mL and with caprate at 10 and 20 mg/mL but only at pH 7.4, where the free dissolved caprate concentration is higher than at pH 6.5 (5 vs. 2 mg/mL). Neither SDS nor caprate at any of the investigated luminal concentrations enhanced absorption of the larger peptide hexarelin. These results show that caprate requires doses above its saturation concentration (a reservoir suspension) to enhance absorption, most likely because dissolved caprate itself is rapidly absorbed. The absent effect on hexarelin may partly explain why the use of permeation enhancers for enabling oral peptide delivery has largely failed to evolve from in vitro evaluations into approved oral products. It is obvious that more innovative and effective drug delivery strategies are needed for this class of drugs.
Collapse
Affiliation(s)
- David Dahlgren
- Department of Pharmacy, Uppsala University, 751 23 Uppsala, Sweden;
| | - Markus Sjöblom
- Department of Neuroscience, Uppsala University, 751 23 Uppsala, Sweden;
| | - Mikael Hedeland
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden;
- National Veterinary Institute (SVA), 751 89 Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmacy, Uppsala University, 751 23 Uppsala, Sweden;
- Correspondence: ; Tel.: +46-18-471-4317
| |
Collapse
|
19
|
Dahlgren D, Sjöblom M, Lennernäs H. Intestinal absorption-modifying excipients: A current update on preclinical in vivo evaluations. Eur J Pharm Biopharm 2019; 142:411-420. [DOI: 10.1016/j.ejpb.2019.07.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/27/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022]
|
20
|
Dahlgren D, Lennernäs H. Intestinal Permeability and Drug Absorption: Predictive Experimental, Computational and In Vivo Approaches. Pharmaceutics 2019; 11:pharmaceutics11080411. [PMID: 31412551 PMCID: PMC6723276 DOI: 10.3390/pharmaceutics11080411] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
The main objective of this review is to discuss recent advancements in the overall investigation and in vivo prediction of drug absorption. The intestinal permeability of an orally administered drug (given the value Peff) has been widely used to determine the rate and extent of the drug’s intestinal absorption (Fabs) in humans. Preclinical gastrointestinal (GI) absorption models are currently in demand for the pharmaceutical development of novel dosage forms and new drug products. However, there is a strong need to improve our understanding of the interplay between pharmaceutical, biopharmaceutical, biochemical, and physiological factors when predicting Fabs and bioavailability. Currently, our knowledge of GI secretion, GI motility, and regional intestinal permeability, in both healthy subjects and patients with GI diseases, is limited by the relative inaccessibility of some intestinal segments of the human GI tract. In particular, our understanding of the complex and highly dynamic physiology of the region from the mid-jejunum to the sigmoid colon could be significantly improved. One approach to the assessment of intestinal permeability is to use animal models that allow these intestinal regions to be investigated in detail and then to compare the results with those from simple human permeability models such as cell cultures. Investigation of intestinal drug permeation processes is a crucial biopharmaceutical step in the development of oral pharmaceutical products. The determination of the intestinal Peff for a specific drug is dependent on the technique, model, and conditions applied, and is influenced by multiple interactions between the drug molecule and the biological membranes.
Collapse
Affiliation(s)
- David Dahlgren
- Department of Pharmacy, Uppsala University, Box 580 SE-751 23 Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmacy, Uppsala University, Box 580 SE-751 23 Uppsala, Sweden.
| |
Collapse
|
21
|
Effects of absorption-modifying excipients on jejunal drug absorption in simulated fasted and fed luminal conditions. Eur J Pharm Biopharm 2019; 142:387-395. [PMID: 31306752 DOI: 10.1016/j.ejpb.2019.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/26/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022]
Abstract
Oral administration of drug products is the preferred administration route. In recent decades there has been an increase in drug candidates with low solubility and/or low permeability. To increase the possibility of oral administration for the poorly permeating drugs, the use of absorption modifying excipients (AMEs) has been proposed. These types of AMEs may also affect the regulatory assessment of a novel drug delivery system if they affect the absorption of a drug from any of the four BCS classes. The effects of AMEs have previously been investigated in various animal models, including the single-pass intestinal perfusion (SPIP) in rats. To further improve the biorelevance and the in vivo predictiveness of the SPIP model, four compounds (atenolol, enalaprilat, ketoprofen, metoprolol) were perfused in fasted or fed state simulated intestinal fluid (FaSSIF or FeSSIF) together with the AMEs N-acetyl-cysteine, caprate, or sodium dodecyl sulfate. For the highly soluble and poorly permeating compounds enalaprilat and atenolol (BCS class III), the flux was increased the most by the addition of SDS in both FaSSIF and FeSSIF. For ketoprofen (BCS class II), the flux decreased in the presence of all AMEs in at least one of the perfusion media. The flux of metoprolol (BCS class I) was not affected by any of the excipients in none of simulated prandial states. The changes in magnitude in the absorption of the compounds were in general smaller in FeSSIF than in FaSSIF. This may be explained by a reduced free concentration AMEs in FeSSIF. Further, the results in FeSSIF were similar to those from intrajejunal bolus administration in rat in a previous study. This suggests that the biorelevance of the SPIP method may be increased when investigating the effects of AMEs, by the addition of intraluminal constituents representative to fasted and/or fed state to the inlet perfusate.
Collapse
|
22
|
Dahlgren D, Roos C, Peters K, Lundqvist A, Tannergren C, Sjögren E, Sjöblom M, Lennernäs H. Evaluation of drug permeability calculation based on luminal disappearance and plasma appearance in the rat single-pass intestinal perfusion model. Eur J Pharm Biopharm 2019; 142:31-37. [PMID: 31201856 DOI: 10.1016/j.ejpb.2019.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 01/02/2023]
Abstract
The rat single-pass intestinal perfusion (SPIP) model is commonly used to investigate gastrointestinal physiology and membrane drug transport. The SPIP model can be used with the intestinal segment inside or outside the abdomen. The rats can also be treated with parecoxib, a selective cycloxygenase-2 inhibitor that has been shown to affect some intestinal functions following abdominal surgery, such as motility, epithelial permeability, fluid flux and ion transport. However, the impact of extra-abdominal placement of the intestinal segment in combination with parecoxib on intestinal drug transport has not been investigated. There is also uncertainty how well intestinal permeability determinations based on luminal drug disappearance and plasma appearance correlate in the rat SPIP model. The main objective of this rat in vivo study was to investigate the effect of intra- vs. extra-abdominal SPIP, with and without, pretreatment with parecoxib. The effect was evaluated by determining the difference in blood-to-lumen 51Cr-EDTA clearance, lumen-to-blood permeability of a cassette-dose of four model compounds (atenolol, enalaprilat, ketoprofen, and metoprolol), and water flux. The second objective was to compare the jejunal permeability values of the model drugs when determined based on luminal disappearance or plasma appearance. The study showed that the placement of the perfused jejunal segment, or the treatment with parecoxib, had minimal effects on membrane permeability and water flux. It was also shown that intestinal permeability of low permeability compounds should be determined on the basis of data from plasma appearance rather than luminal disappearance. If permeability is calculated on the basis of luminal disappearance, it should preferably include negative values to increase the accuracy in the determinations.
Collapse
Affiliation(s)
- D Dahlgren
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - C Roos
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - K Peters
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | | | - E Sjögren
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - M Sjöblom
- Department of Neuroscience, Division of Physiology, Uppsala University, Uppsala, Sweden
| | - H Lennernäs
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
23
|
Impact on intestinal permeability of pediatric hyperosmolar formulations after dilution: Studies with rat perfusion method. Int J Pharm 2019; 557:154-161. [DOI: 10.1016/j.ijpharm.2018.12.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/16/2018] [Accepted: 12/20/2018] [Indexed: 12/23/2022]
|
24
|
Application of Permeation Enhancers in Oral Delivery of Macromolecules: An Update. Pharmaceutics 2019; 11:pharmaceutics11010041. [PMID: 30669434 PMCID: PMC6359609 DOI: 10.3390/pharmaceutics11010041] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/29/2022] Open
Abstract
The application of permeation enhancers (PEs) to improve transport of poorly absorbed active pharmaceutical ingredients across the intestinal epithelium is a widely tested approach. Several hundred compounds have been shown to alter the epithelial barrier, and although the research emphasis has broadened to encompass a role for nanoparticle approaches, PEs represent a key constituent of conventional oral formulations that have progressed to clinical testing. In this review, we highlight promising PEs in early development, summarize the current state of the art, and highlight challenges to the translation of PE-based delivery systems into safe and effective oral dosage forms for patients.
Collapse
|
25
|
Liu C, Kou Y, Zhang X, Dong W, Cheng H, Mao S. Enhanced oral insulin delivery via surface hydrophilic modification of chitosan copolymer based self-assembly polyelectrolyte nanocomplex. Int J Pharm 2019; 554:36-47. [DOI: 10.1016/j.ijpharm.2018.10.068] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
|
26
|
Liu H, Du K, Li D, Du Y, Xi J, Xu Y, Shen Y, Jiang T, Webster TJ. A high bioavailability and sustained-release nano-delivery system for nintedanib based on electrospray technology. Int J Nanomedicine 2018; 13:8379-8393. [PMID: 30587966 PMCID: PMC6294062 DOI: 10.2147/ijn.s181002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Nintedanib is a new tyrosine kinase inhibitor and growth factor antagonist. It can be used to treat idiopathic pulmonary fibrosis diseases. Nintedanib has poor solubility in the intestinal tract environment, which leads to low bioavailability of just 4.7%. METHODS In this study, a nintedanib solid dispersion was prepared by electrospray technology with an optimized formula (nintedanib:PVPK30:Soybean lecithin=1:5:0.25) and electrospray parameters (21 kV voltage, 18 cm receiving distance, 0.3 mL/h solution flow rate, 0.5 mm pinhole inner diameter). RESULTS The accumulative release rate of the optimized solid dispersion was more than 60% in 30 minutes and 100% in 60 minutes. The size distribution was uniform and the surface observed with scanning electron microscopy (SEM) was smooth. The DSC and X-ray diffraction results showed that nintedanib existed in the solid dispersion through an amorphous form. Nintedanib solid dispersion sustained-release capsules were prepared to prolong drug release, improve patient compliance and reduce side effects. The accumulative release rate from the sustained release capsules was 35.17%, 54.78%, 70.58%, and 93.93% after 2 h, 6 h, 8 h, and 12 h, respectively, having obvious sustained release effects in vitro. The release behavior of solid dispersion sustained-release capsules in vitro was in accordance with the Ritger-Peppas model. The in vivo studies of nintedanib soft capsules, solid dispersion and nintedanib sustained release capsules in SD rats were investigated; the results showed that the Tmax of the soft capsule, solid dispersion and sustained release capsules were 3 h, 2 h, and 6 h, respectively. The Cmax were 2.945 mg/mL, 5.32 mg/mL, and 3.75 mg/mL, respectively, while the AUC0-24 h was 15.124 mg·h/mL, 23.438 mg·h/mL, and 24.584 mg·h/mL, respectively. The relevant bioavailability of the sustained-release capsules was 162.55% compared to the nintedanib soft capsule and 104.89% compared to the nintedanib solid dispersion. CONCLUSION The results suggested superior bioavailability and a sustained-release effect from nintedanib sustained-release capsules, as compared to the reference (commercial nintedanib soft capsule).
Collapse
Affiliation(s)
- Hongfei Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Kunyu Du
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yi Du
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Jumei Xi
- Health of Nepstar Drugstore Chain Company Limited, Wuxi 214000, China
| | - Ying Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Yan Shen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Jiang
- The Pharmacy Department, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China,
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA,
| |
Collapse
|
27
|
Dahlgren D, Roos C, Lundqvist A, Tannergren C, Sjöblom M, Sjögren E, Lennernäs H. Time-dependent effects on small intestinal transport by absorption-modifying excipients. Eur J Pharm Biopharm 2018; 132:19-28. [PMID: 30179738 DOI: 10.1016/j.ejpb.2018.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/23/2018] [Accepted: 09/01/2018] [Indexed: 12/31/2022]
Abstract
The relevance of the rat single-pass intestinal perfusion model for investigating in vivo time-dependent effects of absorption-modifying excipients (AMEs) is not fully established. Therefore, the dynamic effect and recovery of the intestinal mucosa was evaluated based on the lumen-to-blood flux (Jabs) of six model compounds, and the blood-to-lumen clearance of 51Cr-EDTA (CLCr), during and after 15- and 60-min mucosal exposure of the AMEs, sodium dodecyl sulfate (SDS) and chitosan, in separate experiments. The contribution of enteric neurons on the effect of SDS and chitosan was also evaluated by luminal coadministration of the nicotinic receptor antagonist, mecamylamine. The increases in Jabs and CLCr (maximum and total) during the perfusion experiments were dependent on exposure time (15 and 60 min), and the concentration of SDS, but not chitosan. The increases in Jabs and CLCr following the 15-min intestinal exposure of both SDS and chitosan were greater than those reported from an in vivo rat intraintestinal bolus model. However, the effect in the bolus model could be predicted from the increase of Jabs at the end of the 15-min exposure period, where a six-fold increase in Jabs was required for a corresponding effect in the in vivo bolus model. This illustrates that a rapid and robust effect of the AME is crucial to increase the in vivo intestinal absorption rate before the yet unabsorbed drug in lumen has been transported distally in the intestine. Further, the recovery of the intestinal mucosa was complete following 15-min exposures of SDS and chitosan, but it only recovered 50% after the 60-min intestinal exposures. Our study also showed that the luminal exposure of AMEs affected the absorptive model drug transport more than the excretion of 51Cr-EDTA, as Jabs for the drugs was more sensitive than CLCr at detecting dynamic mucosal AME effects, such as response rate and recovery. Finally, there appears to be no nicotinergic neural contribution to the absorption-enhancing effect of SDS and chitosan, as luminal administration of 0.1 mM mecamylamine had no effect.
Collapse
Affiliation(s)
- D Dahlgren
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - C Roos
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | | | - M Sjöblom
- Department of Neuroscience, Division of Physiology, Uppsala University, Uppsala, Sweden
| | - E Sjögren
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - H Lennernäs
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| |
Collapse
|