1
|
Dogheim GM, Shehat MG, Mahdy DM, Barakat HS, Abouelfetouh A, Ramadan AA. Antibacterial and anti-virulence activity of eco-friendly resveratrol-loaded lipid nanocapsules against methicillin-resistant staphylococcus aureus. Sci Rep 2025; 15:14677. [PMID: 40287445 PMCID: PMC12033371 DOI: 10.1038/s41598-025-95343-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is challenging modern antimicrobial therapy due to its high antimicrobial resistance. Nutraceuticals have gained a lot of interest and their incorporation into nanoparticles further improves their efficacy. This study aimed to evaluate the antibacterial activity of linalool-based lipid nanocapsules loaded with resveratrol (LIN-LNC-RES) as a synergistic strategy against MRSA. LIN-LNC-RES were prepared by the phase inversion temperature method and characterized for their colloidal properties, in vitro release, and stability. The antibacterial and antibiofilm activity against S. aureus and different MRSA clinical isolates were investigated. Furthermore, scanning electron microscopy (SEM) imaging for visualization of biofilm formation and bacterial membrane integrity as well as mechanistic investigation using quantitative real-time polymerase chain reaction (qRT-PCR) analysis were performed. LIN-LNCs-RES demonstrated favorable properties with a size of 35.19 ± 0.72 nm, PDI of 0.09 ± 0.02 and a zeta potential of -2.53 ± 0.07 mV with RES 98% EE. They showed a controlled release of RES over 24 h and were stable at 4 °C for 3 months. Compared to free drug, LIN-LNC-RES showed a 4-fold decrease in MIC values and 10-fold decrease in half maximal biofilm inhibitory concentration value. Biofilm eradication assay showed superiority of LIN-LNC-RES over RES against all isolates with disrupted bacterial membranes as revealed by SEM. Mechanistically, qRT-PCR showed that LIN-LNC-RES significantly reduced RNAIII gene expression as well as the expression of SaeRS two component system, potentially affecting quorum sensing and virulence factors expression. RES-loaded LIN-based nanosystem offers a great potential for combating MRSA infections, neutralizing its virulence activity hence, overcoming antimicrobial resistance.
Collapse
Affiliation(s)
- Gaidaa M Dogheim
- Pharmaceutics department, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Michael G Shehat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Dina M Mahdy
- Pharmaceutics Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Alamein, Egypt
| | - Hebatallah S Barakat
- Pharmaceutics department, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Alaa Abouelfetouh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
- Department of Microbiology and Immunology, Alamein International University, Alamein, Egypt
| | - Alyaa A Ramadan
- Pharmaceutics department, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
2
|
Yihan W, Jinjin D, Yingqi W, Guanai M, Xiwu Z. Advances in plant essential oils and drug delivery systems for skincare. Front Pharmacol 2025; 16:1578280. [PMID: 40313613 PMCID: PMC12044306 DOI: 10.3389/fphar.2025.1578280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/03/2025] [Indexed: 05/03/2025] Open
Abstract
Background Essential oils, often referred to as "liquid gold," are renowned for their broad biological activity. Ancient Egyptians used essential oils' antibacterial and antiseptic effects to preserve mummies, ancient Greeks used olive oil for sun protection, and ancient Chinese used essential oils to treat wounds. When essential oils are applied to the facial skin, their potent anti-inflammatory, antioxidant, and antibacterial pharmacological characteristics provide various benefits, including sunscreen, skin-whitening, and anti-aging effects. Purpose This paper aims to summarize the application of plant essential oil in skin whitening, anti-inflammatory, antioxidant and antibacterial in recent years, and deeply analyzes the internal relationship between essential oil and modern drug delivery system, expounds how to overcome the limitations of essential oil through specific drug delivery system, to enhance its biological activity and stability, realize sustained release and reduce its potential toxicity, and also discusses the positive effects of essential oil on brain function through olfactory pathway, emphasizes the possible safety risks in the use of essential oil, and puts forward corresponding suggestions for use. Methods Using keywords such as "essential oils," "antioxidant," "anti-tyrosinase," Antibacterial Effects and anti-inflammatory," "anti-anxiety," and "drug carrier delivery systems," a comprehensive search was conducted in the PubMed, CNKI, Baidu, and Wanfang databases to summarize articles from the past 5 years. Further screening was performed to select studies demonstrating the efficacy of essential oils through topical or external application. Results Various essential oils showed their efficacy as strong oxidants, antibacterial agents, anti-inflammatory agents, and skin-whitening agents. Combined with a new drug delivery system, it not only enhances the biological activity of essential oil but also reduces the inherent defects of essential oil, such as volatility, irritation, and toxicity, and has a targeted delivery effect. At the same time, the integration of essential oil into skin care products can make use of the dual functions of smell and the epidermal system to nourish and repair the skin and maximize the pharmacological effects of essential oil. Conclusion This review delves into the application of essential oils and delivery systems, advocating for a broader integration of natural plant resources with modern technology. By strategically utilizing essential oils, we can promote the sustainable development of the global economy. However, extensive clinical trials are still required to evaluate the effectiveness and safety of essential oil delivery systems.
Collapse
Affiliation(s)
- Wang Yihan
- Institute of Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Dou Jinjin
- Institute of Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
- The Four Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Wang Yingqi
- Institute of Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Mu Guanai
- Institute of Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Zhang Xiwu
- Institute of Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Wang X, Huang L, Du Q, Li J, Zheng Q, Chen Y, Yue P. Pickering emulsions embedded in Bletilla striata polysaccharide based nanogel for enhancing skin-whitening effect of essential oils. Int J Pharm 2024; 667:124918. [PMID: 39521161 DOI: 10.1016/j.ijpharm.2024.124918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/19/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
To improve the retention time and skin-whitening efficacy of Atractylodes macrocephale essential oil (AMO), a novel Pickering emulsion based nanogel loaded with AMO (AMO-PEG) was successfully developed. This formulation employed nano-pearl powder (NPP) as the particle stabilizer for the Pickering emulsion and Bletilla striata polysaccharide (BSP) as the gel matrix. The pH, rheological properties, hardness, and elasticity of AMO-PEG were affected by the ratio of AMO-Pickering emulsion (AMO-PE) to BSP gel matrix. The results showed that AMO-PEG exhibited solid-like behavior and was capable of forming nanogels when the ratio of AMO-PE to BSP was 1:1. AMO-PE and AMO-PEG are two different dosage forms in the preparation of AMO. The effects of varying dosage forms on AMO were evaluated by in vitro transdermal release, skin irritation test, and skin-whitening effect. AMO-PEG conforms to the zero-order kinetic equation (R2 = 0.9189). The skin retention rate of AMO-PEG was 1.37 times higher than that of AMO-PE, indicating that AMO-PEG could continuously and slowly exert the whitening effect of the drugs. Compared with AMO-PE, AMO-PEG significantly increased the inhibition of tyrosinase activity and melanogenesis in B16F10 cells. AMO-PEG can promote the inhibition of B16F10 cells and improve the whitening effect of AMO and BSP. In conclusion, the Pickering emulsion based nanogel appears to be a promising strategy for enhancing the skin-whitening efficacy of both AMO and BSP.
Collapse
Affiliation(s)
- Xinmin Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Lizhen Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qing Du
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jing Li
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Nanchang 330007, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yingchong Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang 330096, China.
| |
Collapse
|
4
|
Heikal LA, El-Habashy SE, El-Kamel AH, Mehanna RA, Ashour AA. Bioactive baicalin rhamno-nanocapsules as phytotherapeutic platform for treatment of acute myeloid leukemia. Int J Pharm 2024; 661:124458. [PMID: 38996823 DOI: 10.1016/j.ijpharm.2024.124458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/27/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Leukemia, particularly acute myeloid leukemia (AML) is considered a serious health condition with high prevalence among adults. Accordingly, finding new therapeutic modalities for AML is urgently needed. This study aimed to develop a biocompatible nanoformulation for effective oral delivery of the phytomedicine; baicalin (BAC) for AML treatment. Lipid nanocapsules (LNCs) based on bioactive natural components; rhamnolipids (RL) as a biosurfactant and the essential oil linalool (LIN), were prepared using a simple phase-inversion method. The elaborated BAC-LNCs displayed 61.1 nm diameter and 0.2 PDI. Entrapment efficiency exceeded 98 % with slow drug release and high storage-stability over 3 months. Moreover, BAC-LNCs enhanced BAC oral bioavailability by 2.3-fold compared to BAC suspension in rats with higher half-life and mean residence-time. In vitro anticancer studies confirmed the prominent cytotoxicity of BAC-LNCs on the human leukemia monocytes (THP-1). BAC-LNCs exerted higher cellular association, apoptotic capability and antiproliferative activity with DNA synthesis-phase arrest. Finally, a mechanistic study performed through evaluation of various tumor biomarkers revealed that BAC-LNCs downregulated the angiogenic marker, vascular endothelial growth-factor (VEGF) and the anti-apoptotic marker (BCl-2) and upregulated the apoptotic markers (Caspase-3 and BAX). The improved efficacy of BAC bioactive-LNCs substantially recommends their pharmacotherapeutic potential as a promising nanoplatform for AML treatment.
Collapse
Affiliation(s)
- Lamia A Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Radwa A Mehanna
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Asmaa A Ashour
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Amantino CF, do Amaral SR, Aires-Fernandes M, Oliani SM, Tedesco AC, Primo FL. Development of 3D skin equivalents for application in photodynamic biostimulation therapy assays using curcumin nanocapsules. Heliyon 2024; 10:e32808. [PMID: 38975186 PMCID: PMC11226835 DOI: 10.1016/j.heliyon.2024.e32808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
For decades, animal models have been the standard approach in drug research and development, as they are required by regulations in the transition from preclinical to clinical trials. However, there is growing ethical and scientific concern regarding these trials, as 80 % of the therapeutic potential observed in pre-clinical studies are often unable to be replicated, despite demonstrating efficacy and safety. In response to this, Tissue Engineering has emerged as a promising alternative that enables the treatment of various diseases through the production of biological models for advanced biological assays or through the direct development of tissue repairs or replacements. One of the promising applications of Tissue Engineering is the development of three-dimensional (3D) models for in vitro tests, replacing the need for in vivo animal models. In this study, 3D skin equivalents (TSE) were produced and used as an in vitro model to test photobiostimulation using curcumin-loaded nanocapsules. Photodynamic biostimulation therapy uses photodynamic processes to generate small amounts of reactive oxygen species (ROS), which can activate important biological effects such as cell differentiation, modulation of inflammatory processes and contribution to cell regeneration. The PLGA nanocapsules (NC) used in the study were synthesized through a preformed polymer deposition method, exhibiting particle size <200 nm, Zeta potential >|30| and polydispersity index between 0.5 and 0.3. Atomic force microscopy analyzes confirmed that the particle size was <200 nm, with a spherical morphology and a predominantly smooth and uniform surface. The NC biocompatibility assay did not demonstrate cytotoxicity for the concentrations tested (2.5-25 μg mL-1).The in vitro release assay showed a slow and sustained release characteristic of the nanocapsules, and cellular uptake assays indicated a significant increase in cellular internalization of the curcumin-loaded nanostructure. Monolayer photobiostimulation studies revealed an increase in cell viability of the HDFn cell line (viability 134 %-228 %) for all LED fluences employed at λ = 450 nm (150, 300, and 450 mJ cm-2). Additionally, the scratch assays, monitoring in vitro scar injury, demonstrated more effective effects on cell proliferation with the fluence of 300 mJ cm-2. Staining of TSE with hematoxylin and eosin showed the presence of cells with different morphologies, confirming the presence of fibroblasts and keratinocytes. Immunohistochemistry using KI-67 revealed the presence of proliferating cells in TSE after irradiation with LED λ = 450 nm (150, 300, and 450 mJ cm-2).
Collapse
Affiliation(s)
- Camila F. Amantino
- Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, 14800-903, Brazil
| | - Stéphanie R. do Amaral
- Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, 14800-903, Brazil
| | - Mariza Aires-Fernandes
- Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, 14800-903, Brazil
| | - Sonia M. Oliani
- Department of Biology, Institute of Biosciences, Languages and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto, SP, 15054-000, Brazil
| | - Antonio C. Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering – Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, 14010-100, Brazil
| | - Fernando L. Primo
- Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, 14800-903, Brazil
| |
Collapse
|
6
|
Mahajan K, Bhattacharya S. The Advancement and Obstacles in Improving the Stability of Nanocarriers for Precision Drug Delivery in the Field of Nanomedicine. Curr Top Med Chem 2024; 24:686-721. [PMID: 38409730 DOI: 10.2174/0115680266287101240214071718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
Nanocarriers have emerged as a promising class of nanoscale materials in the fields of drug delivery and biomedical applications. Their unique properties, such as high surface area- tovolume ratios and enhanced permeability and retention effects, enable targeted delivery of therapeutic agents to specific tissues or cells. However, the inherent instability of nanocarriers poses significant challenges to their successful application. This review highlights the importance of nanocarrier stability in biomedical applications and its impact on biocompatibility, targeted drug delivery, long shelf life, drug delivery performance, therapeutic efficacy, reduced side effects, prolonged circulation time, and targeted delivery. Enhancing nanocarrier stability requires careful design, engineering, and optimization of physical and chemical parameters. Various strategies and cutting-edge techniques employed to improve nanocarrier stability are explored, with a focus on their applications in drug delivery. By understanding the advances and challenges in nanocarrier stability, this review aims to contribute to the development and implementation of nanocarrier- based therapies in clinical settings, advancing the field of nanomedicine.
Collapse
Affiliation(s)
- Kalpesh Mahajan
- Department of Quality Assurence, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKMS NMIMS Maharashtra, Shirpur, 425405, India
| |
Collapse
|
7
|
Badruddoza AZM, Yeoh T, Shah JC, Walsh T. Assessing and Predicting Physical Stability of Emulsion-Based Topical Semisolid Products: A Review. J Pharm Sci 2023; 112:1772-1793. [PMID: 36966902 DOI: 10.1016/j.xphs.2023.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
The emulsion-based topical semisolid dosage forms present a high degree of complexity due to their microstructures which is apparent from their compositions comprising at least two immiscible liquid phases, often times of high viscosity. These complex microstructures are thermodynamically unstable, and the physical stability of such preparations is governed by formulation parameters such as phase volume ratio, type of emulsifiers and their concentration, HLB value of the emulsifier, as well as by process parameters such as homogenizer speed, time, temperature etc. Therefore, a detailed understanding of the microstructure in the DP and critical factors that influence the stability of emulsions is essential to ensure the quality and shelf-life of emulsion-based topical semisolid products. This review aims to provide an overview of the main strategies used to stabilize pharmaceutical emulsions contained in semisolid products and various characterization techniques and tools that have been utilized so far to evaluate their long-term stability. Accelerated physical stability assessment using dispersion analyzer tools such as an analytical centrifuge to predict the product shelf-life has been discussed. In addition, mathematical modeling for phase separation rate for non-Newtonian systems like semisolid emulsion products has also been discussed to guide formulation scientists to predict a priori stability of these products.
Collapse
Affiliation(s)
- Abu Zayed Md Badruddoza
- Drug Product Design, Worldwide Research, Development and Medical, Pfizer Inc., Groton, CT 06340, USA.
| | - Thean Yeoh
- Drug Product Design, Worldwide Research, Development and Medical, Pfizer Inc., Groton, CT 06340, USA
| | - Jaymin C Shah
- Drug Product Design, Worldwide Research, Development and Medical, Pfizer Inc., Groton, CT 06340, USA
| | - Taylor Walsh
- Eurofins Lancaster Laboratories Professional Scientific Services, 2425 New Holland Pike, Lancaster, PA 17601, USA
| |
Collapse
|
8
|
Ciprofloxacin HCl-loaded Albumin Nanoparticles for the Treatment of Recurrent Urinary Tract Infections: Preparation, Optimization, and Evaluation of Antibacterial Activity. J Pharm Innov 2023. [DOI: 10.1007/s12247-023-09709-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Development of Lipid Nanoparticles Containing Omega-3-Rich Extract of Microalga Nannochlorpsis gaditana. Foods 2022; 11:foods11233749. [PMID: 36496557 PMCID: PMC9736134 DOI: 10.3390/foods11233749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
Microalgae are described as a new source of a wide range of bioactive compounds with health-promoting properties, such as omega-3 lipids. This biomass product is gaining attention mainly due to its potential to accumulate different compounds depending on the species and environment, and it has been commonly recognized as a valuable nutraceutical alternative to fish and krill oils. In this work, we obtained the extract of the microalga Nannochloropsis gaditana, selected on the basis of its content of eicosapentaenoic acid (EPA) and glycolipids, which were determined using GC-MS and high-performance liquid chromatography (HPLC), respectively. To develop an oral formulation for the delivery of the extract, we used a 23 factorial design approach to obtain an optimal lipid nanoparticle formulation. The surfactant and solid lipid content were set as the independent variables, while the particle size, polydispersity index, and zeta potential were taken as the dependent variables of the design. To ensure the potential use of the optimum LN formulation to protect and modify the release of the loaded microalga extract, rheological and differential scanning calorimetry analyses were carried out. The developed formulations were found to be stable over 30 days, with an encapsulation efficiency over 60%.
Collapse
|
10
|
Medeiros CIS, Sousa MNAD, Filho GGA, Freitas FOR, Uchoa DPL, Nobre MSC, Bezerra ALD, Rolim LADMM, Morais AMB, Nogueira TBSS, Nogueira RBSS, Filho AAO, Lima EO. Antifungal activity of linalool against fluconazole-resistant clinical strains of vulvovaginal Candida albicans and its predictive mechanism of action. Braz J Med Biol Res 2022; 55:e11831. [PMID: 35976268 PMCID: PMC9377531 DOI: 10.1590/1414-431x2022e11831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
Candida albicans is the most frequently isolated opportunistic
pathogen in the female genital tract, with 92.3% of cases in Brazil associated
with vulvovaginal candidiasis (VVC). Linalool is a monoterpene compound from
plants of the genera Cinnamomum, Coriandrum,
Lavandula, and Citrus that has demonstrated a
fungicidal effect on strains of Candida spp., but its mechanism
of action is still unknown. For this purpose, broth microdilution techniques
were applied, as well as molecular docking in a predictive manner for this
mechanism. The main results of this study indicated that the C.
albicans strains analyzed were resistant to fluconazole and
sensitive to linalool at a dose of 256 µg/mL. Furthermore, the increase in the
minimum inhibitory concentration (MIC) of linalool in the presence of sorbitol
and ergosterol indicated that this molecule possibly affects the cell wall and
plasma membrane integrity of C. albicans. Molecular docking of
linalool with proteins that are key in the biosynthesis and maintenance of the
cell wall and the fungal plasma membrane integrity demonstrated the possibility
of linalool interacting with three important enzymes: 1,3-β-glucan synthase,
lanosterol 14α-demethylase, and Δ 14-sterol reductase. In
silico analysis showed that this monoterpene has theoretical but
significant oral bioavailability, low toxic potential, and high similarity to
pharmaceuticals. Therefore, the findings of this study indicated that linalool
probably causes damage to the cell wall and plasma membrane of C.
albicans, possibly by interaction with important enzymes involved
in the biosynthesis of these fungal structures, in addition to presenting low
in silico toxic potential.
Collapse
Affiliation(s)
- C I S Medeiros
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, PB, Brasil.,Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - M N A de Sousa
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - G G A Filho
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - F O R Freitas
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - D P L Uchoa
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - M S C Nobre
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - A L D Bezerra
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - L A D M M Rolim
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - A M B Morais
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - T B S S Nogueira
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - R B S S Nogueira
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - A A O Filho
- Unidade Acadêmica de Ciências Biológicas (UACB), Universidade Federal de Campina Grande, Patos, PB, Brasil
| | - E O Lima
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| |
Collapse
|
11
|
Blanco-Llamero C, Fonseca J, Durazzo A, Lucarini M, Santini A, Señoráns FJ, Souto EB. Nutraceuticals and Food-Grade Lipid Nanoparticles: From Natural Sources to a Circular Bioeconomy Approach. Foods 2022; 11:2318. [PMID: 35954085 PMCID: PMC9367884 DOI: 10.3390/foods11152318] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Nutraceuticals have gained increasing attention over the last years due to their potential value as therapeutic compounds formulated from natural sources. For instance, there is a wide range of literature about the cardioprotective properties of omega-3 lipids and the antioxidant value of some phenolic compounds, which are related to antitumoral activity. However, the value of nutraceuticals can be limited by their instability under gastric pH and intestinal fluids, their low solubility and absorption. That is why encapsulation is a crucial step in nutraceutical design. In fact, pharmaceutical nanotechnology improves nutraceutical stability and bioavailability through the design and production of efficient nanoparticles (NPs). Lipid nanoparticles protect the bioactive compounds from light and external damage, including the gastric and intestinal conditions, providing a retarded delivery in the target area and guaranteeing the expected therapeutic effect of the nutraceutical. This review will focus on the key aspects of the encapsulation of bioactive compounds into lipid nanoparticles, exploring the pharmaceutical production methods available for the synthesis of NPs containing nutraceuticals. Moreover, the most common nutraceuticals will be discussed, considering the bioactive compounds, their natural source and the described biological properties.
Collapse
Affiliation(s)
- Cristina Blanco-Llamero
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.B.-L.); (J.F.)
- Healthy Lipids Group, Departmental Section of Food Sciences, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain;
| | - Joel Fonseca
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.B.-L.); (J.F.)
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Francisco J. Señoráns
- Healthy Lipids Group, Departmental Section of Food Sciences, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain;
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.B.-L.); (J.F.)
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
12
|
Production and characterization of composite films with zein nanoparticles based on the complexity of continuous film matrix. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Al-Radadi NS. Laboratory scale medicinal plants mediated green synthesis of biocompatible nanomaterials and their versatile biomedical applications. Saudi J Biol Sci 2022; 29:3848-3870. [PMID: 35844411 PMCID: PMC9280260 DOI: 10.1016/j.sjbs.2022.02.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/06/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
|
14
|
Soboleva OA, Gurkov TD, Stanimirova RD, Protsenko PV, Tsarkova LA. Volatile Aroma Surfactants: The Evaluation of the Adsorption-Evaporation Behavior under Dynamic and Equilibrium Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2793-2803. [PMID: 35201780 DOI: 10.1021/acs.langmuir.1c02871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multicomponent heterogeneous systems containing volatile amphiphiles are relevant to the fields ranging from drug delivery to atmospheric science. Research presented here discloses the individual interfacial activity and adsorption-evaporation behavior of amphiphilic aroma molecules at the liquid-vapor interface. The surface tension of solutions of nonmicellar volatile surfactants linalool and benzyl acetate, fragrances as such, was compared with that of the conventional surfactant sodium dodecyl sulfate (SDS) under equilibrium as well as under no instantaneous equilibrium, including a fast-adsorbing regime. In open systems, the increase in the surface tension on a time scale of ∼10 min is evaluated using a phenomenological model. The derived characteristic mass transfer constant is shown to be specific to both the desorption mechanism and the chemistry of the volatile amphiphile. Fast-adsorbing behavior disclosed here, as well as the synergetic effect in the mixtures with conventional micellar surfactants, justifies the advantages of volatile amphiphiles as cosurfactants in dynamic interfacial processes. The demonstrated approach to derive specific material parameters of fragrance molecules can be used for an application-targeted selection of volatile cosurfactants, e.g., in emulsification and foaming, inkjet printing, microfluidics, spraying, and coating technologies.
Collapse
Affiliation(s)
- Oxana A Soboleva
- Chair of Colloid Chemistry, Faculty of Chemistry, Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Theodor D Gurkov
- Department of Chemical and Pharmaceutical Engineering (DCPE), Faculty of Chemistry and Pharmacy at the University of Sofia, James Bourchier Avenue 1, Sofia 1164, Bulgaria
| | - Rumyana D Stanimirova
- Department of Chemical and Pharmaceutical Engineering (DCPE), Faculty of Chemistry and Pharmacy at the University of Sofia, James Bourchier Avenue 1, Sofia 1164, Bulgaria
| | - Pavel V Protsenko
- Chair of Colloid Chemistry, Faculty of Chemistry, Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Larisa A Tsarkova
- Chair of Colloid Chemistry, Faculty of Chemistry, Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
- German Textile Research Center Nord West (DTNW), Adlerstr. 1, Krefeld 47798, Germany
| |
Collapse
|
15
|
Kudla R, Gutmann JS, Tsarkova LA. Tensiometry as a Simple Analytical Method for Quantification of Solubility and Release of Aroma Molecules in Aqueous Media. Molecules 2021; 26:7655. [PMID: 34946742 PMCID: PMC8707197 DOI: 10.3390/molecules26247655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Dynamic tensiometry is shown to be a high-potential analytical tool in assessing physico-chemical characteristics of fragrance molecules, such as solubility limit, volatility as well as much rarely assessed interfacial activity of these amphiphilic molecules. Surface tension of aqueous solutions of selected essential oils has been measured as a function of time and fragrance concentration using maximum bubble pressure method. The effect of the temperature and saline solution on the rate of dissolution in water was assessed. Dynamic surface tension turned to be sensitive to the composition of fragrances, as demonstrated on examples of natural and synthetic mixtures. Furthermore, presented work reveals the possibility of maximum bubble pressure tensiometry method to quantify the amount of fragrance compositions in flavored salts, including the artificially aged carrier samples. Suggested here analytical approach can be used for the detection of the purity of essential oils, for the optimization of compositions and of the manufacturing processes of fragrances-containing products, as well as for the assessment of the release/evaporation of fragrances from carrier systems.
Collapse
Affiliation(s)
- Ruth Kudla
- Germain Textile Research Center North-West (DTNW), 47798 Krefeld, Germany; (R.K.); (J.S.G.)
| | - Jochen S. Gutmann
- Germain Textile Research Center North-West (DTNW), 47798 Krefeld, Germany; (R.K.); (J.S.G.)
- Physical Chemistry, University Duisburg-Essen, 47057 Duisburg, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), 45141 Essen, Germany
| | - Larisa A. Tsarkova
- Germain Textile Research Center North-West (DTNW), 47798 Krefeld, Germany; (R.K.); (J.S.G.)
- Physical Chemistry, University Duisburg-Essen, 47057 Duisburg, Germany
- Department of Chemistry, Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
16
|
Silva LB, Castro KADF, Botteon CEA, Oliveira CLP, da Silva RS, Marcato PD. Hybrid Nanoparticles as an Efficient Porphyrin Delivery System for Cancer Cells to Enhance Photodynamic Therapy. Front Bioeng Biotechnol 2021; 9:679128. [PMID: 34604182 PMCID: PMC8484888 DOI: 10.3389/fbioe.2021.679128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) is a potential non-invasive approach for application in oncological diseases, based on the activation of a photosensitizer (PS) by light at a specific wavelength in the presence of molecular oxygen to produce reactive oxygen species (ROS) that trigger the death tumor cells. In this context, porphyrins are interesting PS because they are robust, have high chemical, photo, thermal, and oxidative stability, and can generate singlet oxygen (1O2). However, porphyrins exhibit low solubility and a strong tendency to aggregate in a biological environment which limits their clinical application. To overcome these challenges, we developed hybrid nanostructures to immobilize 5,10,15,20-tetrakis[(4-carboxyphenyl) thio-2,3,5,6-tetrafluorophenyl] (P), a new third-generation PS. The biological effect of this system was evaluated against bladder cancer (BC) cells with or without light exposition. The nanostructure composed of lipid carriers coated by porphyrin-chitosan (P-HNP), presented a size of ca. 130 nm and low polydispersity (ca. 0.25). The presence of the porphyrin-chitosan (P-chitosan) on lipid nanoparticle surfaces increased the nanoparticle size, changed the zeta potential to positive, decreased the recrystallization index, and increased the thermal stability of nanoparticles. Furthermore, P-chitosan incorporation on nanoparticles increased the stability and enhanced the self-organization of the system and the formation of spherical structures, as observed by small-angle X-ray scattering (SAXS) analysis. Furthermore, the immobilization process maintained the P photoactivity and improved the photophysical properties of PS, minimizing its aggregation in the cell culture medium. In the photoinduction assays, the P-HNP displayed high phototoxicity with IC50 3.2-folds lower than free porphyrin. This higher cytotoxic effect can be correlated to the high cellular uptake of porphyrin immobilized, as observed by confocal images. Moreover, the coated nanoparticles showed mucoadhesive properties interesting to its application in vivo. Therefore, the physical and chemical properties of nanoparticles may be relevant to improve the porphyrin photodynamic activity in BC cells.
Collapse
Affiliation(s)
- Letícia B. Silva
- Department of Pharmaceutical Science, GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelly A. D. F. Castro
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Caroline E. A. Botteon
- Department of Pharmaceutical Science, GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Roberto S. da Silva
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Priscyla D. Marcato
- Department of Pharmaceutical Science, GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
17
|
Abd-Elsalam WH, Nagy YI, Abouelatta SM. Tailoring thixotropic mixed-lipid nanoconstructs of voriconazole for the management of Vulvovaginal candidiasis: Formulation, statistical optimization, in vitro characterization and in vivo assessment. Drug Deliv 2021; 28:1877-1889. [PMID: 34519230 PMCID: PMC8451661 DOI: 10.1080/10717544.2021.1974608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vulvovaginal candidiasis is a pervasive gynecological condition among women worldwide due to infection recurrence and resistance to conventional drugs. This calls for a novel formulation of alternative medication and with enhanced efficacy. This study aimed to fabricate mixed-lipid nanoconstructs (MLNCs) of voriconazole (VCZ) with a low concentration of lipids applying high shear homogenization and ultrasonication to form a semisolid formulation. Tefose 63 and Gelot 64 were employed as emulsifiers that are specified for vaginal preparations; as per their mucoadhesive properties and their texture enhancing characters, although usually used as lipids in different lipid carriers. A 24 factorial design was established and the optimized formulation was prepared using 10% total lipids, in which solid lipids (Sterotex NF: Glyceryl monostearate) ratio was 1.92:1 and the oils percentage was 30% (Maisine: Glyceryl monooleate, in the ratio of 1:1), and the emulsifiers mixture (Tefose 63: Gelot 64) ratio was 1:1, as 10% of total formulation weight. The optimized formulation with a viscosity of 964.49 ± 57.99 cp showed spherical nanoparticles (322.72 ± 15.11 nm) that entrapped 67.16 ± 3.45% of VCZ and exhibited release of 70.08 ± 2.87% in 8 h. The optimized formulation with high bioadhesive potentials significantly reduced the fungal burden in female Wistar rats infected with vaginal candidiasis, compared to the aqueous VCZ suspension (p < .05). Furthermore, in vivo histopathological findings proved the effectiveness and the safety of the optimized MLNCs formulation after vaginal application. Inclusively, MLNCs formulation could be a promising vaginal delivery system of VCZ for the treatment of vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Wessam H Abd-Elsalam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Yosra Ibrahim Nagy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Samar M Abouelatta
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| |
Collapse
|
18
|
Enhanced Anticancer Efficacy of Dual Drug-Loaded Self-Assembled Nanostructured Lipid Carriers Mediated by pH-Responsive Folic Acid and Human-Derived Cell Penetrating Peptide dNP2. Pharmaceutics 2021; 13:pharmaceutics13050600. [PMID: 33921919 PMCID: PMC8143576 DOI: 10.3390/pharmaceutics13050600] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
The poor ability of recognition and penetration of chemotherapeutic agents to tumor cells are still great challenges for targeted breast cancer treatment. Herein, we established a tumor-targeted nanostructured lipid carrier encapsulating gambogic acid (GA) and paclitaxel (PTX), which was co-modified with acid-cleavable folic acid (cFA) and a human-derived cell penetrating peptide dNP2 (CKIKKVKKKGRKKIKKVKKKGRK). The multi-functional nano-platform exhibited an enhanced targeting and penetrability to tumor tissues, which was accomplished by the combined action of cFA and dNP2. After intravenous injection, firstly, cFA could actively target the breast cancer tissues by the selective recognition of folate receptor (FR); then, upon arrival at the tumor microenvironment, the acid-cleavable FA and dNP2 dual modified nanostructured lipid carrier (cFA/dNP2-GA/PTX-NLC) exhibited sensitive cleavage of folic acid (FA), which could reduce the hindrance effect of FA to maximize the dNP2 cell-penetrating properties. The effect of different modification on cellular uptake, in vivo bio-distribution, and anticancer activity of NLCs proved our hypothesis that compared with NLCs modified by non-cleavable FA or a single ligand, cFA/dNP2-GA/PTX-NLC displayed more efficient intracellular delivery, stronger targeting ability in vivo, improved cytotoxicity on 4T1 cells, and produced the better therapeutic efficacy of GA and PTX. The strategy affords a feasible way to overcome the poor recognition and permeability of medicines in cancer treatment.
Collapse
|
19
|
Jin Y, Liu D, Hu J. Effect of Surfactant Molecular Structure on Emulsion Stability Investigated by Interfacial Dilatational Rheology. Polymers (Basel) 2021; 13:polym13071127. [PMID: 33918141 PMCID: PMC8037813 DOI: 10.3390/polym13071127] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 01/15/2023] Open
Abstract
Polyglycerol polyricinolate (PGPR) and polyglycerol-2 dioleate were selected as model surfactants to construct water-in-oil (W/O) emulsions, and the effect of interfacial rheological properties of surfactant film on the stability of emulsions were investigated based on the interfacial dilatational rheological method. The hydrophobicity chain of PGPR is polyricinic acid condensed from ricinic acid, and that of polyglycerol-2 dioleate is oleic acid. Their dynamic interfacial tensions in 15 cycles of interfacial compression-expansion were determined. The interfacial dilatational viscoelasticity was analyzed by amplitude scanning in the range of 1–28% amplitude and frequency sweep in the range of 5–45 mHz under 2% amplitude. It was found that PGPR could quickly reach adsorption equilibrium and form interfacial film with higher interfacial dilatational viscoelastic modulus to resist the deformation of interfacial film caused by emulsion coalescence, due to its branched chain structure and longer hydrophobic chain, and the emulsion thus presented good stability. However, polyglycerol-2 dioleate with a straight chain structure had lower interfacial tension, and it failed to resist the interfacial disturbance caused by coalescence because of its lower interfacial dilatational viscoelastic modulus, and thus the emulsion was unstable. This study reveals profound understanding of the influence of branched structure of PGPR hydrophobic chain on the interfacial film properties and the emulsion stability, providing experimental reference and theoretical guidance for future design or improvement of surfactant.
Collapse
Affiliation(s)
- Yuejie Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Dingrong Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Jinhua Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
- Correspondence:
| |
Collapse
|
20
|
Cimino C, Maurel OM, Musumeci T, Bonaccorso A, Drago F, Souto EMB, Pignatello R, Carbone C. Essential Oils: Pharmaceutical Applications and Encapsulation Strategies into Lipid-Based Delivery Systems. Pharmaceutics 2021; 13:pharmaceutics13030327. [PMID: 33802570 PMCID: PMC8001530 DOI: 10.3390/pharmaceutics13030327] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Essential oils are being studied for more than 60 years, but a growing interest has emerged in the recent decades due to a desire for a rediscovery of natural remedies. Essential oils are known for millennia and, already in prehistoric times, they were used for medicinal and ritual purposes due to their therapeutic properties. Using a variety of methods refined over the centuries, essential oils are extracted from plant raw materials: the choice of the extraction method is decisive, since it determines the type, quantity, and stereochemical structure of the essential oil molecules. To these components belong all properties that make essential oils so interesting for pharmaceutical uses; the most investigated ones are antioxidant, anti-inflammatory, antimicrobial, wound-healing, and anxiolytic activities. However, the main limitations to their use are their hydrophobicity, instability, high volatility, and risk of toxicity. A successful strategy to overcome these limitations is the encapsulation within delivery systems, which enable the increase of essential oils bioavailability and improve their chemical stability, while reducing their volatility and toxicity. Among all the suitable platforms, our review focused on the lipid-based ones, in particular micro- and nanoemulsions, liposomes, solid lipid nanoparticles, and nanostructured lipid carriers.
Collapse
Affiliation(s)
- Cinzia Cimino
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.C.); (T.M.); (A.B.); (R.P.)
| | - Oriana Maria Maurel
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (O.M.M.); (F.D.)
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.C.); (T.M.); (A.B.); (R.P.)
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.C.); (T.M.); (A.B.); (R.P.)
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (O.M.M.); (F.D.)
| | - Eliana Maria Barbosa Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.C.); (T.M.); (A.B.); (R.P.)
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.C.); (T.M.); (A.B.); (R.P.)
- Correspondence:
| |
Collapse
|
21
|
Rahman M, Almalki WH, Afzal O, Alfawaz Altamimi AS, Kazmi I, Al-Abbasi FA, Choudhry H, Alenezi SK, Barkat MA, Beg S, Kumar V, Alhalmi A. Cationic Solid Lipid Nanoparticles of Resveratrol for Hepatocellular Carcinoma Treatment: Systematic Optimization, in vitro Characterization and Preclinical Investigation. Int J Nanomedicine 2020; 15:9283-9299. [PMID: 33262588 PMCID: PMC7695602 DOI: 10.2147/ijn.s277545] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/29/2020] [Indexed: 11/23/2022] Open
Abstract
Aim The present study focuses on the development and evaluation of the resveratrol (RV)-loaded cationic solid lipid nanoparticles (RV-c-SLNs) for the management of hepatocellular carcinoma (HCC). Materials and Methods Optimization of formulation was performed using factorial design, and further in vitro drug release, cytotoxicity, biodistribution, in vivo preclinical, and biochemical evaluation were carried out. Results The optimized formulation exhibited uniform size, homogeneous disparity, positive zeta potential, and stability over 12-week storage at 25°C/60% RH. The in vitro drug release and cytotoxicity study showed 60% drug release within the first 6 hours and comparatively higher cytotoxicity on HepG2 cell line by resveratrol-solid lipid nanoparticle (RV-SLN) as compared to the RV solution. In addition, an anticancer action and biodistribution study on a rat model of HCC showed significant reduction of tumor volume and higher accumulation in the tumor tissue from RV-c-SLN (P<0.01) over RV solution and RV-SLN. Furthermore, RV-c-SLN showed significant down-regulation in the levels of pro-inflammatory cytokines and balancing of antioxidant enzymes. Histopathological investigation showed reduced occurrence of hepatic nodules, necrosis formation, infiltration of inflammatory cells, blood vessels inflammation, and cell swelling. Conclusion Overall, the obtained results construed that RV-c-SLN with improved antitumor activity as clearly evident from in vitro, in vivo, and biochemical investigations.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, AlKharj 11942, Saudi Arabia
| | | | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sattam K Alenezi
- Department of Pharmacology & Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin, Saudi Arabia
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Nanomedicine Research Lab, Jamia Hamdard, New Delhi, India
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutical Science, Collage of Pharmacy, Aden University, Aden, Yemen
| |
Collapse
|
22
|
Caldas M, Santos AC, Rebelo R, Pereira I, Veiga F, Reis RL, Correlo VM. Electro-responsive controlled drug delivery from melanin nanoparticles. Int J Pharm 2020; 588:119773. [PMID: 32805382 DOI: 10.1016/j.ijpharm.2020.119773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 01/18/2023]
Abstract
Electro-responsive controlled drug delivery has been receiving an increasing interest as one of the on-demand drug delivery systems, aiming the improvement of the therapeutics efficacy by controlling the amount of drug release at a specific time and target site. Herein, we report a simple method to develop an electro-responsive controlled drug delivery system using functionalized melanin nanoparticles (FMNPs) with polydopamine and polypyrrole to precisely control the release of dexamethasone (Dex). Optimized FMNPs showed 376.77 ± 62.05 nm of particle size, a polydispersity index of 0.26 ± 0.09 and a zeta-potential (ZP) of -32.59 ± 3.61 mV. FMNPs evidenced a spherical shape, which was confirmed by scanning electron microscopy. Fourier-transform infrared spectrometry analysis confirmed the deposition of the polymers on the FMNPs' surface. The incorporation efficiency of the optimized Dex-loaded FMNPs was 94.45 ± 0.63% and the increase of ZP to -40.34 ± 4.65 mV was attributed to the anionic nature of Dex. In vitro Dex release studies without stimuli revealed a maximum Dex release below 10%. Applying electrical stimulation, Dex release was augmented, with a maximum of ca. 32% after 24 h. The designed FMNPs provide a powerful biomaterial-based technological tool for electro-responsive controlled drug delivery, capable of surpassing the associated lack of efficiency and stability of current carriers.
Collapse
Affiliation(s)
- Mariana Caldas
- I3B's Research Institute on Biomaterials Biodegradables and Biomimetics, Universidade do Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associated Laboratory, Braga, Guimarães, Portugal
| | - Ana Cláudia Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| | - Rita Rebelo
- I3B's Research Institute on Biomaterials Biodegradables and Biomimetics, Universidade do Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associated Laboratory, Braga, Guimarães, Portugal
| | - Irina Pereira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Rui L Reis
- I3B's Research Institute on Biomaterials Biodegradables and Biomimetics, Universidade do Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associated Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco, Guimarães, Portugal
| | - Vitor M Correlo
- I3B's Research Institute on Biomaterials Biodegradables and Biomimetics, Universidade do Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associated Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco, Guimarães, Portugal
| |
Collapse
|
23
|
Patel DK, Kesharwani R, Kumar V. Etodolac loaded solid lipid nanoparticle based topical gel for enhanced skin delivery. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Abstract
Cosmetics composed of synthetic and/or semi-synthetic polymers, associated or not with natural polymers, exhibit a dashing design, with thermal and chemo-sensitive properties. Cosmetic polymers are also used for the preparation of nanoparticles for the delivery of, e.g., fragrances, with the purpose to modify their release profile and also reducing the risk of evaporation. Besides, other cosmetically active nutrients, dermal permeation enhancers, have also been loaded into nanoparticles to improve their bioactivities on the skin. The use of natural polymers in cosmetic formulations is of particular relevance because of their biocompatible, safe, and eco-friendly character. These formulations are highly attractive and marketable to consumers, and are suitable for a plethora of applications, including make-up, skin, and hair care, and as modifiers and stabilizers. In this review, natural synthetic, semi-synthetic, and synthetic polymers are discussed considering their properties for cosmetic applications. Their uses in conventional and novel formulations are also presented.
Collapse
|
25
|
Lipid nanocarriers containing Passiflora edulis seeds oil intended for skin application. Colloids Surf B Biointerfaces 2020; 193:111057. [DOI: 10.1016/j.colsurfb.2020.111057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/11/2020] [Accepted: 04/12/2020] [Indexed: 01/14/2023]
|
26
|
Baldim I, Souza CRF, Durazzo A, Lucarini M, Santini A, Souto EB, Oliveira WP. Spray-Dried Structured Lipid Carriers for the Loading of Rosmarinus officinalis: New Nutraceutical and Food Preservative. Foods 2020; 9:E1110. [PMID: 32823508 PMCID: PMC7466245 DOI: 10.3390/foods9081110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
Rosemary, an aromatic herb with significant antioxidative activity, is frequently used as food preservative and a source of nutraceuticals. Its antioxidant effect is mainly related to the presence of phenolic compounds, molecules considerably unstable and prone to irreversible physicochemical changes when exposed to external agents. We here proposed the loading of rosemary into structured lipid systems to improve its physicochemical properties. Four formulations were prepared using the same amount of rosemary lyophilized extract. The lipid phase was composed of stearic acid and oleic acid, and the aqueous phase, a varying combination of drying carriers (whey protein concentrate or gum Arabic) and surfactant (Poloxamer 188). The formulations were sonicated, spray-dried, and the obtained powders were characterized regarding the density (0.18 g/mL to 0.26 g/mL), particle size distribution (7 µm and 52 µm), and water solubility (29% to 48%). The antioxidant activity was determined by applying ABTS•+ radical-scavenging assay and the results expressed per gram of lyophilized extract (150.6 μmol Trolox/g to 376.4 μmol Trolox/g), with a significantly lower/higher result seen for formulations containing gum Arabic and a higher concentration of Poloxamer. The prepared systems may have potential applications as preservative in foodstuff and as nutraceutical.
Collapse
Affiliation(s)
- Iara Baldim
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, SP, São Paulo 14040-903, Brazil; (I.B.); (C.R.F.S.)
- CEB–Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Claudia R. F. Souza
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, SP, São Paulo 14040-903, Brazil; (I.B.); (C.R.F.S.)
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Eliana B. Souto
- CEB–Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Wanderley P. Oliveira
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, SP, São Paulo 14040-903, Brazil; (I.B.); (C.R.F.S.)
| |
Collapse
|
27
|
Soboleva OA, Tsarkova LA. Surface Properties of Aqueous Solutions of Mixtures of Sodium Dodecyl Sulphate and Linalool under Equilibrium and Dynamic Conditions. COLLOID JOURNAL 2020. [DOI: 10.1134/s1061933x20040146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Fabrication linalool-functionalized hollow mesoporous silica spheres nanoparticles for efficiently enhance bactericidal activity. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Rashed MMA, Mahdi AA, Ghaleb ADS, Zhang FR, YongHua D, Qin W, WanHai Z. Synergistic effects of amorphous OSA-modified starch, unsaturated lipid-carrier, and sonocavitation treatment in fabricating of Lavandula angustifolia essential oil nanoparticles. Int J Biol Macromol 2020; 151:702-712. [PMID: 32092424 DOI: 10.1016/j.ijbiomac.2020.02.224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/18/2022]
Abstract
This investigation aims to evaluate the synergistic effects of amorphous OSA-modified starch, unsaturated lipid-carrier (RBD-SFO), and high-energy microfluidization in synergy with the ultrasonic techniques in fabricating of Lavandula angustifolia essential oil (LAF-EO) nanoparticle. GC-MS and SEM techniques were employed to investigate the LAF-EO isolation method used. DLS analysis was employed along with CLSM and TEM techniques to investigate the physicochemical properties of nanoemulsion formulation (NE) matrices. The NE achieved the optimal spherical and size distributions of droplets (125.7 nm), Poly Dispersity Index (PdI) (0.183), and ζ-potential (-40.3 mV) when the contents of the formulation matrix were as follows: OSA-MS (2%), LAF-EO (1%), RBD-SFO (1%), and Tween-80 (1%). The findings of this work provide a new concept about the synergistic effects of amorphous OSA-modified starch and unsaturated lipid carrier as safe-grade macromolecules in the fabricating of LAF-EO nanoparticles. Besides, the application of the ultrasound cavitation phenomenon has been shown to have effective effect in reducing the droplet hydrodynamic diameter along with enhancing the distribution (PdI) and electrokinetic potential of the LAF-EO nanoparticles.
Collapse
Affiliation(s)
- Marwan M A Rashed
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, Jiangsu Province, China.
| | - Amer Ali Mahdi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, Jiangsu Province, China
| | - Abduljalil D S Ghaleb
- Faculty of Applied and Medical Science, AL-Razi University, Al-Rebatt St., Sana'a, Yemen
| | - Feng Rui Zhang
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China
| | - Du YongHua
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China
| | - Wei Qin
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China.
| | - Zhou WanHai
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China.
| |
Collapse
|
30
|
Baldim I, Rosa DM, Souza CRF, Da Ana R, Durazzo A, Lucarini M, Santini A, Souto EB, Oliveira WP. Factors Affecting the Retention Efficiency and Physicochemical Properties of Spray Dried Lipid Nanoparticles Loaded with Lippia sidoides Essential Oil. Biomolecules 2020; 10:biom10050693. [PMID: 32365717 PMCID: PMC7277518 DOI: 10.3390/biom10050693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/18/2020] [Accepted: 04/27/2020] [Indexed: 01/14/2023] Open
Abstract
Essential oils (EOs) are widely used in various industrial sectors but can present several instability problems when exposed to environmental factors. Encapsulation technologies are effective solutions to improve EOs properties and stability. Currently, the encapsulation in lipid nanoparticles has received significant attention, due to the several recognized advantages over conventional systems. The study aimed to investigate the influence of the lipid matrix composition and spray-drying process on the physicochemical properties of the lipid-based nanoparticles loaded with Lippia sidoides EO and their retention efficiency for the oil. The obtained spray-dried products were characterized by determination of flow properties (Carr Index: from 25.0% to 47.93%, and Hausner ratio: from 1.25 to 1.38), moisture (from 3.78% to 5.20%), water activity (<0.5), and powder morphology. Zeta potential, mean particle size and polydispersity index, of the redispersed dried product, fell between −25.9 mV and −30.9 mV, 525.3 nm and 1143 nm, and 0.425 and 0.652, respectively; showing slight differences with the results obtained prior to spray-drying (from −16.4 mV to −31.6 mV; 147 nm to 1531 nm; and 0.459 to 0.729). Thymol retention in the dried products was significantly lower than the values determined for the liquid formulations and was affected by the drying of nanoparticles.
Collapse
Affiliation(s)
- Iara Baldim
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto 14040-903, Brazil; (I.B.); (D.M.R.); (C.R.F.S.)
- CEB–Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Débora M. Rosa
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto 14040-903, Brazil; (I.B.); (D.M.R.); (C.R.F.S.)
| | - Claudia R. F. Souza
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto 14040-903, Brazil; (I.B.); (D.M.R.); (C.R.F.S.)
| | - Raquel Da Ana
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
- Correspondence: (A.S.); (E.B.S.); (W.P.O.)
| | - Eliana B. Souto
- CEB–Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Correspondence: (A.S.); (E.B.S.); (W.P.O.)
| | - Wanderley P. Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto 14040-903, Brazil; (I.B.); (D.M.R.); (C.R.F.S.)
- Correspondence: (A.S.); (E.B.S.); (W.P.O.)
| |
Collapse
|
31
|
Zielińska A, Ferreira NR, Feliczak-Guzik A, Nowak I, Souto EB. Loading, release profile and accelerated stability assessment of monoterpenes-loaded solid lipid nanoparticles (SLN). Pharm Dev Technol 2020; 25:832-844. [PMID: 32204628 DOI: 10.1080/10837450.2020.1744008] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Glycerol monostearate solid lipid nanoparticles (SLN) were produced by hot high-pressure homogenization technique to load alpha-pinene, citral, geraniol or limonene. SLN were composed of 1 wt.% monoterpene, 4 wt.% of Imwitor® 900K as a solid lipid and 2.5 wt.% of Poloxamer188 as a surfactant. Empty SLN consisted of 5 wt.% of Imwitor® 900K and 2.5 wt.% of Poloxamer188. The mean particles size (Z-Ave) and polydispersity index (PDI) of SLN were analyzed by dynamic light scattering (DLS), while the zeta potential (ZP) of each formulation were measured by electrophoretic light scattering. LUMiSizer® was applied to calculate the velocity distribution in the centrifugal field and instability index. Drug release profile from SLN was analyzed using Franz cell diffusion cells assayed by UV-Vis spectrophotometry, whereas the gas chromatography technique was applied to determine the encapsulation parameters of volatile monoterpenes. The matrix state, polymorphism and phase behavior of SLN were studied by X-ray diffraction (XRD, low and wide angles) and differential scanning calorimetry (DSC). Selected monoterpenes were successfully loaded in glycerol monostearate SLN. A burst release profile within the first 15 min was observed for all formulations, being the modified release profile dependent on the type of monoterpene and on the encapsulation efficiency.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznan, Poland
| | - Nuno R Ferreira
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | | | - Izabela Nowak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznan, Poland
| | - Eliana B Souto
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
32
|
Huang Z, Wu M, Ma C, Bai X, Zhang X, Zhao Z, Huang Y, Pan X, Wu C. Spectroscopic Quantification of Surfactants in Solid Lipid Nanoparticles. J Pharm Innov 2020; 15:155-162. [DOI: 10.1007/s12247-019-09379-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
33
|
Nanomaterials for Skin Delivery of Cosmeceuticals and Pharmaceuticals. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051594] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skin aging is described as dermatologic changes either naturally occurring over the course of years or as the result of the exposure to environmental factors (e.g., chemical products, pollution, infrared and ultraviolet radiations). The production of collagen and elastin, the main structural proteins responsible for skin strength and elasticity, is reduced during aging, while their role in skin rejuvenation can trigger a wrinkle reversing effect. Elasticity loss, wrinkles, dry skin, and thinning are some of the signs that can be associated with skin aging. To overcome skin aging, many strategies using natural and synthetic ingredients are being developed aiming to reduce the signs of aging and/or to treat age-related skin problems (e.g., spots, hyper- or hypopigmentation). Among the different approaches in tissue regeneration, the use of nanomaterials loaded with cosmeceuticals (e.g., phytochemicals, vitamins, hyaluronic acid, and growth factors) has become an interesting alternative. Based on their bioactivities and using different nanoformulations as efficient delivery systems, several cosmeceutical and pharmaceutical products are now available on the market aiming to mitigate the signs of aged skin. This manuscript discusses the state of the art of nanomaterials commonly used for topical administration of active ingredients formulated in nanopharmaceuticals and nanocosmeceuticals for skin anti-aging.
Collapse
|
34
|
(+)-Limonene 1,2-Epoxide-Loaded SLNs: Evaluation of Drug Release, Antioxidant Activity, and Cytotoxicity in an HaCaT Cell Line. Int J Mol Sci 2020; 21:ijms21041449. [PMID: 32093358 PMCID: PMC7073088 DOI: 10.3390/ijms21041449] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
In this work, we developed a solid lipid nanoparticle (SLN) formulation with (+)-limonene 1,2-epoxide and glycerol monostearate (Lim-SLNs), stabilized with Poloxamer® 188 in aqueous dispersion to modify the release profile of the loaded monoterpene derivative. We also evaluated the role of SLNs in lipid peroxidation and cytotoxicity in a spontaneously transformed aneuploid immortal keratinocyte cell line from adult human skin (the HaCaT cell line). For the cell viability assay, the colorimetric 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used. Lim-SLNs with a loading capacity and encapsulation efficiency of 0.39% and 63%, respectively, were produced by high pressure homogenization. A mean particle size of 194 ± 3.4 nm and polydispersity index of 0.244 were recorded for the loaded Lim-SLNs, as compared to 203 ± 1.5 nm (PI 0.213) for the non-loaded (blank) SLNs. The loading of the monoterpene derivative into glycerol monostearate SLNs fitted into the zero-order kinetics, and ameliorated both lipid peroxidation and cytotoxicity in a keratinocyte cell line. A promising formulation for antioxidant and anti-tumoral activities is here proposed.
Collapse
|
35
|
Souto EB, Baldim I, Oliveira WP, Rao R, Yadav N, Gama FM, Mahant S. SLN and NLC for topical, dermal, and transdermal drug delivery. Expert Opin Drug Deliv 2020; 17:357-377. [PMID: 32064958 DOI: 10.1080/17425247.2020.1727883] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: From a biopharmaceutical standpoint, the skin is recognized as an interesting route for drug delivery. In general, small molecules are able to penetrate the stratum corneum, the outermost layer of the skin. In contrast, the delivery of larger molecules, such as peptides and proteins, remains a challenge. Nanoparticles have been exploited not only to enhance skin penetration of drugs but also to expand the range of molecules to be clinically used.Areas covered: This review focus on Solid lipid nanoparticles (SLN) and Nanostructured lipid carriers (NLC) for skin administration. We discuss the selection criteria for lipids, surfactants, and surface modifiers commonly in use in SLN/NLC, their production techniques, and the range of drugs loaded in these lipid nanoparticles for the treatment of skin disorders.Expert opinion: Depending on the lipid and surfactant composition, different nanoparticle morphologies can be generated. Both SLN and NLC are composed of lipids that resemble those of the skin and sebum, which contribute to their enhanced biocompatibility, with limited toxicological risk. SLN and NLC can be loaded with very chemically different drugs, may provide a tunable release profile, can be produced in a sterilized environment, and be scaled-up without the need for organic solvents.
Collapse
Affiliation(s)
- Eliana B Souto
- Faculty of Pharmacy, University of Coimbra (FFUC), Coimbra, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Iara Baldim
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.,Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Wanderley P Oliveira
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Nitesh Yadav
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Francisco M Gama
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Sheefali Mahant
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| |
Collapse
|
36
|
Souto EB, Souto SB, Zielinska A, Durazzo A, Lucarini M, Santini A, Horbańczuk OK, Atanasov AG, Marques C, Andrade LN, Silva AM, Severino P. Perillaldehyde 1,2-epoxide Loaded SLN-Tailored mAb: Production, Physicochemical Characterization and In Vitro Cytotoxicity Profile in MCF-7 Cell Lines. Pharmaceutics 2020; 12:pharmaceutics12020161. [PMID: 32079103 PMCID: PMC7076521 DOI: 10.3390/pharmaceutics12020161] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
We have developed a new cationic solid lipid nanoparticle (SLN) formulation, composed of Compritol ATO 888, poloxamer 188 and cetyltrimethylammonium bromide (CTAB), to load perillaldehyde 1,2-epoxide, and surface-tailored with a monoclonal antibody for site-specific targeting of human epithelial growth receptor 2 (HER2). Perillaldehyde 1,2-epoxide-loaded cationic SLN (cPa-SLN), with a mean particle size (z-Ave) of 275.31 ± 4.78 nm and polydispersity index (PI) of 0.303 ± 0.081, were produced by high shear homogenization. An encapsulation efficiency of cPa-SLN above 80% was achieved. The release of perillaldehyde 1,2-epoxide from cationic SLN followed the Korsemeyer-Peppas kinetic model, which is typically seen in nanoparticle formulations. The lipid peroxidation of cPa-SLN was assessed by the capacity to produce thiobarbituric acid-reactive substances, while the antioxidant activity was determined by the capacity to scavenge the stable radical DPPH. The surface functionalization of cPa-SLN with the antibody was done via streptavidin-biotin interaction, monitoring z-Ave, PI and ZP of the obtained assembly (cPa-SLN-SAb), as well as its stability in phosphate buffer. The effect of plain cationic SLN (c-SLN, monoterpene free), cPa-SLN and cPa-SLN-SAb onto the MCF-7 cell lines was evaluated in a concentration range from 0.01 to 0.1 mg/mL, confirming that streptavidin adsorption onto cPa-SLN-SAb improved the cell viability in comparison to the cationic cPa-SLN.
Collapse
Affiliation(s)
- Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy (FFUC), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- Correspondence: (E.B.S.); (A.S.); (P.S.); Tel.: +351-239-488-400 (E.B.S.); Tel.: +39-81-253-9317 (A.S.); +55-79-3218-2190 (P.S.)
| | - Selma B. Souto
- Department of Endocrinology, Hospital de São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| | - Aleksandra Zielinska
- Department of Pharmaceutical Technology, Faculty of Pharmacy (FFUC), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
- Correspondence: (E.B.S.); (A.S.); (P.S.); Tel.: +351-239-488-400 (E.B.S.); Tel.: +39-81-253-9317 (A.S.); +55-79-3218-2190 (P.S.)
| | - Olaf K. Horbańczuk
- Department of Technique and Food Product Development, Warsaw University of Life Sciences (WULS-SGGW) 159c Nowoursynowska, 02-776 Warsaw, Poland;
| | - Atanas G. Atanasov
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria;
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland
- Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Conrado Marques
- Laboratory of Nanotechnology and Nanomedicine (LNMED), Institute of Technology and Research (ITP), Av. Murilo Dantas 300, Aracaju 49010-390, Brazil;
- Industrial Biotechnology Program, University of Tiradentes (UNIT), Av. Murilo Dantas 300, Aracaju 49032-490, Brazil
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | - Luciana N. Andrade
- Laboratory of Nanotechnology and Nanomedicine, Institute of Technology and Research, Aracaju SE 49032-490, Brazil;
- School of Pharmacy, University Tiradentes, Aracaju SE 49032-490, Brazil
| | - Amélia M. Silva
- School of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, P-5001-801 Vila Real, Portugal;
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), P-5001-801 Vila Real, Portugal
| | - Patricia Severino
- Laboratory of Nanotechnology and Nanomedicine (LNMED), Institute of Technology and Research (ITP), Av. Murilo Dantas 300, Aracaju 49010-390, Brazil;
- Industrial Biotechnology Program, University of Tiradentes (UNIT), Av. Murilo Dantas 300, Aracaju 49032-490, Brazil
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
- Correspondence: (E.B.S.); (A.S.); (P.S.); Tel.: +351-239-488-400 (E.B.S.); Tel.: +39-81-253-9317 (A.S.); +55-79-3218-2190 (P.S.)
| |
Collapse
|
37
|
Souto EB, Silva GF, Dias-Ferreira J, Zielinska A, Ventura F, Durazzo A, Lucarini M, Novellino E, Santini A. Nanopharmaceutics: Part I-Clinical Trials Legislation and Good Manufacturing Practices (GMP) of Nanotherapeutics in the EU. Pharmaceutics 2020; 12:pharmaceutics12020146. [PMID: 32053962 PMCID: PMC7076491 DOI: 10.3390/pharmaceutics12020146] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/20/2020] [Accepted: 02/07/2020] [Indexed: 12/26/2022] Open
Abstract
The latest advances in pharmaceutical technology are leading to the development of cutting edged approaches to produce what is now known as the “Holy Grail” of medicine—nanopharmaceutics. Over the latest decade, the pharmaceutical industry has made important contributions to the scale up of these new products. To ensure their quality, efficacy, and safety for human use, clinical trials are mandatory. Yet, regulation regarding nanopharmaceuticals is still limited with a set of guidelines being recently released with respect to compliance with quality and safety. For the coming years, updates on regulatory issues about nanopharmaceuticals and their use in clinical settings are expected. The use of nanopharmaceuticals in clinical trials depends on the approval of the production methods and assurance of the quality of the final product by implementation and verification of the good manufacturing practices (GMP). This review addresses the available legislation on nanopharmaceuticals within the European Union (EU), the GMP that should be followed for their production, and the current challenges encountered in clinical trials of these new formulations. The singular properties of nanopharmaceuticals over their bulk counterparts are associated with their size, matrix composition, and surface properties. To understand their relevance, four main clinical trial guidelines, namely, for intravenous iron-based nanopharmaceuticals, liposomal-based nanopharmaceuticals, block copolymer micelle-based nanopharmaceuticals, and related to surface coating requirements, are described here.
Collapse
Affiliation(s)
- Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy (FFUC), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (G.F.S.); (J.D.-F.); (A.Z.)
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- Correspondence: (E.B.S.); (A.S.); Tel.: +351-239-488-400 (E.B.S.); +39-81-253-9317 (A.S.)
| | - Gabriela F. Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy (FFUC), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (G.F.S.); (J.D.-F.); (A.Z.)
| | - João Dias-Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy (FFUC), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (G.F.S.); (J.D.-F.); (A.Z.)
| | - Aleksandra Zielinska
- Department of Pharmaceutical Technology, Faculty of Pharmacy (FFUC), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (G.F.S.); (J.D.-F.); (A.Z.)
| | - Fátima Ventura
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal;
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Ettore Novellino
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
- Correspondence: (E.B.S.); (A.S.); Tel.: +351-239-488-400 (E.B.S.); +39-81-253-9317 (A.S.)
| |
Collapse
|
38
|
Sucupira Oil-Loaded Nanostructured Lipid Carriers (NLC): Lipid Screening, Factorial Design, Release Profile, and Cytotoxicity. Molecules 2020; 25:molecules25030685. [PMID: 32041134 PMCID: PMC7038118 DOI: 10.3390/molecules25030685] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
Essential oils are odorant liquid oily products consisting of a complex mixture of volatile compounds obtained from a plant raw material. They have been increasingly proven to act as potential natural agents in the treatment of several human conditions, including diabetes mellitus (DM). DM is a metabolic disorder characterized by chronic hyperglycemia closely related to carbohydrate, protein and fat metabolism disturbances. In order to explore novel approaches for the management of DM our group proposes the encapsulation of sucupira essential oil, obtained from the fruits of the Brazilian plants of the genus Pterodon, in nanostructured lipid carriers (NLCs), a second generation of lipid nanoparticles which act as new controlled drug delivery system (DDS). Encapsulation was performed by hot high-pressure homogenization (HPH) technique and the samples were then analyzed by dynamic light scattering (DLS) for mean average size and polydispersity index (PI) and by electrophoretic light scattering (ELS) for zeta potential (ZP), immediately after production and after 24 h of storage at 4 °C. An optimal sucupira-loaded NLC was found to consist of 0.5% (m/V) sucupira oil, 4.5% (m/V) of Kollivax® GMS II and 1.425% (m/V) of TPGS (formulation no. 6) characterized by a mean particle size ranging from 148.1 ± 0.9815 nm (0 h) to 159.3 ± 9.539 nm (at 24 h), a PI from 0.274 ± 0.029 (0 h) to 0.305 ± 0.028 (24 h) and a ZP from −0.00236 ± 0.147 mV (at 0 h) to 0.125 ± 0.162 (at 24 h). The encapsulation efficiency and loading capacity were 99.98% and 9.6%, respectively. The optimized formulation followed a modified release profile fitting the first order kinetics, over a period of 8 h. In vitro cytotoxicity studies were performed against Caco-2 cell lines, for which the cell viability above 90% confirmed the non-cytotoxic profile of both blank and sucupira oil-loaded NLC.
Collapse
|
39
|
Quantification of Trans-Resveratrol-Loaded Solid Lipid Nanoparticles by a Validated Reverse-Phase HPLC Photodiode Array. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9224961] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A new method based on reverse-phase HPLC combined with photodiode array (PDA) was developed to quantify the release of trans-resveratrol (tRES) from solid lipid nanoparticles (SLN). The mobile phase was composed of 75:0:25 (V/V) water/methanol/acetonitrile at 0–3.5 min, 32.5:30.0:37.5 (V/V) water/methanol/acetonitrile at 3.6–5.8 min, and 75:0:25 (V/V) water/methanol/acetonitrile at 5.9–10 min. The flow rate was set at 1.0 mL/min, and tRES was detected at the wavelength of 306.6 nm. A concentration range of 1–100 µg/mL was used to obtain the linear calibration curve. SLN were produced by ultrasound technique to load 0.1% (wt/wt) of tRES, and the in vitro release of the drug was run in modified Franz diffusion cells. The mean recovery of tRES was found to be 96.84 ± 0.32%. The intra-assay and inter-assay coefficients of variation were less than 5%. The proposed method was applied to in vitro permeability studies, and the Weibull model was found to be the one that best fits the tRES release, which is characterized by a simultaneous lipid chain relaxation and erosion during drug release.
Collapse
|
40
|
Sanchez-Vazquez B, Lee JB, Strimaite M, Buanz A, Bailey R, Gershkovich P, Pasparakis G, Williams GR. Solid lipid nanoparticles self-assembled from spray dried microparticles. Int J Pharm 2019; 572:118784. [PMID: 31676339 DOI: 10.1016/j.ijpharm.2019.118784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/01/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
We report the self-assembly of drug-loaded solid lipid nanoparticles (SLNs) from spray dried microparticles comprising poly(vinylpyrrolidone) (PVP) loaded with glyceryl tristearate (GTS) and either indomethacin (IMC) or 5-fluorouracil (5-FU). When the spray dried microparticles are added to water, the PVP matrix dissolves and the GTS and drug self-assemble into SLNs. The SLNs provide a non-toxic delivery platform for both hydrophobic (IMC) and hydrophilic (5-FU) drugs. They show extended release profiles over more than 24 h, and in permeation studies the drug cargo is seen to accumulate inside cancer cells. This overcomes major issues with achieving local intestinal delivery of these active ingredients, in that IMC permeates well and thus will enter the systemic circulation and potentially lead to side effects, while 5-FU remains in the lumen of the small intestine and will be secreted without having any therapeutic benefit. The SLN formulations are as effective as the pure drugs in terms of their ability to induce cell death. Our approach represents a new and simple route to the fabrication of SLNs: by assembling these from spray-dried microparticles on demand, we can circumvent the low storage stability which plagues SLN formulations.
Collapse
Affiliation(s)
- Brenda Sanchez-Vazquez
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jong Bong Lee
- Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Margarita Strimaite
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Asma Buanz
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Russell Bailey
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Pavel Gershkovich
- Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - George Pasparakis
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
41
|
Moscovici Joubran A, Katz IH, Okun Z, Davidovich-Pinhas M, Shpigelman A. The effect of pressure level and cycling in high-pressure homogenization on physicochemical, structural and functional properties of filtered and non-filtered strawberry nectar. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.102203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
42
|
Salvi VR, Pawar P. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.02.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Pimentel-Moral S, Teixeira M, Fernandes A, Borrás-Linares I, Arráez-Román D, Martínez-Férez A, Segura-Carretero A, Souto E. Polyphenols-enriched Hibiscus sabdariffa extract-loaded nanostructured lipid carriers (NLC): Optimization by multi-response surface methodology. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Linalool bioactive properties and potential applicability in drug delivery systems. Colloids Surf B Biointerfaces 2018; 171:566-578. [DOI: 10.1016/j.colsurfb.2018.08.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 01/07/2023]
|