1
|
Elshimy R, El-Shiekh RA, Okba MM, Ashour RMS, Ibrahim MA, Hassanen EI, Aboul-Ella H, Ali ME. Unveiling the antimicrobial, antivirulence, and wound-healing accelerating potentials of resveratrol against carbapenem-resistant Pseudomonas aeruginosa (CRPA)-septic wound in a murine model. Inflammopharmacology 2025; 33:401-416. [PMID: 39508957 PMCID: PMC11799074 DOI: 10.1007/s10787-024-01591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
Pseudomonas aeruginosa is a repertoire of several virulence factors that create a frightening high pathogenicity level as well as high antimicrobial resistance toward commercially used antibiotics. Therefore, finding a new alternative to traditional antimicrobials is a must. Resveratrol is a very famous phytochemical that harbors many beneficial health properties by possessing antibacterial, anti-inflammatory, and antioxidant properties. The current study aimed to explore the antimicrobial efficacy of resveratrol against P. aeruginosa and explore its ability to accelerate wound healing in a murine model. The obtained results revealed the potent antimicrobial, antivirulence, and wound-healing accelerating potentials of resveratrol against carbapenem-resistant P. aeruginosa (CRPA)-septic wounds. It significantly lowered the transcript levels of P. aeruginosa virulent genes toxA, pelA, and lasB. Additionally, resveratrol significantly accelerated skin wound healing by shortening the inflammatory phase and promoting re-vascularization, cell proliferation, re-epithelialization, and collagen deposition. Furthermore, it increased the immunoexpression of αSMA along with a reduction of the mRNA levels of VEGF, IL-1β, and TNF-α genes. Resveratrol has high therapeutic potential for the treatment of P. aeruginosa wound infection and is a prospective and promising candidate for this problem.
Collapse
Affiliation(s)
- Rana Elshimy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
- Department of Microbiology and Immunology, Egyptian Drug Authority, Cairo, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Mona M Okba
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt.
| | - Rehab M S Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Merhan E Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Liu Q, Luo S, Peng J, Chang R. Electrospun Nanofibers from Plant Natural Products: A New Approach Toward Efficient Wound Healing. Int J Nanomedicine 2024; 19:13973-13990. [PMID: 39742091 PMCID: PMC11687314 DOI: 10.2147/ijn.s501970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/23/2024] [Indexed: 01/03/2025] Open
Abstract
Globally, wound care has become a significant burden on public health, with annual medical costs reaching billions of dollars, particularly for the long-term treatment of chronic wounds. Traditional treatments, such as gauze and bandages, often fail to provide an ideal healing environment due to their lack of effective biological activity. Consequently, researchers have increasingly focused on developing new dressings. Among these, electrospinning technology has garnered considerable attention for its ability to produce nano-scale fine fibers. This new type of dressing, with its unique physical and chemical properties-especially in enhancing breathability, increasing specific surface area, optimising porosity, and improving flexibility-demonstrates significant advantages in promoting wound healing, reducing the risk of infection, and improving overall healing outcomes. Additionally, the application of natural products from plants in electrospinning technology further enhances the effectiveness of dressings. These natural products not only exhibit good biocompatibility but are also rich in pharmacologically active ingredients, such as antibacterial, anti-inflammatory, and antioxidant compounds. They can serve as both the substrate for nanofibers and as bioactive components, effectively promoting cell proliferation and tissue regeneration, thereby accelerating wound healing and reducing the risk of complications. This article reviews the application of plant natural product nanofibers prepared by electrospinning technology in wound healing, focussing on the development and optimisation of these nanofibers, discussing the advantages and challenges of using plant natural products in this technology, and outlining future research directions and application prospects in this field.
Collapse
Affiliation(s)
- Qin Liu
- School of Government, Yunnan University, Kunming, 650504, People’s Republic of China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, 650500, People’s Republic of China
| | - Shicui Luo
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, 650500, People’s Republic of China
| | - Junjie Peng
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, 650500, People’s Republic of China
| | - Renjie Chang
- Digestive Endoscopy Center, Department of Spleen and Gastroenterology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, 650021, People’s Republic of China
| |
Collapse
|
3
|
Wei H, Fang G, Song W, Cao H, Dong R, Huang Y. Resveratrol's bibliometric and visual analysis from 2014 to 2023. FRONTIERS IN PLANT SCIENCE 2024; 15:1423323. [PMID: 39439517 PMCID: PMC11493714 DOI: 10.3389/fpls.2024.1423323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Introduction Resveratrol (RSV) is a natural polyphenolic compound derived from a variety of plants that possesses a wide range of biological activities, including antioxidant, anti-inflammatory, antitumor, antibacterial, antiviral, anti-aging, anti-radiation damage, anti-apoptosis, immune modulation, regulation of glucolipid metabolism, inhibition of lipid deposition, and anti-neuro. It is therefore considered a promising drug with the potential to treat a wide range of diseases. Method In this study, using Web of Science Core Collection (WoSCC) and CiteSpace bibliometric tool, VOSviewer quantitatively visualized the number of countries, number of authors, number of institutions, number of publications, keywords, and references of 16,934 resveratrol-related papers from 2014-2023 for quantitative and qualitative analysis. Results The results showed that an average of 1693.4 papers were published per year, with a general upward trend. China had the most publications with 5877. China Medical University was the institution with the largest number of publications and the highest number of citations in the field. The research team was mainly led by Prof. Richard Tristan, and the journal with the highest number of published papers was Molecular. Dietary polyphenols, oxidative stress, and antioxidant and anti-inflammatory effects are the most frequently cited articles. Oxidative stress, apoptosis, expression, and other keywords play an important role in connecting other branches of the field. Discussion Our analysis indicates that the integration of nanoparticles with RSV is poised to become a significant trend. RSV markedly inhibits harmful bacteria, fosters the proliferation of beneficial bacteria, and enhances the diversity of the intestinal flora, thereby preventing intestinal flora dysbiosis. Additionally, RSV exhibits both antibacterial and antiviral properties. It also promotes osteogenesis and serves a neuroprotective function in models of Alzheimer's disease. The potential applications of RSV in medicine and healthcare are vast. A future research challenge lies in modifying its structure to develop RSV derivatives with superior biological activity and bioavailability. In the coming years, innovative pharmaceutical formulations of RSV, including oral, injectable, and topical preparations, may be developed to enhance its bioavailability and therapeutic efficacy.
Collapse
Affiliation(s)
- Haoyue Wei
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guowei Fang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weina Song
- Department of Pediatric Respiratory and Critical Care, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Hongye Cao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruizhe Dong
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanqin Huang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Sharda D, Attri K, Choudhury D. Greener healing: sustainable nanotechnology for advanced wound care. DISCOVER NANO 2024; 19:127. [PMID: 39136798 PMCID: PMC11322481 DOI: 10.1186/s11671-024-04061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/29/2024] [Indexed: 08/16/2024]
Abstract
Wound healing involves a carefully regulated sequence of events, encompassing pro-inflammatory and anti-inflammatory stages, tissue regeneration, and remodeling. However, in individuals with diabetes, this process gets disrupted due to dysregulation caused by elevated glucose levels and pro-inflammatory cytokines in the bloodstream. Consequently, the pro-inflammatory stage is prolonged, while the anti-inflammatory phase is delayed, leading to impaired tissue regeneration and remodeling with extended healing time. Furthermore, the increased glucose levels in open wounds create an environment conducive to microbial growth and tissue sepsis, which can escalate to the point of limb amputation. Managing diabetic wounds requires meticulous care and monitoring due to the lack of widely available preventative and therapeutic measures. Existing clinical interventions have limitations, such as slow recovery rates, high costs, and inefficient drug delivery methods. Therefore, exploring alternative avenues to develop effective wound-healing treatments is essential. Nature offers a vast array of resources in the form of secondary metabolites, notably polyphenols, known for their antimicrobial, anti-inflammatory, antioxidant, glucose-regulating, and cell growth-promoting properties. Additionally, nanoparticles synthesized through environmentally friendly methods hold promise for wound healing applications in diabetic and non-diabetic conditions. This review provides a comprehensive discussion and summary of the potential wound-healing abilities of specific natural polyphenols and their nanoparticles. It explores the mechanisms of action underlying their efficacy and presents effective formulations for promoting wound-healing activity.
Collapse
Affiliation(s)
- Deepinder Sharda
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Komal Attri
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
- Thapar Institute of Engineering and Technology-Virginia Tech (USA) Centre of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Thapar Institute of Engineering and Technology-Virginia Tech (USA) Centre of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
5
|
Kowalski S, Karska J, Tota M, Skinderowicz K, Kulbacka J, Drąg-Zalesińska M. Natural Compounds in Non-Melanoma Skin Cancer: Prevention and Treatment. Molecules 2024; 29:728. [PMID: 38338469 PMCID: PMC10856721 DOI: 10.3390/molecules29030728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
The elevated occurrence of non-melanoma skin cancer (NMSC) and the adverse effects associated with available treatments adversely impact the quality of life in multiple dimensions. In connection with this, there is a necessity for alternative approaches characterized by increased tolerance and lower side effects. Natural compounds could be employed due to their safety profile and effectiveness for inflammatory and neoplastic skin diseases. These anti-cancer drugs are often derived from natural sources such as marine, zoonotic, and botanical origins. Natural compounds should exhibit anti-carcinogenic actions through various pathways, influencing apoptosis potentiation, cell proliferation inhibition, and metastasis suppression. This review provides an overview of natural compounds used in cancer chemotherapies, chemoprevention, and promotion of skin regeneration, including polyphenolic compounds, flavonoids, vitamins, alkaloids, terpenoids, isothiocyanates, cannabinoids, carotenoids, and ceramides.
Collapse
Affiliation(s)
- Szymon Kowalski
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (S.K.); (M.T.); (K.S.)
| | - Julia Karska
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 50-367 Wroclaw, Poland;
| | - Maciej Tota
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (S.K.); (M.T.); (K.S.)
| | - Katarzyna Skinderowicz
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (S.K.); (M.T.); (K.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| | - Małgorzata Drąg-Zalesińska
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubińskiego 6a, 50-368 Wroclaw, Poland;
| |
Collapse
|
6
|
Das R, Le TT, Schiff B, Chorsi MT, Park J, Lam P, Kemerley A, Supran AM, Eshed A, Luu N, Menon NG, Schmidt TA, Wang H, Wu Q, Thirunavukkarasu M, Maulik N, Nguyen TD. Biodegradable piezoelectric skin-wound scaffold. Biomaterials 2023; 301:122270. [PMID: 37591188 PMCID: PMC10528909 DOI: 10.1016/j.biomaterials.2023.122270] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/12/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
Electrical stimulation (ES) induces wound healing and skin regeneration. Combining ES with the tissue-engineering approach, which relies on biomaterials to construct a replacement tissue graft, could offer a self-stimulated scaffold to heal skin-wounds without using potentially toxic growth factors and exogenous cells. Unfortunately, current ES technologies are either ineffective (external stimulations) or unsafe (implanted electrical devices using toxic batteries). Hence, we propose a novel wound-healing strategy that integrates ES with tissue engineering techniques by utilizing a biodegradable self-charged piezoelectric PLLA (Poly (l-lactic acid)) nanofiber matrix. This unique, safe, and stable piezoelectric scaffold can be activated by an external ultrasound (US) to produce well-controlled surface-charges with different polarities, thus serving multiple functions to suppress bacterial growth (negative surface charge) and promote skin regeneration (positive surface charge) at the same time. We demonstrate that the scaffold activated by low intensity/low frequency US can facilitate the proliferation of fibroblast/epithelial cells, enhance expression of genes (collagen I, III, and fibronectin) typical for the wound healing process, and suppress the growth of S. aureus and P. aeruginosa bacteria in vitro simultaneously. This approach induces rapid skin regeneration in a critical-sized skin wound mouse model in vivo. The piezoelectric PLLA skin scaffold thus assumes the role of a multi-tasking, biodegradable, battery-free electrical stimulator which is important for skin-wound healing and bacterial infection prevention simultaneuosly.
Collapse
Affiliation(s)
- Ritopa Das
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Thinh T Le
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Benjamin Schiff
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
| | - Meysam T Chorsi
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA; Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Jinyoung Park
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Priscilla Lam
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health School of Medicine, Farmington, 06030, CT, USA
| | - Andrew Kemerley
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health School of Medicine, Farmington, 06030, CT, USA
| | - Ajayan Mannoor Supran
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health School of Medicine, Farmington, 06030, CT, USA
| | - Amit Eshed
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Ngoc Luu
- Department of Biomedical Engineering, New York University, New York, NY, 10012, USA
| | - Nikhil G Menon
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, 06030, CT, USA
| | - Tannin A Schmidt
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, 06030, CT, USA; Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Hanzhang Wang
- Pathology and Laboratory Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Qian Wu
- Pathology and Laboratory Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Mahesh Thirunavukkarasu
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health School of Medicine, Farmington, 06030, CT, USA
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health School of Medicine, Farmington, 06030, CT, USA
| | - Thanh D Nguyen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA; Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA; Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
7
|
Ciftci F. Release kinetics modelling and in vivo-vitro, shelf-life study of resveratrol added composite transdermal scaffolds. Int J Biol Macromol 2023; 235:123769. [PMID: 36812968 DOI: 10.1016/j.ijbiomac.2023.123769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
In this article, the suitability of composite transdermal biomaterial for wound dressing applications is discussed. Bioactive, antioxidant Fucoidan and Chitosan biomaterials were doped into polyvinyl alcohol/β-tricalcium phosphate based polymeric hydrogels loaded with Resveratrol, which has theranostic properties, and biomembrane design with suitable cell regeneration properties was aimed. In accordance with this purpose, tissue profile analysis (TPA) was performed for the bioadhesion properties of composite polymeric biomembranes. Fourier Transform Infrared Spectrometry (FT-IR), Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM-EDS) analyses were performed for morphological and structural analyses of biomembrane structures. In vitro Franz diffusion mathematical modelling of composite membrane structures, biocompatibility (MTT test) and in vivo rat tests were performed. TPA analysis of resveratrol loaded biomembrane scaffold design; compressibility; 13.4 ± 1.9(g.s), hardness; 16.8 ± 1(g), adhesiveness; -11 ± 2.0(g.s), elasticity; 0.61 ± 0.07, cohesiveness; 0.84 ± 0.04 were found. Proliferation of the membrane scaffold was 189.83 % at 24 h and 209.12 % at 72 h. In the in vivo rat test; at the end of 28th day, it was found that biomembrane_3 provided 98.75 ± 0.12 % wound shrinkage. The shelf-life of RES in the transdermal membrane scaffold, which was determined as Zero order according to Fick's law in in vitro Franz diffusion mathematical modelling, was found to be approximately 35 days by Minitab statistical analysis. The importance of this study is that the innovative and novel transdermal biomaterial supports tissue cell regeneration and cell proliferation in theranostic applications as a wound dressing.
Collapse
Affiliation(s)
- Fatih Ciftci
- Department of Biomedical Engineering, Fatih Sultan Mehmet Vakif University, Istanbul, Turkey; Department of Technology Transfer Office, Fatih Sultan Mehmet Vakif University, Istanbul, Turkey.
| |
Collapse
|
8
|
Jia Y, Shao JH, Zhang KW, Zou ML, Teng YY, Tian F, Chen MN, Chen WW, Yuan ZD, Wu JJ, Yuan FL. Emerging Effects of Resveratrol on Wound Healing: A Comprehensive Review. Molecules 2022; 27:molecules27196736. [PMID: 36235270 PMCID: PMC9570564 DOI: 10.3390/molecules27196736] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022] Open
Abstract
Resveratrol (RSV) is a natural extract that has been extensively studied for its significant anti-inflammatory and antioxidant effects, which are closely associated with a variety of injurious diseases and even cosmetic medicine. In this review, we have researched and summarized the role of resveratrol and its different forms of action in wound healing, exploring its role and mechanisms in promoting wound healing through different modes of action such as hydrogels, fibrous scaffolds and parallel ratio medical devices with their anti-inflammatory, antioxidant, antibacterial and anti-ageing properties and functions in various cells that may play a role in wound healing. This will provide a direction for further understanding of the mechanism of action of resveratrol in wound healing for future research.
Collapse
Affiliation(s)
- Yuan Jia
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
| | - Jia-Hao Shao
- Wuxi Clinical Medicine Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
| | - Kai-Wen Zhang
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
| | - Ming-Li Zou
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
| | - Ying-Ying Teng
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Fan Tian
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Meng-Nan Chen
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Wei-Wei Chen
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Zheng-Dong Yuan
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Jun-Jie Wu
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Feng-Lai Yuan
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
- Correspondence: ; Tel./Fax: +86-510-82603332
| |
Collapse
|
9
|
Mascarenhas-Melo F, Gonçalves MBS, Peixoto D, Pawar KD, Bell V, Chavda VP, Zafar H, Raza F, Paiva-Santos AC, Paiva-Santos AC. Application of nanotechnology in management and treatment of diabetic wounds. J Drug Target 2022; 30:1034-1054. [PMID: 35735061 DOI: 10.1080/1061186x.2022.2092624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Diabetic wounds are one of the most common health problems worldwide, enhancing the demand for new management strategies. Nanotechnology, as a developing subject in diabetic wound healing, is proving to be a promising and effective tool in treatment and care. It is, therefore, necessary to ascertain the available and distinct nanosystems and evaluate their performance when topically applied to the injury site, especially in diabetic wound healing. Several active ingredients, including bioactive ingredients, growth factors, mesenchymal stem cells, nucleic acids, and drugs, benefit from improved properties when loaded into nanosystems. Given the risk of problems associated with systemic administration, the topical application should be considered, provided stability and efficacy are assured. After nanoencapsulation, active ingredients-loaded nanosystems have been showing remarkable features of biocompatibility, healing process hastening, angiogenesis, and extracellular matrix compounds synthesis stimulation, contributing to a decrease in wound inflammation. Despite limitations, nanotechnology has attracted widespread attention in the scientific community and seems to be a valuable technological ally in the treatment and dressing of diabetic wounds. The use of nanotechnology in topical applications enables efficient delivery of the active ingredients to the specific skin site, increasing their bioavailability, stability, and half-life time, without compromising their safety.
Collapse
Affiliation(s)
- Filipa Mascarenhas-Melo
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Maria Beatriz S Gonçalves
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Diana Peixoto
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Kiran D Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra, India
| | - Victoria Bell
- Laboratory of Social Pharmacy and Public Health, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, Gujarat, India
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ana Cláudia Paiva-Santos
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
10
|
Ekambaram R, Saravanan S, Dharmalingam S. Strategically designed SPEEK nanofibrous scaffold with tailored delivery of resveratrolfor skin wound regeneration. Biomed Phys Eng Express 2022; 8. [PMID: 35772389 DOI: 10.1088/2057-1976/ac7d76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/30/2022] [Indexed: 11/11/2022]
Abstract
Electro-spinnable polymeric materials can easily form two-dimensional (2D) nanofibrous scaffolds improving biochemical functionalities specially in the area of skin wound healing and nanomedicine, but it has been hard to achieve this on a highly mechanically stable biopolymer, Poly ether ether ketone (PEEK), due to its intrinsic hydrophobicity and chemical inertness. Herein, we demonstrated a novel nanomedicine healing system consisting of sulphonated poly ether ether ketone combined withresveratrol(SPEEK+RSV), which could act as an effective 2D nano bio-materialin vitroandin vivo, without observable cytotoxicity. The fabricated nanocomposites exhibited enriched skin cell proliferation and adhesion as confirmed from the results of MTT, cell adhesion and live-dead assay. Results of SEM analysis showed a uniform nano-sized distribution with adequate pore size and porosity % facilitating a desired breathable environment at the wound site. The results of FT-IR, tensile studies and TGA analyses confirmed the presence of appropriate bonds and improved mechanical stability of theRSVincorporated nanofibrous scaffold. Results of anti-microbial analysis portrayed good potentiality of the fabricated nanofibers in treating wounds colonized with bacterial infections. Controlled drug release of resveratrol established the bio-compatibility of the nanofibers in skin wound regeneration.In vivoanalysis assessed in female Wistar rats enabled complete wound closure with 100 % wound contraction within 16 days. Results of histopathology analysis through H-E and MT staining presented the re-surfing of the wound environment with regeneration of epithelium, granulation tissue and collagen. Thus, the fabricated 2D nanofibrous scaffold incorporated with pharmaceutical RSV bio-medicine perceptively mimicked skin ECM convincingly aiding the progression of skin wound regeneration mechanism.
Collapse
Affiliation(s)
- Rajalakshmi Ekambaram
- Mechanical Engineering, Anna University Chennai, Department of Mechanical Engineering, College of Engineering Campus, CEG, Anna University, Chennai-25, Chennai, Tamilnadu, 600025, INDIA
| | - Saisupriyalakshmi Saravanan
- Mechanical Engineering, Anna University Chennai, Department of Mechanical Engineering, College of Engineering Campus, CEG, Anna University, Chennai-25, Chennai, Tamilnadu, 600025, INDIA
| | - Sangeetha Dharmalingam
- Mechanical Engineering, Anna University Chennai, Department of Mechanical Engineering, College of Engineering Campus, CEG, Anna University, Chennai-25, Chennai, Tamilnadu, 600025, INDIA
| |
Collapse
|
11
|
Ekambaram R, Dharmalingam S. Design and development of biomimetic electrospun sulphonated polyether ether ketone nanofibrous scaffold for bone tissue regeneration applications: in vitro and in vivo study. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:947-975. [PMID: 34985405 DOI: 10.1080/09205063.2022.2025637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Bone defect restoration remains challenging in orthopedic medical practices. In this study an attempt is carried out to probe the use of new biomimetic SPEEK (sulfonated polyether ether ketone) based nanofibrous scaffold to deliver amine functionalized hydroxyapatite nanoparticles loaded resveratrol for its potent functionality in osteogenic differentiation. SPEEK polymer with reactive functional group SO3H was synthesized through process of sulphonation reaction. Amine functionalized nanoparticles with protonated amino groups revamp the molecular interaction by the formation of hydrogen bonds that in turn intensify the bioactivity of the nanofibrous scaffold. Osteoconductive functionalized nanohydroxyapatite enhances the cell proliferation and osteogenicity with improved cell attachment and spreading. The results of FT-IR, XRD, Carbon-Silica NMR and EDX analysis confirmed the amine functionalization of the hydroxyapatite nanoparticles. Surface morphological analysis of the fabricated nanofibers through SEM and AFM analysis shows vastly interconnected porous structure that mimics the bone extracellular matrix, which enhances the cell compatibility. Cell adhesion and live dead assay of the nanoscaffolds express less cytotoxicity. Mineralization and alkaline phosphatase assay establish the osteogenic differentiation of the nanofibrous scaffold. The in vitro biocompatibility studies reveal that the fabricated scaffold was osteo-compatible with MG63 cell lines. Hemocompatibility study further proved that the designed biomimetic nanofibrous scaffold was highly suitable for bone tissue engineering. The results of in vivo analysis in zebrafish model for the fabricated nanofibers demonstrated significant increase in the caudal fin regeneration indicating mineralization of osteoblast. Thus, the commending results obtained instigate the potentiality of the composite nanofibrous scaffold as an effective biomimetic substrate for bone tissue regeneration.
Collapse
|
12
|
Electrospun multifaceted nanocomposites for promoting angiogenesis in curing burn wound. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Schilrreff P, Alexiev U. Chronic Inflammation in Non-Healing Skin Wounds and Promising Natural Bioactive Compounds Treatment. Int J Mol Sci 2022; 23:ijms23094928. [PMID: 35563319 PMCID: PMC9104327 DOI: 10.3390/ijms23094928] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation is one of the hallmarks of chronic wounds and is tightly coupled to immune regulation. The dysregulation of the immune system leads to continuing inflammation and impaired wound healing and, subsequently, to chronic skin wounds. In this review, we discuss the role of the immune system, the involvement of inflammatory mediators and reactive oxygen species, the complication of bacterial infections in chronic wound healing, and the still-underexplored potential of natural bioactive compounds in wound treatment. We focus on natural compounds with antioxidant, anti-inflammatory, and antibacterial activities and their mechanisms of action, as well as on recent wound treatments and therapeutic advancements capitalizing on nanotechnology or new biomaterial platforms.
Collapse
|
14
|
Pterostilbene Promotes Mean Lifespan in Both Male and Female Drosophila Melanogaster Modulating Different Proteins in the Two Sexes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1744408. [PMID: 35222791 PMCID: PMC8865974 DOI: 10.1155/2022/1744408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Aging is a multifactorial phenomenon characterized by degenerative processes closely connected to oxidative damage and chronic inflammation. Recently, many studies have shown that natural bioactive compounds are useful in delaying the aging process. In this work, we studied the effects of an in vivo supplementation of the stilbenoid pterostilbene on lifespan extension in Drosophila melanogaster. We found that the average lifespan of flies of both sexes was increased by pterostilbene supplementation with a higher effect in females. The expression of longevity related genes (Sir2, Foxo, and Notch) was increased in both sexes but with different patterns. Pterostilbene counteracted oxidative stress induced by ethanol and paraquat and up-regulated the antioxidant enzymes Ho e Trxr-1 in male but not in female flies. On the other hand, pterostilbene decreased the inflammatory mediators dome and egr only in female flies. Proteomic analysis revealed that pterostilbene modulates 113 proteins in male flies and only 9 in females. Only one of these proteins was modulated by pterostilbene in both sexes: vacuolar H[+] ATPase 68 kDa subunit 2 (Vha68-2) that was strongly down-regulated. These findings suggest a potential role of pterostilbene in increasing lifespan both in male and female flies by mechanisms that seem to be different in the two sexes, highlighting the need to conduct nutraceutical supplementation studies on males and females separately in order to give more reliable results.
Collapse
|
15
|
Sharma D, Saha S, Satapathy BK. Recent advances in polymer scaffolds for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:342-408. [PMID: 34606739 DOI: 10.1080/09205063.2021.1989569] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The review provides insights into current advancements in electrospinning-assisted manufacturing for optimally designing biomedical devices for their prospective applications in tissue engineering, wound healing, drug delivery, sensing, and enzyme immobilization, and others. Further, the evolution of electrospinning-based hybrid biomedical devices using a combined approach of 3 D printing and/or film casting/molding, to design dimensionally stable membranes/micro-nanofibrous assemblies/patches/porous surfaces, etc. is reported. The influence of various electrospinning parameters, polymeric material, testing environment, and other allied factors on the morphological and physico-mechanical properties of electrospun (nano-/micro-fibrous) mats (EMs) and fibrous assemblies have been compiled and critically discussed. The spectrum of operational research and statistical approaches that are now being adopted for efficient optimization of electrospinning process parameters so as to obtain the desired response (physical and structural attributes) has prospectively been looked into. Further, the present review summarizes some current limitations and future perspectives for modeling architecturally novel hybrid 3 D/selectively textured structural assemblies, such as biocompatible, non-toxic, and bioresorbable mats/scaffolds/membranes/patches with apt mechanical stability, as biological substrates for various regenerative and non-regenerative therapeutic devices.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
16
|
Karimi-Soflou R, Mohseni-Vadeghani E, Karkhaneh A. Controlled release of resveratrol from a composite nanofibrous scaffold: Effect of resveratrol on antioxidant activity and osteogenic differentiation. J Biomed Mater Res A 2021; 110:21-30. [PMID: 34228402 DOI: 10.1002/jbm.a.37262] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/05/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
Biocompatibility, mechanical strength, and osteogenesis properties of three-dimensional scaffolds are critical for bone tissue engineering. In addition, reactive oxygen species accumulate around bone defects and limit the activities of surrounding cells and bone formation. Therefore, the presence of an antioxidant in a bone tissue scaffold is also essential to address this issue. This study aimed to evaluate a composite nanofibrous scaffold similar to the natural extracellular matrix with antioxidant and osteogenic properties. To this end, polylactic acid (PLA)/organophilic montmorillonite (OMMT)/resveratrol (RSV) nanofibers were fabricated using the electrospinning method and characterized. RSV was used as an antioxidant, which promotes osteogenic differentiation, and OMMT was used as a mineral phase to increase the mechanical strength and control the release of RSV. The scaffolds' antioxidant activity was measured using DPPH assay and found 83.75% for PLA/OMMT/RSV nanofibers. The mechanical strength was increased by adding OMMT to the neat PLA. The biocompatibility of the scaffolds was investigated using an MTT assay, and the results did not show any toxic effects on human adipose mesenchymal stem cells (hASCs). Moreover, the Live/Dead assay indicated the appropriate distribution of live cells after 5 days. Cell culture results displayed that hASCs could adhere and spread on the surface of composite nanofibers. Meanwhile, the level of alkaline phosphatase, osteocalcin, and osteopontin was increased for hASCs cultured on the PLA/OMMT/RSV nanofibrous scaffold. Therefore, this study concludes that the RSV-loaded composite nanofibers with antioxidant and osteogenesis properties and appropriate mechanical strength can be introduced for bone tissue regeneration applications.
Collapse
Affiliation(s)
- Reza Karimi-Soflou
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Elham Mohseni-Vadeghani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Akbar Karkhaneh
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
17
|
Heat shock protein A12B gene therapy improves perfusion, promotes neovascularization, and decreases fibrosis in a murine model of hind limb ischemia. Surgery 2021; 170:969-977. [PMID: 34092373 DOI: 10.1016/j.surg.2021.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Heat shock protein A12B expressed in endothelial cells is important and required for angiogenesis to form functional vessels in ischemic tissue. We have previously shown the cardioprotective effects of heat shock protein A12B overexpression in a rat model of diabetic myocardial infarction. In this study, we aim to explore the role of heat shock protein A12B in a surgically-induced murine hind-limb ischemia model. MATERIALS AND METHODS Adult 8- to 12-week-old C57BL/6J mice were divided into 2 groups: treated with Adeno.LacZ (control group) and with Adeno.HSPA12B (experimental group) and, with both groups subjected to right femoral artery ligation. Immediately after surgery, mice in both groups received either Adeno.HSPA12B or Adeno.LacZ (1 × 109 plaque forming units) in both the semimembranosus and gastrocnemius muscles of the right limb. The left limb served as the internal control. Both groups underwent serial laser Doppler imaging preoperatively, and again postoperatively until 28 days. Immunohistochemical analysis was performed 3 and 28 days post-surgery. RESULTS Mice in the Adeno.HSPA12B gene therapy group showed improved motor function and a significantly higher blood perfusion ratio on postoperative days 21 and 28, along with better motor function. Immunohistochemical analysis showed increased expression of vascular endothelial growth factor, thioredoxin-1, heme oxygenase, and hypoxia-inducible factor 1α, along with a decreased expression of A-kinase-anchoring protein 12 and thioredoxin-interacting protein levels. The Adeno.HSPA12B-treated group also showed increased capillary and arteriolar density and an increased capillary-myocyte ratio, along with reduced fibrosis compared to the Adeno.LacZ group. CONCLUSION Our study demonstrates that targeted Adeno.HSPA12B gene delivery into ischemic muscle enhances perfusion and angiogenic protein expression. This molecule shows promise for the management of peripheral vascular disease as a potential target for clinical trials and subsequent drug therapy.
Collapse
|
18
|
Hecker A, Schellnegger M, Hofmann E, Luze H, Nischwitz SP, Kamolz LP, Kotzbeck P. The impact of resveratrol on skin wound healing, scarring, and aging. Int Wound J 2021; 19:9-28. [PMID: 33949795 PMCID: PMC8684849 DOI: 10.1111/iwj.13601] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Resveratrol is a well‐known antioxidant that harbours many health beneficial properties. Multiple studies associated the antioxidant, anti‐inflammatory, and cell protective effects of resveratrol. These diverse effects of resveratrol are also potentially involved in cutaneous wound healing, scarring, and (photo‐)aging of the skin. Hence, this review highlighted the most relevant studies involving resveratrol in wound healing, scarring, and photo‐aging of the skin. A systematic review was performed and the database PubMed was searched for suitable publications. Only original articles in English that investigated the effects of resveratrol in wound healing, scarring, and (photo‐)aging of the skin were analysed. The literature search yielded a total of 826 studies, but only 41 studies met the inclusion criteria. The included studies showed promising results that resveratrol might be a feasible treatment approach to support wound healing, counteract excessive scarring, and even prevent photo‐aging of the skin. Resveratrol represents an interesting and promising novel therapy regime but to confirm resveratrol‐associated effects, more evidence based in vitro and in vivo studies are needed.
Collapse
Affiliation(s)
- Andrzej Hecker
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Marlies Schellnegger
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Elisabeth Hofmann
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Hanna Luze
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Sebastian Philipp Nischwitz
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Lars-Peter Kamolz
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Petra Kotzbeck
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| |
Collapse
|
19
|
Engineered resveratrol-loaded fibrous scaffolds promotes functional cardiac repair and regeneration through Thioredoxin-1 mediated VEGF pathway. Int J Pharm 2021; 597:120236. [PMID: 33539996 DOI: 10.1016/j.ijpharm.2021.120236] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/26/2020] [Accepted: 12/31/2020] [Indexed: 02/08/2023]
Abstract
Despite recent advancements, mortality due to coronary heart disease (CHD) remains high. Recently, the use of tissue-engineered grafts and scaffolds has emerged as a candidate for supporting the myocardium after an ischemic event. Resveratrol is a naturally occurring plant-based non-flavonoid polyphenolic compound found in many natural foods, including grapes and red wine. We embedded resveratrol in a polycaprolactone (PCL) scaffold and evaluated the cardio-therapeutic effects in a murine model of myocardial infarction (MI), with animals being grouped into Sham (S), Myocardial Infarction (MI), MI + PCL, and MI + PCL-Resveratrol (MI + PCL-R). After 4 and 8 weeks, echocardiography was performed to assess ejection fraction (EF) and fractional shortening (FS), which was followed by immunohistochemistry and immunofluorescence analysis at 8 weeks. The MI + PCL-R group showed a significant improvement in EF and FS compared with the MI + PCL group at 4 and 8-weeks post-surgery. PCL-R scaffolds treated hearts revealed decreased inflammatory cell infiltration, improved collagen extracellular matrix (ECM) secretion and blood vessel network formation following MI. The immunofluorescence analysis revealed resveratrol-loaded scaffolds promote increased expression of cTnT, Cx-43, Trx-1, and VEGF proteins. This study reports resveratrol-mediated rescue of ischemic myocardium when delivered through a biodegradable polymeric scaffold system after MI.
Collapse
|
20
|
Ruan Q, Zhou X, Xie W, Yao P. Potential beneficial effect of resveratrol on wound healing. Burns 2020; 47:973-974. [PMID: 33589292 DOI: 10.1016/j.burns.2020.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Qiongfang Ruan
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, PR China
| | - Xueqing Zhou
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, PR China
| | - Weiguo Xie
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, PR China.
| | - Paul Yao
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, PR China.
| |
Collapse
|
21
|
Pavel TI, Chircov C, Rădulescu M, Grumezescu AM. Regenerative Wound Dressings for Skin Cancer. Cancers (Basel) 2020; 12:cancers12102954. [PMID: 33066077 PMCID: PMC7601961 DOI: 10.3390/cancers12102954] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022] Open
Abstract
Skin cancer is considered the most prevalent cancer type globally, with a continuously increasing prevalence and mortality growth rate. Additionally, the high risk of recurrence makes skin cancer treatment among the most expensive of all cancers, with average costs estimated to double within 5 years. Although tumor excision is the most effective approach among the available strategies, surgical interventions could be disfiguring, requiring additional skin grafts for covering the defects. In this context, post-surgery management should involve the application of wound dressings for promoting skin regeneration and preventing tumor recurrence and microbial infections, which still represents a considerable clinical challenge. Therefore, this paper aims to provide an up-to-date overview regarding the current status of regenerative wound dressings for skin cancer therapy. Specifically, the recent discoveries in natural biocompounds as anti-cancer agents for skin cancer treatment and the most intensively studied biomaterials for bioactive wound dressing development will be described.
Collapse
Affiliation(s)
- Teodor Iulian Pavel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania; (T.I.P.); (C.C.); (A.M.G.)
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania; (T.I.P.); (C.C.); (A.M.G.)
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-402-3997
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania; (T.I.P.); (C.C.); (A.M.G.)
| |
Collapse
|
22
|
Bilgic T. Comparison of the Effect of Local and Systemic Injection of Resveratrol on Cutaneous Wound Healing in Rats. INT J LOW EXTR WOUND 2020; 20:55-59. [DOI: 10.1177/1534734620938168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose. To compare the effect of local and systemic injection of resveratrol (RSV) on open cutaneous wound healing. Materials and Methods. Open cutaneous wounds were created in adult Sprague–Dawley rats. Group 1 (n = 6) was given intraperitoneal RSV (0.5 mg/kg) once daily for 14 days. Group 2 (n = 6) was given local subcutaneous RSV (0.5 mg/kg) on the wound once daily for 14 days. Group 3 (n = 6) did not receive any pharmacologic agent. Biopsy specimens were obtained on postoperative days (PODs) 7, 14, and 21 and were examined histologically. Wound closure time was recorded. All rats were sacrificed on POD 30 for tensile strength analysis. Results. The histological scores for collagen deposition, chronic inflammation, and granulation were higher in the systemic and local RSV treatment groups than in the control group. Neovascularization scores significantly increased on PODs 14 and 21 in the local RSV treatment group compared with those in the systemic RSV and control groups. Systemic and local RSV administrations significantly enhanced wound healing and increased the tensile strength of the skin in rats. Conclusion. Local subcutaneous application of RSV may have a better therapeutic effect than the systemic application of RSV in terms of neovascularization to promote wound healing.
Collapse
|
23
|
Prabhakar PK, Singh K, Kabra D, Gupta J. Natural SIRT1 modifiers as promising therapeutic agents for improving diabetic wound healing. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153252. [PMID: 32505916 DOI: 10.1016/j.phymed.2020.153252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/14/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The occurrence of chronic wounds, account for significant suffering of diabetic people, together with increasing healthcare burden. The chronic wounds associated with diabetes do not undergo the normal healing process rather stagnate into chronic proinflammatory phase as well as declined fibroblast function and impaired cell migration. HYPOTHESIS SIRT1, which is the most studied isoform of the sirtuin family in mammals, has now emerged as a crucial target for improving diabetic wound healing. It is an NAD+ dependent deacetylase, originally characterized to deacetylate histone proteins leading to heterochromatin formation and gene silencing. It is now known to regulate a number of cellular processes like cell proliferation, division, senescence, apoptosis, DNA repair, and metabolism. METHODOLOGY The retrieval of potentially relevant studies was done by systematically searching of three databases (Google Scholar, Web of science and PubMed) in December 2019. The keywords used as search terms were related to SIRT1 and wound healing. The systematic search retrieved 649 papers that were potentially relevant and after selection procedure, 73 studies were included this review and discussed below. RESULTS Many SIRT1 activating compounds (SACs) were found protective and improve diabetic wound healing through regulation of inflammation, cell migration, oxidative stress response and formation of granulation tissue at the wound site. CONCLUSIONS However, contradictory reports describe the opposing role of SACs on the regulation of cell migration and cancer incidence. SACs are therefore subjected to intense research for understanding the mechanisms responsible for controlling cell migration and therefore possess prospective to enter the clinical arena in the foreseeable future.
Collapse
Affiliation(s)
- Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, Lovely Professional University Punjab, India 144411
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Dhiraj Kabra
- Biological Research Pharmacology Department, Sun Pharma Advanced Research Company Limited, Vadodara, Gujarat, India, 390010
| | - Jeena Gupta
- Department of Biochemistry, Lovely Professional University Punjab, India 144411.
| |
Collapse
|
24
|
Wen S, Zhang J, Yang B, Elias PM, Man MQ. Role of Resveratrol in Regulating Cutaneous Functions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:2416837. [PMID: 32382280 PMCID: PMC7180429 DOI: 10.1155/2020/2416837] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/24/2020] [Indexed: 01/09/2023]
Abstract
Protective role of the skin is against external insults and maintenance of electrolyte homeostasis of the body. Cutaneous dysfunction can account for the development of both cutaneous and systemic disorders. Thus, improvements in cutaneous functions can benefit a number of extracutaneous and cutaneous functions. Resveratrol, a natural ingredient, displays multiple benefits for various systems/organs, including the skin. The benefits of resveratrol for cutaneous functions include stimulation of keratinocyte differentiation and antimicrobial peptide expression, inhibition of keratinocyte proliferation and cutaneous inflammation, UV protection, anticancer, antiaging, and inhibition of melanogenesis. The mechanisms of action of resveratrol include activation of sirtuin 1 and nuclear factor erythroid 2-related factor 2, and inhibition of mitogen-activated protein kinase signaling. Evidence suggests that topical resveratrol could be a valuable alternative not only for daily skin care, but also for the prevention and treatment of various cutaneous disorders. This review summarizes the benefits of resveratrol for cutaneous functions.
Collapse
Affiliation(s)
- Si Wen
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Jiechen Zhang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Peter M. Elias
- Department of Dermatology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Mao-Qiang Man
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
- Department of Dermatology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| |
Collapse
|
25
|
Wang P, Huang S, Hu Z, Yang W, Lan Y, Zhu J, Hancharou A, Guo R, Tang B. In situ formed anti-inflammatory hydrogel loading plasmid DNA encoding VEGF for burn wound healing. Acta Biomater 2019; 100:191-201. [PMID: 31586729 DOI: 10.1016/j.actbio.2019.10.004] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 09/28/2019] [Accepted: 10/01/2019] [Indexed: 01/04/2023]
Abstract
Excessive inflammation and reduced angiogenesis are two major obstacles in burn wound healing and skin regeneration. Here we report the fabrication and application of a sophisticated hydrogel from chemically modified hyaluronic acid (HA), dextran (Dex), and β-cyclodextrin (β-CD) integrating resveratrol (Res) and vascular endothelial growth factor (VEGF) plasmid as the anti-inflammatory and pro-angiogenic components for burn wounds. Firstly, covalent alterations were conducted to obtain methacrylic acid anhydride modified HA (HAMA), N-hydroxyethylacrylamide (HEAA) modified Dex (Dex-HEAA), and poly(ethylene glycol) methyl acrylate (526) modified β-CD (526-β-CD), respectively. Secondly, anti-inflammatory substance Res was embedded into the lipophilic central cavity of 526-β-CD to achieve a complex of 526-β-CD-Res. Then hydrogels with different HAMA, Dex-HEAA, and 526-β-CD-Res ratios were generated via UV irradiation. Lastly, plasmid DNA encoded with vascular endothelial growth factor (pDNA-VEGF) conjugating with polyethylenimine was loaded into the hydrogel scaffold. Combining the benefits of all components of the scaffold, the hydrogel embedded with Res and VEGF (Gel-Res/pDNA-VEGF) accelerated the splinted excisional burn wound healing, particularly by inhibiting inflammation response and promoting microvascular formation while being biocompatible. The Res and VEGF gene loaded hydrogel system can be considered as a promising wound dressing for the treatment of various types of wounds. STATEMENT OF SIGNIFICANCE: Combining the benefits of all components of the scaffold, the hydrogel embedded with Res and VEGF (Gel-Res/pDNA-VEGF) accelerated the splinted excisional burn wound healing, particularly by inhibiting inflammation response and promoting microvascular formation while being biocompatible. The Res and VEGF gene loaded hydrogel system can be considered as a promising wound dressing for the treatment of various types of wounds.
Collapse
Affiliation(s)
- Peng Wang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Shaobin Huang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhicheng Hu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Wei Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yong Lan
- Beogene Biotech (Guangzhou) CO., LTD, Guangzhou 510663, China
| | - Jiayuan Zhu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Andrei Hancharou
- The Institute of Biophysics and Cell Engineering, The National Academy of Sciences of Belarus, Minsk 220072, Belarus
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Bing Tang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
26
|
Fiod Riccio BV, Fonseca-Santos B, Colerato Ferrari P, Chorilli M. Characteristics, Biological Properties and Analytical Methods of Trans-Resveratrol: A Review. Crit Rev Anal Chem 2019; 50:339-358. [PMID: 31353930 DOI: 10.1080/10408347.2019.1637242] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Trans-resveratrol (TR) is the biological active isomer of resveratrol and the one responsible for therapeutic effects; both molecules are non-flavonoid phenolics of the stilbenes class found mainly in berries and red grapes. TR biological properties lie in modulation of various enzymatic classes. It is a promising candidate to novel drugs due its applications in pharmaceutical and cosmetic industries, such as anticarcinogenic, antidiabetic, antiacne, antioxidant, anti-inflammatory, neuroprotective, and photoprotector agent. It has effects on bone metabolism, gastrointestinal tract, eyes, kidneys, and in obesity treatment as well. Nevertheless, its low solubility in water and other polar solvents may be a hindrance to its therapeutic effects. Various strategies been developed to overcome these issues, such as the drug delivery systems. The present study performed a research about methods to identify TR and RESV in several samples (raw materials, wines, food supplements, drug delivery systems, and blood plasma). Most of the studies tend to analyze TR and RESV by high performance liquid chromatography (HPLC) coupled with different detectors, even so, there are reports of the use of capillary electrophoresis, electron spin resonance, gas chromatography, near-infrared luminescence, UV-Vis spectrophotometer, and vibrational spectrophotometry, for this purpose. Thus, the review evaluates the biological activity of TR and demonstrates the currently used analytical methods for its quantification in different matrices.
Collapse
Affiliation(s)
- Bruno Vincenzo Fiod Riccio
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Bruno Fonseca-Santos
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
27
|
Huang X, Sun J, Chen G, Niu C, Wang Y, Zhao C, Sun J, Huang H, Huang S, Liang Y, Shen Y, Cong W, Jin L, Zhu Z. Resveratrol Promotes Diabetic Wound Healing via SIRT1-FOXO1-c-Myc Signaling Pathway-Mediated Angiogenesis. Front Pharmacol 2019; 10:421. [PMID: 31068817 PMCID: PMC6491521 DOI: 10.3389/fphar.2019.00421] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
Background/Aims: Diabetic non-healing skin ulcers represent a serious challenge in clinical practice, in which the hyperglycemia-induced disturbance of angiogenesis, and endothelial dysfunction play a crucial role. Resveratrol (RES), a silent information regulator 1 (SIRT1) agonist, can improve endothelial function and has strong pro-angiogenic properties, and has thus become a research focus for the treatment of diabetic non-healing skin ulcers; however, the underlying mechanism by which RES regulates these processes remains unclear. Therefore, the present study was intended to determine if RES exerts its observed protective role in diabetic wound healing by alleviating hyperglycemia-induced endothelial dysfunction and the disturbance of angiogenesis. Methods: We investigated the effects of RES on cell migration, cell proliferation, apoptosis, tube formation, and the underlying molecular mechanisms in 33 mM high glucose-stimulated human umbilical vein endothelial cells (HUVECs) by semi-quantitative RT-PCR, western blot analysis, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, and immunofluorescence in vitro. We further explored the role of RES on endothelial dysfunction and wound healing disturbance in db/db mice by TUNEL staining, immunofluorescence, and photography in vivo. Results: We observed an obvious inhibition of hyperglycemia-triggered endothelial dysfunction and a disturbance of angiogenesis, followed by the promotion of diabetic wound healing via RES, along with restoration of the activity of the hyperglycemia-impaired SIRT1 signaling pathway. Pretreatment with EX-527, a SIRT1 inhibitor, abolished the RES-mediated endothelial protection and pro-angiogenesis action, and then delayed diabetic wound healing. Furthermore, examination of the overexpression of forkhead box O1 (FOXO1), a transcription factor substrate of SIRT1, in HUVECs and db/db mice revealed that RES activated SIRT1 to restore hyperglycemia-triggered endothelial dysfunction and disturbance of angiogenesis, followed by the promotion of diabetic wound healing in a c-Myc-dependent manner. Pretreatment with 10058-F4, a c-Myc inhibitor, repressed RES-mediated endothelial protection, angiogenesis, and diabetic wound healing. Conclusion: Our findings indicate that the positive role of RES in diabetic wound healing via its SIRT1-dependent endothelial protection and pro-angiogenic effects involves the inhibition of FOXO1 and the de-repression of c-Myc expression.
Collapse
Affiliation(s)
- Xiaozhong Huang
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jia Sun
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Gen Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Chao Niu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Wang
- Department of Pharmacy, Jinhua Women & Children Health Hospital, Jinhua, China
| | - Congcong Zhao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Sun
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Huiya Huang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuai Huang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yangzhi Liang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yingjie Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zhongxin Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|