1
|
Ma Y, Huang W, Tottori N, Yamanishi Y. Development of Repetitive Mechanical Oscillation Needle-Free Injection through Electrically Induced Microbubbles. CYBORG AND BIONIC SYSTEMS 2025; 6:0225. [PMID: 40110347 PMCID: PMC11919823 DOI: 10.34133/cbsystems.0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/10/2024] [Accepted: 01/14/2025] [Indexed: 03/22/2025] Open
Abstract
We previously developed a novel needle-free reagent injection method based on electrically induced microbubbles. The system generates microbubbles and applies repetitive mechanical oscillation associated with microbubble dynamics to perforate tissue and introduce a reagent. In this paper, we propose improving the reagent injection depth by reflecting the shock wave through microbubble dynamics. Our results show that the developed shock wave reflection method improves the ability of the electrically induced microbubble injection system to introduce a reagent. The method extends the application potential of electrically induced microbubble needle-free injection.
Collapse
Affiliation(s)
- Yibo Ma
- Bio-medical Fluid Engineering Laboratory, Mechanical Engineering, Kyushu University, Fukuoka, Japan
| | | | - Naotomo Tottori
- Bio-medical Fluid Engineering Laboratory, Mechanical Engineering, Kyushu University, Fukuoka, Japan
| | - Yoko Yamanishi
- Bio-medical Fluid Engineering Laboratory, Mechanical Engineering, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Zaca-Morán R, Mitre-Martínez DG, Castillo-Mixcóalt J, Zaca-Morán P, Ramos-García R, Ramírez-San-Juan JC, Morán-Raya C, Padilla-Martínez JP. 3D printed needleless injector based on thermocavitation: analysis of impact and penetration depth in skin phantoms in a repetitive regime. Drug Deliv Transl Res 2025; 15:874-884. [PMID: 38831200 DOI: 10.1007/s13346-024-01639-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
A global issue that requires attention is the duality between the shortage of needles for regular vaccination campaigns and the exponential increase in syringe and needle waste from such campaigns, which has been exacerbated by the COVID-19 pandemic. In response to this problem, this study presents a 3D printed needleless injector based on thermocavitation. The work focused on investigating the interaction of the resulting liquid jets with skin phantoms at different concentrations (1-2%), emphasizing their impact and penetration depth in a repetitive regime. The injector was designed and fabricated from a semi-transparent polymer using a high-resolution 3D printer, allowing the ejection of liquid jets with velocities up to ~ 73 m/s. The impact of these jets on skin phantoms was evaluated using a high-speed camera. After 6 consecutive liquid jets (1% concentration), a maximum penetration depth of ~ 2.5 mm was achieved, delivering approximately 4.7 µL. For the highest concentration (2.0%) and the same number of shots, the penetration depth was reduced to ~ 0.6 mm with a delivered volume of ~ 0.7 µL. An important finding of this study is that the liquid jet with the highest pressure does not cause the maximum penetration depth, but is the result of a series of successive shots. In addition, the velocity and shape of the ejected jet are determined by the amount of solution and the meniscus formed inside the injector. These findings advance the development of precise and efficient thermocavitation-based injectors with broad potential applications in medical and pharmaceutical fields.
Collapse
Affiliation(s)
- Rafael Zaca-Morán
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, 72050, México
- División de Posgrado, Universidad Politécnica de Tulancingo, Tulancingo de Bravo, Hidalgo, 43629, México
| | | | - Juan Castillo-Mixcóalt
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, 72050, México
| | - Placido Zaca-Morán
- Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, 72050, México
| | - Rubén Ramos-García
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Coordinación de óptica, Tonantzintla, Puebla, 72840, México
| | - Julio César Ramírez-San-Juan
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Coordinación de óptica, Tonantzintla, Puebla, 72840, México
| | - Carolina Morán-Raya
- Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, 72050, México
| | | |
Collapse
|
3
|
McKeage JW, Tan AZH, Taberner AJ. Jet injection through microneedles for large volume subcutaneous delivery. Int J Pharm 2024; 667:124887. [PMID: 39471887 DOI: 10.1016/j.ijpharm.2024.124887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/08/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
Subcutaneous (SC) drug delivery offers several advantages over intravenous (IV) delivery including: self-administration, improved patient experience, and reduced treatment costs. Unfortunately, each SC delivery is currently limited to ∼ 2.25 mL with IV administration required when the delivery volume exceeds this value. In this work, we explore a new technique for large volume subcutaneous drug delivery that uses microneedles to break through the epidermis then forms the liquid drug into many small jets that penetrate past the ends of the microneedles and into the subcutaneous (or muscle) tissue. By performing multiple simultaneous injections, this delivery approach avoids the volume limitations of SC delivery, and thus may be able to greatly increase the volume we can deliver to this space. Here, we present a novel multi-jet prototype that forms seven simultaneous jets through 30G needles that have been shortened to have an exposed length of just ∼ 1mm. The jet speed, shape, and volume of jets formed through these microneedles are measured to assess the consistency of jet production through the microneedles. We then perform jet injections of volumes up to 3.9 mL into ex vivo porcine tissue. The results demonstrate the successful delivery (>95 %) of 3.9 mL in just 0.3 s using jet injection performed through microneedles. This volume is almost double the maximum volume of current autoinjectors and the perceived limit for subcutaneous injection (2.25 mL). We also find that jet speeds of 70 m/s and below do not achieve complete delivery of 3.9 mL with our prototype system, and that the addition of microneedles leads to more consistent large volume delivery than equivalent needle-free injections. These results demonstrate the promise of multi-jet injection through microneedles to accommodate volumes much greater than current autoinjectors, and thus potentially allow patient self-administration in many more delivery applications.
Collapse
Affiliation(s)
- James William McKeage
- Auckland Bioengineering Institute, the University of Auckland, Auckland, New Zealand.
| | - Andrew Zheng Hao Tan
- Auckland Bioengineering Institute, the University of Auckland, Auckland, New Zealand
| | - Andrew James Taberner
- Auckland Bioengineering Institute, the University of Auckland, Auckland, New Zealand; Department of Engineering Science, Faculty of Engineering, the University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Rho NK, Kim HS, Kim SY, Lee W. Injectable "Skin Boosters" in Aging Skin Rejuvenation: A Current Overview. Arch Plast Surg 2024; 51:528-541. [PMID: 39544509 PMCID: PMC11560330 DOI: 10.1055/a-2366-3436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/21/2024] [Indexed: 11/17/2024] Open
Abstract
Aging-related changes in the skin, such as dullness, dehydration, and loss of elasticity, significantly affect its appearance and integrity. Injectable "skin boosters," comprising various biological materials, have become increasingly prominent in addressing these issues, offering rejuvenation and revitalization. This review offers a comprehensive examination of these injectables, detailing their types, mechanisms of action, and clinical uses. It also evaluates the evidence for their effectiveness and safety in treating age-related skin alterations and other conditions. The goal is to provide an insightful understanding of injectable skin boosters in contemporary dermatological practice, summarizing the current state of knowledge.
Collapse
Affiliation(s)
- Nark-Kyoung Rho
- Department of Dermatology Center, Leaders Aesthetic Laser and Cosmetic Surgery Center, Seoul, Republic of Korea
- Invited Faculty of Minimal Invasive Plastic Surgery Association, Seoul, Republic of Korea
| | - Hyun-Seok Kim
- Department of Plastic Surgery, Kim Hyun Seok Plastic Surgery Clinic, Seoul, Republic of Korea
| | - Soo-Young Kim
- Department of Plastic Surgery, Ichon Plastic Surgery Clinic, Seoul, Republic of Korea
- Scientific Faculty of Minimal Invasive Plastic Surgery Association Seoul, Republic of Korea
| | - Won Lee
- Scientific Faculty of Minimal Invasive Plastic Surgery Association Seoul, Republic of Korea
- Department of Plastic Surgery, Yonsei E1 Plastic Surgery Clinic, Anyang, Republic of Korea
| |
Collapse
|
5
|
Li H, Shi Y, Ding X, Zhen C, Lin G, Wang F, Tang B, Li X. Recent advances in transdermal insulin delivery technology: A review. Int J Biol Macromol 2024; 274:133452. [PMID: 38942414 DOI: 10.1016/j.ijbiomac.2024.133452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Transdermal drug delivery refers to the administration of drugs through the skin, after which the drugs can directly act on or circulate through the body to the target organs or cells and avoid the first-pass metabolism in the liver and kidneys experienced by oral drugs, reducing the risk of drug poisoning. From the initial singular approach to transdermal drug delivery, there has been a shift toward combining multiple methods to enhance drug permeation efficiency and address the limitations of individual approaches. Technological advancements have also improved the accuracy of drug delivery. Optimizing insulin itself also enables its long-term release via needle-free injectors. In this review, the diverse transdermal delivery methods employed in insulin therapy and their respective advantages and limitations are discussed. By considering factors such as the principles of transdermal penetration, drug delivery efficiency, research progress, synergistic innovations among different methods, patient compliance, skin damage, and posttreatment skin recovery, a comprehensive evaluation is presented, along with prospects for potential novel combinatorial approaches. Furthermore, as insulin is a macromolecular drug, insights gained from its transdermal delivery may also serve as a valuable reference for the use of other macromolecular drugs for treatment.
Collapse
Affiliation(s)
- Heng Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Yanbin Shi
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China; School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xinbing Ding
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Chengdong Zhen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan 250012, China.
| | - Fei Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Bingtao Tang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Xuelin Li
- School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
6
|
Rho NK, Kim HJ, Kim HS, Lee W. Needle-Free Jet Injection of Poly-(Lactic Acid) for Atrophic Acne Scars: Literature Review and Report of Clinical Cases. J Clin Med 2024; 13:440. [PMID: 38256575 PMCID: PMC10815974 DOI: 10.3390/jcm13020440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Acne scars, particularly atrophic ones, present a persistent challenge in cosmetic medicine and surgery, requiring extended and multifaceted treatment approaches. Poly-(lactic acid) injectable fillers show promise in managing atrophic acne scars by stimulating collagen synthesis. However, the utilization of needle-free injectors for delivering poly-(lactic acid) into scars remains an area requiring further exploration. In this article, a summary of the latest advancements in needle-free jet injectors is provided, specifically highlighting the variations in jet-producing mechanisms. This summary emphasizes the differences in how these mechanisms operate, offering insights into the evolving technology behind needle-free injection systems. The literature review revealed documented cases focusing on treating atrophic acne scars using intralesional poly-(lactic acid) injections. The results of these clinical studies could be supported by separate in vitro and animal studies, elucidating the feasible pathways through which this treatment operates. However, there is limited information on the use of needle-free jet injectors for the intradermal delivery of poly-(lactic acid). Clinical cases of atrophic acne scar treatment are presented to explore this novel treatment concept, the needle-free delivery of poly-(lactic acid) using a jet pressure-based injector. The treatment demonstrated efficacy with minimal adverse effects, suggesting its potential for scar treatment. The clinical efficacy was supported by histological evidence obtained from cadaver skin, demonstrating an even distribution of injected particles in all layers of the dermis. In conclusion, we suggest that novel needle-free injectors offer advantages in precision and reduce patient discomfort, contributing to scar improvement and skin rejuvenation. Further comprehensive studies are warranted to substantiate these findings and ascertain the efficacy of this approach in scar treatment on a larger scale.
Collapse
Affiliation(s)
- Nark-Kyoung Rho
- Leaders Aesthetic Laser & Cosmetic Surgery Center, Seoul 06014, Republic of Korea
| | - Hyun-Jo Kim
- CNP Skin Clinic, Seoul 06030, Republic of Korea
| | - Hyun-Seok Kim
- Kim Hyun Seok Plastic Surgery Clinic, Seoul 06030, Republic of Korea
| | - Won Lee
- Yonsei E1 Plastic Surgery Clinic, Seoul 06030, Republic of Korea
| |
Collapse
|
7
|
Han HS, Kim BR, Kim M, Na JI, Seo SB, Huh CH, Shin JW. Needleless laser injector versus needle injection for skin enhancement and rejuvenation effect of dermal filler. Lasers Surg Med 2023; 55:809-816. [PMID: 37632290 DOI: 10.1002/lsm.23719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND AND OBJECTIVES A needleless laser-induced microjet injector is a novel transdermal drug delivery system that can rapidly inject a very small and precise drug dose into the skin with minimal pain and downtime. In this study, we aimed to compare the laser-induced microjet injection versus needle injection of polylactic acid/hyaluronic acid filler for skin enhancement and rejuvenation. PATIENTS AND METHODS A 24-week prospective, single-center, assessor-blinded, randomized, split-face study was conducted. The enrolled patients underwent one treatment session of dermal filler injection using a laser-induced microjet injector on one half of the face or a traditional needle injection on the other half of the face. Evaluation was conducted at baseline before treatment and at 4, 12, and 24 weeks after treatment. RESULTS A single treatment of filler injection with a laser-induced microjet injector resulted in similar improvements in skin hydration and elasticity as a single treatment of filler injection by using manual needle injection, with reduced pain, side effects, and decreased treatment time. CONCLUSIONS Laser-induced microjet injector enabled not only the application of a controlled dose and filler depth but also even distribution, improved clinical efficacy, reduced pain and side effects, and sufficient time for clinicians to perform treatment.
Collapse
Affiliation(s)
- Hye Sung Han
- Department of Dermatology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, Gyeonggi-do, Korea
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Bo Ri Kim
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Minjae Kim
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Im Na
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | | | - Chang-Hun Huh
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Won Shin
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
González-Sierra NE, Perez-Corte JM, Padilla-Martinez JP, Cruz-Vanegas S, Bonfadini S, Storti F, Criante L, Ramos-García R. Bubble dynamics and speed of jets for needle-free injections produced by thermocavitation. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:075004. [PMID: 37484974 PMCID: PMC10362157 DOI: 10.1117/1.jbo.28.7.075004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/11/2023] [Accepted: 06/02/2023] [Indexed: 07/25/2023]
Abstract
Significance The number of injections administered has increased dramatically worldwide due to vaccination campaigns following the COVID-19 pandemic, creating a problem of disposing of syringes and needles. Accidental needle sticks occur among medical and cleaning staff, exposing them to highly contagious diseases, such as hepatitis and human immunodeficiency virus. In addition, needle phobia may prevent adequate treatment. To overcome these problems, we propose a needle-free injector based on thermocavitation. Aim Experimentally study the dynamics of vapor bubbles produced by thermocavitation inside a fully buried 3D fused silica chamber and the resulting high-speed jets emerging through a small nozzle made at the top of it. The injected volume can range from ∼ 0.1 to 2 μ L per shot. We also demonstrate that these jets have the ability to penetrate agar skin phantoms and ex-vivo porcine skin. Approach Through the use of a high-speed camera, the dynamics of liquid jets ejected from a microfluidic device were studied. Thermocavitation bubbles are generated by a continuous wave laser (1064 nm). The 3D chamber was fabricated by ultra-short pulse laser-assisted chemical etching. Penetration tests are conducted using agar gels (1%, 1.25%, 1.5%, 1.75%, and 2% concentrations) and porcine tissue as a model for human skin. Result High-speed camera video analysis showed that the average maximum bubble wall speed is about 10 to 25 m/s for almost any combination of pump laser parameters; however, a clever design of the chamber and nozzle enables one to obtain jets with an average speed of ∼ 70 m / s . The expelled volume per shot (0.1 to 2 μ l ) can be controlled by the pump laser intensity. Our injector can deliver up to 20 shots before chamber refill. Penetration of jets into agar of different concentrations and ex-vivo porcine skin is demonstrated. Conclusions The needle-free injectors based on thermocavitation may hold promise for commercial development, due to their cost and compactness.
Collapse
Affiliation(s)
| | - José Manuel Perez-Corte
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Coordinación de Óptica, Puebla, México
| | | | - Samuel Cruz-Vanegas
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Coordinación de Óptica, Puebla, México
| | - Silvio Bonfadini
- Istituto Italiano di Tecnologia, Center for Nano Science and Technology, Milano, Italy
| | - Filippo Storti
- Istituto Italiano di Tecnologia, Center for Nano Science and Technology, Milano, Italy
- Politecnico di Milano, Department of Physics, Milano, Italy
| | - Luigino Criante
- Istituto Italiano di Tecnologia, Center for Nano Science and Technology, Milano, Italy
| | - Rubén Ramos-García
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Coordinación de Óptica, Puebla, México
| |
Collapse
|
9
|
Mohizin A, Imran JH, Lee KS, Kim JK. Dynamic interaction of injected liquid jet with skin layer interfaces revealed by microsecond imaging of optically cleared ex vivo skin tissue model. J Biol Eng 2023; 17:15. [PMID: 36849998 PMCID: PMC9969392 DOI: 10.1186/s13036-023-00335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Needle-free jet injection (NFJI) systems enable a controlled and targeted delivery of drugs into skin tissue. However, a scarce understanding of their underlying mechanisms has been a major deterrent to the development of an efficient system. Primarily, the lack of a suitable visualization technique that could capture the dynamics of the injected fluid-tissue interaction with a microsecond range temporal resolution has emerged as a main limitation. A conventional needle-free injection system may inject the fluids within a few milliseconds and may need a temporal resolution in the microsecond range for obtaining the required images. However, the presently available imaging techniques for skin tissue visualization fail to achieve these required spatial and temporal resolutions. Previous studies on injected fluid-tissue interaction dynamics were conducted using in vitro media with a stiffness similar to that of skin tissue. However, these media are poor substitutes for real skin tissue, and the need for an imaging technique having ex vivo or in vivo imaging capability has been echoed in the previous reports. METHODS A near-infrared imaging technique that utilizes the optical absorption and fluorescence emission of indocyanine green dye, coupled with a tissue clearing technique, was developed for visualizing a NFJI in an ex vivo porcine skin tissue. RESULTS The optimal imaging conditions obtained by considering the optical properties of the developed system and mechanical properties of the cleared ex vivo samples are presented. Crucial information on the dynamic interaction of the injected liquid jet with the ex vivo skin tissue layers and their interfaces could be obtained. CONCLUSIONS The reported technique can be instrumental for understanding the injection mechanism and for the development of an efficient transdermal NFJI system as well.
Collapse
Affiliation(s)
- Abdul Mohizin
- School of Mechanical Engineering, Kookmin University, 77 Jeongneung-Ro, Seongbuk-Gu, Seoul, 02707, Republic of Korea
| | - Jakir Hossain Imran
- Department of Mechanical Engineering, Graduate School, Kookmin University, Seoul, 02707, Republic of Korea
| | - Kee Sung Lee
- School of Mechanical Engineering, Kookmin University, 77 Jeongneung-Ro, Seongbuk-Gu, Seoul, 02707, Republic of Korea
| | - Jung Kyung Kim
- School of Mechanical Engineering, Kookmin University, 77 Jeongneung-Ro, Seongbuk-Gu, Seoul, 02707, Republic of Korea.
| |
Collapse
|
10
|
Rosselló JM, Ohl CD. Bullet jet as a tool for soft matter piercing and needle-free liquid injection. BIOMEDICAL OPTICS EXPRESS 2022; 13:5202-5211. [PMID: 36425620 PMCID: PMC9664874 DOI: 10.1364/boe.469486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 05/30/2023]
Abstract
The collapse of a laser-induced vapor bubble near a solid boundary usually ends in a liquid jet. When the boundary is from a soft material the jetting may pierce the liquid-solid interface and result in the injection of liquid into it. A particular impulsive jet flow can be generated when a laser pulse is focused just below the free surface of a thin liquid layer covering a gelatin sample used as a surrogate of biological tissue. Here, a downwards jet forms from a liquid splash at the free surface and then penetrates through the liquid layer into the soft boundary. In the present manuscript we report on the use of this novel jet, termed "bullet" jet, to pierce soft materials and we explore its potential to become an optical needle-free injection platform. The dynamics and depth of the injection is studied as a function of the elasticity of the solid and the liquid properties. Injections of up to 4 mm deep into 4 %w/w gelatin within 0.5 ms are observed. The advantages of the bullet jet over other kinds of impulsively generated jets with lasers are discussed.
Collapse
|
11
|
Lee H, Partanen M, Lee M, Jeong S, Lee HJ, Kim K, Ryu W, Dholakia K, Oh K. A laser-driven optical atomizer: photothermal generation and transport of zeptoliter-droplets along a carbon nanotube deposited hollow optical fiber. NANOSCALE 2022; 14:5138-5146. [PMID: 35302135 DOI: 10.1039/d1nr06211e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
From mechanical syringes to electric field-assisted injection devices, precise control of liquid droplet generation has been sought after, and the present state-of-the-art technologies have provided droplets ranging from nanoliter to subpicoliter volume sizes. In this study, we present a new laser-driven method to generate liquid droplets with a zeptoliter volume, breaking the fundamental limits of previous studies. We guided an infrared laser beam through a hollow optical fiber (HOF) with a ring core whose end facet was coated with single-walled carbon nanotubes. The laser light was absorbed by this nanotube film and efficiently generated a highly localized microring heat source. This evaporated the liquid inside the HOF, which rapidly recondensed into zeptoliter droplets in the surrounding air at room temperature. We spectroscopically confirmed the chemical structures of the liquid precursor maintained in the droplets by atomizing dye-dissolved glycerol. Moreover, we explain the fundamental physical principles as well as functionalities of the optical atomizer and perform a detailed characterization of the droplets. Our approach has strong prospects for nanoscale delivery of biochemical substances in minuscule zeptoliter volumes.
Collapse
Affiliation(s)
- Hyeonwoo Lee
- Photonic Device Physics Laboratory, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Mikko Partanen
- Photonic Device Physics Laboratory, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
- Photonics Group, Department of Electronics and Nanoengineering, Aalto University, P.O. Box 13500, 00076 Aalto, Finland
| | - Mingyu Lee
- Photonic Device Physics Laboratory, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Sunghoon Jeong
- Photonic Device Physics Laboratory, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Hyeung Joo Lee
- Photonic Device Physics Laboratory, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Kwanpyo Kim
- Department of Physics, Yonsei University, Seoul 03722, Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
| | - Wonhyoung Ryu
- Biomedical and Energy System Laboratory, Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Kishan Dholakia
- Photonic Device Physics Laboratory, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
- SUPA, School of Physics and Astronomy, University of St Andrews, KY16 9SS, UK.
| | - Kyunghwan Oh
- Photonic Device Physics Laboratory, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| |
Collapse
|
12
|
Jet injectors: Perspectives for small volume delivery with lasers. Adv Drug Deliv Rev 2022; 182:114109. [PMID: 34998902 DOI: 10.1016/j.addr.2021.114109] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 12/27/2022]
Abstract
Needle-free jet injectors have been proposed as an alternative to injections with hypodermic needles. Currently, a handful of commercial needle-free jet injectors already exist. However, these injectors are designed for specific injections, typically limited to large injection volumes into the deeper layers beneath the skin. There is growing evidence of advantages when delivering small volumes into the superficial skin layers, namely the epidermis and dermis. Injections such as vaccines and insulin would benefit from delivery into these superficial layers. Furthermore, the same technology for small volume needle-free injections can serve (medical) tattooing as well as other personalized medicine treatments. The research dedicated to needle-free jet injectors actuated by laser energy has increased in the last decade. In this case, the absorption of the optical energy by the liquid results in an explosively growing bubble. This bubble displaces the rest of the liquid, resulting in a fast microfluidic jet which can penetrate the skin. This technique allows for precise control over volumes (pL to µL) and penetration depths (µm to mm). Furthermore, these injections can be tuned without changing the device, by varying parameters such as laser power, beam diameter and filling level of the liquid container. Despite the published research on the working principles and capabilities of individual laser-actuated jet injectors, a thorough overview encompassing all of them is lacking. In this perspective, we will discuss the current status of laser-based jet injectors and contrast their advantages and limitations, as well as their potential and challenges.
Collapse
|
13
|
Lawal I, Rohilla P, Marston J. Visualization of drug delivery via tattooing: effect of needle reciprocating frequency and fluid properties. J Vis (Tokyo) 2022. [DOI: 10.1007/s12650-021-00816-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Gao Q, Henley A, Noël G, Der Khatchadourian Z, Taqi D, Abusamak M, He Z, Grœn S, Taher R, Menassa K, Velly A, Emami E, Mongeau L, Tamimi F. Needle-free Mental Incisive Nerve Block:In vitro, Cadaveric, and Pilot Clinical Studies. Int J Pharm 2021; 609:121197. [PMID: 34666143 DOI: 10.1016/j.ijpharm.2021.121197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 12/14/2022]
Abstract
The present study aimed to optimize Needle-Free Liquid Jet Injection (NFLJI) for Mental Incisive Nerve Blocks (MINB) and evaluate its clinical safety and feasibility. A MINB protocol was developed and optimized by series of NFLJI experiments in soft tissue phantoms and cadavers, then validated in two pilot Randomized Controlled Trials (RCT). The NFLJI penetration depth was found to be directly proportional to the supply pressure and volume. High-pressure NFLJIs (620 kPa or above) created maximum force and total work significantly greater than needle injections. Low-pressure NFLJIs (413 kPa), however, produced results similar to those of needle injections. Additionally, high-pressure NFLJIs created jet impingement pressure and maximum jet penetration pressure higher than low-pressure NFLJIs. Pilot RCTs revealed that high-pressure NFLJI caused a high risk of discomfort (60%) and paresthesia (20%); meanwhile, low-pressure NFLJI was less likely to cause complications (0%). The preliminary success rates of MINB from cadavers using NFLJIs and needles were 83.3% and 87.5%. In comparison, those from RCTs are 60% and 70%, respectively. To conclude, NFLJI supply pressure can be adjusted to achieve effective MINB with minimal complications. Furthermore, the cadaver study and pilot RCTs confirmed the feasibility for further non-inferiority RCT.
Collapse
Affiliation(s)
- Qiman Gao
- Faculty of Dentistry, McGill University, Montreal, Canada; Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - Anna Henley
- Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - Geoffroy Noël
- Faculty of Dentistry, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | | | - Doaa Taqi
- Faculty of Dentistry, McGill University, Montreal, Canada
| | | | - Zixin He
- Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - Swen Grœn
- Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - Rani Taher
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Karim Menassa
- Medical International Technology Canada Inc, Montreal, Canada
| | - Ana Velly
- Faculty of Dentistry, McGill University, Montreal, Canada; Lady Davis Institute, Department of Dentistry, SMBD, Jewish General Hospital, Montreal, Canada
| | - Elham Emami
- Faculty of Dentistry, McGill University, Montreal, Canada
| | - Luc Mongeau
- Department of Mechanical Engineering, McGill University, Montreal, Canada.
| | - Faleh Tamimi
- College of Dental Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
15
|
Miyazaki Y, Usawa M, Kawai S, Yee J, Muto M, Tagawa Y. Dynamic mechanical interaction between injection liquid and human tissue simulant induced by needle-free injection of a highly focused microjet. Sci Rep 2021; 11:14544. [PMID: 34267280 PMCID: PMC8282861 DOI: 10.1038/s41598-021-94018-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
This study investigated the fluid-tissue interaction of needle-free injection by evaluating the dynamics of the cavity induced in body-tissue simulant and the resulting unsteady mechanical stress field. Temporal evolution of cavity shape, stress intensity field, and stress vector field during the injection of a conventional injection needle, a proposed highly focused microjet (tip diameter much smaller than capillary nozzle), and a typical non-focused microjet in gelatin were measured using a state-of-the-art high-speed polarization camera, at a frame rate up to 25,000 f.p.s. During the needle injection performed by an experienced nurse, high stress intensity lasted for an order of seconds (from beginning of needle penetration until end of withdrawal), which is much longer than the order of milliseconds during needle-free injections, causing more damage to the body tissue. The cavity induced by focused microjet resembled a funnel which had a narrow tip that penetrated deep into tissue simulant, exerting shear stress in low intensity which diffused through shear stress wave. Whereas the cavity induced by non-focused microjet rebounded elastically (quickly expanded into a sphere and shrank into a small cavity which remained), exerting compressive stress on tissue simulant in high stress intensity. By comparing the distribution of stress intensity, tip shape of the focused microjet contributed to a better performance than non-focused microjet with its ability to penetrate deep while only inducing stress at lower intensity. Dynamic mechanical interaction revealed in this research uncovered the importance of the jet shape for the development of minimally invasive medical devices.
Collapse
Affiliation(s)
- Yuta Miyazaki
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Masashi Usawa
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Shuma Kawai
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Jingzu Yee
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Masakazu Muto
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Yoshiyuki Tagawa
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan.
| |
Collapse
|
16
|
Krizek J, Lavickova B, Moser C. Degradation study on molecules released from laser-based jet injector. Int J Pharm 2021; 602:120664. [PMID: 33933639 DOI: 10.1016/j.ijpharm.2021.120664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022]
Abstract
Development of needle-free methods to administer injectable therapeutics has been researched for a few decades. We focused our attention on a laser-based jet injection technique where the liquid-jet actuation mechanism is based on optical cavitation. This study investigates the potential damage to therapeutic molecules which are exposed to nanosecond laser pulses in the configuration of a compact laser-based jet injection device. Implementation of a pulsed laser source at 1574 nm wavelength allowed us to generate jets from pure water solutions and circumvent the need to reformulate therapeutics with absorbing dyes. We performed H1-NMR analysis on exposed samples of Lidocaine and δ-Aminolevulinic acid. We made several tests with linear and plasmid DNA to assess the structural integrity and functional potency after ejection with our device. The tests showed no significant degradation or detectable side products, which is promising for further development and eventually clinical applications.
Collapse
Affiliation(s)
- Jan Krizek
- School of Engineering, Laboratory of Applied Photonics Devices, Swiss Federal Institute of Technology in Lausanne (EPFL), Station 17, 1015 Lausanne, Switzerland.
| | - Barbora Lavickova
- School of Engineering, Laboratory of Biological Network Characterisation, Swiss Federal Institute of Technology in Lausanne (EPFL), Station 17, 1015 Lausanne, Switzerland
| | - Christophe Moser
- School of Engineering, Laboratory of Applied Photonics Devices, Swiss Federal Institute of Technology in Lausanne (EPFL), Station 17, 1015 Lausanne, Switzerland.
| |
Collapse
|