1
|
Gao S, Zhang Y, Wang R, Li F, Zhang Y, Zhu S, Wei H, Zhao L, Fu Y, Ye F. Fabrication and characterization of betulin/hydroxypropyl-beta-cyclodextrin inclusion complex nanofibers: A potential edible antibacterial and antioxidant packaging material. Food Chem 2025; 481:144059. [PMID: 40157098 DOI: 10.1016/j.foodchem.2025.144059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Active food packaging made from edible materials was considered as a promising alternative to traditional food packaging. Betulin (BE) is a natural active ingredient extracted from the bark of the birch tree, which has anti-inflammation, antibacterial and antioxidant properties. However, the low solubility of BE in water limits its application in active food packaging. In this research, in order to expand the application range of BE, an innovative potentially antimicrobial and antioxidant packaging material was developed. Betulin/hydroxypropyl-beta-cyclodextrin inclusion complex nanofibers (BE/HPβCD-IC-NF) with a stoichiometric ratio of 1:2 was prepared by electrospinning. Scanning electron microscopy results showed a smooth surface with no beads on the free-standing BE/HPβCD-IC-NF. The results of NMR hydrogen spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy proved that the BE was successfully encapsulated in the cavity of HPβCD. Meanwhile, the results of thermogravimetric analysis and phase solubility studies proved that the BE/HPβCD-IC-NF enhanced the aqueous solubility and thermal stabilization of BE. Fast dissolving experiment proved that the BE/HPβCD-IC-NF was disintegrated rapidly in water. Furthermore, the free radical scavenging activity and antimicrobial test demonstrated that BE/HPβCD-IC-NF has antioxidant properties and good antimicrobial properties, respectively. Meanwhile, in vivo antimicrobial tests on strawberries proved that BE/HPβCD-IC-NF has an effective effect on the preservation and stabilization of fruits. In conclusion, BE/HPβCD-IC-NF prepared in this study can effectively improve thermal stability, aqueous solubility, antibacterial and antioxidant activity of BE, which provides potential for its application in the field of active food packaging.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Ruichi Wang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Fengrui Li
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Siyu Zhu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Hailan Wei
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Lixia Zhao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Ye
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Shah S, Famta P, Sharma A, Kumar R, Pandey G, Vambhurkar G, Srinivasarao DA, Shinde A, Prasad SB, Asthana A, Srivastava S. Quality by design empowered preparation of itraconazole albumin nanoparticles for prostate cancer. Drug Deliv Transl Res 2025; 15:253-268. [PMID: 38696091 DOI: 10.1007/s13346-024-01592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2024] [Indexed: 12/05/2024]
Abstract
The current advent explores the potential of itraconazole (ITR) in prostate cancer (PCa), by its incorporation into albumin nanoparticles (NP). ITR as a repurposed moiety has displayed tremendous potential in various cancers. However, poor aqueous solubility poses hurdles towards its clinical translation. Amorphisation of ITR was observed post-incorporation within NP matrix which could prevent its precipitation in aqueous media. ITR NP was developed using quality by design and multivariate analysis and evaluated for cellular uptake, cell proliferation inhibition and the mechanism of PCa cell inhibition. Time and concentration-dependent serum stability and hemolytic potential revealed safety of ITR NP. Morphological changes and nuclear staining studies revealed the efficacy of ITR and ITR NP in promoting growth inhibition of PC-3 cells. Superior qualitative and quantitative uptake, reactive oxygen species (ROS) and mitochondrial impairment for ITR NP in comparison with ITR and control group was observed. Cell cycle study revealed remarkable G2/M phase inhibition in PC-3 cells. ITR NP demonstrated superior anticancer potential in 3D tumoroids mimicking the micro-metastatic lesions compared to control and ITR. Hence, ITR NP can be a favorable alternative therapeutic alternative in PCa.
Collapse
Affiliation(s)
- Saurabh Shah
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad-500037, Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad-500037, Hyderabad, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad-500037, Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad-500037, Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad-500037, Hyderabad, India
| | - Akshay Shinde
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad-500037, Hyderabad, India
| | - Sajja Bhanu Prasad
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad-500037, Hyderabad, India
| | - Amit Asthana
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad-500037, Hyderabad, India.
| |
Collapse
|
3
|
Raal A, Kaldmäe H, Kütt K, Jürimaa K, Silm M, Bleive U, Aluvee A, Adamson K, Vester M, Erik M, Koshovyi O, Nguyen KV, Nguyen HT, Drenkhan R. Chemical Content and Cytotoxic Activity on Various Cancer Cell Lines of Chaga ( Inonotus obliquus) Growing on Betula pendula and Betula pubescens. Pharmaceuticals (Basel) 2024; 17:1013. [PMID: 39204121 PMCID: PMC11357148 DOI: 10.3390/ph17081013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Chaga mushroom (Inonotus obliquus) is a pathogenic fungus that grows mostly on birch species (Betula pendula Roth and B. pubescens Ehrh.) and has traditionally been used as an anticancer medicine. This study aimed to compare the chemical composition and cytotoxic activity of chagas growing on both Betula spp. on various cancer cell lines. The freeze-dried extracts contained triterpenes inotodiol, lanosterol betulin, and betulinic acid typical to conks growing on Betula species. The cytotoxic activity of chaga growing on Betula pendula and B. pubescens 80% ethanolic extracts against 31 human cancer cell lines was evaluated by a sulforhodamine B assay. Chaga extract showed moderate activity against all cancer cell lines examined; it did not result in high cytotoxicity (IC50 ≤ 20 µg/mL). The strongest inhibitions were observed with chaga (growing on B. pendula) extract on the HepG2 and CAL-62 cell line and with chaga (from B. pubescens) extract on the HepG2 cell line, with IC50 values of 37.71, 43.30, and 49.99 μg/mL, respectively. The chaga extracts from B. pendula exert somewhat stronger effects on most cancer cell lines studied than B. pubescens extracts, which can be attributed to a higher content of inotodiol in B. pendula extracts. This study highlights the potential of chaga as a source of bioactive compounds with selective anticancer properties. To the best of our knowledge, this study is the first investigation of the chemical composition of I. obliquus parasitizing on B. pubescens.
Collapse
Affiliation(s)
- Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia;
| | - Hedi Kaldmäe
- Polli Horticultural Research Centre, Chair of Horticulture, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Uus 2, Polli, 69108 Mulgi Parish, Estonia; (H.K.); (U.B.); (A.A.)
| | - Karin Kütt
- Institute of Forestry and Engineering, Chair of Silviculture and Forest Ecology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia; (K.K.); (K.J.); (K.A.); (M.V.); (R.D.)
| | - Katrin Jürimaa
- Institute of Forestry and Engineering, Chair of Silviculture and Forest Ecology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia; (K.K.); (K.J.); (K.A.); (M.V.); (R.D.)
| | - Maidu Silm
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia;
| | - Uko Bleive
- Polli Horticultural Research Centre, Chair of Horticulture, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Uus 2, Polli, 69108 Mulgi Parish, Estonia; (H.K.); (U.B.); (A.A.)
| | - Alar Aluvee
- Polli Horticultural Research Centre, Chair of Horticulture, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Uus 2, Polli, 69108 Mulgi Parish, Estonia; (H.K.); (U.B.); (A.A.)
| | - Kalev Adamson
- Institute of Forestry and Engineering, Chair of Silviculture and Forest Ecology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia; (K.K.); (K.J.); (K.A.); (M.V.); (R.D.)
| | - Marili Vester
- Institute of Forestry and Engineering, Chair of Silviculture and Forest Ecology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia; (K.K.); (K.J.); (K.A.); (M.V.); (R.D.)
| | | | - Oleh Koshovyi
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia;
| | - Khan Viet Nguyen
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen, Hue City 530000, Vietnam; (K.V.N.); (H.T.N.)
| | - Hoai Thi Nguyen
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen, Hue City 530000, Vietnam; (K.V.N.); (H.T.N.)
| | - Rein Drenkhan
- Institute of Forestry and Engineering, Chair of Silviculture and Forest Ecology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia; (K.K.); (K.J.); (K.A.); (M.V.); (R.D.)
| |
Collapse
|
4
|
Jaroszewski B, Jelonek K, Kasperczyk J. Drug Delivery Systems of Betulin and Its Derivatives: An Overview. Biomedicines 2024; 12:1168. [PMID: 38927375 PMCID: PMC11200571 DOI: 10.3390/biomedicines12061168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Natural origin products are regarded as promising for the development of new therapeutic therapies with improved effectiveness, biocompatibility, reduced side effects, and low cost of production. Betulin (BE) is very promising due to its wide range of pharmacological activities, including its anticancer, antioxidant, and antimicrobial properties. However, despite advancements in the use of triterpenes for clinical purposes, there are still some obstacles that hinder their full potential, such as their hydrophobicity, low solubility, and poor bioavailability. To address these concerns, new BE derivatives have been synthesized. Moreover, drug delivery systems have emerged as a promising solution to overcome the barriers faced in the clinical application of natural products. The aim of this manuscript is to summarize the recent achievements in the field of delivery systems of BE and its derivatives. This review also presents the BE derivatives mostly considered for medical applications. The electronic databases of scientific publications were searched for the most interesting achievements in the last ten years. Thus far, it is mostly nanoparticles (NPs) that have been considered for the delivery of betulin and its derivatives, including organic NPs (e.g., micelles, conjugates, liposomes, cyclodextrins, protein NPs), inorganic NPs (carbon nanotubes, gold NPs, silver), and complex/hybrid and miscellaneous nanoparticulate systems. However, there are also examples of microparticles, gel-based systems, suspensions, emulsions, and scaffolds, which seem promising for the delivery of BE and its derivatives.
Collapse
Affiliation(s)
- Bartosz Jaroszewski
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland;
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowska 34 St., 41-819 Zabrze, Poland
| | - Janusz Kasperczyk
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland;
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowska 34 St., 41-819 Zabrze, Poland
| |
Collapse
|
5
|
Attar ES, Jayakumar S, Devarajan PV. Oral In-Situ Nanoplatform with Balanced Hydrophobic-Hydrophilic Property for Transport Across Gastrointestinal Mucosa. AAPS PharmSciTech 2024; 25:113. [PMID: 38750336 DOI: 10.1208/s12249-024-02824-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/29/2024] [Indexed: 09/05/2024] Open
Abstract
Transport of oral nanocarriers across the GI epithelium necessitates transport across hydrophilic mucus layer and the hydrophobic epithelium. Based on hydrophobic-hydrophilic balance, Curcumin-Lipomer (lipid-polymer hybrid nanoparticles) comprising hydrophobic stearic acid and hydrophilic Gantrez™ AN 119 (Gantrez) were developed, by a radical in-situ approach, to successfully traverse both barriers. A monophasic preconcentrate (Cur-Pre) comprising Cur (Curcumin), stearic acid, Gantrez and stabilizers, prepared by simple solution, was added to an aqueous phase to instantaneously generate Curcumin-Lipomer (Cur-Lipo) of nanosize and high entrapment efficiency (EE). Cur-Lipo size and EE was optimized by Box-Behnken Design. Cur-Lipomers of varying hydrophobic-hydrophilic property obtained by varying the stearic acid: Gantrez ratio exhibited size in the range 200-400 nm, EE > 95% and spherical morphology as seen in the TEM. A decrease in contact angle and in mucus interaction, evident with increase in Gantrez concentration, indicated an inverse corelation with hydrophilicity, while a linear corelation was observed for mucopenetration and hydrophilicity. Cur-SLN (solid lipid nanoparticles) which served as the hydrophobic reference revealed contact angle > 90°, maximum interaction with mucus and minimal mucopenetration. The ex-vivo permeation study through chicken ileum, revealed maximum permeation with Cur-Lipo1 and comparable and significantly lower permeation of Cur-Lipo1-D and Cur-SLN proposing the importance of balancing the hydrophobic-hydrophilic property of the nanoparticles. A 1.78-fold enhancement in flux of hydrophobic Cur-SLN, with no significant change in permeation of the hydrophilic Cur-Lipomers (p > 0.05) following stripping off the mucosal layer was observed. This reiterated the significance of hydrophobic-hydrophilic balance as a promising strategy to design nanoformulations with superior permeation across the GI barrier.
Collapse
Affiliation(s)
- Esha S Attar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology Matunga (E), Mumbai, 400019, India
| | - S Jayakumar
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology Matunga (E), Mumbai, 400019, India.
| |
Collapse
|
6
|
Lokhande AS, Maurya V, Rani K, Parashar P, Gaind R, Tandon V, Devarajan PV. Polydispersity-mediated high efficacy of an in-situ aqueous nanosuspension of PPEF.3HCl in methicillin resistant Staphylococcus aureus sepsis model. Int J Pharm 2024; 655:123982. [PMID: 38460770 DOI: 10.1016/j.ijpharm.2024.123982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Recently, World Health Organization declared antimicrobial resistance as the third greatest threat to human health. Absence of known cross-resistance, new class, new target, and a new mode of action are few major strategies being undertaken by researches to combat multidrug resistant pathogen. PPEF.3HCl, a bisbenzimidazole was developed as highly potent antibacterial agent against ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens, targeting topoisomerase IA. The present work encompasses a radical on-site generation of In-situ nanosuspension of PPEF.3HCl with enhanced efficacy against methicillin resistant S. aureus in septicemia model. We have generated instantaneously a PPEF.3HCl nanosuspension (IsPPEF.3HCl-NS) by mixing optimized monophasic PPEF.3HCl preconcentrate in propylene glycol into an aqueous medium comprising tween 80 as stabilizer. The IsPPEF.3HCl-NS showed precipitation efficiency of > 90 %, average particle size < 500 nm, retained upto 5 h, a negative zeta potential and bi/trimodal particle size distribution. Differential scanning calorimetry, X-ray diffraction confirmed partial amorphization and transmission electron microscopy revealed spherical particles. IsPPEF.3HCl-NS was non-hemolytic and exhibited good stability in serum. More significantly, it exhibited a ∼ 1.6-fold increase in macrophage uptake compared to free PPEF.3HCl in the RAW 264.7 macrophage cell line. Confocal microscopy revealed accumulation of IsPPEF.3HCl-NS within the lysosomal compartment and cell cytosol, proposing high efficacy. In terms of antimicrobial efficacy, IsPPEF.3HCl-NS outperforms free PPEF.3HCl against clinical methicillin sensitive and resistant S. aureus strains. In a pivotal experiment, IsPPEF.3HCl-NS exhibited over 83 % survival at 8 mg/kg.bw and an impressive reduction of ∼ 4-5 log-fold in bacterial load, primarily in the kidney, liver and spleen of septicemia mice. IsPPEF.3HCl-NS prepared by the In-situ approach, coupled with enhanced intramacrophage delivery and superior efficacy, positions IsPPEF.3HCl-NS as a pioneering and highly promising formulation in the battle against antimicrobial resistance.
Collapse
Affiliation(s)
- Amit S Lokhande
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Vikas Maurya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Komal Rani
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Palak Parashar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajni Gaind
- Vardhaman Medical College Hospital, Safdarjung Hospital, New Delhi 110029, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032, India.
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India.
| |
Collapse
|
7
|
Pardhi E, Vasave R, Srivastava V, Yadav R, Mehra NK. Nanocrystal technologies in biomedical science: From the bench to the clinic. Drug Discov Today 2024; 29:103913. [PMID: 38340952 DOI: 10.1016/j.drudis.2024.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The pharmaceutical industry is grappling with a pressing crisis in drug development characterized by soaring R&D costs, setbacks in blockbuster drug development due to poor aqueous solubility, and patent-related limitations on newly approved molecules. To combat these challenges, diverse strategies have emerged to enhance the solubility and dissolution rates of Biopharmaceutics Classification System (BCS) II and IV drug molecules. Enter drug nanocrystals, a revolutionary nanotechnology-driven, carrier-free colloidal drug delivery system. This review provides a comprehensive insight into nanocrystal strategies, stabilizer selection criteria, preparation methods, advanced characterization techniques, the evolving nanocrystal technological landscape, current market options, and exciting clinical prospects for reshaping the future of pharmaceuticals.
Collapse
Affiliation(s)
- Ekta Pardhi
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Ravindra Vasave
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Vaibhavi Srivastava
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rati Yadav
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
8
|
Ma Y, Cong Z, Gao P, Wang Y. Nanosuspensions technology as a master key for nature products drug delivery and In vivo fate. Eur J Pharm Sci 2023; 185:106425. [PMID: 36934992 DOI: 10.1016/j.ejps.2023.106425] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
The drug nanosuspensions is a universal formulation approach for improved drug delivery of hydrophobic drugs and one the most promising approaches for increasing the biopharmaceutical performance of poorly water-soluble drug substances, especially for nature products. This review aimed to summarize the nanosuspensions preparation approaches and the main technological difficulties encountered in nanosuspensions development, such as guidelines for stabilizers screening, in vivo fate of the intravenously administrated nanosuspensions, and how to realize the intravenously target delivery was reviewed. Furthermore, challenges of nanosuspensions for the nature products delivery also was discussed and commented. Therefore, it hoped to provide reference and assistance for the nanosuspensions production, stabilizers usage, and predictability of in vivo fate and controllability of targeting delivery of the nature products nanosuspensions.
Collapse
Affiliation(s)
- Yingying Ma
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P R China
| | - Zhufeng Cong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Peng Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yancai Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P R China
| |
Collapse
|
9
|
Shevade SS, Rustomjee MT, Devarajan PV. Facile Technology for Extemporaneous Preparation of Long-Acting Injectable Microparticulate Suspensions at the Patient Side. AAPS PharmSciTech 2023; 24:61. [PMID: 36759383 DOI: 10.1208/s12249-023-02519-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
In this study, we present an innovative and facile in situ approach for extemporaneous preparation of sterile microparticles. An amazingly simple approach, in situ technology circumvents the stability, and scale up challenges as well as sterilization issues associated with long-acting particulate systems. Monophasic preconcentrates of donepezil base (DPZ), a model drug with a biodegradable polymer poly (DL-lactide-co-glycolide) (PLGA), with stabilizer were prepared by simple solution and sterilized by filtration (0.22 micron). The sterile preconcentrates when added to aqueous dextrose solution (total volume < 3 mL) generated ready-to-inject DPZ PLGA microparticles (DPZ-PLGA-MP) with high reproducibility, entrapment efficiency (> 80%), and size ~ 80 micron. DPZ micro suspension (DPZ-MS) with high precipitation efficiency (> 90%) and size ~ 80 micron was obtained in a similar manner omitting PLGA. XRD and DSC study confirmed decreased crystallinity in the presence of PLGA. No interaction between PLGA and DPZ was evident in the FTIR study. The microparticulate dispersions exhibited good in vitro injectability when tested using the texture analyzer (force < 5 N). When evaluated using the dialysis bag method (Himedia 12-14 kDa molecular weight cutoff), both microparticulate formulations exhibited controlled release up to 1 week in vitro. Further, low burst release of ~ 10% at the end of 6 h in the ex vivo chicken muscle study proposes great promise. Our data propose the facile extemporaneous generation of microparticles as a practical and promising approach for development of long-acting injectables. This facile approach could serve as platform technology for other drug candidates.
Collapse
Affiliation(s)
- Sukhada S Shevade
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Elite Status and Centre of Excellence (Maharashtra), Deemed University, N.P. Marg, Matunga East, Mumbai, Maharashtra, 400019, India
| | - Maharukh T Rustomjee
- Amaterasu Lifesciences LLP. Office No. H4 & H5, 9th Floor, Tardeo Everest CHS, Tardeo, Mumbai, 400034, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Elite Status and Centre of Excellence (Maharashtra), Deemed University, N.P. Marg, Matunga East, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
10
|
Rzepka Z, Bębenek E, Chrobak E, Wrześniok D. Synthesis and Anticancer Activity of Indole-Functionalized Derivatives of Betulin. Pharmaceutics 2022; 14:2372. [PMID: 36365190 PMCID: PMC9694481 DOI: 10.3390/pharmaceutics14112372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 09/01/2023] Open
Abstract
Pentacyclic triterpenes, including betulin, are widespread natural products with various pharmacological effects. These compounds are the starting material for the synthesis of substances with promising anticancer activity. The chemical modification of the betulin scaffold that was carried out as part of the research consisted of introducing the indole moiety at the C-28 position. The synthesized new 28-indole-betulin derivatives were evaluated for anticancer activity against seven human cancer lines (A549, MDA-MB-231, MCF-7, DLD-1, HT-29, A375, and C32). It was observed that MCF-7 breast cancer cells were most sensitive to the action of the 28-indole-betulin derivatives. The study shows that the lup-20(29)-ene-3-ol-28-yl 2-(1H-indol-3-yl)acetate caused the MCF-7 cells to arrest in the G1 phase, preventing the cells from entering the S phase. The performed cytometric analysis of DNA fragmentation indicates that the mechanism of EB355A action on the MCF-7 cell line is related to the induction of apoptosis. An in silico ADMET profile analysis of EB355A and EB365 showed that both compounds are bioactive molecules characterized by good intestinal absorption. In addition, the in silico studies indicate that the 28-indole-betulin derivatives are substances of relatively low toxicity.
Collapse
Affiliation(s)
- Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Ewa Bębenek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| |
Collapse
|
11
|
Drenkhan R, Kaldmäe H, Silm M, Adamson K, Bleive U, Aluvee A, Erik M, Raal A. Comparative Analyses of Bioactive Compounds in Inonotus obliquus Conks Growing on Alnus and Betula. Biomolecules 2022; 12:biom12091178. [PMID: 36139017 PMCID: PMC9496626 DOI: 10.3390/biom12091178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
Inonotus obliquus grows in the Northern Hemisphere on some living broadleaved tree species as a pathogen, causing stem rot. In Estonia, the fungus is well known in the Betula species but can also be found on Alnus. Sterile conks of I. obliquus contain different bioactive compounds, but the quantitative and comparative research of these compounds in conks on different host species is limited. In the current work, I. obliquus was isolated and, evidently, determined from Alnus incana (L.) Moench., Alnus glutinosa (L.) Gaertn., and Betula pendula Roth, and the content of bioactive compounds in conks on these hosts were analysed. All the analysed conks sampled from A. incana and B. pendula contained betulin that varied from 111 to 159 µg/g. A significantly (p < 0.05) higher betulinic acid content was found in conks sampled from A. incana when compared with B. pendula: 474−635 and 20−132 µg/g, respectively. However, the conks from Betula were richer in total polyphenols, flavonols, and glucans. The content of inotodiol was quite similar in the conks from A. incana (7455−8961 µg/g) and B. pendula (7881−9057 µg/g). Also, no significant differences in the lanosterol content were found between the samples from these two tree species. To the best of our knowledge, this study is the first investigation of the chemical composition of I. obliquus parasitizing on Alnus. The results demonstrate that the bioactive compounds are promising in conks of I. obliquus growing not only on Betula but also on the Alnus species. It supports the opportunity to cultivate I. obliquus, also on the Alnus species, thus increasing the economic value of growing this tree species in forestry.
Collapse
Affiliation(s)
- Rein Drenkhan
- Chair of Silviculture and Forest Ecology, Institute of Forestry and Engineering, Estonian University of Life Sciences, 51006 Tartu, Estonia
- Correspondence:
| | - Hedi Kaldmäe
- Polli Horticultural Research Centre, Chair of Horticulture, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 69108 Polli, Estonia
| | - Maidu Silm
- Chair of Hydrobiology and Fisheries, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Kalev Adamson
- Chair of Silviculture and Forest Ecology, Institute of Forestry and Engineering, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Uko Bleive
- Polli Horticultural Research Centre, Chair of Horticulture, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 69108 Polli, Estonia
| | - Alar Aluvee
- Polli Horticultural Research Centre, Chair of Horticulture, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 69108 Polli, Estonia
| | | | - Ain Raal
- Faculty of Medicine, Institute of Pharmacy, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
12
|
Todke PA, Devarajan PV. In-silico approach as a tool for selection of excipients for safer amphotericin B nanoformulations. JOURNAL OF CONTROLLED RELEASE : OFFICIAL JOURNAL OF THE CONTROLLED RELEASE SOCIETY 2022; 349:756-764. [PMID: 35905782 DOI: 10.1016/j.jconrel.2022.07.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/18/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
Abstract
Safer and efficacious Amphotericin B (AmB) nanoformulations can be designed by augmenting AmB in the monomeric or super-aggregated state, and restricting the aggregated state, by choosing the appropriate excipient, which can be facilitated by employing in-silico prediction as a tool. Excipients selected for the study included linear fatty acids from caprylic (C8) to stearic(C18) and the stearate based amphiphilic surfactants polyoxyl-15-hydroxystearate (PS15) and polyoxyl-40-stearate (PS40). Blend module was employed to determine the two miscibility parameters mixing energy (Emix) and interaction parameter (χ). AmB-excipient interactions were modelled using molecular docking software. The fatty acids revealed a decrease in Emix and χ values with increase in carbon chain length, suggesting enhanced affinity with increase in fatty acid hydrophobicity. Significantly higher affinity was observed with amphiphilic surfactants, in particular PS40 which exhibited negative values of Emix and χ proposing very high degree of miscibility. Molecular docking study confirmed extensive interaction of all the excipients with the AmB polyene chain. PS15 and PS40 displayed in addition hydrophilic interactions with the mycosamine and polyol moieties with PS40 exhibiting complete wrapping of the AmB molecule. PS15 demonstrated only partial wrapping, attributed to the shorter ethylene oxide chain. AmB nanosuspensions (NS) were prepared by in situ nanoprecipitation using the excipients and the AmB state identified by UV scanning between 300 and 500 nm. AmB NS with fatty acids and PS15-AmB NS revealed a high intensity peak between 330 nm-350 nm of aggregated AmB and low intensity monomeric peaks between 405 and 415 nm reflecting predominance of the aggregated state. PS40-AmB NS on the other hand revealed complete absence of aggregated state and a high intensity peak between 321 and 325 nm which corresponded to the super-aggregated state. Also, the super-aggregated state slowly released the safe monomeric form without aggregate formation. Furthermore, very low hemolysis seen with PS40-AmB NS confirmed low toxicity attributed to the safer super-aggregated state and while higher hemolysis as anticipated was seen with PS15-AmB NS (aggregated state). The basis for selection of the appropriate excipient for design of safer AmB nanoformulations would be those excipients that exhibit negative values of miscibility parameters Emix and χ, exhibit interaction with the hydrophobic and hydrophilic regions of AmB and demonstrate complete wrapping of AmB in the molecular docking study. Our study thus demonstrates feasibility of in-silico prediction as a practical tool for excipient selection for safer AmB nanoformulations.
Collapse
Affiliation(s)
- Pooja A Todke
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Deemed University, Elite Status and Centre of Excellence (Maharashtra), N.P. Marg, Matunga (E), Mumbai, 400019, Maharashtra, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Deemed University, Elite Status and Centre of Excellence (Maharashtra), N.P. Marg, Matunga (E), Mumbai, 400019, Maharashtra, India.
| |
Collapse
|
13
|
Tuli HS, Sak K, Gupta DS, Kaur G, Aggarwal D, Chaturvedi Parashar N, Choudhary R, Yerer MB, Kaur J, Kumar M, Garg VK, Sethi G. Anti-Inflammatory and Anticancer Properties of Birch Bark-Derived Betulin: Recent Developments. PLANTS (BASEL, SWITZERLAND) 2021; 10:2663. [PMID: 34961132 PMCID: PMC8705846 DOI: 10.3390/plants10122663] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 05/03/2023]
Abstract
Birch tree bark-derived betulin has attracted scientific interest already for several centuries, being one of the first natural products identified from plants. However, the cellular events regulated by betulin and precise molecular mechanisms under these processes have been begun to be understood only recently. Today, we know that betulin can exert important anticancer activities through modulation of diverse cellular pathways. In this review article, betulin-regulated molecular signaling is unraveled and presented with a special focus on its participation in anti-inflammatory processes, especially by modulating nuclear factor-κB (NF-κB), prostaglandin/COX, and nuclear factor erythroid2-related factor 2 (Nrf2)-mediated cascades. By regulating these diverse pathways, betulin can not only affect the development and progression of different cancers, but also enhance the antitumor action of traditional therapeutic modalities. It is expected that by overcoming the low bioavailability of betulin by encapsulating it into nanocarriers, this promising natural compound may provide novel possibilities for targeting inflammation-related cancers.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India; (D.A.); (N.C.P.); (R.C.)
| | | | - Dhruv Sanjay Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai 40056, Maharashtra, India; (D.S.G.); (G.K.)
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai 40056, Maharashtra, India; (D.S.G.); (G.K.)
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India; (D.A.); (N.C.P.); (R.C.)
| | - Nidarshana Chaturvedi Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India; (D.A.); (N.C.P.); (R.C.)
| | - Renuka Choudhary
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India; (D.A.); (N.C.P.); (R.C.)
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey;
| | - Jagjit Kaur
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia;
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur 134007, Haryana, India;
| | - Vivek Kumar Garg
- Department of Medical Laboratory Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali 140413, Punjab, India;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|