1
|
Sihag M, Varma M, Bhandari R, Lawrence AJ. Drug delivery strategies for the treatment of relapse behavior in substance use disorder- A systematic review. Metab Brain Dis 2025; 40:104. [PMID: 39820990 DOI: 10.1007/s11011-024-01492-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025]
Abstract
Substance use disorders (SUDs) pose a significant global health challenge, with relapse being a major obstacle in achieving successful treatment outcomes. In recent years, drug delivery strategies have emerged as promising tools to improve treatment efficacy and patient compliance in the context of SUD. Here we explore a diverse range of drug delivery strategies that have been investigated for addressing relapse behavior in SUD. By examining a wide array of clinical and preclinical studies, this review highlights the advances made in drug delivery technologies in the hopes of aiding future research to further establish novel systems. The present systematic review has been created after gathering data from multiple databases including Google Scholar, PubMed and Cochrane, taking into account both review and research (preclinical and clinical) studies along with other systematic reviews and meta-analyses. Relevant articles have been categorized into those pertaining to opioid use disorder, alcohol use disorder and tobacco use disorder. Substance use disorders are a global health problem, with tobacco use associated with the highest mortality, followed by alcohol and opioids. Conventional drug delivery options, such as oral medication have a number of disadvantages, such as low compliance. To tackle these challenges, multiple novel strategies such as sustained release implants, transdermal patches and liquid crystal-based injections have been developed. This systematic review presents a concise view of the strategies already available, as well as those currently undergoing trials. By doing so, the authors hope to stimulate further research to help overcome the challenges in treating SUDs.
Collapse
Affiliation(s)
- Megha Sihag
- UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160 014, India
| | - Manasi Varma
- UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160 014, India
| | - Ranjana Bhandari
- UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160 014, India.
| | - Andrew J Lawrence
- Florey Institute of Neuroscience & Mental Health, Parkville, VIC, Australia.
- Florey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
2
|
Zhang Y, Jiang Z, Lu K, Ding B, Wang J, Wang N, Li D, Yu F, Zhang M, Xu H. In situ gel-forming oil solubilizing α-lipoic acid as a physical shielding alleviated chemotherapy-induced oral mucositis via inhibiting oxidative stress. Int J Pharm 2024; 665:124714. [PMID: 39278286 DOI: 10.1016/j.ijpharm.2024.124714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Oral mucositis (OM) is a common and serious complication of cancer chemoradiotherapy. OM managements mainly focused on topical healthcare or analgesia, which offers limited wound healing. Herein, in situ gel-forming oil (LGF) have been developed as a physical shielding for OM treatment. LGF oil, composed of soybean phosphatidyl choline (40 %, w/w), glycerol dioleate (54 %, w/w), and alcohols (6 %, w/w), is a viscous oil-like liquid. The contact angle of LGF oil on porcine buccal mucosa were 30°, significantly smaller than that of water (60°), indicating its good wetting and spreading properties. Besides, the adhesion force and adhesion energy of LGF oil toward porcine buccal mucosa was as high as 3.9 ± 0.2 N and 60 ± 2 J/m2, respectively, indicating its good adhesive property. Moreover, the hydrophobic α-lipoic acid (LA) as a native antioxidative agent was highly solubilized in LGF oil, its solubility in which was above 100 mg/mL. Upon contacting with saliva, LA-loaded LGF oil (LA-LGF) could rapidly transform from oil into gel that adheres on oral mucosa. Moreover, LA was slowly released from the formed LA-LGF gel, which benefited alleviating oxidative stress caused by chemoradiotherapy. In vivo animal experiments showed that LA-LGF could effectively promote the repairing of oral mucosa wound of 5-fluorouracil induced OM rats. Besides, the mucosa edema was greatly improved and new granulation around wound was produced after LA-LGF treatment. Meanwhile, the production of proinflammatory cytokines such as IL-1β, TNF-α, 1L-6 was substantially inhibited by LA-LGF. Collectively, LGF oil as carrier of hydrophobic drug might be a promising strategy for oral mucositis.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Pharmaceutics, Key Laboratory of Novel Nuclide Technologies on Precision Diagnosis and Treatment & Clinical Transformation of Wenzhou City, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Zhijiang Jiang
- Department of Pharmaceutics, Key Laboratory of Novel Nuclide Technologies on Precision Diagnosis and Treatment & Clinical Transformation of Wenzhou City, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Kaili Lu
- CiXi Biomedical Research Institute of Wenzhou Medical University, China
| | - Bingyu Ding
- Department of Pharmaceutics, Key Laboratory of Novel Nuclide Technologies on Precision Diagnosis and Treatment & Clinical Transformation of Wenzhou City, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Jie Wang
- Department of Pharmaceutics, Key Laboratory of Novel Nuclide Technologies on Precision Diagnosis and Treatment & Clinical Transformation of Wenzhou City, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Neili Wang
- Department of Pharmaceutics, Key Laboratory of Novel Nuclide Technologies on Precision Diagnosis and Treatment & Clinical Transformation of Wenzhou City, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Dingwei Li
- Department of Pharmaceutics, Key Laboratory of Novel Nuclide Technologies on Precision Diagnosis and Treatment & Clinical Transformation of Wenzhou City, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Fengnan Yu
- Department of Pharmaceutics, Key Laboratory of Novel Nuclide Technologies on Precision Diagnosis and Treatment & Clinical Transformation of Wenzhou City, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Mengjiao Zhang
- Department of Pharmaceutics, Key Laboratory of Novel Nuclide Technologies on Precision Diagnosis and Treatment & Clinical Transformation of Wenzhou City, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Helin Xu
- Department of Pharmaceutics, Key Laboratory of Novel Nuclide Technologies on Precision Diagnosis and Treatment & Clinical Transformation of Wenzhou City, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| |
Collapse
|
3
|
Aftab M, Javed F, Haider S, Khan R, Khan SU, Alam K, Amir A, Ullah F, Shah NA. Design and Characterization of Chitosan-Based Smart Injectable Hydrogel for Improved Sustained Release of Antinarcotics. Pharmaceuticals (Basel) 2024; 17:749. [PMID: 38931416 PMCID: PMC11206616 DOI: 10.3390/ph17060749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The treatment adherence of narcotics-addicted individuals with reduced incidences of relapse can be enhanced by a sustained drug release formulation of antinarcotics. So far, different drug formulations have been reported with sustained drug release periods of 28 and 35 days. To further enhance this duration, different formulations of injectable hydrogels (IHs) have been developed by combining low molecular weight (LMW) and high molecular weight (HMW) chitosan (CS) with guar gum (GG) and crosslinking them by sodium bi phosphate dibasic. The structural, morphological, and physicochemical properties of LMW-CS IH, and HMW-CS IH were evaluated using Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), and rheological, swelling, and biodegradation analysis. The HMW-CS IH showed high crosslinking, increased thermal stability, high mechanical strength, elevated swelling, and low biodegradation. The antinarcotic drugs naltrexone (NTX) and disulfiram (DSF) were loaded separately into the HMW-CS IH and LMW-CS IH. The release of NTX and DSF was investigated in phosphate buffer saline (PBS) and ethanol (0.3%, 0.4%, and 0.5%) over a 56-day period using an UV spectrophotometer. The drug release data were tested in zero-order, first-order, and Korsemeyer-Peppas mathematical models. In PBS, all prepared formulations followed non-Fickian drug release, while in ethanol, only NTX HMW-CS IH followed non-Fickian release in all three different concentrations of ethanol.
Collapse
Affiliation(s)
- Maryam Aftab
- Department of Biosciences, COMSATS University, Park Road, Islamabad 45520, Pakistan
| | - Fatima Javed
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar 25000, Pakistan;
| | - Sajjad Haider
- Department of Chemical Engineering, King Saud University, Riyadh 11545, Saudi Arabia;
| | - Rawaiz Khan
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia;
| | - Salah Uddin Khan
- College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia;
| | - Kamran Alam
- Separation and Conversation Technology, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium;
| | - Afreenish Amir
- Department of Microbiology, National Institute of Health, Islamabad 45500, Pakistan;
| | - Faheem Ullah
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi 46000, Pakistan
- School of Materials and Mineral Resources Engineering, Engineering Campus, University Sains Malaysia, Nibong Tebal 14300, Malaysia
| | - Naseer Ali Shah
- Department of Biosciences, COMSATS University, Park Road, Islamabad 45520, Pakistan
| |
Collapse
|
4
|
Karimi M, Abrishami M, Farzadnia M, Kamali H, Malaekeh-Nikouei B. In-situ forming biodegradable implants for sustained Fluocinolone acetonide release to the posterior eye: In-vitro and in-vivo investigations in rabbits. Int J Pharm 2024; 654:123973. [PMID: 38458402 DOI: 10.1016/j.ijpharm.2024.123973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Delivering medication to the posterior segment of the eye presents a significant challenge. Intravitreal injection has emerged as the preferred method for drug delivery to this area. However, current injectable non-biodegradable implants for fluocinolone acetonide (FA) require surgical removal after prolonged drug release, potentially affecting patient compliance. This study aimed to develop an in-situ forming biodegradable implant (ISFBI) optimal formulation containing PLGA504H and PLGA756S (50:50 w/w%) with the additive NMP solvent. The goal was to achieve slow and controlled release of FA over a two-month period with lower burst release, following a single intravitreal injection. Through morphology, rheology, stability and in-vitro release evaluations, the optimal formulation demonstrated low viscosity (0.12-1.25 Pa. s) and sustained release of FA at a rate of 0.36 µg/day from the third day up to two months. Furthermore, histopathology and in-vivo studies were conducted after intravitreal injection of the optimal formulation in rabbits' eye. Pharmacokinetic analysis demonstrated mean residence time (MRT) of 20.02 ± 0.6 days, half-life (t1/2) of 18.80 ± 0.4 days, and clearance (Cl) of 0.29 ± 0.03 ml/h for FA in the vitreous humor, indicating sustained and slow absorption of FA by the targeted retinal tissue from vitrea over the two-month period and eliminating through the anterior section of the eye, as revealed by its presence in the aqueous humor. Additionally, FA exhibited no detection in the blood and no evidence of systemic side effects or damage on the retinal layer and other organs. Based on these findings, it can be concluded that in-situ forming injectable biodegradable PLGA implants can show promise as a long-acting and controlled-release system for intraocular drug delivery.
Collapse
Affiliation(s)
- Malihe Karimi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Abrishami
- Department of Ophthalmology, Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Farzadnia
- Department of Pathology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bizhan Malaekeh-Nikouei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Ghazvini K, Kamali H, Farsiani H, Yousefi M, Keikha M. Sustain-release lipid-liquid crystal formulations of pexiganan against Helicobacter pylori infection: in vitro evaluation in C57BL/6 mice. BMC Pharmacol Toxicol 2024; 25:9. [PMID: 38212864 PMCID: PMC10785446 DOI: 10.1186/s40360-024-00731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024] Open
Abstract
INTRODUCTION The Gram-negative bacterium Helicobacter pylori, H. pylori, is associated with significant digestive disorders. However, the effectiveness of bacterial eradication is declining due to drug resistance. A potent anti-H. pylori activity is shown by the natural antimicrobial peptide pexiganan. OBJECTIVE The current study aimed to evaluate the effectiveness of pexiganan and its lipid-liquid crystals (LLCs) in inducing Helicobacter pylori in mice. METHODS In this experimental study, H. pylori infection was first induced in C57BL/6 mice. Secondly, the antibacterial efficacy of pexiganan and its LLCs formulations was investigated to eliminate H. pylori infection. RESULTS The H. pylori infection could not be completely eradicated by pexiganan peptide alone. However, incorporating pexiganan within the LLC formulation resulted in an increased elimination of H. pylori. Under the H&E strain, the pexiganan-LLCs formulation revealed minimal mucosal alterations and a lower amount of inflammatory cell infiltration in the stomach compared to the placebo. CONCLUSION Clarithromycin was more effective than pexiganan at all tested concentrations. Furthermore, the pexiganan-loaded LLCs exhibited superior efficacy in curing H. pylori infection in a mouse model compared to pexiganan alone. This formulation can enhance H. pylori clearance while mitigating the adverse effects, typically associated with conventional drugs, leading to a viable alternative to current treatment options.
Collapse
Affiliation(s)
- Kiarash Ghazvini
- Department of Microbiology and Virology, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Kamali
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Department of Microbiology and Virology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Yousefi
- Department of Microbiology and Virology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Keikha
- Department of Microbiology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran.
| |
Collapse
|
6
|
Duvnjak M, Villois A, Ramazani F. Biodegradable Long-Acting Injectables: Platform Technology and Industrial Challenges. Handb Exp Pharmacol 2024; 284:133-150. [PMID: 37059910 DOI: 10.1007/164_2023_651] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Long-acting injectables have been used to benefit patients with chronic diseases. So far, several biodegradable long-acting platform technologies including drug-loaded polymeric microparticles, implants (preformed and in situ forming), oil-based solutions, and aqueous suspension have been established. In this chapter, we summarize all the marketed technology platforms and discuss their challenges regarding development including but not limited to controlling drug release, particle size, stability, sterilization, scale-up manufacturing, etc. Finally, we discuss important criteria to consider for the successful development of long-acting injectables.
Collapse
Affiliation(s)
- Marieta Duvnjak
- Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| | - Alessia Villois
- Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| | - Farshad Ramazani
- Technical Research and Development, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|
7
|
Kouhjani M, Saberi A, Hadizadeh F, Khodaverdi E, Karimi M, Gholizadeh E, Kamali H, Nokhodchi A. Development of Sustained Release Formulations Based on Lipid-Liquid Crystal to Control the Release of Deoxycholate: In Vitro and In Vivo Assessment. AAPS PharmSciTech 2023; 24:224. [PMID: 37946092 DOI: 10.1208/s12249-023-02677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023] Open
Abstract
Subcutaneous injections of phosphatidylcholine (PC), sodium deoxycholate (NADC), and a mixture of them were found to be an effective option for treating cellulite. However, it is noteworthy that the injection of NADC may result in inflammation as well as necrosis in the injection area. The preparation of a sustained release formulation based on lipid-liquid crystal that controls the release of NADC could be a potential solution to address the issue of inflammation and necrosis at the site of injection. To present a practical and validated approach for accurately determining the concentration of NADC in LLC formulations, spectrofluorimetry was used based on the International Council for Harmonization (ICH) Q2 guidelines. Based on the validation results, the fluorometric technique has been confirmed as a reliable, efficient, and economical analytical method for quantifying NADC concentrations. The method demonstrated favorable attributes of linearity, precision, and accuracy, with an r2 value of 0.999. Furthermore, it exhibited excellent interday and intraday repeatability, with RSD values below 4%. The recovery percentages ranged from 97 to 100%, indicating the method's ability to accurately measure NADC concentrations. The subcutaneous injection of the LLC-NADC demonstrated a reduction in inflammation and tissue necrosis in skin tissue, along with an increase in fat lysis within 30 days, when compared to the administration of only NADC solution. Moreover, the histopathological assessment confirmed that the use of the LLC formulation did not result in any detrimental side effects for kidney or heart tissue.
Collapse
Affiliation(s)
- Maryam Kouhjani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Arezoo Saberi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Khodaverdi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Karimi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Elaheh Gholizadeh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Hossein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran.
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK.
- Lupin Research Inc., Coral Springs, FL, USA.
| |
Collapse
|
8
|
Engstedt J, Barauskas J, Kocherbitov V. Phase behavior of soybean phosphatidylcholine and glycerol dioleate in hydrated and dehydrated states studied by small-angle X-ray scattering. SOFT MATTER 2023; 19:8305-8317. [PMID: 37819242 DOI: 10.1039/d3sm01067h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Soybean phosphatidylcholine (SPC) and glycerol dioleate (GDO) form liquid crystal nanostructures in aqueous environments, and their mixtures can effectively encapsulate active pharmaceutical ingredients (API). When used in a subcutaneous environment, the liquid crystalline matrix gradually hydrates and degrades in the tissue whilst slowly releasing the API. Hydration dependent SPC/GDO phase behavior is complex, non-trivial, and still not fully understood. A deeper understanding of this system is important for controlling its function in drug delivery applications. The phase behavior of the mixture of SPC/GDO/water was studied as a function of hydration and lipid ratio. Small-angle X-ray scattering (SAXS) was used to identify space groups in liquid crystalline phases and to get detailed structural information on the isotropic reverse micellar phase. The reported pseudo ternary phase diagram includes eight different phases and numerous multiphase regions in a thermodynamically consistent way. For mixtures with SPC as the predominant component, the system presents a reverse hexagonal, lamellar and R3m phase. For mixtures with lower SPC concentrations, reverse cubic (Fd3m and Pm3n) as well as intermediate and isotropic micellar phases were identified. By modeling the SAXS data using a core-shell approach, the properties of the isotropic micellar phase were studied in detail as a function of concentration. Moreover, SAXS analysis of other phases revealed new structural features in relation to lipid-water interactions. The new improved ternary phase diagram offers valuable insight into the complex phase behavior of the SPC/GDO system. The detailed structural information is important for understanding what APIs can be incorporated in the liquid crystal structure.
Collapse
Affiliation(s)
- Jenni Engstedt
- Camurus AB, Ideon Science Park, Gamma Building, Sölvegatan 41, SE-22379 Lund, Sweden
- Biomedical Sciences, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden.
- Biofilms - Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden
| | - Justas Barauskas
- Camurus AB, Ideon Science Park, Gamma Building, Sölvegatan 41, SE-22379 Lund, Sweden
| | - Vitaly Kocherbitov
- Biomedical Sciences, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden.
- Biofilms - Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden
| |
Collapse
|
9
|
Cao W, Chen J, Wu L, Xu YH, Meng Y, Li X, Zheng Z, Chu X. A Novel Molecular Reservoir Based on Reverse Self-Assembled Liquid Crystals - A New Strategy for Prolonging the Duration in Action of Analgesics. J Pharm Sci 2023; 112:1985-1996. [PMID: 37088153 DOI: 10.1016/j.xphs.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE The aim of this study was to develop liquid crystal (LC) precursors to obtain novel long-acting analgesics for injection based on depot systems and compare the difference between the cubic and hexagonal precursors in delivering Diclofenac sodium (DS). METHODS Diclofenac sodium liquid crystal precursor injections were prepared and characterized, followed by in vitro release, pharmacodynamic, and pharmacokinetic studies. RESULTS The optimal formulations were prepared with a ratio of Phytantriol/ethanol/water as 76:19:5 for cubic LC precursors, and a ratio of Phytantriol/ethanol/water/Vitamine-E acetate as 72:18:5:5 for hexagonal, both loading various drug dosages (2.5%, 3.75% and 5%), respectively. Polarized light microscopy and small angle diffraction confirmed that the precursors were isotropic fluids and transformed into gels with Pn3m or HII framework in water. Rheological studies have shown that precursors belong to Newtonian fluids and gels to pseudoplastic fluids. The release showed that the DS in the commercial injection (DS-inj) was completely liberated within 6 h, whereas only 46.55% and 49.73% of the DS in 2.5% cubic precursors and 2.5% hexagonal precursors were freed, respectively. Pharmacodynamic studies have shown that cubic, hexagonal and DS-inj raised the pain threshold in mice by 169.4%, 157.3% and 113.79%, respectively. The mean retention times of DS in cubic and hexagonal were 3.16 and 2.67 times longer than DS-inj, respectively, according to pharmacokinetic results. CONCLUSION In conclusion, cubic and hexagonal are both promising analgesic sustained release formulations. In addition, based only on the current comparison, cubic seems to have a better long-acting effect.
Collapse
Affiliation(s)
- Wenxuan Cao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jingbao Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Long Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yu Hang Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yun Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiang Li
- Anhui Province Institute for Food and Drug Control, Hefei, Anhui, 230012, China
| | - Zhiyun Zheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM) , Hefei, Anhui, 230012, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM) , Hefei, Anhui, 230012, China.
| |
Collapse
|
10
|
Leu JSL, Teoh JJX, Ling ALQ, Chong J, Loo YS, Mat Azmi ID, Zahid NI, Bose RJC, Madheswaran T. Recent Advances in the Development of Liquid Crystalline Nanoparticles as Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15051421. [PMID: 37242663 DOI: 10.3390/pharmaceutics15051421] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Due to their distinctive structural features, lyotropic nonlamellar liquid crystalline nanoparticles (LCNPs), such as cubosomes and hexosomes, are considered effective drug delivery systems. Cubosomes have a lipid bilayer that makes a membrane lattice with two water channels that are intertwined. Hexosomes are inverse hexagonal phases made of an infinite number of hexagonal lattices that are tightly connected with water channels. These nanostructures are often stabilized by surfactants. The structure's membrane has a much larger surface area than that of other lipid nanoparticles, which makes it possible to load therapeutic molecules. In addition, the composition of mesophases can be modified by pore diameters, thus influencing drug release. Much research has been conducted in recent years to improve their preparation and characterization, as well as to control drug release and improve the efficacy of loaded bioactive chemicals. This article reviews current advances in LCNP technology that permit their application, as well as design ideas for revolutionary biomedical applications. Furthermore, we have provided a summary of the application of LCNPs based on the administration routes, including the pharmacokinetic modulation property.
Collapse
Affiliation(s)
- Jassica S L Leu
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| | - Jasy J X Teoh
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| | - Angel L Q Ling
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| | - Joey Chong
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| | - Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Intan Diana Mat Azmi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noor Idayu Zahid
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Selangor, Malaysia
| | - Rajendran J C Bose
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| |
Collapse
|
11
|
Karimi M, Kamali H, Fakhrmohammadi S, Khezri E, Malaekeh-Nikouei B, Mohammadi M. Prolonged local delivery of doxorubicin to cancer cells using lipid liquid crystalline system. Int J Pharm 2023; 639:122947. [PMID: 37044227 DOI: 10.1016/j.ijpharm.2023.122947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Exploring efficient strategies to eradicate the tumor tissue and enhance patient outcomes still remained a serious challenge. Systemic toxicity of the current chemotherapeutics and their low concentration in the tumor site limited reaching a practical approach in their administration and combinational therapy. Besides, complicated delivery platforms could not receive the marketing approval due to difficulties in scale up procedures. To this aim, we developed a simple injectable local delivery platform which provided a sufficient dose of the chemotherapeutic in the cancerous tissue with sustained release properties. Herein, various injectable in situ forming LLC formulations loaded with doxorubicin (DOX) were developed. Although there were many previous studies on lipid liquid crystal (LLC) based formulations, their performance as an injectable intratumoral depot system for local chemotherapy has not been extensively investigated yet. In the current study we developed 18 formulations of DOX loaded LLCs using Box-Behnken method via different ratios of phosphatidyl choline: sorbitan monooleate (PC: SMO), N-Methyl-2-pyrrolidone (NMP), and tween 80. The physicochemical properties of the formulations were investigated and their in vivo tumor inhibition efficiencies in C26 tumor bearing mouse model was further studied. The results indicated that DOX loaded PC: SMO/NMP/Tween 80 (50:50/50/2 w/w%) and DOX loaded PC: SMO/NMP (50:50/50 w/w%) formulations were syringeable with pseudoplastic behavior. Also, they could release the cargo in a sustained manner for 60 days. Compared to intravascular administration of DOX, intratumoral injection of the developed formulations led to a significant decrease in tumor volume and enhancement of the survival rate in murine tumor model. Additionally, animal imaging studies proved their prolonged accumulation in the tumor site. Histopathological studies showed that treatment with the DOX-loaded LLC formulations did not cause any systemic toxicity to vital organs. Taken together, we believe that the developed simple and efficient local delivery platform can be further used in combinational therapies and treatment of various solid tumors.
Collapse
Affiliation(s)
- Malihe Karimi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Elaheh Khezri
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bizhan Malaekeh-Nikouei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Montanari E, Krupke H, Leroux JC. Engineering Lipid Spherulites for the Sustained Release of Highly Dosed Small Hydrophilic Compounds. Adv Healthc Mater 2023; 12:e2202249. [PMID: 36571233 PMCID: PMC11469156 DOI: 10.1002/adhm.202202249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Currently, there is a lack of parenteral sustained release formulations for the delivery of highly dosed small hydrophilic drugs. Therefore, parenteral lipid spherulites are engineered capable of entrapping large amounts of such compounds and spontaneously releasing them in a sustained fashion. A library of spherulites is prepared with a simple green process, using phosphatidylcholine (PC) and/or phosphatidylethanolamine (PE), nonionic surfactants and water. The vesicle formulations exhibiting appropriate size distribution and morphology are selected and loaded with 4,6-di-O-(methoxy-diethyleneglycol)-myo-inositol-1,2,3,5-tetrakis(phosphate), ((OEG2 )2 -IP4), an inositol phosphate derivative currently under clinical evaluation for the treatment of aortic valve stenosis. The loading efficiency of spherulites is up to 12.5-fold higher than that of liposomes produced with the same materials. While the PC-containing vesicles showed high stability, the PE spherulites gradually lost their multilayer organization upon dilution, triggering the active pharmaceutical ingredient (API) release over time. In vitro experiments and pharmacokinetic studies in rats demonstrated the ability of PE spherulites to increase the systemic exposure of (OEG2 )2 -IP4 up to 3.1-fold after subcutaneous injection, and to completely release their payload within 3-4 d. In conclusion, PE spherulites represent a promising lipid platform for the extravascular parenteral administration of highly dosed small hydrophilic drugs.
Collapse
Affiliation(s)
- Elita Montanari
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, 8093, Switzerland
| | - Hanna Krupke
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, 8093, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, 8093, Switzerland
| |
Collapse
|
13
|
Chavda VP, Dawre S, Pandya A, Vora LK, Modh DH, Shah V, Dave DJ, Patravale V. Lyotropic liquid crystals for parenteral drug delivery. J Control Release 2022; 349:533-549. [PMID: 35792188 DOI: 10.1016/j.jconrel.2022.06.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
Abstract
The necessity for long-term treatments of chronic diseases has encouraged the development of novel long-acting parenteral formulations intending to improve drug pharmacokinetics and therapeutic efficacy. Lately, one of the novel approaches has been developed based on lipid-based liquid crystals. The lyotropic liquid crystal (LLC) systems consist of amphiphilic molecules and are formed in presence of solvents with the most common types being cubic, hexagonal and lamellar mesophases. LC injectables have been recently developed based on polar lipids that spontaneously form liquid crystal nanoparticles in aqueous tissue environments to create the in-situ long-acting sustained-release depot to provide treatment efficacy over extended periods. In this manuscript, we have consolidated and summarized the various type of liquid crystals, recent formulation advancements, analytical evaluation, and therapeutic application of lyotropic liquid crystals in the field of parenteral sustained release drug delivery.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380009, India; Department of Pharmaceutics & Pharm, Technology, K. B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, Gujarat, India.
| | - Shilpa Dawre
- Department of Pharmaceutics, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Shirpur, India
| | - Anjali Pandya
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK.
| | - Dharti H Modh
- Department of Medicinal Chemistry, Bharati Vidyapeeth's Poona College of Pharmacy, Pune, India
| | - Vidhi Shah
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380009, India
| | - Divyang J Dave
- Department of Pharmaceutics & Pharm, Technology, K. B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, Gujarat, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India
| |
Collapse
|
14
|
Tijani AO, Garg J, Frempong D, Verana G, Kaur J, Joga R, Sabanis CD, Kumar S, Kumar N, Puri A. Sustained drug delivery strategies for treatment of common substance use disorders: Promises and challenges. J Control Release 2022; 348:970-1003. [PMID: 35752256 DOI: 10.1016/j.jconrel.2022.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
Substance use disorders (SUDs) are a leading cause of death and other ill health effects in the United States and other countries in the world. Several approaches ranging from detoxification, behavioral therapy, and the use of antagonists or drugs with counter effects are currently being applied for its management. Amongst these, drug therapy is the mainstay for some drug abuse incidences, as is in place specifically for opioid abuse or alcohol dependence. The severity of the havocs observed with the SUDs has triggered constant interest in the discovery and development of novel medications as well as suitable or most appropriate methods for the delivery of these agents. The chronic need of such drugs in users warrants the need for their prolonged or sustained systemic availability. Further, the need to improve patient tolerance to medication, limit invasive drug use and overall treatment outcome are pertinent considerations for embracing sustained release designs for medications used in managing SUDs. This review aims to provide an overview on up-to-date advances made with regards to sustained delivery systems for the drugs for treatment of different types of SUDs such as opioid, alcohol, tobacco, cocaine, and cannabis use disorders. The clinical relevance, promises and the limitations of deployed sustained release approaches along with future opportunities are discussed.
Collapse
Affiliation(s)
- Akeemat O Tijani
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Jivesh Garg
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Dorcas Frempong
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Gabrielle Verana
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Jagroop Kaur
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Ramesh Joga
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Chetan D Sabanis
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Sandeep Kumar
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Neeraj Kumar
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
15
|
A sustain-release lipid-liquid crystal containing risperidone based on glycerol monooleate, glycerol dioleate, and glycerol trioleate: In-vitro evaluation and pharmacokinetics in rabbits. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|