1
|
Ye D, Wang P, Chen LL, Guan KL, Xiong Y. Itaconate in host inflammation and defense. Trends Endocrinol Metab 2024; 35:586-606. [PMID: 38448252 DOI: 10.1016/j.tem.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 03/08/2024]
Abstract
Immune cells undergo rapid and extensive metabolic changes during inflammation. In addition to contributing to energetic and biosynthetic demands, metabolites can also function as signaling molecules. Itaconate (ITA) rapidly accumulates to high levels in myeloid cells under infectious and sterile inflammatory conditions. This metabolite binds to and regulates the function of diverse proteins intracellularly to influence metabolism, oxidative response, epigenetic modification, and gene expression and to signal extracellularly through binding the G protein-coupled receptor (GPCR). Administration of ITA protects against inflammatory diseases and blockade of ITA production enhances antitumor immunity in preclinical models. In this article, we review ITA metabolism and its regulation, discuss its target proteins and mechanisms, and conjecture a rationale for developing ITA-based therapeutics to treat inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Dan Ye
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Pu Wang
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lei-Lei Chen
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Kun-Liang Guan
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yue Xiong
- Cullgen Inc., 12730 High Bluff Drive, San Diego, CA 92130, USA.
| |
Collapse
|
2
|
Zahid A, Wilson JC, Grice ID, Peak IR. Otitis media: recent advances in otitis media vaccine development and model systems. Front Microbiol 2024; 15:1345027. [PMID: 38328427 PMCID: PMC10847372 DOI: 10.3389/fmicb.2024.1345027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Otitis media is an inflammatory disorder of the middle ear caused by airways-associated bacterial or viral infections. It is one of the most common childhood infections as globally more than 80% of children are diagnosed with acute otitis media by 3 years of age and it is a common reason for doctor's visits, antibiotics prescriptions, and surgery among children. Otitis media is a multifactorial disease with various genetic, immunologic, infectious, and environmental factors predisposing children to develop ear infections. Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis are the most common culprits responsible for acute otitis media. Despite the massive global disease burden, the pathogenesis of otitis media is still unclear and requires extensive future research. Antibiotics are the preferred treatment to cure middle ear infections, however, the antimicrobial resistance rate of common middle ear pathogens has increased considerably over the years. At present, pneumococcal and influenza vaccines are administered as a preventive measure against otitis media, nevertheless, these vaccines are only beneficial in preventing carriage and/or disease caused by vaccine serotypes. Otitis media caused by non-vaccine serotype pneumococci, non-typeable H. influenza, and M. catarrhalis remain an important healthcare burden. The development of multi-species vaccines is an arduous process but is required to reduce the global burden of this disease. Many novel vaccines against S. pneumoniae, non-typeable H. influenza, and M. catarrhalis are in preclinical trials. It is anticipated that these vaccines will lower the disease burden and provide better protection against otitis media. To study disease pathology the rat, mouse, and chinchilla are commonly used to induce experimental acute otitis media to test new therapeutics, including antibiotics and vaccines. Each of these models has its advantages and disadvantages, yet there is still a need to develop an improved animal model providing a better correlated mechanistic understanding of human middle ear infections, thereby underpinning the development of more effective otitis media therapeutics. This review provides an updated summary of current vaccines against otitis media, various animal models of otitis media, their limitations, and some future insights in this field providing a springboard in the development of new animal models and novel vaccines for otitis media.
Collapse
Affiliation(s)
- Ayesha Zahid
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Jennifer C. Wilson
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - I. Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Ian R. Peak
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
3
|
Zeng YR, Song JB, Wang D, Huang ZX, Zhang C, Sun YP, Shu G, Xiong Y, Guan KL, Ye D, Wang P. The immunometabolite itaconate stimulates OXGR1 to promote mucociliary clearance during the pulmonary innate immune response. J Clin Invest 2023; 133:160463. [PMID: 36919698 PMCID: PMC10014103 DOI: 10.1172/jci160463] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 01/25/2023] [Indexed: 03/16/2023] Open
Abstract
Pathogens and inflammatory conditions rapidly induce the expression of immune-responsive gene 1 (IRG1) in cells of myeloid lineage. IRG1 encodes an aconitate decarboxylase (ACOD1) that produces the immunomodulatory metabolite itaconate (ITA). In addition to rapid intracellular accumulation, ITA is also secreted from the cell, but whether secreted ITA functions as a signaling molecule is unclear. Here, we identified ITA as an orthosteric agonist of the GPCR OXGR1, with an EC50 of approximately 0.3 mM, which was in the same range as the physiological concentration of extracellular ITA upon macrophage activation. ITA activated OXGR1 to induce Ca2+ mobilization, ERK phosphorylation, and endocytosis of the receptor. In a mouse model of pulmonary infection with bacterial Pseudomonas aeruginosa, ITA stimulated Oxgr1-dependent mucus secretion and transport in respiratory epithelium, the primary innate defense mechanism of the airway. Our study thus identifies ITA as a bona fide ligand for OXGR1 and the ITA/OXGR1 paracrine signaling pathway during the pulmonary innate immune response.
Collapse
Affiliation(s)
- Yi-Rong Zeng
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jun-Bin Song
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Dezheng Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zi-Xuan Huang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Cheng Zhang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yi-Ping Sun
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Gang Shu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yue Xiong
- Cullgen Inc., San Diego, California, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, UCSD, La Jolla, California, USA
| | - Dan Ye
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Pu Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
4
|
Oppel N, Ezzat M, Krüger P, Schmitt K, Napp A, Pohl F, Bleich A, Lenarz T, Stein T, Paasche G, Schuon R. Development of an In Vivo Model for Eustachian Tube Dysfunction. Bioengineering (Basel) 2022; 9:317. [PMID: 35877368 PMCID: PMC9311709 DOI: 10.3390/bioengineering9070317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022] Open
Abstract
Otitis media is often connected to Eustachian tube dysfunction (ETD). Until now, there was no large animal model available for the examination of new treatment methods such as stents for the Eustachian tube (ET). Thus, the aim of the study was to develop a method to reproducibly induce ETD by injection of fillers and without permanent closure of the ET. Tools for safe injection of hyaluronic acid (HA) in the surrounding of the ET were developed. In ex vivo experiments, HA mixed with Imeron® was injected close to the nasopharyngeal orifice of the ET of blackface sheep. The established depot was visualized using cone beam computer tomography and magnetic resonance imaging, and stents could be placed into the ET. A reliable position of the HA depot was achieved. This method was transferred to in vivo, and middle ear ventilation was investigated by tympanometry. ETD was achieved with amounts of 2.5 mL HA or higher. None of the animals showed any sign of discomfort or complications. The induced ETD lasted for 3 to 13 (maximum observation period) weeks and was also combined with middle ear effusion. A model of ETD based on injection of HA next to the ET was successfully established and is now available to test novel treatment options for ET functionality.
Collapse
Affiliation(s)
- Niels Oppel
- Department of Otorhinolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (N.O.); (M.E.); (K.S.); (A.N.); (F.P.); (T.L.); (R.S.)
| | - Malena Ezzat
- Department of Otorhinolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (N.O.); (M.E.); (K.S.); (A.N.); (F.P.); (T.L.); (R.S.)
| | - Philipp Krüger
- bess pro GmbH, Gustav-Krone-Str. 7, 14167 Berlin, Germany; (P.K.); (T.S.)
| | - Katharina Schmitt
- Department of Otorhinolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (N.O.); (M.E.); (K.S.); (A.N.); (F.P.); (T.L.); (R.S.)
| | - Alexandra Napp
- Department of Otorhinolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (N.O.); (M.E.); (K.S.); (A.N.); (F.P.); (T.L.); (R.S.)
| | - Friederike Pohl
- Department of Otorhinolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (N.O.); (M.E.); (K.S.); (A.N.); (F.P.); (T.L.); (R.S.)
| | - Andre Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany;
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (N.O.); (M.E.); (K.S.); (A.N.); (F.P.); (T.L.); (R.S.)
- Cluster of Excellence Hearing4all, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Tobias Stein
- bess pro GmbH, Gustav-Krone-Str. 7, 14167 Berlin, Germany; (P.K.); (T.S.)
| | - Gerrit Paasche
- Department of Otorhinolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (N.O.); (M.E.); (K.S.); (A.N.); (F.P.); (T.L.); (R.S.)
- Cluster of Excellence Hearing4all, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Robert Schuon
- Department of Otorhinolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (N.O.); (M.E.); (K.S.); (A.N.); (F.P.); (T.L.); (R.S.)
| |
Collapse
|
5
|
Elling CL, Scholes MA, Streubel SO, Larson ED, Wine TM, Bootpetch TC, Yoon PJ, Kofonow JM, Gubbels SP, Cass SP, Robertson CE, Jenkins HA, Prager JD, Frank DN, Chan KH, Friedman NR, Ryan AF, Santos-Cortez RLP. The FUT2 Variant c.461G>A (p.Trp154*) Is Associated With Differentially Expressed Genes and Nasopharyngeal Microbiota Shifts in Patients With Otitis Media. Front Cell Infect Microbiol 2022; 11:798246. [PMID: 35096646 PMCID: PMC8798324 DOI: 10.3389/fcimb.2021.798246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022] Open
Abstract
Otitis media (OM) is a leading cause of childhood hearing loss. Variants in FUT2, which encodes alpha-(1,2)-fucosyltransferase, were identified to increase susceptibility to OM, potentially through shifts in the middle ear (ME) or nasopharyngeal (NP) microbiotas as mediated by transcriptional changes. Greater knowledge of differences in relative abundance of otopathogens in carriers of pathogenic variants can help determine risk for OM in patients. In order to determine the downstream effects of FUT2 variation, we examined gene expression in relation to carriage of a common pathogenic FUT2 c.461G>A (p.Trp154*) variant using RNA-sequence data from saliva samples from 28 patients with OM. Differential gene expression was also examined in bulk mRNA and single-cell RNA-sequence data from wildtype mouse ME mucosa after inoculation with non-typeable Haemophilus influenzae (NTHi). In addition, microbiotas were profiled from ME and NP samples of 65 OM patients using 16S rRNA gene sequencing. In human carriers of the FUT2 variant, FN1, KMT2D, MUC16 and NBPF20 were downregulated while MTAP was upregulated. Post-infectious expression in the mouse ME recapitulated these transcriptional differences, with the exception of Fn1 upregulation after NTHi-inoculation. In the NP, Candidate Division TM7 was associated with wildtype genotype (FDR-adj-p=0.009). Overall, the FUT2 c.461G>A variant was associated with transcriptional changes in processes related to response to infection and with increased load of potential otopathogens in the ME and decreased commensals in the NP. These findings provide increased understanding of how FUT2 variants influence gene transcription and the mucosal microbiota, and thus contribute to the pathology of OM.
Collapse
Affiliation(s)
- Christina L. Elling
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Melissa A. Scholes
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatric Otolaryngology, Children’s Hospital Colorado, Aurora, CO, United States
| | - Sven-Olrik Streubel
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatric Otolaryngology, Children’s Hospital Colorado, Aurora, CO, United States
| | - Eric D. Larson
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Todd M. Wine
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatric Otolaryngology, Children’s Hospital Colorado, Aurora, CO, United States
| | - Tori C. Bootpetch
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Patricia J. Yoon
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatric Otolaryngology, Children’s Hospital Colorado, Aurora, CO, United States
| | - Jennifer M. Kofonow
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Samuel P. Gubbels
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Stephen P. Cass
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Charles E. Robertson
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Herman A. Jenkins
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeremy D. Prager
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatric Otolaryngology, Children’s Hospital Colorado, Aurora, CO, United States
| | - Daniel N. Frank
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kenny H. Chan
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatric Otolaryngology, Children’s Hospital Colorado, Aurora, CO, United States
| | - Norman R. Friedman
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatric Otolaryngology, Children’s Hospital Colorado, Aurora, CO, United States
| | - Allen F. Ryan
- Division of Otolaryngology, Department of Surgery, San Diego School of Medicine and Veterans Affairs Medical Center, University of California, La Jolla, CA, United States
| | - Regie Lyn P. Santos-Cortez
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Center for Children’s Surgery, Children’s Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
6
|
Mulay A, Chowdhury MMK, James CT, Bingle L, Bingle CD. The transcriptional landscape of the cultured murine middle ear epithelium in vitro. Biol Open 2021; 10:258492. [PMID: 33913472 PMCID: PMC8084567 DOI: 10.1242/bio.056564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/10/2021] [Indexed: 11/24/2022] Open
Abstract
Otitis media (OM) is the most common paediatric disease and leads to significant morbidity. Although understanding of underlying disease mechanisms is hampered by complex pathophysiology, it is clear that epithelial abnormalities underpin the disease. The mechanisms underpinning epithelial remodelling in OM remain unclear. We recently described a novel in vitro model of mouse middle ear epithelial cells (mMEECs) that undergoes mucociliary differentiation into the varied epithelial cell populations seen in the middle ear cavity. We now describe genome wide gene expression profiles of mMEECs as they undergo differentiation. We compared the gene expression profiles of original (uncultured) middle ear cells, confluent cultures of undifferentiated cells and cells that had been differentiated for 7 days at an air liquid interface (ALI). >5000 genes were differentially expressed among the three groups of cells. Approximately 4000 genes were differentially expressed between the original cells and day 0 of ALI culture. The original cell population was shown to contain a mix of cell types, including contaminating inflammatory cells that were lost on culture. Approximately 500 genes were upregulated during ALI induced differentiation. These included some secretory genes and some enzymes but most were associated with the process of ciliogenesis. The data suggest that the in vitro model of differentiated murine middle ear epithelium exhibits a transcriptional profile consistent with the mucociliary epithelium seen within the middle ear. Knowledge of the transcriptional landscape of this epithelium will provide a basis for understanding the phenotypic changes seen in murine models of OM. Summary: This paper presents a genome wide transcriptional analysis of murine middle ear epithelial cells as they undergo differentiation to a mucociliary phenotype representative of the native middle ear epithelium.
Collapse
Affiliation(s)
- Apoorva Mulay
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK
| | - Md Miraj K Chowdhury
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK
| | - Cameron T James
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK
| | - Lynne Bingle
- Oral and Maxillofacial Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Colin D Bingle
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK.,The Florey Institute for Host Pathogen Interactions, University of Sheffield, Sheffield S102TN, UK
| |
Collapse
|
7
|
Stabenau KA, Zimmermann MT, Mathison A, Zeighami A, Samuels TL, Chun RH, Papsin BC, McCormick ME, Johnston N, Kerschner JE. RNA Sequencing and Pathways Analyses of Middle Ear Epithelia From Patients With Otitis Media. Laryngoscope 2021; 131:2590-2597. [PMID: 33844317 DOI: 10.1002/lary.29551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Otitis media (OM) is the most common pediatric diagnosis in the United States. However, our understanding of the molecular pathogenesis of OM remains relatively poor. Investigation of molecular pathways involved in OM may improve the understanding of this disease process and elucidate novel therapeutic targets. In this study, RNA sequencing (RNA-Seq) was used to discern cellular changes associated with OME compared to healthy middle ear epithelium (MEE). STUDY DESIGN Ex vivo case-control translational. METHODS Middle ear epithelia was collected from five pediatric patients diagnosed with OME undergoing tympanostomy tube placement and five otherwise healthy pediatric patients undergoing cochlear implantation. Specimens underwent RNA-Seq and pathways analyses. RESULTS A total of 1,292 genes exhibited differential expression in MEE from OME patients compared to controls including genes involved in inflammation, immune response to bacterial OM pathogens, mucociliary clearance, regulation of proliferation and transformation, and auditory cell differentiation. Top networks identified in OME were organismal injury and abnormalities, cell morphology, and auditory disease. Top Ingenuity canonical pathways identified were axonal guidance signaling, which contains genes associated with auditory development and disease and nicotine degradation II and III pathways. Associated upstream regulators included β-estradiol, dexamethasone, and G-protein-coupled estrogen receptor-1 (GPER1), which are associated with otoprotection or inflammation during insult. CONCLUSIONS RNA-Seq demonstrates differential gene expression in MEE from patients with OME compared to healthy controls with important implications for infection susceptibility, hearing loss, and a role for tobacco exposure in the development and/or severity of OME in pediatric patients. LEVEL OF EVIDENCE 4 Laryngoscope, 2021.
Collapse
Affiliation(s)
- Kaleigh A Stabenau
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A.,Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Angela Mathison
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Atefeh Zeighami
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Tina L Samuels
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Robert H Chun
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Blake C Papsin
- Archie's Cochlear Implant Laboratory, Department of Otolaryngology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael E McCormick
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Nikki Johnston
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Joseph E Kerschner
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| |
Collapse
|
8
|
Bodmer D, Kern P, Bächinger D, Monge Naldi A, Levano Huaman S. STAT1 deficiency predisposes to spontaneous otitis media. PLoS One 2020; 15:e0239952. [PMID: 32991625 PMCID: PMC7523960 DOI: 10.1371/journal.pone.0239952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/15/2020] [Indexed: 01/19/2023] Open
Abstract
Signal transducer and activator of transcription 1 (STAT1) is known to be an important player in inflammatory responses. STAT1 as a transcription factor regulates the expression of multiple proinflammatory genes. Inflammatory response is one of the common effects of ototoxicity. Our group reported that hair cells of STAT1 knockout (STAT1-KO) mice are less sensitive to ototoxic agents in-vitro. The effect of inflammatory responses in STAT1-KO mice has primarily been studied challenging them with several pathogens and analyzing different organs of those mice. However, the effect of STAT1 ablation in the mouse inner ear has not been reported. Therefore, we evaluated the cochlear function of wild type and STAT1-KO mice via auditory brain stem response (ABR) and performed histopathologic analysis of their temporal bones. We found ABR responses were affected in STAT1-KO mice with cases of bilateral and unilateral hearing impairment. Histopathologic examination of the middle and inner ears showed bilateral and unilateral otitis media. Otitis media was characterized by effusion of middle and inner ear that varied between the mice in volume and inflammatory cell content. In addition, the thickness of the middle ear mucosae in STAT1-KO mice were more pronounced than those in wild type mice. The degree of middle and inner ear inflammation correlated with ABR threshold elevation in STAT1-KO mice. It appears that a number of mice with inflammation underwent spontaneous resolution. The ABR thresholds were variable and showed a tendency to increase in homozygous and heterozygous STAT1-KO mice. These findings suggest that STAT1 ablation confers an increased susceptibility to otitis media leading to hearing impairment. Thus, the study supports the new role of STAT1 as otitis media predisposition gene.
Collapse
Affiliation(s)
- Daniel Bodmer
- Department of Biomedicine and Clinic for Otolaryngology, Head and Neck Surgery, University Basel Hospital, Basel, Switzerland
| | - Peter Kern
- Department of Biomedicine and Clinic for Otolaryngology, Head and Neck Surgery, University Basel Hospital, Basel, Switzerland
| | - David Bächinger
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Arianne Monge Naldi
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Soledad Levano Huaman
- Department of Biomedicine and Clinic for Otolaryngology, Head and Neck Surgery, University Basel Hospital, Basel, Switzerland
- * E-mail:
| |
Collapse
|
9
|
Giese APJ, Ali S, Isaiah A, Aziz I, Riazuddin S, Ahmed ZM. Genomics of Otitis Media (OM): Molecular Genetics Approaches to Characterize Disease Pathophysiology. Front Genet 2020; 11:313. [PMID: 32391049 PMCID: PMC7191070 DOI: 10.3389/fgene.2020.00313] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Otitis media (OM) is an infective and inflammatory disorder known to be a major cause of hearing impairment across all age groups. Both acute and chronic OM result in substantial healthcare utilization related to antibiotic prescription and surgical procedures necessary for its management. Although several studies provided evidence of genetics playing a significant role in the susceptibility to OM, we had limited knowledge about the genes associated with OM until recently. Here we have summarized the known genetic factors that confer susceptibility to various forms of OM in mice and in humans and their genetic load, along with associated cellular signaling pathways. Spotlighted in this review are fucosyltransferase (FUT) enzymes, which have been implicated in the pathogenesis of OM. A comprehensive understanding of the functions of OM-associated genes may provide potential opportunities for its diagnosis and treatment.
Collapse
Affiliation(s)
- Arnaud P. J. Giese
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Saadat Ali
- The Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Amal Isaiah
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ishrat Aziz
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| | - Saima Riazuddin
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Zubair M. Ahmed
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
Sasaki F, Yokomizo T. The leukotriene receptors as therapeutic targets of inflammatory diseases. Int Immunol 2020; 31:607-615. [PMID: 31135881 DOI: 10.1093/intimm/dxz044] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
Leukotrienes (LTs) are inflammatory mediators derived from arachidonic acid. LTs include the di-hydroxy acid LT (LTB4) and the cysteinyl LTs (CysLTs; LTC4, LTD4 and LTE4), all of which are involved in both acute and chronic inflammation. We and other groups identified a high-affinity LTB4 receptor, BLT1; the LTC4 and LTD4 receptors, CysLT1 and CysLT2; and the LTE4 receptor, GPR99. Pharmacological studies have shown that BLT1 signaling stimulates degranulation, chemotaxis and phagocytosis of neutrophils, whereas CysLT1 and CysLT2 signaling induces airway inflammation by increasing vascular permeability and the contraction of bronchial smooth muscle. Recently, we and other groups suggested that the LTB4-BLT1 axis and the cysteinyl LTs-CysLT1/2 axis are involved in chronic inflammatory diseases including asthma, atopic dermatitis, psoriasis, atherosclerosis, arthritis, obesity, cancer and age-related macular degeneration using animal models for disease and gene knockout mice. This review describes the classical and novel functions of LTs and their receptors in several inflammatory diseases and discusses the potential clinical applications of antagonists for LT receptors and inhibitors of LT biosynthesis.
Collapse
Affiliation(s)
- Fumiyuki Sasaki
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
11
|
Yuan Y, Xu P, Jiang Q, Cai X, Wang T, Peng W, Sun J, Zhu C, Zhang C, Yue D, He Z, Yang J, Zeng Y, Du M, Zhang F, Ibrahimi L, Schaul S, Jiang Y, Wang J, Sun J, Wang Q, Liu L, Wang S, Wang L, Zhu X, Gao P, Xi Q, Yin C, Li F, Xu G, Zhang Y, Shu G. Exercise-induced α-ketoglutaric acid stimulates muscle hypertrophy and fat loss through OXGR1-dependent adrenal activation. EMBO J 2020; 39:e103304. [PMID: 32104923 PMCID: PMC7110140 DOI: 10.15252/embj.2019103304] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 12/24/2022] Open
Abstract
Beneficial effects of resistance exercise on metabolic health and particularly muscle hypertrophy and fat loss are well established, but the underlying chemical and physiological mechanisms are not fully understood. Here, we identified a myometabolite‐mediated metabolic pathway that is essential for the beneficial metabolic effects of resistance exercise in mice. We showed that substantial accumulation of the tricarboxylic acid cycle intermediate α‐ketoglutaric acid (AKG) is a metabolic signature of resistance exercise performance. Interestingly, human plasma AKG level is also negatively correlated with BMI. Pharmacological elevation of circulating AKG induces muscle hypertrophy, brown adipose tissue (BAT) thermogenesis, and white adipose tissue (WAT) lipolysis in vivo. We further found that AKG stimulates the adrenal release of adrenaline through 2‐oxoglutarate receptor 1 (OXGR1) expressed in adrenal glands. Finally, by using both loss‐of‐function and gain‐of‐function mouse models, we showed that OXGR1 is essential for AKG‐mediated exercise‐induced beneficial metabolic effects. These findings reveal an unappreciated mechanism for the salutary effects of resistance exercise, using AKG as a systemically derived molecule for adrenal stimulation of muscle hypertrophy and fat loss.
Collapse
Affiliation(s)
- Yexian Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Qingyan Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xingcai Cai
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tao Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wentong Peng
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiajie Sun
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Canjun Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Cha Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Dong Yue
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhihui He
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinping Yang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yuxian Zeng
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Man Du
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fenglin Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lucas Ibrahimi
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Sarah Schaul
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, USA
| | - Jiqiu Wang
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Sun
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qiaoping Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University Guangzhou, Guangzhou, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Songbo Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lina Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaotong Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ping Gao
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Cong Yin
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fan Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guli Xu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Mittal R, Sanchez-Luege SV, Wagner SM, Yan D, Liu XZ. Recent Perspectives on Gene-Microbe Interactions Determining Predisposition to Otitis Media. Front Genet 2019; 10:1230. [PMID: 31850076 PMCID: PMC6901973 DOI: 10.3389/fgene.2019.01230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/06/2019] [Indexed: 01/15/2023] Open
Abstract
A comprehensive understanding about the pathogenesis of otitis media (OM), one of the most common pediatric diseases, has the potential to alleviate a substantial disease burden across the globe. Advancements in genetic and bioinformatic detection methods, as well as a growing interest in the microbiome, has enhanced the capability of researchers to investigate the interplay between host genes, host microbiome, invading bacteria, and resulting OM susceptibility. Early studies deciphering the role of genetics in OM susceptibility assessed the heritability of the phenotype in twin and triplet studies, followed by linkage studies, candidate gene approaches, and genome-wide association studies that have helped in the identification of specific loci. With the advancements in techniques, various chromosomal regions and genes such as FBXO11, TGIF1, FUT2, FNDC1, and others have been implicated in predisposition to OM, yet questions still remain as to whether these implicated genes truly play a causative role in OM and to what extent. Meanwhile, 16S ribosomal RNA (rRNA) sequencing, microbial quantitative trait loci (mbQTL), and microbial genome-wide association studies (mGWAS) have mapped the microbiome of upper airways sites and therefore helped in enabling a more detailed study of interactions between host polymorphisms and host microbiome composition. Variants of specific genes conferring increased OM susceptibility, such as A2ML1, have also been shown to influence the microbial composition of the outer and middle ear in patients with OM, suggesting their role as mediators of disease. These interactions appear to impact the colonization of known otopathogens (Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis), as well as Neisseria, Gemella, Porphyromonas, Alloprevotella, and Fusobacterium populations that have also been implicated in OM pathogenesis. Meanwhile, studies demonstrating an increased abundance of Dolosigranulum and Corynebacterium in healthy patients compared to those with OM suggest a protective role for these bacteria, thereby introducing potential avenues for future probiotic treatment. Incorporating insights from these genetic, microbiome, and host-pathogen studies will allow for a more robust, comprehensive understanding of OM pathogenesis that can ultimately facilitate in the development of exciting new treatment modalities.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sebastian V Sanchez-Luege
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Shannon M Wagner
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States.,Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
13
|
Abdellatif AM, Jensen Smith H, Harms RZ, Sarvetnick NE. Human Islet Response to Selected Type 1 Diabetes-Associated Bacteria: A Transcriptome-Based Study. Front Immunol 2019; 10:2623. [PMID: 31781116 PMCID: PMC6857727 DOI: 10.3389/fimmu.2019.02623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease that results from destruction of pancreatic β-cells. T1D subjects were recently shown to harbor distinct intestinal microbiome profiles. Based on these findings, the role of gut bacteria in T1D is being intensively investigated. The mechanism connecting intestinal microbial homeostasis with the development of T1D is unknown. Specific gut bacteria such as Bacteroides dorei (BD) and Ruminococcus gnavus (RG) show markedly increased abundance prior to the development of autoimmunity. One hypothesis is that these bacteria might traverse the damaged gut barrier, and their constituents elicit a response from human islets that causes metabolic abnormalities and inflammation. We have tested this hypothesis by exposing human islets to BD and RG in vitro, after which RNA-Seq analysis was performed. The bacteria altered expression of many islet genes. The commonly upregulated genes by these bacteria were cytokines, chemokines and enzymes, suggesting a significant effect of gut bacteria on islet antimicrobial and biosynthetic pathways. Additionally, each bacteria displayed a unique set of differentially expressed genes (DEGs). Ingenuity pathway analysis of DEGs revealed that top activated pathways and diseases included TREM1 signaling and inflammatory response, illustrating the ability of bacteria to induce islet inflammation. The increased levels of selected factors were confirmed using immunoblotting and ELISA methods. Our data demonstrate that islets produce a complex anti-bacterial response. The response includes both symbiotic and pathogenic aspects. Both oxidative damage and leukocyte recruitment factors were prominent, which could induce beta cell damage and subsequent autoimmunity.
Collapse
Affiliation(s)
- Ahmed M. Abdellatif
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Heather Jensen Smith
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, United States
| | - Robert Z. Harms
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States
| | - Nora E. Sarvetnick
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
14
|
Wang Q, Zhang Q, Zhang Y, Zhao X. Yak OXGR1 promotes fibroblast proliferation via the PI3K/AKT pathways. J Cell Biochem 2018; 120:6729-6740. [PMID: 30520130 DOI: 10.1002/jcb.27970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
Oxoglutarate receptor 1 (OXGR1), as one of the intermediates in G protein-coupled receptors (GPCRs), plays a crucial role in the citric acid cycle receptor of α-ketoglutarate and metabolism. GPCR can control the cell proliferation by regulating the downstream signaling of G protein signaling pathways. The PI3K/AKT pathway transmits the downstream signals of GPCRs and receptor tyrosine kinases. However, the specific role of OXGR1 promoting cell proliferation and differentiation are still unknown. In current study, the over-expression vector and knockdown sequence of yak OXGR1 were transfected into yak fibroblasts, and the effects were detected by a series of assays. The results revealed that OXGR1 expression in yak lung parenchyma tissue was significantly higher than that of other tissues. In yak fibroblasts, the upregulated expression of OXGR1 resulted in activating the PIK3CG (downstream signal) of the PI3K/AKT1 pathway that can upregulated the expression of proliferation genes ( CDK1, PCNA, and CyclinD1) and promote cell proliferation. Conversely, the downregulated expression of OXGR1 inhibited cell proliferation via PI3K/AKT1 pathway. Cell cycle and cell proliferation assays demonstrated that over-expression of OXGR1 can enhanced the DNA synthesis and promoted yak fibroblasts proliferation. While the conversely, knockdown of OXGR1 can decreased DNA synthesis and inhibited cell proliferation. These results illustrated that changes of OXGR1 expression can trigger the fibroblasts proliferation via PI3K/AKT signaling pathway, which indicating that OXGR1 is a novel regulator for cell proliferation and differentiation. Furthermore, these results provide evidence supporting the functional role of GPCRs-PI3K-AKT1 and OXGR1 in cell proliferation.
Collapse
Affiliation(s)
- Qi Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Quanwei Zhang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China.,College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China.,College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
| |
Collapse
|
15
|
Bhutta MF, Thornton RB, Kirkham LAS, Kerschner JE, Cheeseman MT. Understanding the aetiology and resolution of chronic otitis media from animal and human studies. Dis Model Mech 2018; 10:1289-1300. [PMID: 29125825 PMCID: PMC5719252 DOI: 10.1242/dmm.029983] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Inflammation of the middle ear, known clinically as chronic otitis media, presents in different forms, such as chronic otitis media with effusion (COME; glue ear) and chronic suppurative otitis media (CSOM). These are highly prevalent diseases, especially in childhood, and lead to significant morbidity worldwide. However, much remains unclear about this disease, including its aetiology, initiation and perpetuation, and the relative roles of mucosal and leukocyte biology, pathogens, and Eustachian tube function. Chronic otitis media is commonly modelled in mice but most existing models only partially mimic human disease and many are syndromic. Nevertheless, these models have provided insights into potential disease mechanisms, and have implicated altered immune signalling, mucociliary function and Eustachian tube function as potential predisposing mechanisms. Clinical studies of chronic otitis media have yet to implicate a particular molecular pathway or mechanism, and current human genetic studies are underpowered. We also do not fully understand how existing interventions, such as tympanic membrane repair, work, nor how chronic otitis media spontaneously resolves. This Clinical Puzzle article describes our current knowledge of chronic otitis media and the existing research models for this condition. It also identifies unanswered questions about its pathogenesis and treatment, with the goal of advancing our understanding of this disease to aid the development of novel therapeutic interventions. Summary: Chronic middle ear inflammation is a common disease. Animal models, and in particular mouse models, have been used to elucidate some potential mechanisms, including dysfunction in immune signalling, mucociliary function or Eustachian tube function.
Collapse
Affiliation(s)
- Mahmood F Bhutta
- Department of ENT, Brighton and Sussex University Hospitals NHS Trust, Brighton, BN2 5BE, England .,Division of Paediatrics, University of Western Australia, Subiaco, WA 6008, Australia
| | - Ruth B Thornton
- Division of Paediatrics, University of Western Australia, Subiaco, WA 6008, Australia.,Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Subiaco, WA 6008, Australia
| | - Lea-Ann S Kirkham
- Division of Paediatrics, University of Western Australia, Subiaco, WA 6008, Australia.,Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Subiaco, WA 6008, Australia
| | - Joseph E Kerschner
- Office of the Dean, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael T Cheeseman
- Division of Developmental Biology, Roslin Institute, University of Edinburgh, Midlothian, EH23 9RG, Scotland
| |
Collapse
|
16
|
Lin J, Hafrén H, Kerschner J, Jian-Dong L, Brown S, Zheng QY, Preciado D, Nakamura Y, Huang Q, Zhang Y. Panel 3: Genetics and Precision Medicine of Otitis Media. Otolaryngol Head Neck Surg 2017; 156:S41-S50. [PMID: 28372532 PMCID: PMC6211190 DOI: 10.1177/0194599816685559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/01/2016] [Indexed: 12/31/2022]
Abstract
Objective The objective is to perform a comprehensive review of the literature up to 2015 on the genetics and precision medicine relevant to otitis media. Data Sources PubMed database of the National Library of Medicine. Review Methods Two subpanels were formed comprising experts in the genetics and precision medicine of otitis media. Each of the panels reviewed the literature in their respective fields and wrote draft reviews. The reviews were shared with all panel members, and a merged draft was created. The entire panel met at the 18th International Symposium on Recent Advances in Otitis Media in June 2015 and discussed the review and refined the content. A final draft was made, circulated, and approved by the panel members. Conclusion Many genes relevant to otitis media have been identified in the last 4 years in advancing our knowledge regarding the predisposition of the middle ear mucosa to commensals and pathogens. Advances include mutant animal models and clinical studies. Many signaling pathways are involved in the predisposition of otitis media. Implications for Practice New knowledge on the genetic background relevant to otitis media forms a basis of novel potential interventions, including potential new ways to treat otitis media.
Collapse
Affiliation(s)
- Jizhen Lin
- Department of Otolaryngology–Head and Neck Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hena Hafrén
- Departments of Otorhinolaryngology–Head and Neck Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Joseph Kerschner
- Department of Otorhinolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Li Jian-Dong
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Steve Brown
- Medical Research Council Harwell Institute, Oxfordshire, UK
| | - Qing Y. Zheng
- Department of Otolaryngology–Head and Neck Surgery, Case Western University, Cleveland, Ohio, USA
| | - Diego Preciado
- Shiekh Zayed Institute for Pediatric Surgical Innovation, Pediatric Otolaryngology, Children’s National Health System, Washington, DC, USA
| | | | - Qiuhong Huang
- Department of Otolaryngology, Sun Yat-sen University, Guangzhou, China
| | - Yan Zhang
- Department of Otolaryngology, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
17
|
Zhu BZ, Saleh J, Isgrig KT, Cunningham LL, Chien WW. Hearing Loss after Round Window Surgery in Mice Is due to Middle Ear Effusion. Audiol Neurootol 2017; 21:356-364. [PMID: 28068659 DOI: 10.1159/000449239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/18/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Delivery of therapeutic agents directly through the round window (RW) offers promise for treating sensorineural hearing loss. However, hearing loss can result from the surgical approach itself, and the reasons for this are poorly understood. We examined the hearing loss following the 3 major steps involved with the RW approach to access the mouse cochlea: bullostomy, RW puncture, and RW injection. METHODS Twenty-one adult CBA/J mice underwent bullostomy alone, 10 underwent RW puncture, and 8 underwent RW injection with PBS with 5% glycerol. Auditory brainstem responses (ABR) and otoscopy were performed preoperatively and up to 6 weeks postoperatively. Hair cells were stained, and survival was assessed using immunofluorescence. RESULTS One week postoperatively, mice in all groups showed significant threshold shifts. Otoscopy revealed approximately half of all mice had middle ear effusion (MEE), with a higher incidence of effusion in the RW puncture and RW injection groups. Those with MEE had significant ABR threshold shifts, whereas those without MEE had minimal hearing loss. MEE persisted through 6 weeks in a majority of cases, but in those mice with MEE resolution, there was at least partial improvement in hearing. Immunohistochemistry showed minimal loss of hair cells in all animals. CONCLUSION MEE is highly correlated with hearing loss in mice undergoing RW surgery. Otoscopy is an important adjunct to consider after ear surgery in mice, as MEE may contribute to postsurgical hearing loss.
Collapse
Affiliation(s)
- Bovey Z Zhu
- Neurotology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
18
|
Tian C, Harris BS, Johnson KR. Ectopic Mineralization and Conductive Hearing Loss in Enpp1asj Mutant Mice, a New Model for Otitis Media and Tympanosclerosis. PLoS One 2016; 11:e0168159. [PMID: 27959908 PMCID: PMC5154548 DOI: 10.1371/journal.pone.0168159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/27/2016] [Indexed: 01/14/2023] Open
Abstract
Otitis media (OM), inflammation of the middle ear, is a common cause of hearing loss in children and in patients with many different syndromic diseases. Studies of the human population and mouse models have revealed that OM is a multifactorial disease with many environmental and genetic contributing factors. Here, we report on otitis media-related hearing loss in asj (ages with stiffened joints) mutant mice, which bear a point mutation in the Enpp1 gene. Auditory-evoked brainstem response (ABR) measurements revealed that around 90% of the mutant mice (Enpp1asj/asj) tested had moderate to severe hearing impairment in at least one ear. The ABR thresholds were variable and generally elevated with age. We found otitis media with effusion (OME) in all of the hearing-impaired Enpp1asj/asj mice by anatomic and histological examinations. The volume and inflammatory cell content of the effusion varied among the asj mutant mice, but all mutants exhibited a thickened middle ear epithelium with fibrous polyps and more mucin-secreting goblet cells than controls. Other abnormalities observed in the Enpp1 mutant mice include over-ossification at the round window ridge, thickened and over-calcified stapedial artery, fusion of malleus and incus, and white patches on the inside of tympanic membrane, some of which are typical symptoms of tympanosclerosis. An excessive yellow discharge was detected in the outer ear canal of older asj mutant mice, with 100% penetrance by 5 months of age, and contributes to the progressive nature of the hearing loss. This is the first report of hearing loss and ear pathology associated with an Enpp1 mutation in mice. The Enpp1asj mutant mouse provides a new animal model for studying tympanosclerotic otitis and otitis media with effusion, and also provides a specific model for the hearing loss recently reported to be associated with human ENPP1 mutations causing generalized arterial calcification of infancy and hypophosphatemic rickets.
Collapse
MESH Headings
- Animals
- Ear, Middle/pathology
- Ear, Middle/ultrastructure
- Genotype
- Hearing Loss, Conductive/genetics
- Hearing Loss, Conductive/pathology
- Inflammation
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mice, Transgenic
- Microscopy, Electron, Scanning
- Mutation
- Myringosclerosis/genetics
- Myringosclerosis/pathology
- Otitis Media/genetics
- Otitis Media/pathology
- Phosphoric Diester Hydrolases/genetics
- Pyrophosphatases/genetics
- Rickets, Hypophosphatemic/genetics
Collapse
Affiliation(s)
- Cong Tian
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine, United States of America
- * E-mail:
| | | | | |
Collapse
|
19
|
Diehl J, Gries B, Pfeil U, Goldenberg A, Mermer P, Kummer W, Paddenberg R. Expression and localization of GPR91 and GPR99 in murine organs. Cell Tissue Res 2015; 364:245-62. [DOI: 10.1007/s00441-015-2318-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 10/21/2015] [Indexed: 10/22/2022]
|
20
|
Culp DJ, Robinson B, Cash MN, Bhattacharyya I, Stewart C, Cuadra-Saenz G. Salivary mucin 19 glycoproteins: innate immune functions in Streptococcus mutans-induced caries in mice and evidence for expression in human saliva. J Biol Chem 2014; 290:2993-3008. [PMID: 25512380 DOI: 10.1074/jbc.m114.597906] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Saliva functions in innate immunity of the oral cavity, protecting against demineralization of teeth (i.e. dental caries), a highly prevalent infectious disease associated with Streptococcus mutans, a pathogen also linked to endocarditis and atheromatous plaques. Gel-forming mucins are a major constituent of saliva. Because Muc19 is the dominant salivary gel-forming mucin in mice, we studied Muc19(-/-) mice for changes in innate immune functions of saliva in interactions with S. mutans. When challenged with S. mutans and a cariogenic diet, total smooth and sulcal surface lesions are more than 2- and 1.6-fold higher in Muc19(-/-) mice compared with wild type, whereas the severity of lesions are up to 6- and 10-fold higher, respectively. Furthermore, the oral microbiota of Muc19(-/-) mice display higher levels of indigenous streptococci. Results emphasize the importance of a single salivary constituent in the innate immune functions of saliva. In vitro studies of S. mutans and Muc19 interactions (i.e. adherence, aggregation, and biofilm formation) demonstrate Muc19 poorly aggregates S. mutans. Nonetheless, aggregation is enhanced upon adding Muc19 to saliva from Muc19(-/-) mice, indicating Muc19 assists in bacterial clearance through formation of heterotypic complexes with salivary constituents that bind S. mutans, thus representing a novel innate immune function for salivary gel-forming mucins. In humans, expression of salivary MUC19 is unclear. We find MUC19 transcripts in salivary glands of seven subjects and demonstrate MUC19 glycoproteins in glandular mucous cells and saliva. Similarities and differences between mice and humans in the expression and functions of salivary gel-forming mucins are discussed.
Collapse
Affiliation(s)
| | | | | | - Indraneel Bhattacharyya
- Oral and Maxillofacial Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, Florida 32610
| | - Carol Stewart
- Oral and Maxillofacial Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, Florida 32610
| | | |
Collapse
|
21
|
Li X, Xu L, Li J, Li B, Bai X, Strauss JF, Zhang Z, Wang H. Otitis media in sperm-associated antigen 6 (Spag6)-deficient mice. PLoS One 2014; 9:e112879. [PMID: 25393619 PMCID: PMC4231073 DOI: 10.1371/journal.pone.0112879] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/18/2014] [Indexed: 12/20/2022] Open
Abstract
Mammalian SPAG6 protein is localized to the axoneme central apparatus, and it is required for normal flagella and cilia motility. Recent studies demonstrated that the protein also regulates ciliogenesis and cilia polarity in the epithelial cells of brain ventricles and trachea. Motile cilia are also present in the epithelial cells of the middle ear and Eustachian tubes, where the ciliary system participates in the movement of serous fluid and mucus in the middle ear. Cilia defects are associated with otitis media (OM), presumably due to an inability to efficiently transport fluid, mucus and particles including microorganisms. We investigated the potential role of SPAG6 in the middle ear and Eustachian tubes by studying mice with a targeted mutation in the Spag6 gene. SPAG6 is expressed in the ciliated cells of middle ear epithelial cells. The orientation of the ciliary basal feet was random in the middle ear epithelial cells of Spag6-deficient mice, and there was an associated disrupted localization of the planar cell polarity (PCP) protein, FZD6. These features are associated with disordered cilia orientation, confirmed by scanning electron microscopy, which leads to uncoordinated cilia beating. The Spag6 mutant mice were also prone to develop OM. However, there were no significant differences in bacterial populations, epithelial goblet cell density, mucin expression and Eustachian tube angle between the mutant and wild-type mice, suggesting that OM was due to accumulation of fluid and mucus secondary to the ciliary dysfunction. Our studies demonstrate a role for Spag6 in the pathogenesis of OM in mice, possibly through its role in the regulation of cilia/basal body polarity through the PCP-dependent mechanisms in the middle ear and Eustachian tubes.
Collapse
Affiliation(s)
- Xiaofei Li
- Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, PR China
- Shandong Provincial Key Laboratory of Otology, Jinan, Shandong Province, PR China
| | - Lei Xu
- Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, PR China
| | - Jianfeng Li
- Shandong Provincial Key Laboratory of Otology, Jinan, Shandong Province, PR China
| | - Boqin Li
- Shandong Provincial Key Laboratory of Otology, Jinan, Shandong Province, PR China
| | - Xiaohui Bai
- Shandong Provincial Key Laboratory of Otology, Jinan, Shandong Province, PR China
| | - Jerome F. Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Zhibing Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail: (ZBZ); (HBW)
| | - Haibo Wang
- Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, PR China
- Shandong Provincial Key Laboratory of Otology, Jinan, Shandong Province, PR China
- * E-mail: (ZBZ); (HBW)
| |
Collapse
|
22
|
Abstract
Otitis media (OM) is a common cause of childhood hearing loss. The large medical costs involved in treating this condition have meant that research to understand the pathology of this disease and identify new therapeutic interventions is important. There is evidence that susceptibility to OM has a significant genetic component, although little is known about the key genetic pathways involved. Mouse models for disease have become an important resource to understand a variety of human pathologies, including OM, due to the ability to easily manipulate their genetic components. This has enabled researchers to create models of acute OM, and has aided in the identification of a number of new genes associated with chronic disease, through the use of mutagenesis programs. The use of mouse models has identified a number of key molecular signalling pathways involved in the development of this condition, with genes identified from models shown to be associated with human OM.
Collapse
|
23
|
Park MK, Lee BD. Development of animal models of otitis media. KOREAN JOURNAL OF AUDIOLOGY 2013. [PMID: 24653896 DOI: 10.787/kja.2013.17.1.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Otitis media is defined as inflammation of the middle ear, including the auditory ossicles and the Eustachian tube. Otitis media is a major health problem in many societies. The causes of otitis media includes infection and anatomic/physiologic, host, and environmental factors. In general, otitis media is a childhood disease, and anatomic and physiologic changes have great effects on its development. Thus, in vitro or human experimental studies of otitis media are difficult. Several experimental animal models have been introduced to investigate the pathogenesis and treatment of otitis media. However, none are ideal. The aim of this review is to provide a brief overview of the current status of animal models of otitis media with effusion, acute otitis media, and cholesteatoma. This review will assist determination of the most appropriate animal models of otitis media.
Collapse
Affiliation(s)
- Moo Kyun Park
- Department of Otolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Byung Don Lee
- Department of Otolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Park MK, Lee BD. Development of animal models of otitis media. KOREAN JOURNAL OF AUDIOLOGY 2013; 17:9-12. [PMID: 24653896 PMCID: PMC3936519 DOI: 10.7874/kja.2013.17.1.9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 02/28/2013] [Accepted: 03/10/2013] [Indexed: 12/18/2022]
Abstract
Otitis media is defined as inflammation of the middle ear, including the auditory ossicles and the Eustachian tube. Otitis media is a major health problem in many societies. The causes of otitis media includes infection and anatomic/physiologic, host, and environmental factors. In general, otitis media is a childhood disease, and anatomic and physiologic changes have great effects on its development. Thus, in vitro or human experimental studies of otitis media are difficult. Several experimental animal models have been introduced to investigate the pathogenesis and treatment of otitis media. However, none are ideal. The aim of this review is to provide a brief overview of the current status of animal models of otitis media with effusion, acute otitis media, and cholesteatoma. This review will assist determination of the most appropriate animal models of otitis media.
Collapse
Affiliation(s)
- Moo Kyun Park
- Department of Otolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Byung Don Lee
- Department of Otolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Seoul, Korea
| |
Collapse
|