1
|
Xu Y, Yu M, Huang X, Wang G, Wang H, Zhang F, Zhang J, Gao X. Differences in salivary microbiome among children with tonsillar hypertrophy and/or adenoid hypertrophy. mSystems 2024; 9:e0096824. [PMID: 39287377 PMCID: PMC11494981 DOI: 10.1128/msystems.00968-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Children diagnosed with severe tonsillar hypertrophy display discernible craniofacial features distinct from those with adenoid hypertrophy, prompting illuminating considerations regarding microbiota regulation in this non-inflammatory condition. The present study aimed to characterize the salivary microbial profile in children with tonsillar hypertrophy and explore the potential functionality therein. A total of 112 children, with a mean age of 7.79 ± 2.41 years, were enrolled and divided into the tonsillar hypertrophy (TH) group (n = 46, 8.4 ± 2.5 years old), adenoid hypertrophy (AH) group (n = 21, 7.6 ± 2.8 years old), adenotonsillar hypertrophy (ATH) group (n = 23, 7.2 ± 2.1 years old), and control group (n = 22, 8.6 ± 2.1 years old). Unstimulated saliva samples were collected, and microbial profiles were analyzed by 16S rRNA sequencing of V3-V4 regions. Diversity and composition of salivary microbiome and the correlation with parameters of overnight polysomnography and complete blood count were investigated. As a result, children with tonsillar hypertrophy had significantly higher α-diversity indices (P<0.05). β-diversity based on Bray-Curtis distance revealed that the salivary microbiome of the tonsillar hypertrophy group had a slight separation from the other three groups (P<0.05). The linear discriminant analysis effect size (LEfSe) analysis indicated that Gemella was most closely related to tonsillar hypertrophy, and higher abundance of Gemella, Parvimonas, Dialister, and Lactobacillus may reflect an active state of immune regulation. Meanwhile, children with different degrees of tonsillar hypertrophy shared similar salivary microbiome diversity. This study demonstrated that the salivary microbiome in pediatric tonsillar hypertrophy patients had different signatures, highlighting that the site of upper airway obstruction primarily influences the salivary microbiome rather than hypertrophy severity.IMPORTANCETonsillar hypertrophy is the most frequent cause of upper airway obstruction and one of the primary risk factors for pediatric obstructive sleep apnea (OSA). Studies have discovered that children with isolated tonsillar hypertrophy exhibit different craniofacial morphology features compared with those with isolated adenoid hypertrophy or adenotonsillar hypertrophy. Furthermore, characteristic salivary microbiota from children with OSA compared with healthy children has been identified in our previous research. However, few studies provided insight into the relationship between the different sites of upper airway obstruction resulting from the enlargement of pharyngeal lymphoid tissue at different sites and the alterations in the microbiome. Here, to investigate the differences in the salivary microbiome of children with tonsillar hypertrophy and/or adenoid hypertrophy, we conducted a cross-sectional study and depicted the unique microbiome profile of pediatric tonsillar hypertrophy, which was mainly characterized by a significantly higher abundance of genera belonging to phyla Firmicutes and certain bacteria involving in the immune response in tonsillar hypertrophy, offering novel perspectives for future related research.
Collapse
Affiliation(s)
- Ying Xu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Min Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xin Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guixiang Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Hua Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Fengzhen Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Jie Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xuemei Gao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
2
|
Marincak Vrankova Z, Brenerova P, Bodokyova L, Bohm J, Ruzicka F, Borilova Linhartova P. Tongue microbiota in relation to the breathing preference in children undergoing orthodontic treatment. BMC Oral Health 2024; 24:1259. [PMID: 39434101 PMCID: PMC11492670 DOI: 10.1186/s12903-024-05062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Mouth breathing (MB), a risk factor of oral dysbiosis and halitosis, is linked with craniofacial anomalies and pediatric obstructive sleep apnea. Here, we aimed to analyze tongue microbiota in children from the perspective of their breathing pattern before/during orthodontic treatment. METHODS This prospective case-control study included 30 children with orthodontic anomalies, 15 with MB and 15 with nasal breathing (NB), matched by age, sex, and body mass index. All underwent orthodontic examination and sleep apnea monitoring. Tongue swabs were collected before starting (timepoint M0) and approx. six months into the orthodontic therapy (timepoint M6). Oral candidas and bacteriome were analyzed using mass spectrometry technique and 16S rRNA sequencing, respectively. RESULTS MB was associated with higher apnea-hypopnea index. At M0, oral candidas were equally present in both groups. At M6, Candida sp. were found in six children with MB but in none with NB. No significant differences in bacterial diversity were observed between groups and timepoints. However, presence/relative abundance of genus Solobacterium was higher in children with MB than NB at M0. CONCLUSIONS Significant links between MB and the presence of genus Solobacterium (M0) as well as Candida sp. (M6) were found in children with orthodontic anomalies, highlighting the risk of halitosis in them.
Collapse
Affiliation(s)
- Zuzana Marincak Vrankova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
- Clinic of Maxillofacial Surgery, University Hospital Brno, Jihlavska 20, Brno, Czech Republic
- Clinic of Stomatology, Institution Shared With St. Anne´s University Hospital, Faculty of Medicine, Masaryk University, Pekarska 53, Brno, Czech Republic
| | - Petra Brenerova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Lenka Bodokyova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jan Bohm
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Filip Ruzicka
- Clinic of Microbiology, Institution Shared With St. Anne ́s University Hospital, Faculty of Medicine, Masaryk University, Pekarska 53, Brno, Czech Republic
| | - Petra Borilova Linhartova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
- Clinic of Maxillofacial Surgery, University Hospital Brno, Jihlavska 20, Brno, Czech Republic.
| |
Collapse
|
3
|
Park J, Lee KE, Choi DH, Kim YK, Lee WH, Kim MS, Sung HWJ, Chang JW, Park YS. The association of tonsillar microbiota with biochemical indices based on obesity and tonsillar hypertrophy in children. Sci Rep 2023; 13:22716. [PMID: 38123635 PMCID: PMC10733282 DOI: 10.1038/s41598-023-49871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
The correlation between tonsil microbiome and tonsillar hypertrophy has not been well established. Given that oral dysbiosis is related to several metabolic diseases and that tonsillar hypertrophy leads to disordered breathing during sleep and obesity in children, it is necessary to investigate the relationship between the oral microbiome and tonsillar hypertrophy. After 16S rRNA amplicon sequencing of tonsillectomy samples, we evaluated the correlation between the tonsil microbiome and biochemical blood indices in pediatric patients who underwent tonsillectomy. Groups are classified into two categories: based on BMI, and grades 2, 3, and 4 based on tonsil size. Children with obesity and tonsillar hypertrophy have similar microbiome compositions and induce comparable changes in microbiome abundance and composition, confirming the association from a metagenomic perspective. In addition, obesity and tonsillar hypertrophy demonstrated a strong correlation with the Proteobacteria to Firmicutes (P/F) ratio, and among various biochemical indicators, alanine aminotransferase (ALT) levels increase with obesity and tonsillar hypertrophy, indicating a possible association of tonsil microbiome and liver metabolism. These novel findings demonstrate the significance of the tonsil microbiome and suggest the need for tonsil regulation, particularly during childhood.
Collapse
Affiliation(s)
- Jiwon Park
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Kyeong Eun Lee
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Da Hyeon Choi
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yoon-Keun Kim
- Institute of MD Healthcare Inc., Seoul, 03923, Republic of Korea
| | - Won Hee Lee
- Institute of MD Healthcare Inc., Seoul, 03923, Republic of Korea
| | - Min Su Kim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Han Wool John Sung
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
| | - Yoon Shin Park
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
4
|
Rigante D, Calò L, Ciavarro A, Galli J. A Potential Partnership between Genetics and the Oral Microbiome in Children Displaying Periodic Fever/Aphthosis/Pharyngitis/Adenitis Syndrome. Int J Mol Sci 2023; 24:15505. [PMID: 37958489 PMCID: PMC10648810 DOI: 10.3390/ijms242115505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
Periodic fever/aphthosis/pharyngitis/adenitis (PFAPA) syndrome was initially described in a small cohort of American children [...].
Collapse
Affiliation(s)
- Donato Rigante
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
- School of Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (J.G.)
| | - Lea Calò
- School of Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (J.G.)
- Complex Unit of Otolaryngology, Department of Aging, Neurological, Orthopedic and Head and Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Alessandro Ciavarro
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Cracovia 50, 00133 Rome, Italy;
| | - Jacopo Galli
- School of Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (J.G.)
- Complex Unit of Otolaryngology, Department of Aging, Neurological, Orthopedic and Head and Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
5
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
6
|
Zhang X, Li X, Xu H, Fu Z, Wang F, Huang W, Wu K, Li C, Liu Y, Zou J, Zhu H, Yi H, Kaiming S, Gu M, Guan J, Yin S. Changes in the oral and nasal microbiota in pediatric obstructive sleep apnea. J Oral Microbiol 2023; 15:2182571. [PMID: 36875426 PMCID: PMC9980019 DOI: 10.1080/20002297.2023.2182571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Background Several clinical studies have demonstrated that pediatric obstructive sleep apnea (OSA) is associated with dysbiosis of airway mucosal microbiota. However, how oral and nasal microbial diversity, composition, and structure are altered in pediatric OSA has not been systemically explored. Methods 30 polysomnography-confirmed OSA patients with adenoid hypertrophy, and 30 controls who did not have adenoid hypertrophy, were enrolled. Swabs from four surface oral tissue sites (tongue base, soft palate, both palatine tonsils, and adenoid) and one nasal swab from both anterior nares were collected. The 16S ribosomal RNA (rRNA) V3-V4 region was sequenced to identify the microbial communities. Results The beta diversity and microbial profiles were significantly different between pediatric OSA patients and controls at the five upper airway sites. The abundances of Haemophilus, Fusobacterium, and Porphyromonas were higher at adenoid and tonsils sites of pediatric patients with OSA. Functional analysis revealed that the differential pathway between the pediatric OSA patients and controls involved glycerophospholipids and amino acid metabolism. Conclusions In this study, the oral and nasal microbiome of pediatric OSA patients exhibited certain differences in composition compared with the controls. However, the microbiota data could be useful as a reference for studies on the upper airway microbiome.
Collapse
Affiliation(s)
- Xiaoman Zhang
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Li
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huajun Xu
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihui Fu
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Wang
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijun Huang
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kejia Wu
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyang Li
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yupu Liu
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianyin Zou
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaming Zhu
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongliang Yi
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Su Kaiming
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meizhen Gu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Guan
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Bo ZM, Tan WK, Chong CSC, Lye MS, Parmasivam S, Pang ST, Satkunananthan SE, Chong HY, Malek A, Al-khazzan BAAM, Sim BLH, Lee CKC, Lim RLH, Lim CSY. Respiratory microorganisms in acute pharyngitis patients: Identification, antibiotic prescription patterns and appropriateness, and antibiotic resistance in private primary care, central Malaysia. PLoS One 2022; 17:e0277802. [PMID: 36395327 PMCID: PMC9671416 DOI: 10.1371/journal.pone.0277802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
Acute pharyngitis (AP) is a common reason for private primary care consultations, thus providing an avenue for widespread antibiotic intake among the community. However, there is limited data on the antibiotic prescription appropriateness and resistance information in the Malaysian private primary care setting, therefore, this study aimed to investigate the prevalence of isolated viruses and bacteria, antibiotic resistance patterns, antibiotic prescription patterns and appropriateness by general practitioners (GPs) and factors affecting antibiotic resistance and antibiotic prescription patterns. To investigate, a cross-sectional study was conducted among 205 patients presenting with AP symptoms at private primary care clinics in central Malaysia from 3rd January 2016 to 30th November 2016. Throat swabs were collected from 205 AP patients for two purposes: (i) the detection of four common respiratory viruses associated with AP via reverse-transcription real-time PCR (qRT-PCR); and (ii) bacterial identification using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Bacterial isolates were then subjected to antibiotic susceptibility screening and McIsaac scoring was calculated post-prescription based on GP selection of criteria. Generalized estimating equations analysis with multiple logistic regression was conducted to identify factors associated with presence of virus and antibiotic prescription. The results showed that 95.1% (195/205) of patients had at least one of the four viruses, with rhinovirus (88.5%) being the most prevalent, followed by adenovirus (74.9%), influenza A virus (4.6%) and enterovirus (2.1%). A total of 862 non-repetitive colonies were isolated from the culture of throat swabs from 205 patients who were positive for bacteria. From a total of 22 genera, Streptococcus constitutes the most prevalent bacteria genus (40.9%), followed by Neisseria (20%), Rothia (13.0%), Staphylococcus (11%) and Klebsiella (4.9%). Only 5 patients carried group A beta-hemolytic streptococci (GABHS). We also report the presence of vancomycin-resistant S. aureus or VRSA (n = 9, 10.1%) among which one isolate is a multidrug-resistant methicillin-resistant S. aureus (MDR-MRSA), while 54.1% (n = 111) were found to carry at least one antibiotic-resistant bacteria species. Application of the McIsaac scoring system indicated that 87.8% (n = 180) of patients should not be prescribed antibiotics as the majority of AP patients in this study had viral pharyngitis. The antibiotic prescription appropriateness by applying post-prescription McIsaac scoring was able to rule out GABHS pharyngitis in this sample with a GABHS culture-positive sensitivity of 40% (n = 2/5) and specificity of 90% (180/200). In conclusion, antibiotic-resistant throat isolates and over-prescription of antibiotics were observed and McIsaac scoring system is effective in guiding GPs to determine occurrences of viral pharyngitis to reduce unnecessary antibiotic prescription.
Collapse
Affiliation(s)
- Zhuang Mian Bo
- Faculty of Applied Sciences, Department of Biotechnology, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Wei Keat Tan
- Faculty of Applied Sciences, Department of Biotechnology, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | | | - Munn Sann Lye
- Faculty of Medicine and Health Sciences, Formerly Department of Community Medicine, Universiti Putra Malaysia
| | - Seshatharran Parmasivam
- Faculty of Applied Sciences, Department of Biotechnology, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Shu Ting Pang
- Faculty of Applied Sciences, Department of Biotechnology, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | | | - Hui Yee Chong
- Faculty of Applied Sciences, Department of Biotechnology, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Ameen Malek
- Faculty of Applied Sciences, Department of Biotechnology, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | | | | | | | - Renee Lay Hong Lim
- Faculty of Applied Sciences, Department of Biotechnology, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Crystale Siew Ying Lim
- Faculty of Applied Sciences, Department of Biotechnology, UCSI University, Cheras, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
8
|
Huang X, Chen X, Gong X, Xu Y, Xu Z, Gao X. Characteristics of salivary microbiota in children with obstructive sleep apnea: A prospective study with polysomnography. Front Cell Infect Microbiol 2022; 12:945284. [PMID: 36105146 PMCID: PMC9465092 DOI: 10.3389/fcimb.2022.945284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesThe present study aimed to investigate the characteristics of salivary microbiota of children with obstructive sleep apnea (OSA) and to assess longitudinal alterations in salivary microbiota before and after adenotonsillectomy.MethodsA set of cross-sectional samples consisted of 36 OSA children (17 boys and 19 girls, 7.47 ± 2.24 years old) and 22 controls (9 boys and 13 girls, 7.55 ± 2.48 years old) were included in the study, among which eight OSA children (five boys and three girls, 8.8 ± 2.0 years old) who underwent treatment of adenotonsillectomy were followed up after 1 year. Saliva samples were collected, and microbial profiles were analyzed by bioinformatics analysis based on 16S rRNA sequencing.ResultsIn cross-sectional samples, the OSA group had higher α-diversity as estimated by Chao1, Shannon, Simpson, Pielou_e, and observed species as compared with the control group (p < 0.05). β-Diversity based on the Bray–Curtis dissimilarities (p = 0.004) and Jaccard distances (p = 0.001) revealed a significant separation between the OSA group and control group. Nested cross-validated random forest classifier identified the 10 most important genera (Lactobacillus, Escherichia, Bifidobacterium, Capnocytophaga, Bacteroidetes_[G-7], Parvimonas, Bacteroides, Klebsiella, Lautropia, and Prevotella) that could differentiate OSA children from controls with an area under the curve (AUC) of 0.94. Linear discriminant analysis effect size (LEfSe) analysis revealed a significantly higher abundance of genera such as Prevotella (p = 0.027), Actinomyces (p = 0.015), Bifidobacterium (p < 0.001), Escherichia (p < 0.001), and Lactobacillus (p < 0.001) in the OSA group, among which Prevotella was further corroborated in longitudinal samples. Prevotella sp_HMT_396 was found to be significantly enriched in the OSA group (p = 0.02) with significantly higher levels as OSA severity increased (p = 0.014), and it had a lower abundance in the post-treatment group (p = 0.003) with a decline in each OSA child 1 year after adenotonsillectomy.ConclusionsA significantly higher microbial diversity and a significant difference in microbial composition and abundance were identified in salivary microbiota of OSA children compared with controls. Meanwhile, some characteristic genera (Prevotella, Actinomyces, Lactobacillus, Escherichia, and Bifidobacterium) were found in OSA children, among which the relationship between Prevotella spp. and OSA is worth further studies.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuehui Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xu Gong
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ying Xu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zhifei Xu
- Department of Respiratory Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- *Correspondence: Xuemei Gao,
| | - Xuemei Gao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- *Correspondence: Xuemei Gao,
| |
Collapse
|
9
|
Xu H, Tian B, Shi W, Tian J, Zhang X, Zeng J, Qin M. A Correlation Study of the Microbiota Between Oral Cavity and Tonsils in Children With Tonsillar Hypertrophy. Front Cell Infect Microbiol 2022; 11:724142. [PMID: 35155268 PMCID: PMC8831826 DOI: 10.3389/fcimb.2021.724142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Tonsillar hypertrophy is a common disease in 3-to-6-year-old children, which may cause serve symptoms like airway obstruction. Microbiological factors play an important role in the etiology of tonsillar hypertrophy. As the starting point of digestive and respiratory tracts, the microbial composition of the oral cavity is not only unique but also closely related to the resident microbiota in other body sites. Here we reported a correlation study of the microbiota between oral cavity and tonsils in children with tonsillar hypertrophy. Saliva, supragingival plaque, and wiped samples from the tonsil surface were collected from both tonsillar hypertrophy patients and participants with healthy tonsils and were then analyzed using Illumina Miseq Sequencing of the 16S rRNA gene. In the tonsillar hypertrophic state, more genera were detected on the tonsil surface than in the tonsil parenchyma, with more intra-microbiota correlations. When tonsillar hypertrophy occurred, both the oral cavity and tonsil surface endured microbiome shift with increased genera category and more active bacterial interactions. Over half of the newly detected genera from the tonsillar hypertrophic state were associated with infection and inflammation process or exhibited antibiotic-resistant characters. Of each individual, the microbial composition and structure of saliva seemed more similar to that of the tonsil surface, compared with the supragingival plaque. In salivary microbiota, genus Johnsonella might be relative with the healthy state of tonsils, while Pseudoxanthomonas might be relative with tonsillar hypertrophy. Our study supported the link between oral microbiota with the healthy and hypertrophic states of tonsils and may provide new directions for future researches in the specific role of oral microbiota in the etiology of tonsil diseases.
Collapse
Affiliation(s)
- He Xu
- Pediatric Department, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Bijun Tian
- Pediatric Department, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Weihua Shi
- Pediatric Department, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jing Tian
- Pediatric Department, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xuexi Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health (NCCH), Beijing, China
| | - Jin Zeng
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Beijing, China
| | - Man Qin
- Pediatric Department, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- *Correspondence: Man Qin,
| |
Collapse
|
10
|
De Martin A, Lütge M, Stanossek Y, Engetschwiler C, Cupovic J, Brown K, Demmer I, Broglie MA, Geuking MB, Jochum W, McCoy KD, Stoeckli SJ, Ludewig B. Distinct microbial communities colonize tonsillar squamous cell carcinoma. Oncoimmunology 2021; 10:1945202. [PMID: 34367729 PMCID: PMC8312615 DOI: 10.1080/2162402x.2021.1945202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Squamous cell carcinoma of the tonsil is one of the most frequent cancers of the oropharynx. The escalating rate of tonsil cancer during the last decades is associated with the increase of high risk-human papilloma virus (HR-HPV) infections. While the microbiome in oropharyngeal malignant diseases has been characterized to some extent, the microbial colonization of HR-HPV-associated tonsil cancer remains largely unknown. Using 16S rRNA gene amplicon sequencing, we have characterized the microbiome of human palatine tonsil crypts in patients suffering from HR-HPV-associated tonsil cancer in comparison to a control cohort of adult sleep apnea patients. We found an increased abundance of the phyla Firmicutes and Actinobacteria in tumor patients, whereas the abundance of Spirochetes and Synergistetes was significantly higher in the control cohort. Furthermore, the accumulation of several genera such as Veillonella, Streptococcus and Prevotella_7 in tonsillar crypts was associated with tonsil cancer. In contrast, Fusobacterium, Prevotella and Treponema_2 were enriched in sleep apnea patients. Machine learning-based bacterial species analysis indicated that a particular bacterial composition in tonsillar crypts is tumor-predictive. Species-specific PCR-based validation in extended patient cohorts confirmed that differential abundance of Filifactor alocis and Prevotella melaninogenica is a distinct trait of tonsil cancer. This study shows that tonsil cancer patients harbor a characteristic microbiome in the crypt environment that differs from the microbiome of sleep apnea patients on all phylogenetic levels. Moreover, our analysis indicates that profiling of microbial communities in distinct tonsillar niches provides microbiome-based avenues for the diagnosis of tonsil cancer.
Collapse
Affiliation(s)
- Angelina De Martin
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Mechthild Lütge
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Yves Stanossek
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | | | - Jovana Cupovic
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Kirsty Brown
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Izadora Demmer
- Institute of Pathology, Kantonsspital Sankt Gallen, St. Gallen, Switzerland
| | - Martina A Broglie
- Department of Otorhinolaryngology - Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Markus B Geuking
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute of Chronic Diseases; Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Wolfram Jochum
- Institute of Pathology, Kantonsspital Sankt Gallen, St. Gallen, Switzerland
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Sandro J Stoeckli
- Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland.,Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Cai Y, Juszczak HM, Cope EK, Goldberg AN. The Microbiome in Obstructive Sleep Apnea. Sleep 2021; 44:6168416. [PMID: 33705556 DOI: 10.1093/sleep/zsab061] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/06/2021] [Indexed: 12/25/2022] Open
Abstract
Recent evidence has highlighted important associations between obstructive sleep apnea and the microbiome. Although the intricacies of the pathophysiologic mechanisms are not well understood, available evidence suggests a bidirectional relationship between OSA and microbiota composition. Sleep fragmentation, intermittent hypoxia, and intermittent hypercapnia all play significant roles in altering the microbiome, and initial evidence has shown that alterations of the microbiota affect sleep patterns. Animal model evidence strongly supports the idea that the microbiome mediates disease states associated with OSA including hypertension, atherosclerosis, and obesity. The majority of evidence focuses on changes in the gut microbiome, which may result from OSA as well as contribute to sleep pattern changes, OSA-related CVD, and obesity. Meanwhile, a developing body of work suggests changes in the upper airway microbiome may be associated with OSA and periodontitis-related oral cavity microbiome changes may have significance in OSA-related CVD. Lastly, while evidence is limited, several studies suggest there may be a role for treatment of OSA and OSA-related comorbidities through alteration of the microbiome with probiotics, prebiotics, and microbiota transplantation. These early animal and human studies begin to characterize the interrelationships of the microbiome and OSA and may lead to new avenues for treatment.
Collapse
Affiliation(s)
- Yi Cai
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Hailey M Juszczak
- School of Medicine, University of California, San Francisco, CA, USA
| | - Emily K Cope
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Andrew N Goldberg
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
12
|
Bach LL, Ram A, Ijaz UZ, Evans TJ, Lindström J. A Longitudinal Study of the Human Oropharynx Microbiota Over Time Reveals a Common Core and Significant Variations With Self-Reported Disease. Front Microbiol 2021; 11:573969. [PMID: 33552004 PMCID: PMC7861042 DOI: 10.3389/fmicb.2020.573969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/21/2020] [Indexed: 11/28/2022] Open
Abstract
Our understanding of human microbial communities, in particular in regard to diseases is advancing, yet the basic understanding of the microbiome in healthy subjects over time remains limited. The oropharynx is a key target for colonization by several important human pathogens. To understand how the oropharyngeal microbiome might limit infections, and how intercurrent infections might be associated with its composition, we characterized the oropharyngeal microbiome of 18 healthy adults, sampled weekly over a 40-weeks using culture-independent molecular techniques. We detected nine phyla, 202 genera and 1438 assignments on OTU level, dominated by Firmicutes, Bacteroidetes, and Proteobacteria on phylum level. Individual microbiomes of participants were characterized by levels of high alpha diversity (mean = 204.55 OTUs, sd = 35.64), evenness (19.83, sd = 9.74) and high temporal stability (mean Pearson's correlation between samples of 0.52, sd = 0.060), with greater differences in microbiome community composition between than within individuals. Significant changes in community composition were associated with disease states, suggesting that it is possible to detect specific changes in OTU abundance and community composition during illness. We defined the common core microbiota by varying occurrence and abundance thresholds showing that individual core microbiomes share a substantial number of OTUs across participants, chiefly Streptococci and Veillonella. Our results provide insights into the microbial communities that characterize the healthy human oropharynx, community structure and variability, and provide new approaches to define individual and shared cores. The wider implications of this result include the potential for modeling the general dynamics of oropharynx microbiota both in health and in response to antimicrobial treatments or probiotics.
Collapse
Affiliation(s)
- Lydia Luise Bach
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Asha Ram
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Umer Z. Ijaz
- School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Thomas J. Evans
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Jan Lindström
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|