1
|
Li M, Lebois LAM, Ridgewell C, Palermo CA, Winternitz S, Liu H, Kaufman ML, Shinn AK. Functional Connectivity of the Auditory Cortex in Women With Trauma-Related Disorders Who Hear Voices. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1066-1074. [PMID: 38944384 PMCID: PMC11456382 DOI: 10.1016/j.bpsc.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Voice hearing (VH) is a transdiagnostic experience that is common in trauma-related disorders. However, the neural substrates that underlie trauma-related VH remain largely unexplored. While auditory perceptual dysfunction is among the abnormalities implicated in VH in schizophrenia, whether VH in trauma-related disorders also involves auditory perceptual alterations is unknown. METHODS We investigated auditory cortex (AC)-related functional connectivity (FC) in 65 women with trauma-related disorders stemming from childhood abuse with varying severities of VH. Using a novel, computationally driven and individual-specific method of functionally parcellating the brain, we calculated the FC of 2 distinct AC subregions-Heschl's gyrus (corresponding to the primary AC) and lateral superior temporal gyrus (in the nonprimary AC)-with both the cerebrum and cerebellum. Then, we measured the association between VH severity and FC using leave-one-out cross-validation in the cerebrum and voxelwise multiple regression analyses in the cerebellum. RESULTS We found that VH severity was positively correlated with left lateral superior temporal gyrus-frontoparietal network FC, while it was negatively correlated with FC between the left lateral superior temporal gyrus and both cerebral and cerebellar representations of the default mode network. VH severity was not predicted by FC of the left Heschl's gyrus or right AC subregions. CONCLUSIONS Our findings point to altered interactions between auditory perceptual processing and higher-level processes related to self-reference and executive functioning. This is the first study to show alterations in auditory cortical connectivity in trauma-related VH. While VH in trauma-related disorders appears to be mediated by brain networks that are also implicated in VH in schizophrenia, the results suggest a unique mechanism that could distinguish VH in trauma-related disorders.
Collapse
Affiliation(s)
- Meiling Li
- Division of Brain Sciences, Changping Laboratory, Beijing, China
| | - Lauren A M Lebois
- Depression and Anxiety Disorders Division, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Caitlin Ridgewell
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts
| | - Cori A Palermo
- Depression and Anxiety Disorders Division, McLean Hospital, Belmont, Massachusetts
| | - Sherry Winternitz
- Depression and Anxiety Disorders Division, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Hesheng Liu
- Division of Brain Sciences, Changping Laboratory, Beijing, China; Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Milissa L Kaufman
- Depression and Anxiety Disorders Division, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Ann K Shinn
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts.
| |
Collapse
|
2
|
Guha A, Hunter SK, Legget KT, McHugo M, Hoffman MC, Tregellas JR. Intrinsic Infant Hippocampal Function Supports Inhibitory Processing. Dev Psychobiol 2024; 66:e22529. [PMID: 39010701 PMCID: PMC11254329 DOI: 10.1002/dev.22529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/22/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024]
Abstract
Impaired cerebral inhibition is commonly observed in neurodevelopmental disorders and may represent a vulnerability factor for their development. The hippocampus plays a key role in inhibition among adults and undergoes significant and rapid changes during early brain development. Therefore, the structure represents an important candidate region for early identification of pathology that is relevant to inhibitory dysfunction. To determine whether hippocampal function corresponds to inhibition in the early postnatal period, the present study evaluated relationships between hippocampal activity and sensory gating in infants 4-20 weeks of age (N = 18). Resting-state functional magnetic resonance imaging was used to measure hippocampal activity, including the amplitude of low-frequency fluctuations (ALFFs) and fractional ALFF. Electroencephalography during a paired-stimulus paradigm was used to measure sensory gating (P50). Higher activity of the right hippocampus was associated with better sensory gating (P50 ratio), driven by a reduction in response to the second stimulus. These findings suggest that meaningful effects of hippocampal function can be detected early in infancy. Specifically, higher intrinsic hippocampal activity in the early postnatal period may support effective inhibitory processing. Future work will benefit from longitudinal analysis to clarify the trajectory of hippocampal function, alterations of which may contribute to the risk of neurodevelopmental disorders and represent an intervention target.
Collapse
Affiliation(s)
- Anika Guha
- Department of Psychiatry, University of Colorado Anschutz Medical Campus
| | - Sharon K. Hunter
- Department of Psychiatry, University of Colorado Anschutz Medical Campus
| | - Kristina T. Legget
- Department of Psychiatry, University of Colorado Anschutz Medical Campus
- Research Service, Rocky Mountain Regional VA Medical Center
| | - Maureen McHugo
- Department of Psychiatry, University of Colorado Anschutz Medical Campus
| | - M. Camille Hoffman
- Department of Psychiatry, University of Colorado Anschutz Medical Campus
| | - Jason R. Tregellas
- Department of Psychiatry, University of Colorado Anschutz Medical Campus
- Research Service, Rocky Mountain Regional VA Medical Center
| |
Collapse
|
3
|
de la Salle S, Piche J, Duncan B, Choueiry J, Hyde M, Aidelbaum R, Baddeley A, Impey D, Rahmani N, Ilivitsky V, Knott V. Influence of GABA A and GABA B receptor activation on auditory sensory gating and its association with anxiety in healthy volunteers. J Psychopharmacol 2024; 38:532-540. [PMID: 38647196 DOI: 10.1177/02698811241246854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
BACKGROUND Dysfunctional sensory gating in anxiety disorders, indexed by the failure to inhibit the P50 event-related potential (ERP) to repeated stimuli, has been linked to deficits in the major inhibitory neurotransmitter γ-aminobutyric acid (GABA). AIMS/METHODS This study, conducted in 30 healthy volunteers, examined the acute effects of GABAA (lorazepam: 1 mg) and GABAB receptor (baclofen: 10 mg) agonists on P50 measures of auditory sensory gating within a paired-stimulus (S1-S2) paradigm and assessed changes in gating in relation to self-ratings of anxiety. RESULTS Compared to placebo, lorazepam reduced ERP indices of sensory gating by attenuating response to S1. Although not directly impacting P50 inhibition, baclofen-induced changes in gating (relative to placebo) were negatively correlated with trait but not state anxiety. CONCLUSIONS These preliminary findings support the involvement of GABA in sensory gating and tentatively suggest a role for GABAB receptor signaling in anxiety-associated gating dysregulation.
Collapse
Affiliation(s)
- Sara de la Salle
- The Royal's Institute of Mental Health Research at The Royal, Ottawa, ON, Canada
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Justin Piche
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Brittany Duncan
- Department of Psychology, Carleton University, Ottawa, ON, Canada
| | - Joëlle Choueiry
- The Royal's Institute of Mental Health Research at The Royal, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Molly Hyde
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Robert Aidelbaum
- School of Psychology, University of Toronto, Toronto, ON, Canada
| | - Ashley Baddeley
- The Royal's Institute of Mental Health Research at The Royal, Ottawa, ON, Canada
| | - Danielle Impey
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Noreen Rahmani
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | | | - Verner Knott
- The Royal's Institute of Mental Health Research at The Royal, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Liang KJ, Cheng CH, Liu CY, Hsu SC, von Leupoldt A, Jelinčić V, Chan PYS. Neural oscillations underlying the neural gating of respiratory sensations in generalized anxiety disorder. Respir Physiol Neurobiol 2024; 321:104215. [PMID: 38211904 DOI: 10.1016/j.resp.2024.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Individuals with generalized anxiety disorder (GAD) have been shown to have altered neural gating of respiratory sensations (NGRS) using respiratory-related evoked potentials (RREP); however, corresponding neural oscillatory activities remain unexplored. The present study aimed to investigate altered NGRS in individuals with GAD using both time and time-frequency analysis. Nineteen individuals with GAD and 28 healthy controls were recruited. Paired inspiratory occlusions were delivered to elicit cortical neural activations measured from electroencephalography. The GAD group showed smaller N1 amplitudes to the first stimulus (S1), lower evoked gamma and larger evoked beta oscillations compared to controls. Both groups showed larger N1, P3, beta power and theta power in response to S1 compared to S2, suggesting a neural gating phenomenon. These findings suggest that N1, gamma and beta frequency oscillations may be indicators for altered respiratory sensation in GAD populations and that the N1, P3, beta and theta oscillations can reflect the neural gating of respiratory sensations.
Collapse
Affiliation(s)
- Kai-Jie Liang
- Department of Occupational Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan; Department of Occupational Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Hsiung Cheng
- Department of Occupational Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital at Linkuo, Taoyuan, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Chia-Yih Liu
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkuo, Taoyuan, Taiwan; Department of Psychiatry, New Taipei City Municipal Tucheng Hospital
| | - Shih-Chieh Hsu
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkuo, Taoyuan, Taiwan; Department of Psychiatry, New Taipei City Municipal Tucheng Hospital
| | | | | | - Pei-Ying S Chan
- Department of Occupational Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital at Linkuo, Taoyuan, Taiwan.
| |
Collapse
|
5
|
Ioakeimidis V, Lennuyeux-Comnene L, Khachatoorian N, Gaigg SB, Haenschel C, Kyriakopoulos M, Dima D. Trait and State Anxiety Effects on Mismatch Negativity and Sensory Gating Event-Related Potentials. Brain Sci 2023; 13:1421. [PMID: 37891790 PMCID: PMC10605251 DOI: 10.3390/brainsci13101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
We used the auditory roving oddball to investigate whether individual differences in self-reported anxiety influence event-related potential (ERP) activity related to sensory gating and mismatch negativity (MMN). The state-trait anxiety inventory (STAI) was used to assess the effects of anxiety on the ERPs for auditory change detection and information filtering in a sample of thirty-six healthy participants. The roving oddball paradigm involves presentation of stimulus trains of auditory tones with certain frequencies followed by trains of tones with different frequencies. Enhanced negative mid-latency response (130-230 ms post-stimulus) was marked at the deviant (first tone) and the standard (six or more repetitions) tone at Fz, indicating successful mismatch negativity (MMN). In turn, the first and second tone in a stimulus train were subject to sensory gating at the Cz electrode site as a response to the second stimulus was suppressed at an earlier latency (40-80 ms). We used partial correlations and analyses of covariance to investigate the influence of state and trait anxiety on these two processes. Higher trait anxiety exhibited enhanced MMN amplitude (more negative) (F(1,33) = 14.259, p = 6.323 × 10-6, ηp2 = 0.302), whereas state anxiety reduced sensory gating (F(1,30) = 13.117, p = 0.001, ηp2 = 0.304). Our findings suggest that high trait-anxious participants demonstrate hypervigilant change detection to deviant tones that appear more salient, whereas increased state anxiety associates with failure to filter out irrelevant stimuli.
Collapse
Affiliation(s)
- Vasileios Ioakeimidis
- Department of Psychology, School of Health and Psychological Sciences, City University of London, 10 Northampton Square, London EC1V 0HB, UK; (V.I.); (L.L.-C.); (S.B.G.); (C.H.)
| | - Laura Lennuyeux-Comnene
- Department of Psychology, School of Health and Psychological Sciences, City University of London, 10 Northampton Square, London EC1V 0HB, UK; (V.I.); (L.L.-C.); (S.B.G.); (C.H.)
| | - Nareg Khachatoorian
- Department of Psychology, School of Health and Psychological Sciences, City University of London, 10 Northampton Square, London EC1V 0HB, UK; (V.I.); (L.L.-C.); (S.B.G.); (C.H.)
| | - Sebastian B. Gaigg
- Department of Psychology, School of Health and Psychological Sciences, City University of London, 10 Northampton Square, London EC1V 0HB, UK; (V.I.); (L.L.-C.); (S.B.G.); (C.H.)
| | - Corinna Haenschel
- Department of Psychology, School of Health and Psychological Sciences, City University of London, 10 Northampton Square, London EC1V 0HB, UK; (V.I.); (L.L.-C.); (S.B.G.); (C.H.)
| | - Marinos Kyriakopoulos
- South London and the Maudsley NHS Foundation Trust, London SE5 8AF, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
- 1st Department of Psychiatry, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Danai Dima
- Department of Psychology, School of Health and Psychological Sciences, City University of London, 10 Northampton Square, London EC1V 0HB, UK; (V.I.); (L.L.-C.); (S.B.G.); (C.H.)
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| |
Collapse
|
6
|
Hien DA, López-Castro T, Fitzpatrick S, Ruglass LM, Fertuck EA, Melara R. A unifying translational framework to advance treatment research for comorbid PTSD and substance use disorders. Neurosci Biobehav Rev 2021; 127:779-794. [PMID: 34062208 DOI: 10.1016/j.neubiorev.2021.05.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 11/20/2022]
Abstract
We provide a unifying translational framework that can be used to synthesize extant lines of human laboratory research in four neurofunctional domains that underlie the co-occurrence of posttraumatic stress and substance use disorders (PTSD+SUD). We draw upon the Alcohol and Addiction Research Domain Criteria (AARDOC) to include executive functioning, negative emotionality, reward, and added social cognition from the National Institute of Mental Health (NIMH) Research Domain Criteria into our framework. We review research findings across each of the four domains, emphasizing human experimental studies in PTSD, SUD, and PTSD+SUD for each domain. We also discuss the implications of research findings for treatment development by considering new ways of conceptualizing risk factors and outcomes at the level of the individual patient, which will enhance treatment matching and advance innovations in intervention.
Collapse
Affiliation(s)
- Denise A Hien
- Center of Alcohol & Substance Use Studies, Graduate School of Applied and Professional Psychology, Rutgers University-New Brunswick, Piscataway, New Jersey, United States.
| | - Teresa López-Castro
- Psychology Department, The City College of New York, New York, NY, United States
| | | | - Lesia M Ruglass
- Center of Alcohol & Substance Use Studies, Graduate School of Applied and Professional Psychology, Rutgers University-New Brunswick, Piscataway, New Jersey, United States; Psychology Department, The City College of New York, New York, NY, United States
| | - Eric A Fertuck
- Psychology Department, The City College of New York, New York, NY, United States
| | - Robert Melara
- Psychology Department, The City College of New York, New York, NY, United States
| |
Collapse
|
7
|
Miller LN, Simmons JG, Whittle S, Forbes D, Felmingham K. The impact of posttraumatic stress disorder on event-related potentials in affective and non-affective paradigms: A systematic review with meta-analysis. Neurosci Biobehav Rev 2020; 122:120-142. [PMID: 33383070 DOI: 10.1016/j.neubiorev.2020.12.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/09/2020] [Accepted: 12/20/2020] [Indexed: 12/11/2022]
Abstract
Post-traumatic stress disorder (PTSD) is associated with neural processing deficits affecting early automatic and later conscious processing. Event-related Potentials (ERPs) are high resolution indices of automatic and conscious processing, but there are no meta-analyses that have examined automatic and conscious ERPs in PTSD across multiple paradigms. This systematic review examined 69 studies across affective and non-affective auditory and visual paradigms. Individuals with PTSD were compared to trauma-exposed and non-trauma controls on ERPs reflecting automatic (N1, P1, N2, P2) and conscious (P3, LPP) processing. Trauma exposure was associated with increased automatic ERP amplitudes to irrelevant auditory information. PTSD further showed increased automatic and conscious allocation of resources to affective information, reduced automatic attending and classification as well as reduced attention processing and working memory updating of non-affective information. Therefore, trauma exposure is associated with enhanced early processing of incoming stimuli, and PTSD with enhanced processing of affective stimuli and impaired processing of non-affective stimuli. This review highlights the need for longitudinal ERP studies in PTSD, adopting standardized procedures and methodological designs.
Collapse
Affiliation(s)
- Lisa N Miller
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia.
| | - Julian G Simmons
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Sarah Whittle
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Australia
| | - David Forbes
- Department of Psychiatry, The University of Melbourne, Melbourne, Australia; Phoenix Australia, Centre for Posttraumatic Mental Health, Melbourne, Australia
| | - Kim Felmingham
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
8
|
Yochman A, Pat-Horenczyk R. Sensory Modulation in Children Exposed to Continuous Traumatic Stress. JOURNAL OF CHILD & ADOLESCENT TRAUMA 2020; 13:93-102. [PMID: 32318232 PMCID: PMC7163836 DOI: 10.1007/s40653-019-00254-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Preliminary evidence supports a possible association between post-traumatic stress disorder (PTSD) and sensory modulation disorder (SMD). Nevertheless, the research focusing on this relationship in children is notably limited. This study examined children with and without PTS symptoms, by comparing their mothers' perceptions of their responses to sensory events in daily life. Mothers of 134 non-referred children aged 5-11, exposed to continuous traumatic stress due to political violence, completed the UCLA-RI and the Short Sensory Profile questionnaires. Significant differences emerged between children with different levels of PTS symptoms in various sensory modalities. Furthermore, half of the symptomatic children had suspected clinically significant deficits in sensory processing. In addition, PTSD symptoms were significantly associated with most of the sensory processing scores. Logistic regression indicated that the overall sensory processing score was a significant predictor of group classification. The results indicate that children with PTS symptoms may be at increased risk for sensory processing deficits. Evaluation of sensory processing should be incorporated into the routine evaluation of this population in order to determine whether this is an additional factor contributing to a child's difficulties in participating in daily activities. Subsequent intervention programs should then address the multiple needs of these children.
Collapse
Affiliation(s)
- Aviva Yochman
- School of Occupational Therapy, Faculty of Medicine of Hadassah and the Hebrew University of Jerusalem , 24026, Mount Scopus, 91240 Jerusalem, Israel
| | - Ruth Pat-Horenczyk
- Paul Baerwald School of Social Work and Social Welfare, the Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Shen CL, Chou TL, Lai WS, Hsieh MH, Liu CC, Liu CM, Hwu HG. P50, N100, and P200 Auditory Sensory Gating Deficits in Schizophrenia Patients. Front Psychiatry 2020; 11:868. [PMID: 33192632 PMCID: PMC7481459 DOI: 10.3389/fpsyt.2020.00868] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Sensory gating describes neurological processes of filtering out redundant or unnecessary stimuli during information processing, and sensory gating deficits may contribute to the symptoms of schizophrenia. Among the three components of auditory event-related potentials reflecting sensory gating, P50 implies pre-attentional filtering of sensory information and N100/P200 reflects attention triggering and allocation processes. Although diminished P50 gating has been extensively documented in patients with schizophrenia, previous studies on N100 were inconclusive, and P200 has been rarely examined. This study aimed to investigate whether patients with schizophrenia have P50, N100, and P200 gating deficits compared with control subjects. METHODS Control subjects and clinically stable schizophrenia patients were recruited. The mid-latency auditory evoked responses, comprising P50, N100, and P200, were measured using the auditory-paired click paradigm without manipulation of attention. Sensory gating parameters included S1 amplitude, S2 amplitude, amplitude difference (S1-S2), and gating ratio (S2/S1). We also evaluated schizophrenia patients with PANSS to be correlated with sensory gating indices. RESULTS One hundred four patients and 102 control subjects were examined. Compared to the control group, schizophrenia patients had significant sensory gating deficits in P50, N100, and P200, reflected by larger gating ratios and smaller amplitude differences. Further analysis revealed that the S2 amplitude of P50 was larger, while the S1 amplitude of N100/P200 was smaller, in schizophrenia patients than in the controls. We found no correlations between sensory gating indices and schizophrenia positive or negative symptom clusters. However, we found a negative correlation between the P200 S2 amplitude and Bell's emotional discomfort factor/Wallwork's depressed factor. CONCLUSION Till date, this study has the largest sample size to analyze P50, N100, and P200 collectively by adopting the passive auditory paired-click paradigm without distractors. With covariates controlled for possible confounds, such as age, education, smoking amount and retained pairs, we found that schizophrenia patients had significant sensory gating deficits in P50-N100-P200. The schizophrenia patients had demonstrated a unique pattern of sensory gating deficits, including repetition suppression deficits in P50 and stimulus registration deficits in N100/200. These results suggest that sensory gating is a pervasive cognitive abnormality in schizophrenia patients that is not limited to the pre-attentive phase of information processing. Since P200 exhibited a large effect size and did not require additional time during recruitment, future studies of P50-N100-P200 collectively are highly recommended.
Collapse
Affiliation(s)
- Chen-Lan Shen
- Department of General Psychiatry, Tsao-Tun Psychiatric Center, Nanto, Taiwan.,Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
| | - Tai-Li Chou
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
| | - Wen-Sung Lai
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
| | - Ming H Hsieh
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| | - Chen-Chung Liu
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| | - Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| | - Hai-Gwo Hwu
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Cheng CH, Chan PYS, Hsu SC, Liu CY. Abnormal frontal generator during auditory sensory gating in panic disorder: An MEG study. Psychiatry Res Neuroimaging 2019; 288:60-66. [PMID: 31014913 DOI: 10.1016/j.pscychresns.2019.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 01/08/2023]
Abstract
Patients with panic disorder (PD) exhibit abnormalities in early-stage information processing, even for the nonthreatening stimuli. A previous event-related potential study reported that PD patients show a deficit in sensory gating (SG), a protective mechanism of the brain to filter out irrelevant sensory inputs. However, there is no clear understanding about the neural correlates of SG deficits in PD. Moreover, whether SG deficits, if any, are associated with clinical manifestations remain unknown. In this study, 18 patients with PD and 20 age- and gender-matched healthy controls were recruited to perform auditory paired-stimulus paradigm using magnetoencephalographic (MEG) recordings. Results showed that PD patients demonstrated significantly higher M50 SG ratios in the right inferior frontal gyrus (RIFG) and higher M100 SG ratios in both RIFG and right superior temporal gyrus (RSTG) than those of the control group. It was important to note that in the RIFG, the M50 SG ratios correlated significantly with the scores of Body Sensation Questionnaire (BSQ) and Distractibility scale of Sensory Gating Inventory among patients with PD. In conclusion, this study suggests that PD patients exhibited a deficient ability to filter out irrelevant information, and such a defect might lead to cognitive misinterpretation of somatic sensations and distractibility.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.
| | - Pei-Ying S Chan
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Shih-Chieh Hsu
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Yih Liu
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Spironelli C, Romeo Z, Maffei A, Angrilli A. Comparison of automatic visual attention in schizophrenia, bipolar disorder, and major depression: Evidence from P1 event-related component. Psychiatry Clin Neurosci 2019; 73:331-339. [PMID: 30882991 DOI: 10.1111/pcn.12840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/08/2019] [Accepted: 03/10/2019] [Indexed: 01/12/2023]
Abstract
AIM The ability to discern commonalities and differences in the neurobiology of functional psychoses represents a key element to unmasking shared vulnerability across different psychiatric conditions. The present study sought to compare the automatic visual attention mechanisms in three psychiatric disorders considered to distribute along the continuum of psychosis severity: schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). To this end, the visual P1 event-related potential component, a cortical correlate of automatic visual attention, was measured during an ecological task based on visual word pair presentation. METHODS Four samples of participants, 18 SCZ, 20 BD, 28 MDD, and 30 healthy controls, were recruited and submitted to the same procedure and stimuli. The P1 evoked by visual word presentation was recorded through a 38-electrode electroencephalography cap. Words were presented on a computer screen serially as pairs, and participants had to decide whether they rhymed or not. RESULTS P1 was larger at posterior sites in SCZ compared with BD, healthy control, and MDD participants. BD patients showed the lowest P1 compared with all other groups. Positive Pearson's correlations were found in SCZ patients between P1 amplitude on left posterior sites and both hallucination severity and worse task performance. CONCLUSION The three investigated psychiatric samples showed different automatic visual attention patterns: SCZ patients exhibited the greatest cognitive impairment correlated with the amplitude of P1, MDD patients revealed a normal component, and BD showed a compensated euthymic response different from results of past literature in untreated patients.
Collapse
Affiliation(s)
- Chiara Spironelli
- Department of General Psychology, University of Padua, Padua, Italy.,Padua Neuroscience Center, Padua, Italy
| | | | - Antonio Maffei
- Department of General Psychology, University of Padua, Padua, Italy
| | - Alessandro Angrilli
- Department of General Psychology, University of Padua, Padua, Italy.,Padua Neuroscience Center, Padua, Italy.,IN-CNR Institute of Neuroscience CNR, Padua, Italy
| |
Collapse
|
12
|
Campbell J, LaBrec A, Bean C, Nielsen M, So W. Auditory Gating and Extended High-Frequency Thresholds in Normal-Hearing Adults With Minimal Tinnitus. Am J Audiol 2019; 28:209-224. [PMID: 31022362 DOI: 10.1044/2019_aja-ttr17-18-0036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Purpose The goal of this study was to assess whether peripheral auditory sensitivity in frequency regions above 8 kHz is related to central inhibitory function, as measured through a sensory gating paradigm, in normal-hearing adults with tinnitus (TINN) and without tinnitus (NTINN). The contribution of gating processes and peripheral sensitivity in extended high frequencies to tinnitus severity was evaluated via a hierarchical multiple regression method. Method Cortical auditory evoked potentials (CAEPs) were recorded in response to pairs of tones in normal-hearing adults without tinnitus, NTINN ( n = 45), and adults with tinnitus, TINN ( n = 21). CAEP peak component amplitude, latency, and gating indices were compared and correlated with extended high-frequency (EHF) pure-tone averages (PTAs) across groups and with tinnitus severity. An exploratory analysis was performed to investigate gating variability within the TINN group. Based on Tinnitus Handicap Inventory (Newman, Jacobson, & Spitzer, 1996) median scores, the TINN group was categorized into low- and high-median subgroups, and gating indices were compared between these subgroups. A hierarchical multiple regression analysis was performed to determine the amount of variance accounted for in the TINN group. Results Decreased gating via the CAEP Pa component and increased gating via the N1 component correlated with increased tinnitus severity, even in individuals who would traditionally be classified as having no tinnitus handicap. In the TINN group, lower EHF PTA thresholds correlated with tinnitus severity and decreased Pa gating. Individuals with a greater severity of tinnitus demonstrated atypical gating function reflected in both Pa and N1 components. Gating function and EHF PTA accounted for significant variance regarding tinnitus severity. Conclusions A trade-off between lower and higher level gating function was observed in adults with normal hearing and tinnitus, indicative of higher order compensatory mechanisms. Better cochlear sensitivity in extended high frequencies was related to decreased lower level gating processes and increased tinnitus THI scores, suggestive of an interaction between decreased gating and heightened auditory awareness. We are currently exploring whether gating processes in this population are compensatory, and the role of gating in auditory awareness.
Collapse
Affiliation(s)
- Julia Campbell
- Department of Communication Sciences and Disorders, The University of Texas at Austin
- Central Sensory Processes Laboratory, The University of Texas at Austin
| | - Alison LaBrec
- Department of Communication Sciences and Disorders, The University of Texas at Austin
- Central Sensory Processes Laboratory, The University of Texas at Austin
| | - Connor Bean
- Department of Communication Sciences and Disorders, The University of Texas at Austin
- Central Sensory Processes Laboratory, The University of Texas at Austin
| | - Mashhood Nielsen
- Department of Communication Sciences and Disorders, The University of Texas at Austin
- Central Sensory Processes Laboratory, The University of Texas at Austin
| | - Won So
- Department of Communication Sciences and Disorders, The University of Texas at Austin
- Central Sensory Processes Laboratory, The University of Texas at Austin
| |
Collapse
|
13
|
Meteran H, Vindbjerg E, Uldall SW, Glenthøj B, Carlsson J, Oranje B. Startle habituation, sensory, and sensorimotor gating in trauma-affected refugees with posttraumatic stress disorder. Psychol Med 2019; 49:581-589. [PMID: 29769152 DOI: 10.1017/s003329171800123x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Impairments in mechanisms underlying early information processing have been reported in posttraumatic stress disorder (PTSD); however, findings in the existing literature are inconsistent. This current study capitalizes on technological advancements of research on electroencephalographic event-related potential and applies it to a novel PTSD population consisting of trauma-affected refugees. METHODS A total of 25 trauma-affected refugees with PTSD and 20 healthy refugee controls matched on age, gender, and country of origin completed the study. In two distinct auditory paradigms sensory gating, indexed as P50 suppression, and sensorimotor gating, indexed as prepulse inhibition (PPI), startle reactivity, and habituation of the eye-blink startle response were examined. Within the P50 paradigm, N100 and P200 amplitudes were also assessed. In addition, correlations between psychophysiological and clinical measures were investigated. RESULTS PTSD patients demonstrated significantly elevated stimuli responses across the two paradigms, reflected in both increased amplitude of the eye-blink startle response, and increased N100 and P200 amplitudes relative to healthy refugee controls. We found a trend toward reduced habituation in the patients, while the groups did not differ in PPI and P50 suppression. Among correlations, we found that eye-blink startle responses were associated with higher overall illness severity and lower levels of functioning. CONCLUSIONS Fundamental gating mechanisms appeared intact, while the pattern of deficits in trauma-affected refugees with PTSD point toward a different form of sensory overload, an overall neural hypersensitivity and disrupted the ability to down-regulate stimuli responses. This study represents an initial step toward elucidating sensory processing deficits in a PTSD subgroup.
Collapse
Affiliation(s)
- Hanieh Meteran
- Competence Centre for Transcultural Psychiatry,Mental Health Services Ballerup,Copenhagen,Denmark
| | - Erik Vindbjerg
- Competence Centre for Transcultural Psychiatry,Mental Health Services Ballerup,Copenhagen,Denmark
| | - Sigurd Wiingaard Uldall
- Competence Centre for Transcultural Psychiatry,Mental Health Services Ballerup,Copenhagen,Denmark
| | - Birte Glenthøj
- Centre for Neuropsychiatric Schizophrenia Research and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Services Glostrup, University of Copenhagen,Copenhagen,Denmark
| | - Jessica Carlsson
- Competence Centre for Transcultural Psychiatry,Mental Health Services Ballerup,Copenhagen,Denmark
| | - Bob Oranje
- Centre for Neuropsychiatric Schizophrenia Research and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Services Glostrup, University of Copenhagen,Copenhagen,Denmark
| |
Collapse
|
14
|
Clancy K, Ding M, Bernat E, Schmidt NB, Li W. Restless 'rest': intrinsic sensory hyperactivity and disinhibition in post-traumatic stress disorder. Brain 2017; 140:2041-2050. [PMID: 28582479 DOI: 10.1093/brain/awx116] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/24/2017] [Indexed: 01/11/2023] Open
Abstract
Post-traumatic stress disorder is characterized by exaggerated threat response, and theoretical accounts to date have focused on impaired threat processing and dysregulated prefrontal-cortex-amygdala circuitry. Nevertheless, evidence is accruing for broad, threat-neutral sensory hyperactivity in post-traumatic stress disorder. As low-level, sensory processing impacts higher-order operations, such sensory anomalies can contribute to widespread dysfunctions, presenting an additional aetiological mechanism for post-traumatic stress disorder. To elucidate a sensory pathology of post-traumatic stress disorder, we examined intrinsic visual cortical activity (based on posterior alpha oscillations) and bottom-up sensory-driven causal connectivity (Granger causality in the alpha band) during a resting state (eyes open) and a passive, serial picture viewing state. Compared to patients with generalized anxiety disorder (n = 24) and healthy control subjects (n = 20), patients with post-traumatic stress disorder (n = 25) demonstrated intrinsic sensory hyperactivity (suppressed posterior alpha power, source-localized to the visual cortex-cuneus and precuneus) and bottom-up inhibition deficits (reduced posterior→frontal Granger causality). As sensory input increased from resting to passive picture viewing, patients with post-traumatic stress disorder failed to demonstrate alpha adaptation, highlighting a rigid, set mode of sensory hyperactivity. Interestingly, patients with post-traumatic stress disorder also showed heightened frontal processing (augmented frontal gamma power, source-localized to the superior frontal gyrus and dorsal cingulate cortex), accompanied by attenuated top-down inhibition (reduced frontal→posterior causality). Importantly, not only did suppressed alpha power and bottom-up causality correlate with heightened frontal gamma power, they also correlated with increased severity of sensory and executive dysfunctions (i.e. hypervigilance and impulse control deficits, respectively). Therefore, sensory aberrations help construct a vicious cycle in post-traumatic stress disorder that is in action even at rest, implicating dysregulated triangular sensory-prefrontal-cortex-amygdala circuitry: intrinsic sensory hyperactivity and disinhibition give rise to frontal overload and disrupt executive control, fuelling and perpetuating post-traumatic stress disorder symptoms. Absent in generalized anxiety disorder, these aberrations highlight a unique sensory pathology of post-traumatic stress disorder (ruling out effects merely reflecting anxious hyperarousal), motivating new interventions targeting sensory processing and the sensory brain in these patients.
Collapse
Affiliation(s)
- Kevin Clancy
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Edward Bernat
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Norman B Schmidt
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Wen Li
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
15
|
Hutchison AK, Hunter SK, Wagner BD, Calvin EA, Zerbe GO, Ross RG. Diminished Infant P50 Sensory Gating Predicts Increased 40-Month-Old Attention, Anxiety/Depression, and Externalizing Symptoms. J Atten Disord 2017; 21:209-218. [PMID: 23757333 PMCID: PMC5849461 DOI: 10.1177/1087054713488824] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE When behavioral problems resulting from attentional difficulties present, often in preschool, it is unknown whether these problems represent preexisting altered brain development or new brain changes. This study examines whether infant sensory gating of auditory evoked potentials predicts parent-reported behavior at 40 months. METHOD P50 sensory gating, an auditory evoked potential measure reflective of inhibitory processes in the brain, was measured in 50 infants around 70 days old. Parents, using the Child Behavior Checklist, reported on the child's behavior at 40 months. RESULTS Controlling for gender, infants with diminished sensory gating had more problems later with externalizing behavior ( F = 4.17, ndf = 1, ddf = 46, p = .047), attentional problems ( F = 5.23, ndf = 1, ddf = 46, p = .027), and anxious/depressed symptoms ( F = 5.36, ndf = 1, ddf = 46, p = .025). CONCLUSION Diminished infant P50 sensory gating predicts attention symptoms 3 years later. These results support the hypothesis that preschool attentional dysfunction may relate to altered brain development that is detectable years prior to symptom onset.
Collapse
Affiliation(s)
| | | | | | | | - Gary O Zerbe
- 1 University of Colorado Denver, Aurora, CO, USA
| | | |
Collapse
|
16
|
Wang C, Costanzo ME, Rapp PE, Darmon D, Bashirelahi K, Nathan DE, Cellucci CJ, Roy MJ, Keyser DO. Identifying Electrophysiological Prodromes of Post-traumatic Stress Disorder: Results from a Pilot Study. Front Psychiatry 2017; 8:71. [PMID: 28555113 PMCID: PMC5430065 DOI: 10.3389/fpsyt.2017.00071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/13/2017] [Indexed: 11/13/2022] Open
Abstract
The objective of this research project is the identification of a physiological prodrome of post-traumatic stress disorder (PTSD) that has a reliability that could justify preemptive treatment in the sub-syndromal state. Because abnormalities in event-related potentials (ERPs) have been observed in fully expressed PTSD, the possible utility of abnormal ERPs in predicting delayed-onset PTSD was investigated. ERPs were recorded from military service members recently returned from Iraq or Afghanistan who did not meet PTSD diagnostic criteria at the time of ERP acquisition. Participants (n = 65) were followed for up to 1 year, and 7.7% of the cohorts (n = 5) were PTSD-positive at follow-up. The initial analysis of the receiver operating characteristic (ROC) curve constructed using ERP metrics was encouraging. The average amplitude to target stimuli gave an area under the ROC curve of greater than 0.8. Classification based on the Youden index, which is determined from the ROC, gave positive results. Using average target amplitude at electrode Cz yielded Sensitivity = 0.80 and Specificity = 0.87. A more systematic statistical analysis of the ERP data indicated that the ROC results may simply represent a fortuitous consequence of small sample size. Predicted error rates based on the distribution of target ERP amplitudes approached those of random classification. A leave-one-out cross validation using a Gaussian likelihood classifier with Bayesian priors gave lower values of sensitivity and specificity. In contrast with the ROC results, the leave-one-out classification at Cz gave Sensitivity = 0.65 and Specificity = 0.60. A bootstrap calculation, again using the Gaussian likelihood classifier at Cz, gave Sensitivity = 0.59 and Specificity = 0.68. Two provisional conclusions can be offered. First, the results can only be considered preliminary due to the small sample size, and a much larger study will be required to assess definitively the utility of ERP prodromes of PTSD. Second, it may be necessary to combine ERPs with other biomarkers in a multivariate metric to produce a prodrome that can justify preemptive treatment.
Collapse
Affiliation(s)
- Chao Wang
- Traumatic Injury Research Program, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Michelle E Costanzo
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.,Department of Medicine and Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Paul E Rapp
- Traumatic Injury Research Program, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - David Darmon
- Traumatic Injury Research Program, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Kylee Bashirelahi
- Traumatic Injury Research Program, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Dominic E Nathan
- Traumatic Injury Research Program, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.,Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Michael J Roy
- Department of Medicine and Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - David O Keyser
- Traumatic Injury Research Program, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
17
|
Pineles SL, Blumenthal TD, Curreri AJ, Nillni YI, Putnam KM, Resick PA, Rasmusson AM, Orr SP. Prepulse inhibition deficits in women with PTSD. Psychophysiology 2016; 53:1377-85. [PMID: 27237725 DOI: 10.1111/psyp.12679] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
Prepulse inhibition (PPI) is an automatic and preattentive process, whereby a weak stimulus attenuates responding to a sudden and intense startle stimulus. PPI is a measure of sensorimotor filtering, which is conceptualized as a mechanism that facilitates processing of an initial stimulus and is protective from interruption by a later response. Impaired PPI has been found in (a) healthy women during the luteal phase of the menstrual cycle, and (b) individuals with types of psychopathology characterized by difficulty suppressing and filtering sensory, motor, or cognitive information. In the current study, 47 trauma-exposed women with or without posttraumatic stress disorder (PTSD) completed a PPI session during two different phases of the menstrual cycle: the early follicular phase, when estradiol and progesterone are both low, and the midluteal phase, when estradiol and progesterone are both high. Startle stimuli were 100 dB white noise bursts presented for 50 ms, and prepulses were 70 dB white noise bursts presented for 20 ms that preceded the startle stimuli by 120 ms. Women with PTSD showed deficits in PPI relative to the healthy trauma-exposed participants. Menstrual phase had no effect on PPI. These results provide empirical support for individuals with PTSD having difficulty with sensorimotor filtering. The potential utility of PPI as a Research Domain Criteria (RDoC) phenotype is discussed.
Collapse
Affiliation(s)
- Suzanne L Pineles
- National Center for PTSD, Women's Health Sciences Division, VA Boston Healthcare System, Boston, Massachusetts, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Terry D Blumenthal
- Department of Psychology, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Andrew J Curreri
- National Center for PTSD, Women's Health Sciences Division, VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Yael I Nillni
- National Center for PTSD, Women's Health Sciences Division, VA Boston Healthcare System, Boston, Massachusetts, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Katherine M Putnam
- Department of Psychology, VA Central Western Massachusetts Healthcare System, Leeds, Massachusetts, USA
| | - Patricia A Resick
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
| | - Ann M Rasmusson
- National Center for PTSD, Women's Health Sciences Division, VA Boston Healthcare System, Boston, Massachusetts, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Scott P Orr
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Badura-Brack AS, Becker KM, McDermott TJ, Ryan TJ, Becker MM, Hearley AR, Heinrichs-Graham E, Wilson TW. Decreased somatosensory activity to non-threatening touch in combat veterans with posttraumatic stress disorder. Psychiatry Res 2015; 233:194-200. [PMID: 26184460 PMCID: PMC5828504 DOI: 10.1016/j.pscychresns.2015.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/22/2015] [Accepted: 06/27/2015] [Indexed: 02/08/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a severe psychiatric disorder prevalent in combat veterans. Previous neuroimaging studies have demonstrated that patients with PTSD exhibit abnormal responses to non-threatening visual and auditory stimuli, but have not examined somatosensory processing. Thirty male combat veterans, 16 with PTSD and 14 without, completed a tactile stimulation task during a 306-sensor magnetoencephalography (MEG) recording. Significant oscillatory neural responses were imaged using a beamforming approach. Participants also completed clinical assessments of PTSD, combat exposure, and depression. We found that veterans with PTSD exhibited significantly reduced activity during early (0-125 ms) tactile processing compared with combat controls. Specifically, veterans with PTSD had weaker activity in the left postcentral gyrus, left superior parietal area, and right prefrontal cortex in response to nonthreatening tactile stimulation relative to veterans without PTSD. The magnitude of activity in these brain regions was inversely correlated with symptom severity, indicating that those with the most severe PTSD had the most abnormal neural responses. Our findings are consistent with a resource allocation view of perceptual processing in PTSD, which directs attention away from nonthreatening sensory information.
Collapse
Affiliation(s)
- Amy S. Badura-Brack
- Department of Psychology, Creighton University, Omaha, NE, USA,Corresponding Author: Amy Badura-Brack, Department of Psychology, Creighton University, 2500 California Plaza, Omaha, NE 68178 USA, Phone: (402) 280-1229, Fax: (402) 280-4748,
| | - Katherine M. Becker
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, NE, USA,Center for Magnetoencephalography, UNMC, Omaha, NE, USA
| | | | - Tara J. Ryan
- Department of Psychology, Creighton University, Omaha, NE, USA,Department of Psychology, Simon Fraser University, Burnaby, BC, Canada
| | | | | | - Elizabeth Heinrichs-Graham
- Center for Magnetoencephalography, UNMC, Omaha, NE, USA,Department of Psychology, University of Nebraska-Omaha, Omaha, NE, USA
| | - Tony W. Wilson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, NE, USA,Center for Magnetoencephalography, UNMC, Omaha, NE, USA,Department of Psychology, University of Nebraska-Omaha, Omaha, NE, USA,Department of Neurological Sciences, UNMC, Omaha, NE, USA
| |
Collapse
|
19
|
Saar-Ashkenazy R, Shalev H, Kanthak MK, Guez J, Friedman A, Cohen JE. Altered processing of visual emotional stimuli in posttraumatic stress disorder: an event-related potential study. Psychiatry Res 2015; 233:165-74. [PMID: 26138281 DOI: 10.1016/j.pscychresns.2015.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 02/06/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
Abstract
Patients with posttraumatic stress disorder (PTSD) display abnormal emotional processing and bias towards emotional content. Most neurophysiological studies in PTSD found higher amplitudes of event-related potentials (ERPs) in response to trauma-related visual content. Here we aimed to characterize brain electrical activity in PTSD subjects in response to non-trauma-related emotion-laden pictures (positive, neutral and negative). A combined behavioral-ERP study was conducted in 14 severe PTSD patients and 14 controls. Response time in PTSD patients was slower compared with that in controls, irrespective to emotional valence. In both PTSD and controls, response time to negative pictures was slower compared with that to neutral or positive pictures. Upon ranking, both control and PTSD subjects similarly discriminated between pictures with different emotional valences. ERP analysis revealed three distinctive components (at ~300, ~600 and ~1000 ms post-stimulus onset) for emotional valence in control subjects. In contrast, PTSD patients displayed a similar brain response across all emotional categories, resembling the response of controls to negative stimuli. We interpret these findings as a brain-circuit response tendency towards negative overgeneralization in PTSD.
Collapse
Affiliation(s)
- Rotem Saar-Ashkenazy
- Department of Cognitive-Neuroscience and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Psychology and the School of Social-work, Ashkelon Academic College, Ashkelon, Israel; Department of Psychology, Achva Academic College, Beer-Tuvia regional council, Israel
| | - Hadar Shalev
- Department of Psychiatry, Soroka University Medical Center, Beer-Sheva, Israel
| | - Magdalena K Kanthak
- Department of Biological Psychology, Technical University of Dresden, Dresden, Germany
| | - Jonathan Guez
- Department of Psychology, Achva Academic College, Beer-Tuvia regional council, Israel; Beer-Sheva Mental Health Center, Beer-Sheva, Israel
| | - Alon Friedman
- Department of Cognitive-Neuroscience and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jonathan E Cohen
- Sharett Institute of Oncology, Hadassah Medical Organization, Kiryat-Hadassah, POB 12000, Jerusalem 91120, Israel.
| |
Collapse
|
20
|
Chan PYS, Cheng CH, Hsu SC, Liu CY, Davenport PW, von Leupoldt A. Respiratory sensory gating measured by respiratory-related evoked potentials in generalized anxiety disorder. Front Psychol 2015. [PMID: 26217278 PMCID: PMC4496549 DOI: 10.3389/fpsyg.2015.00957] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The perception of respiratory sensations plays an important role both in respiratory diseases and in anxiety disorders. However, little is known about the neural processes underlying respiratory sensory perception, especially in patient groups. Therefore, the present study examined whether patients with generalized anxiety disorder (GAD) would demonstrate altered respiratory sensory gating compared to a healthy control group. Respiratory-related evoked potentials (RREP) were measured in a paired inspiratory occlusion paradigm presenting two brief occlusion stimuli (S1 and S2) within one inspiration. The results showed a significantly greater S2/S1 ratio for the N1 component of the RREP in the GAD group compared to the control group. Our findings suggest altered respiratory sensory processing in patients with GAD, which might contribute to altered perception of respiratory sensations in these patients.
Collapse
Affiliation(s)
- Pei-Ying S Chan
- Department of Occupational Therapy, College of Medicine, Chang Gung University , Taoyuan, Taiwan ; Healthy Ageing Research Center, Chang Gung University , Taoyuan, Taiwan
| | - Chia-Hsiung Cheng
- Department of Occupational Therapy, College of Medicine, Chang Gung University , Taoyuan, Taiwan ; Healthy Ageing Research Center, Chang Gung University , Taoyuan, Taiwan
| | - Shih-Chieh Hsu
- Department of Psychiatry, Chang Gung Memorial Hospital , Taoyuan, Taiwan ; Department of Medicine, Chang Gung University , Taoyuan, Taiwan
| | - Chia-Yih Liu
- Department of Psychiatry, Chang Gung Memorial Hospital , Taoyuan, Taiwan ; Department of Traditional Chinese Medicine, Chang Gung University , Taoyuan, Taiwan
| | - Paul W Davenport
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida , Gainesville, FL, USA
| | - Andreas von Leupoldt
- Research Group on Health Psychology, University of Leuven , Leuven, Belgium ; Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| |
Collapse
|
21
|
Abstract
Endophenotypes are disease-associated phenotypes that are thought to reflect the neurobiological or other mechanisms that underlie the more overt symptoms of a psychiatric illness. Endophenotypes have been critical in understanding the genetics, neurobiology, and treatment of schizophrenia. Because psychiatric illnesses have multiple causes, including both genetic and nongenetic risk factors, an endophenotype linked to one of the mechanisms may be expressed more frequently than the disease itself. However, in schizophrenia research, endophenotypes have almost exclusively been studied in older adolescents or adults who have entered or passed through the age of risk for the disorder. Yet, schizophrenia is a neurodevelopmental disorder where prenatal development starts a cascade of brain changes across the lifespan. Endophenotypes have only minimally been utilized to explore the perinatal development of vulnerability. One major impediment to the development of perinatally-useful endophenotypes has been the established validity criteria. For example, the criterion that the endophenotype be more frequently present in those with disease than those without is difficult to demonstrate when there can be a decades-long period between endophenotype measurement and the age of greatest risk for onset of the disorder. This article proposes changes to the endophenotype validity criteria appropriate to perinatal research and reviews how application of these modified criteria helped identify a perinatally-usable phenotype of risk for schizophrenia, P50 sensory gating, which was then used to propose a novel perinatal primary prevention intervention.
Collapse
Affiliation(s)
- Randal G. Ross
- Department of Psychiatry, University of Colorado Denver, Aurora, CO,*To whom correspondence should be addressed; Department of Psychiatry, School of Medicine, University of Colorado Denver, 13001 E. 17th Place, Campus Box F546, Aurora, CO 80045, US; tel: 303-724-6203, fax: 303-724-6207, e-mail:
| | - Robert Freedman
- Department of Psychiatry, University of Colorado Denver, Aurora, CO
| |
Collapse
|
22
|
Pallanti S, Salerno L. Raising attention to attention deficit hyperactivity disorder in schizophrenia. World J Psychiatry 2015; 5:47-55. [PMID: 25815254 PMCID: PMC4369549 DOI: 10.5498/wjp.v5.i1.47] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/20/2014] [Accepted: 12/31/2014] [Indexed: 02/05/2023] Open
Abstract
Schizophrenia and attention deficit hyperactivity disorder (ADHD) are two psychiatric disorders with a negative impact on quality of life of individuals affected. Although they are classified into distinct disorders categories, attentional dysfunction is considered as a core feature in both conditions, either at the clinical then pathophysiological level. Beyond the obvious clinical overlap between these disorders, the Research Domain Criteria approach might offer an interesting perspective for disentangling common circuits underpinning both disorders. Hence, we review evidences regarding the overlap between schizophrenia and ADHD, at the clinical level, and at the level of underlying brain mechanisms. The evidence regarding the influence of environmental risk factors in the emergence of both disorders, and their developmental trajectories is also reviewed. Among these, we will try to elucidate the complex relationship between stimulants use and psychotic symptoms, discussing the potential role of ADHD medication in inducing psychosis or in exacerbating it. We aim that, taken together, these findings may promote further investigation with important implications both for clinicians and research. In fact, considering the amounting evidence on the overlap between schizophrenia and ADHD, the delineation of their boundaries might help in the decision for diagnosis and treatment. Moreover, it may help to promote interventions focused on the prevention of both schizophrenia and ADHD, by the reduction of recognized environmental risk factors.
Collapse
|
23
|
Wang HN, Bai YH, Chen YC, Zhang RG, Wang HH, Zhang YH, Gan JL, Peng ZW, Tan QR. Repetitive transcranial magnetic stimulation ameliorates anxiety-like behavior and impaired sensorimotor gating in a rat model of post-traumatic stress disorder. PLoS One 2015; 10:e0117189. [PMID: 25659132 PMCID: PMC4320076 DOI: 10.1371/journal.pone.0117189] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/21/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) has been employed for decades as a non-pharmacologic treatment for post-traumatic stress disorder (PTSD). Although a link has been suggested between PTSD and impaired sensorimotor gating (SG), studies assessing the effects of rTMS against PTSD or PTSD with impaired SG are scarce. AIM To assess the benefit of rTMS in a rat model of PTSD. METHODS Using a modified single prolonged stress (SPS&S) rat model of PTSD, behavioral parameters were acquired using open field test (OFT), elevated plus maze test (EPMT), and prepulse inhibition trial (PPI), with or without 7 days of high frequency (10Hz) rTMS treatment of SPS&S rats. RESULTS Anxiety-like behavior, impaired SG and increased plasma level of cortisol were observed in SPS&S animals after stress for a prolonged time. Interestingly, rTMS administered immediately after stress prevented those impairment. CONCLUSION Stress-induced anxiety-like behavior, increased plasma level of cortisol and impaired PPI occur after stress and high-frequency rTMS has the potential to ameliorate this behavior, suggesting that high frequency rTMS should be further evaluated for its use as a method for preventing PTSD.
Collapse
Affiliation(s)
- Hua-ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan-han Bai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yun-chun Chen
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Rui-guo Zhang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Huai-hai Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ya-hong Zhang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing-li Gan
- Department of Psychiatry, 91 Hospital of P. L. A., Jiaozuo, 454150, China
| | - Zheng-wu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qing-rong Tan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
24
|
Gjini K, Boutros NN, Haddad L, Aikins D, Javanbakht A, Amirsadri A, Tancer ME. Evoked potential correlates of post-traumatic stress disorder in refugees with history of exposure to torture. J Psychiatr Res 2013; 47:1492-8. [PMID: 23835042 DOI: 10.1016/j.jpsychires.2013.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 10/26/2022]
Abstract
The presence and magnitude of information processing deviations associated with Post-Traumatic Stress Disorder (PTSD) are far from being well-characterized. In this study we assessed the auditory and visually evoked cerebral responses in a group of Iraqi refugees who were exposed to torture and developed PTSD (N = 20), Iraqi refugees who had been exposed to similar trauma but did not develop PTSD (N = 20), and non-traumatized controls matched for age, gender, and ethnicity (N = 20). We utilized two paired-stimulus paradigms in auditory and visual sensory modalities, respectively. We found significantly smaller amplitudes of both the auditory P50 and the visual N75 responses in PTSD patients compared to controls, reflecting decreased response to simple sensory input during a relatively early phase of information processing (interval 50-75 ms post stimulus). In addition, deficient suppression of the P50/N75 response to repeating stimuli at this early stage in both modalities is indicative of difficulty in filtering out irrelevant sensory input. Among associations between electrophysiological and clinical measures, a significant positive correlation was found between dissociation score and P50 S1 amplitudes (p = 0.024), as well as stronger auditory P50 gating correlated with higher quality-of-life index scores (p = 0.013). In addition, smaller amplitudes of N150 visual evoked response to S1 showed a significant association with higher avoidance scores (p = 0.015). The results of this study highlight the importance of early automatic auditory and visual evoked responses in probing the information processing and neural mechanisms underlying symptomatology in PTSD.
Collapse
Affiliation(s)
- Klevest Gjini
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, School of Medicine, Clinical Electrophysiology Lab, Detroit, MI 48201, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Dissanayake DW, Mason R, Marsden CA. Sensory gating, Cannabinoids and Schizophrenia. Neuropharmacology 2013; 67:66-77. [DOI: 10.1016/j.neuropharm.2012.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/10/2012] [Accepted: 10/20/2012] [Indexed: 12/12/2022]
|
26
|
Holstein DH, Vollenweider FX, Geyer MA, Csomor PA, Belser N, Eich D. Sensory and sensorimotor gating in adult attention-deficit/hyperactivity disorder (ADHD). Psychiatry Res 2013; 205:117-26. [PMID: 23017654 DOI: 10.1016/j.psychres.2012.08.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 07/30/2012] [Accepted: 08/10/2012] [Indexed: 12/15/2022]
Abstract
Even though there is an impaired perceptual capacity in attention-deficit/hyperactivity disorder (ADHD) patients, psychophysiological alterations, such as impaired gating as indexed by prepulse inhibition (PPI) or suppression of P50 auditory event-related potentials, have not been found in patients with ADHD. Hence, potential relationships of psychophysiological measures of gating to psychopathology and cognitive performance remain unclear. The present study investigates two distinct operational measures of gating as well as cognitive performance within adult ADHD patients in order to assess the relationship of these measures to psychopathology. PPI, P50 suppression, cognitive performance, and psychopathologic symptoms were assessed in 26 ADHD patients and 26 healthy control subjects. ADHD patients compared to healthy control subjects exhibited impaired P50 suppression, performed worse in cognitive tasks, and reported more psychopathological symptoms, but were normal in the test of PPI. Thus, P50 gating deficits are not specific to schizophrenia-spectrum disorders. These findings highlight the differences between P50 gating and PPI as measures of the gating construct. In keeping with the lack of correlations between these two putative operational measures of gating seen in both humans and animals, adult ADHD patients exhibit deficient P50 suppression and poor cognitive performance, despite exhibiting normal levels of PPI.
Collapse
Affiliation(s)
- Dominique H Holstein
- Psychiatric University Hospital of Psychiatry Zurich, PO Box 1932, CH-8032 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
27
|
Hunter SK, Mendoza JH, D’Anna K, Zerbe GO, McCarthy L, Hoffman C, Freedman R, Ross RG. Antidepressants may mitigate the effects of prenatal maternal anxiety on infant auditory sensory gating. Am J Psychiatry 2012; 169:616-24. [PMID: 22581104 PMCID: PMC3640273 DOI: 10.1176/appi.ajp.2012.11091365] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Prenatal maternal anxiety has detrimental effects on the offspring's neurocognitive development, including impaired attentional function. Antidepressants are commonly used during pregnancy, yet their impact on offspring attention and their interaction with maternal anxiety has not been assessed. The authors used P50 auditory sensory gating, a putative marker of early attentional processes measurable in young infants, to assess the impact of maternal anxiety and antidepressant use. METHOD A total of 242 mother-infant dyads were classified relative to maternal history of anxiety and maternal prenatal antidepressant use. Infant P50 auditory sensory gating was recorded during active sleep at a mean age of 76 days (SD=38). RESULTS In the absence of prenatal antidepressant exposure, infants whose mothers had a history of anxiety diagnoses had diminished P50 sensory gating. Prenatal antidepressant exposure mitigated the effect of anxiety. The effect of maternal anxiety was limited to amplitude of response to the second stimulus, while antidepressant exposure had an impact on the amplitude of response to both the first and second stimulus. CONCLUSIONS Maternal anxiety disorders are associated with less inhibition during infant sensory gating, a performance deficit mitigated by prenatal antidepressant exposure. This effect may be important in considering the risks and benefits of antidepressant use during pregnancy. Cholinergic mechanisms are hypothesized for both anxiety and antidepressant effects, although the cholinergic receptors involved are likely different for anxiety and antidepressant effects.
Collapse
|
28
|
Becker J, Silva Filho IGD, Filho HFDS, Schuch A, Ramos FLDP, Ghisolfi ES, Lara DR, Costa JCD. Pattern of P50 suppression deficit in patients with epilepsy and individuals with schizophrenia. ARQUIVOS DE NEURO-PSIQUIATRIA 2012; 69:460-5. [PMID: 21755122 DOI: 10.1590/s0004-282x2011000400010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 03/02/2011] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To identify P50 suppression in patients with epilepsy, to investigate the effect of seizure control on P50 suppression, and to compare epilepsy patients with individuals with schizophrenia and healthy volunteers. METHOD P50 evoked potential parameters and P50 suppression were studied crossectionally in patients with uncontrolled or controlled epilepsy, in individuals with schizophrenia and in healthy volunteers. RESULTS Individuals with schizophrenia had significantly smaller conditioning stimulus (S1) amplitude, and patients with epilepsy had larger test stimulus (S2) amplitude. Mean S2/S1 ratio was 0.71 ± 0.33 for patients with uncontrolled epilepsy; 0.68 ± 0.36 for patients with controlled epilepsy; 0.96 ± 0.47 for individuals with schizophrenia, and 0.42 ± 0.24 for healthy volunteers. CONCLUSION The sensory filter of patients with epilepsy is altered, and this alteration is not associated with seizure control. Also, it works differently from the sensory filter of individuals with schizophrenia.
Collapse
Affiliation(s)
- Jefferson Becker
- Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre RS, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Javanbakht A, Liberzon I, Amirsadri A, Gjini K, Boutros NN. Event-related potential studies of post-traumatic stress disorder: a critical review and synthesis. BIOLOGY OF MOOD & ANXIETY DISORDERS 2011; 1:5. [PMID: 22738160 PMCID: PMC3377169 DOI: 10.1186/2045-5380-1-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 10/12/2011] [Indexed: 11/22/2022]
Abstract
Despite the sparseness of the currently available data, there is accumulating evidence of information processing impairment in post-traumatic stress disorder (PTSD). Studies of event-related potentials (ERPs) are the main tool in real time examination of information processing. In this paper, we sought to critically review the ERP evidence of information processing abnormalities in patients with PTSD. We also examined the evidence supporting the existence of a relationship between ERP abnormalities and symptom profiles or severity in PTSD patients. An extensive Medline search was performed. Keywords included PTSD or post-traumatic stress disorder, electrophysiology or EEG, electrophysiology, P50, P100, N100, P2, P200, P3, P300, sensory gating, CNV (contingent negative variation) and MMN (mismatch negativity). We limited the review to ERP adult human studies with control groups which were reported in the English language. After applying our inclusion-exclusion review criteria, 36 studies were included. Subjects exposed to wide ranges of military and civilian traumas were studied in these reports. Presented stimuli were both auditory and visual. The most widely studied components included P300, P50 gating, N100 and P200. Most of the studies reported increased P300 response to trauma-related stimuli in PTSD patients. A smaller group of studies reported dampening of responses or no change in responses to trauma-related and/or unrelated stimuli. P50 studies were strongly suggestive of impaired gating in patients with PTSD. In conclusion, the majority of reports support evidence of information processing abnormalities in patients with PTSD diagnosis. The predominance of evidence suggests presence of mid-latency and late ERP components differences in PTSD patients in comparison to healthy controls. Heterogeneity of assessment methods used contributes to difficulties in reaching firm conclusions regarding the nature of these differences. We suggest that future ERP-PTSD studies utilize standardized assessment scales that provide detailed information regarding the symptom clusters and the degree of symptom severity. This would allow assessment of electrophysiological indices-clinical symptoms relationships. Based on the available data, we suggest that ERP abnormalities in PTSD are possibly affected by the level of illness severity. If supported by future research, ERP studies may be used for both initial assessment and treatment follow-up.
Collapse
Affiliation(s)
- Arash Javanbakht
- Department of Psychiatry, University of Michigan, Ann Arbor, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
30
|
Gmehlin D, Kreisel SH, Bachmann S, Weisbrod M, Thomas C. Age Effects on Preattentive and Early Attentive Auditory Processing of Redundant Stimuli: Is Sensory Gating Affected by Physiological Aging? J Gerontol A Biol Sci Med Sci 2011; 66:1043-53. [DOI: 10.1093/gerona/glr067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
31
|
Hunter M, Villarreal G, McHaffie GR, Jimenez B, Smith AK, Calais LA, Hanlon F, Thoma RJ, Cañive JM. Lateralized abnormalities in auditory M50 sensory gating and cortical thickness of the superior temporal gyrus in post-traumatic stress disorder: preliminary results. Psychiatry Res 2011; 191:138-44. [PMID: 21211947 PMCID: PMC4356025 DOI: 10.1016/j.pscychresns.2010.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 09/17/2010] [Accepted: 09/25/2010] [Indexed: 11/25/2022]
Abstract
Auditory sensory gating deficits have been reported in subjects with post-traumatic stress disorder (PTSD), but the hemispheric and neuronal origins of this deficit are not well understood. The objectives of this study were to: (1) investigate auditory sensory gating of the 50-ms response (M50) in patients diagnosed with PTSD by utilizing magnetoencephalography (MEG); (2) explore the relationship between M50 sensory gating and cortical thickness of the superior temporal gyrus (STG) measured with structural magnetic resonance imaging (MRI); and (3) examine the association between PTSD symptomatology and bilateral sensory gating. Seven participants with combat-related PTSD and eleven controls underwent the paired-click sensory gating paradigm. MEG localized M50 neuronal generators to the STG in both groups. The PTSD group displayed impaired M50 gating in the right hemisphere. Thinner right STG cortical thickness was associated with worse right sensory gating in the PTSD group. The right S1 M50 source strength and gating ratio were correlated with PTSD symptomatology. These findings suggest that the structural integrity of right hemisphere STG cortices play an important role in auditory sensory gating deficits in PTSD.
Collapse
Affiliation(s)
- Michael Hunter
- New Mexico VA Healthcare System Clinical Neuroscience Research Program, Albuquerque, NM, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bakshi VP, Alsene KM, Roseboom PH, Connors EE. Enduring sensorimotor gating abnormalities following predator exposure or corticotropin-releasing factor in rats: a model for PTSD-like information-processing deficits? Neuropharmacology 2011; 62:737-48. [PMID: 21288473 DOI: 10.1016/j.neuropharm.2011.01.040] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 01/23/2011] [Accepted: 01/24/2011] [Indexed: 01/21/2023]
Abstract
A deficit in prepulse inhibition (PPI) can be one of the clinically observed features of post-traumatic stress disorder (PTSD) that is seen long after the acute traumatic episode has terminated. Thus, reduced PPI may represent an enduring psychophysiological marker of this illness in some patients. PPI is an operational measure of sensorimotor gating and refers to the phenomenon in which a weak stimulus presented immediately before an intense startling stimulus inhibits the magnitude of the subsequent startle response. The effects of stress on PPI have been relatively understudied, and in particular, there is very little information on PPI effects of ethologically relevant psychological stressors. We aimed to develop a paradigm for evaluating stress-induced sensorimotor gating abnormalities by comparing the effects of a purely psychological stressor (predator exposure) to those of a nociceptive physical stressor (footshock) on PPI and baseline startle responses in rats over an extended period of time following stressor presentation. Male Sprague-Dawley rats were exposed (within a protective cage) to ferrets for 5 min or left in their homecage and then tested for PPI immediately, 24 h, 48 h, and 9 days after the exposure. The effects of footshock were evaluated in a separate set of rats. The effects seen with stressor presentation were compared to those elicited by corticotropin-releasing factor (CRF; 0.5 and 3 μg/6 μl, intracerebroventricularly). Finally, the effects of these stressors and CRF administration on plasma corticosterone were measured. PPI was disrupted 24 h after ferret exposure; in contrast, footshock failed to affect PPI at any time. CRF mimicked the predator stress profile, with the lowdose producing a PPI deficit 24 h after infusion. Interestingly, the high dose also produced a PPI deficit 24 h after infusion, but with this dose, the PPI deficit was evident even 9d later. Plasma corticosterone levels were elevated acutely (before PPI deficits emerged) by both stressors and CRF, but returned to normal control levels 24 h later, when PPI deficits were present. Thus, predator exposure produces a delayed disruption of PPI, and stimulation of CRF receptors recapitulates these effects. Contemporaneous HPA axis activation is neither necessary nor sufficient for these PPI deficits. These results indicate that predator exposure, perhaps acting through CRF, may model the delayed-onset and persistent sensorimotor gating abnormalities that have been observed clinically in PTSD, and that further studies using this model may shed insight on the mechanisms of information-processing deficits in this disorder. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
Affiliation(s)
- Vaishali P Bakshi
- Department of Psychiatry and Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA.
| | | | | | | |
Collapse
|
33
|
Chang WP, Arfken CL, Sangal MP, Boutros NN. Probing the relative contribution of the first and second responses to sensory gating indices: a meta-analysis. Psychophysiology 2011; 48:980-92. [PMID: 21214588 DOI: 10.1111/j.1469-8986.2010.01168.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sensory gating deficit in schizophrenia patients has been well-documented. However, a central conceptual issue, regarding whether the gating deficit results from an abnormal initial response (S1) or difficulty in attenuating the response to the repeating stimulus (S2), raise doubts about the validity and utility of the S2/S1 ratio as a measure of sensory gating. This meta-analysis study, therefore, sought to determine the consistency and relative magnitude of the effect of the two essential components (S1 and S2) and the ratio. The results of weighted random effects meta-analysis revealed that the overall effect sizes for the S1 amplitude, S2 amplitude, and P50 S2/S1 ratio were -0.19 (small), 0.65 (medium to large), and 0.93 (large), respectively. These results confirm that the S2/S1 ratio and the repeating (S2) stimulus differ robustly between schizophrenia patients and healthy controls in contrast to the consistent but smaller effect size for the S1 amplitude. These findings are more likely to reflect defective inhibition of repeating redundant input rather than an abnormal response to novel stimuli.
Collapse
Affiliation(s)
- Wen-Pin Chang
- Department of Occupational Therapy, Creighton University, Omaha, Nebraska 68178, USA.
| | | | | | | |
Collapse
|
34
|
Assessment of auditory sensory processing in a neurodevelopmental animal model of schizophrenia--gating of auditory-evoked potentials and prepulse inhibition. Behav Brain Res 2010; 213:142-7. [PMID: 20417666 DOI: 10.1016/j.bbr.2010.04.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 04/09/2010] [Accepted: 04/15/2010] [Indexed: 12/31/2022]
Abstract
The use of translational approaches to validate animal models is needed for the development of treatments that can effectively alleviate cognitive impairments associated with schizophrenia, which are unsuccessfully treated by the current available therapies. Deficits in pre-attentive stages of sensory information processing seen in schizophrenia patients, can be assessed by highly homologues methods in both humans and rodents, evident by the prepulse inhibition (PPI) of the auditory startle response and the P50 (termed P1 here) suppression paradigms. Treatment with the NMDA receptor antagonist PCP on postnatal days 7, 9, and 11 reliably induce cognitive impairments resembling those presented by schizophrenia patients. Here we evaluate the potential of early postnatal PCP (20mg/kg) treatment in Lister Hooded rats to induce post-pubertal deficits in PPI and changes, such as reduced gating, in the P1 suppression paradigm in the EEG. The results indicate that early postnatal PCP treatment to rats leads to a reduction in PPI of the acoustic startle response. Furthermore, treated animals were assessed in the P1 suppression paradigm and produced significant changes in auditory-evoked potentials (AEP), specifically by an increased P1 amplitude and reduced P2 (P200 in humans) gating. However, the treatment neither disrupted normal P1 gating nor reduced N1 (N100 in humans) amplitude, representing two phenomena that are usually found to be disturbed in schizophrenia. In conclusion, the current findings confirm measures of early information processing to show high resemblance between rodents and humans, and indicate that early postnatal PCP-treated rats show deficits in pre-attentional processing, which are distinct from those observed in schizophrenia patients.
Collapse
|
35
|
Abstract
Disrupted sensory filtering, or problems with suppressing irrelevant environmental sensory stimuli, has been reported in individuals with posttraumatic stress disorder (PTSD). However, the relationship of sensory filtering deficits to specific PTSD symptoms versus an association with general trauma exposure is unclear. These relationships were examined by administering self-report measures of trauma exposure, PTSD, and sensory gating phenomenology to undergraduate participants with PTSD (n=32), with trauma history but without PTSD (n=144), and with minimal trauma history (n=153). Subjects with PTSD reported greater filtering disruption than individuals in the trauma only and low trauma groups, who did not differ. Individuals endorsing reexperiencing and numbing symptoms, and females endorsing hypervigilance, reported disrupted sensory filtering phenomenology. These results suggest that impaired filtering differentiates between individuals with PTSD symptoms and asymptomatic individuals exposed to multiple traumas and low-trauma controls.
Collapse
Affiliation(s)
- Lorraine P Stewart
- Department of Psychology, University of Oregon, Eugene, OR 97403-1227, USA
| | | |
Collapse
|
36
|
Cromwell HC, Mears RP, Wan L, Boutros NN. Sensory gating: a translational effort from basic to clinical science. Clin EEG Neurosci 2008; 39:69-72. [PMID: 18450171 PMCID: PMC4127047 DOI: 10.1177/155005940803900209] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sensory gating (SG) is a prevalent physiological process important for information filtering in complex systems. SG is evaluated by presenting repetitious stimuli and measuring the degree of neural inhibition that occurs. SG has been found to be impaired in several psychiatric disorders. Recent animal and human research has made great progress in the study of SG, and in this review we provide an overview of recent research on SG using different methods. Animal research has uncovered findings that suggest (1) SG is displayed by single neurons and can be similar to SG observed from scalp recordings in humans, (2) SG is found in numerous brain structures located in sensory, motor and limbic subregions, (3) SG can be significantly influenced by state changes of the organism, and (4) SG has a diverse pharmacological profile accented by a strong influence from nicotine receptor activation. Human research has addressed similar issues using deep electrode recordings of brain structures. These experiments have revealed that (1) SG can be found in cortical regions surrounding hippocampus, (2) the order of neural processing places hippocampal involvement during a later stage of sensory processing than originally thought, and (3) multiple subtypes of gating exist that could be dependent on different brain circuits and more or less influenced by alterations in organismal state. Animal and human research both have limitations. We emphasize the need for integrative approaches to understand the process and combine information between basic and clinical fields so that a more complete picture of SG will emerge.
Collapse
Affiliation(s)
- Howard C Cromwell
- Department of Psychology, Bowling Green State University, Ohio 43403, USA.
| | | | | | | |
Collapse
|
37
|
Patterson JV, Hetrick WP, Boutros NN, Jin Y, Sandman C, Stern H, Potkin S, Bunney WE. P50 sensory gating ratios in schizophrenics and controls: a review and data analysis. Psychiatry Res 2008; 158:226-47. [PMID: 18187207 DOI: 10.1016/j.psychres.2007.02.009] [Citation(s) in RCA: 268] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 12/22/2006] [Accepted: 02/01/2007] [Indexed: 11/29/2022]
Abstract
Many studies have found that the P50 sensory gating ratio in a paired click task is smaller in normal control subjects than in patients with schizophrenia, indicating more effective sensory gating. However, a wide range of gating ratios has been reported in the literature for both groups. The purpose of this study was to compile these findings and to compare reported P50 gating ratios in controls and patients with schizophrenia. Current data collected from individual controls in eight studies from the University of California, Irvine (UCI), Indiana University (IU), and Yale University also are reported. The IU, UCI, and Yale data showed that approximately 40% of controls had P50 ratios within 1 S.D. below the mean of means for patients with schizophrenia. The meta-analysis rejected the null hypothesis that all studies showed no effect. The meta-analysis also showed that the differences were not the same across all studies. The mean ratios in 45 of the 46 group comparisons were smaller for controls than for patients, and the observed difference in means was significant for 35 of those studies. Reported gating ratios for controls from two laboratories whose findings were reported in the literature differed from all the other control groups. Variables affecting the gating ratio included band pass filter setting, rules regarding the inclusion of P30, sex, and age. Standards of P50 collection and measurement would help determine whether the gating ratio can be sufficiently reliable to be labeled an endophenotype, and suggestions are made toward this goal.
Collapse
Affiliation(s)
- Julie V Patterson
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92868, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Pialarissi PR, Almeida FS, Camanducaia LCBM, Jorge JJ. Middle-latency auditory responses in neurological diseases. Braz J Otorhinolaryngol 2007; 73:540-8. [PMID: 17923926 PMCID: PMC9443762 DOI: 10.1016/s1808-8694(15)30107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 10/21/2006] [Indexed: 11/15/2022] Open
|
39
|
Anstrom KK, Cromwell HC, Woodward DJ. Effects of restraint and haloperidol on sensory gating in the midbrain of awake rats. Neuroscience 2007; 146:515-24. [PMID: 17360124 DOI: 10.1016/j.neuroscience.2007.01.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 01/10/2007] [Accepted: 01/21/2007] [Indexed: 10/23/2022]
Abstract
Deficits in sensory processing have been reported to be associated with an array of neuropsychiatric disorders including schizophrenia. Auditory sensory gating paradigms have been routinely used to test the integrity of inhibitory circuits hypothesized to filter sensory information. Abnormal dopaminergic neurotransmission has been implicated in the expression of schizophrenic symptoms. The aim of this study was to determine if inhibitory gating in response to paired auditory stimuli would occur in putative dopaminergic and non-dopaminergic midbrain neurons. A further goal of this study was to determine if restraint, a classic model of stress known to increase extracellular dopamine levels, and systemic haloperidol injections affected inhibitory mechanisms involved in sensory gating. Neural activity in the rat midbrain was recorded across paired auditory stimuli (first auditory stimulus (S1) and second auditory stimulus (S2)) under resting conditions, during restraint and after systemic haloperidol injections. Under resting conditions, a subset of putative GABA neurons showed fast, gated, short latency responses while putative dopamine neurons showed long, slow responses that were inhibitory and ungated. During restraint, gated responses in putative GABAergic neurons were decreased (increased S2/S1 or ratio of test to conditioning (T/C)) by reducing the response amplitude to S1. Systemic haloperidol decreased the T/C ratio by preferentially increasing response amplitude to S1. The results from this study suggest that individual neurons encode discrete components of the auditory sensory gating paradigm, that phasic midbrain GABAergic responses to S1 may trigger subsequent inhibitory filtering processes, and that these GABAergic responses are sensitive to restraint and systemic haloperidol.
Collapse
Affiliation(s)
- K K Anstrom
- Department of Physiology and Pharmacology, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|
40
|
Abstract
Previous studies with prepulse inhibition in panic disorder (PD) have suggested that the early stages of sensory information processing are abnormal in patients with PD. To further investigate sensory gating function in panic disorder we performed a case-control study in a sample of 28 patients with PD, compared to 28 normal subjects and 28 schizophrenic subjects evaluating auditory mid-latency evoked potential P50 in a double-click paradigm as a measure of sensory gating. PD subjects showed weaker sensory gating as evidenced by higher P50 ratios as compared to normal subjects (62.5% vs. 45.4%, p=0.03) and higher S2 (test) amplitude (3.5 microV vs. 2.1 microV, p=0.01). Schizophrenic subjects when compared to healthy controls showed higher P50 ratios as compared to normal subjects (79.2% vs. 45.4%, p<0.01) and higher S2 amplitude (3.3 microV vs. 2.1 microV, p=0.01), but were not statistically different from PD subjects (p>0.1). The present study corroborates recent findings of sensory gating dysfunction in PD. Further studies are still necessary to better understand the pathophysiology of this neurophysiological dysfunction and its nature as a trait or a state marker.
Collapse
|
41
|
Kizkin S, Karlidag R, Ozcan C, Ozisik HI. Reduced P50 auditory sensory gating response in professional musicians. Brain Cogn 2006; 61:249-54. [PMID: 16524657 DOI: 10.1016/j.bandc.2006.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 01/20/2006] [Accepted: 01/22/2006] [Indexed: 11/22/2022]
Abstract
Evoked potential studies have demonstrated that musicians have the ability to distinguish musical sounds preattentively and automatically at the temporal, spectral, and spatial levels in more detail. It is however not known whether there is a difference in the early processes of auditory data processing of musicians. The most emphasized and studied early process, especially for neuropsychiatric purposes, is sensory gating. The suppression percentage of the midlatency auditory evoked potential P50, and rarely the N100, wave is used for sensory gating studies. Our aim in this study was to investigate whether there was a difference in the auditory P50 and N100 suppression of control subjects who were professional musicians with no psychiatric problems. 34 professional musicians and 19 non-musicians (the control group) were included in this study. P50 and N100 measurements were taken, the suppression percentage of P50 and N100 was calculated and the results compared. Musicians showed significantly less P50 suppression when compared to non-musicians. There was no significant difference for N100 suppression. What the decreased P50 suppression in musicians when compared to non-musician subjects means, when we also take into account that N100 suppression is not decreased, and how it may contribute to the music perception and production processes of these persons is discussed.
Collapse
Affiliation(s)
- Sibel Kizkin
- Department of Neurology, Inonu University Medical Faculty, Malatya, Turkey.
| | | | | | | |
Collapse
|
42
|
Karl A, Malta LS, Maercker A. Meta-analytic review of event-related potential studies in post-traumatic stress disorder. Biol Psychol 2006; 71:123-47. [PMID: 15961210 DOI: 10.1016/j.biopsycho.2005.03.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 03/17/2005] [Indexed: 11/19/2022]
Abstract
In recent years there has been an accumulation of studies that have utilized the measurement of event-related potentials (ERP) to examine the neuroelectric correlates of hypothesized alterations in information processing in persons with post-traumatic stress disorder (PTSD). The objective of this meta-analysis was to summarize the findings of ERP PTSD research, including studies that have examined P50 auditory sensory gating, augmenting-reducing P200, and P300 in target detection oddball tasks. The results suggest that persons with PTSD exhibit alterations in the amplitude and latency of ERP within these paradigms that support the hypothesis that changes in information processing can accompany PTSD. The results were also consistent with recent cognitive neuropsychological findings in PTSD research.
Collapse
Affiliation(s)
- Anke Karl
- Biopsychology, University of Technology Dresden, Zellescher Weg 17, D-01062 Dresden, FR, Germany.
| | | | | |
Collapse
|
43
|
Mears RP, Klein AC, Cromwell HC. Auditory inhibitory gating in medial prefrontal cortex: Single unit and local field potential analysis. Neuroscience 2006; 141:47-65. [PMID: 16675142 DOI: 10.1016/j.neuroscience.2006.03.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 03/07/2006] [Accepted: 03/21/2006] [Indexed: 10/24/2022]
Abstract
Medial prefrontal cortex is a crucial region involved in inhibitory processes. Damage to the medial prefrontal cortex can lead to loss of normal inhibitory control over motor, sensory, emotional and cognitive functions. The goal of the present study was to examine the basic properties of inhibitory gating in this brain region in rats. Inhibitory gating has recently been proposed as a neurophysiological assay for sensory filters in higher brain regions that potentially enable or disable information throughput. This perspective has important clinical relevance due to the findings that gating is dramatically impaired in individuals with emotional and cognitive impairments (i.e. schizophrenia). We used the standard inhibitory gating two-tone paradigm with a 500 ms interval between tones and a 10 s interval between tone pairs. We recorded both single unit and local field potentials from chronic microwire arrays implanted in the medial prefrontal cortex. We investigated short-term (within session) and long-term (between session) variability of auditory gating and additionally examined how altering the interval between the tones influenced the potency of the inhibition. The local field potentials displayed greater variability with a reduction in the amplitudes of the tone responses over both the short and long-term time windows. The decrease across sessions was most intense for the second tone response (test tone) leading to a more robust gating (lower T/C ratio). Surprisingly, single unit responses of different varieties retained similar levels of auditory responsiveness and inhibition in both the short and long-term analysis. Neural inhibition decreased monotonically related to the increase in intertone interval. This change in gating was most consistent in the local field potentials. Subsets of single unit responses did not show the lack of inhibition even for the longer intertone intervals tested (4 s interval). These findings support the idea that the medial prefrontal cortex is an important site where early inhibitory functions reside and potentially mediate psychological processes.
Collapse
Affiliation(s)
- R P Mears
- Department of Psychology and the J.P. Scott Center for Neuroscience, Mind and Behavior, Psychology Building, Bowling Green State University, Bowling Green, OH 43403, USA
| | | | | |
Collapse
|
44
|
Abstract
Preclinical studies suggest that the brain corticotropin-releasing factor (CRF) systems mediate anxiety-like behavioural and somatic responses through actions at the CRF1 receptor. CRF1 antagonists block the anxiogenic-like effects of CRF and stress in animal models. Cerebrospinal fluid levels of CRF are elevated in some anxiety disorders and normalise with effective treatment, further implicating CRF systems as a therapeutic target. Prototypical CRF1 antagonists are highly lipophilic, non-competitive antagonists of peptide ligands. Modification of the chemotype and the identification of novel pharmacophores are yielding more drug-like structures with increased hydrophilicity at physiological pHs. Newer compounds exhibit improved solubility, pharmacokinetic properties, potency and efficacy. Several clinical candidates have entered Phase I/II trials. However, unmet challenges await resolution during further discovery, clinical development and therapeutic application of CRF1 antagonists.
Collapse
Affiliation(s)
- Eric P Zorrilla
- Department of Neuropharmacology, The Scripps Research Institute, CVN-7, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
45
|
Cromwell HC, Anstrom K, Azarov A, Woodward DJ. Auditory inhibitory gating in the amygdala: Single-unit analysis in the behaving rat. Brain Res 2005; 1043:12-23. [PMID: 15862513 DOI: 10.1016/j.brainres.2005.01.106] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 12/18/2004] [Accepted: 01/01/2005] [Indexed: 11/30/2022]
Abstract
Inhibitory sensory gating has been proposed to be a fundamental physiological process that filters neural input. Its temporal properties could allow for a rapid influence on vigilance and attention processes. Inhibitory mechanisms are reflected by reductions in neural responsiveness to repeated and well-predicted stimuli; for auditory gating, this translates into an inhibition of the neural activation to subsequent tone stimuli embedded within sequential and identical tone presentations. Here we expand previous neurophysiological data on inhibitory gating by examining gating in the amygdala using single-unit recording in freely moving animals. Previous data have shown the amygdala to be important in mediating rapid auditory sensory processing involved in emotional conditioning. We measured inhibitory gating with two matching auditory tones presented in a repetitive fashion (10 ms tones, ISI = 500 ms and 10 s between pairs) for 1 h (360 pairs). The majority of the tone responsive units showed inhibitory gating (78/95 units) located in both the medial and lateral subnuclei of the amygdala. Different types of tone responses were gated, including both shorter- and longer-duration excitatory tone responses as well as inhibitory tone responses. Different degrees of gating were found ranging from 100% inhibition (complete gating category) to 25% inhibition (graded gating category). The degree of gating varied over short-term and long-term time intervals. These findings demonstrate the existence of inhibitory gating in the amygdala and provide a detailed description of the basic properties of this rapid neural inhibition that could play an important role in filtering stimulus input.
Collapse
Affiliation(s)
- Howard C Cromwell
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | |
Collapse
|