1
|
Shakyawar SK, Mishra NK, Vellichirammal NN, Cary L, Helikar T, Powers R, Oberley-Deegan RE, Berkowitz DB, Bayles KW, Singh VK, Guda C. A Review of Radiation-Induced Alterations of Multi-Omic Profiles, Radiation Injury Biomarkers, and Countermeasures. Radiat Res 2023; 199:89-111. [PMID: 36368026 PMCID: PMC10279411 DOI: 10.1667/rade-21-00187.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
Abstract
Increasing utilization of nuclear power enhances the risks associated with industrial accidents, occupational hazards, and the threat of nuclear terrorism. Exposure to ionizing radiation interferes with genomic stability and gene expression resulting in the disruption of normal metabolic processes in cells and organs by inducing complex biological responses. Exposure to high-dose radiation causes acute radiation syndrome, which leads to hematopoietic, gastrointestinal, cerebrovascular, and many other organ-specific injuries. Altered genomic variations, gene expression, metabolite concentrations, and microbiota profiles in blood plasma or tissue samples reflect the whole-body radiation injuries. Hence, multi-omic profiles obtained from high-resolution omics platforms offer a holistic approach for identifying reliable biomarkers to predict the radiation injury of organs and tissues resulting from radiation exposures. In this review, we performed a literature search to systematically catalog the radiation-induced alterations from multi-omic studies and radiation countermeasures. We covered radiation-induced changes in the genomic, transcriptomic, proteomic, metabolomic, lipidomic, and microbiome profiles. Furthermore, we have covered promising multi-omic biomarkers, FDA-approved countermeasure drugs, and other radiation countermeasures that include radioprotectors and radiomitigators. This review presents an overview of radiation-induced alterations of multi-omics profiles and biomarkers, and associated radiation countermeasures.
Collapse
Affiliation(s)
- Sushil K Shakyawar
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nitish K Mishra
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neetha N Vellichirammal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lynnette Cary
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln NE 65888, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 65888, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588, USA
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 65888, USA
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
2
|
Gao Z, Yang YY, Huang M, Qi TF, Wang H, Wang Y. Targeted Proteomic Analysis of Small GTPases in Radioresistant Breast Cancer Cells. Anal Chem 2022; 94:14925-14930. [PMID: 36264766 PMCID: PMC9869664 DOI: 10.1021/acs.analchem.2c02389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Radiation therapy benefits more than 50% of all cancer patients and cures 40% of them, where ionizing radiation (IR) deposits energy to cells and tissues, thereby eliciting DNA damage and resulting in cell death. Small GTPases are a superfamily of proteins that play critical roles in cell signaling. Several small GTPases, including RAC1, RHOB, and RALA, were previously shown to modulate radioresistance in cancer cells. However, there is no systematic proteomic study on small GTPases that regulate radioresistance in cancer cells. Herein, we applied a high-throughput scheduled multiple-reaction monitoring (MRM) method, along with the use of synthetic stable isotope-labeled (SIL) peptides, to identify differentially expressed small GTPase proteins in two pairs of breast cancer cell lines, MDA-MB-231 and MCF7, and their corresponding radioresistant cell lines. We identified 7 commonly altered small GTPase proteins with over 1.5-fold changes in the two pairs of cell lines. We also discovered ARFRP1 as a novel regulator of radioresistance, where its downregulation promotes radioresistance in breast cancer cells. Together, this represents the first comprehensive investigation about the differential expression of the small GTPase proteome associated with the development of radioresistance in breast cancer cells. Our work also uncovered ARFRP1 as a new target for enhancing radiation sensitivity in breast cancer.
Collapse
Affiliation(s)
- Zi Gao
- Department of Chemistry, University of California Riverside, Riverside, California92521-0403, United States
| | - Yen-Yu Yang
- Department of Chemistry, University of California Riverside, Riverside, California92521-0403, United States
| | - Ming Huang
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, California92521-0403, United States
| | - Tianyu F Qi
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, California92521-0403, United States
| | - Handing Wang
- Department of Chemistry, University of California Riverside, Riverside, California92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California Riverside, Riverside, California92521-0403, United States
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, California92521-0403, United States
| |
Collapse
|
3
|
Hindle A, Singh SP, Pradeepkiran JA, Bose C, Vijayan M, Kshirsagar S, Sawant NA, Reddy PH. Rlip76: An Unexplored Player in Neurodegeneration and Alzheimer’s Disease? Int J Mol Sci 2022; 23:ijms23116098. [PMID: 35682775 PMCID: PMC9181721 DOI: 10.3390/ijms23116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and is the most common cause of dementia in older people. AD is associated with the loss of synapses, oxidative stress, mitochondrial structural and functional abnormalities, microRNA deregulation, inflammatory responses, neuronal loss, accumulation of amyloid-beta (Aβ) and phosphorylated tau (p-tau). AD occurs in two forms: early onset, familial AD and late-onset, sporadic AD. Causal factors are still unknown for a vast majority of AD patients. Genetic polymorphisms are proposed to contribute to late-onset AD via age-dependent increases in oxidative stress and mitochondrial abnormalities. Recent research from our lab revealed that reduced levels of Rlip76 induce oxidative stress, mitochondrial dysfunction and synaptic damage, leading to molecular and behavioral phenotypes resembling late-onset AD. Rlip76 is a multifunctional 76 kDa protein encoded by the RALBP1 gene, located on chromosome 18. Rlip is a stress-protective ATPase of the mercapturic acid pathway that couples clathrin-dependent endocytosis with the efflux of glutathione–electrophile conjugates. Rlip is evolutionarily highly conserved across species and is ubiquitously expressed in all tissues, including AD-affected brain regions, the cerebral cortex and hippocampus, where highly active neuronal metabolisms render the cells highly susceptible to intracellular oxidative damage. In the current article, we summarize molecular and cellular features of Rlip and how depleted Rlip may exacerbate oxidative stress, mitochondrial dysfunction and synaptic damage in AD. We also discuss the possible role of Rlip in aspects of learning and memory via axonal growth, dendritic remodeling, and receptor regulation. We conclude with a discussion of the potential for the contribution of genetic polymorphisms in Rlip to AD progression and the potential for Rlip-based therapies.
Collapse
Affiliation(s)
- Ashly Hindle
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (S.P.S.); (J.A.P.); (C.B.); (M.V.); (S.K.); (N.A.S.)
| | - Sharda P. Singh
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (S.P.S.); (J.A.P.); (C.B.); (M.V.); (S.K.); (N.A.S.)
| | - Jangampalli Adi Pradeepkiran
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (S.P.S.); (J.A.P.); (C.B.); (M.V.); (S.K.); (N.A.S.)
| | - Chhanda Bose
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (S.P.S.); (J.A.P.); (C.B.); (M.V.); (S.K.); (N.A.S.)
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (S.P.S.); (J.A.P.); (C.B.); (M.V.); (S.K.); (N.A.S.)
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (S.P.S.); (J.A.P.); (C.B.); (M.V.); (S.K.); (N.A.S.)
| | - Neha A. Sawant
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (S.P.S.); (J.A.P.); (C.B.); (M.V.); (S.K.); (N.A.S.)
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (S.P.S.); (J.A.P.); (C.B.); (M.V.); (S.K.); (N.A.S.)
- Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Correspondence:
| |
Collapse
|
4
|
Integrative network analyses of transcriptomics data reveal potential drug targets for acute radiation syndrome. Sci Rep 2021; 11:5585. [PMID: 33692493 PMCID: PMC7946886 DOI: 10.1038/s41598-021-85044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/17/2021] [Indexed: 11/25/2022] Open
Abstract
Recent political unrest has highlighted the importance of understanding the short- and long-term effects of gamma-radiation exposure on human health and survivability. In this regard, effective treatment for acute radiation syndrome (ARS) is a necessity in cases of nuclear disasters. Here, we propose 20 therapeutic targets for ARS identified using a systematic approach that integrates gene coexpression networks obtained under radiation treatment in humans and mice, drug databases, disease-gene association, radiation-induced differential gene expression, and literature mining. By selecting gene targets with existing drugs, we identified potential candidates for drug repurposing. Eight of these genes (BRD4, NFKBIA, CDKN1A, TFPI, MMP9, CBR1, ZAP70, IDH3B) were confirmed through literature to have shown radioprotective effect upon perturbation. This study provided a new perspective for the treatment of ARS using systems-level gene associations integrated with multiple biological information. The identified genes might provide high confidence drug target candidates for potential drug repurposing for ARS.
Collapse
|
5
|
Gong S, Chen Y, Meng F, Zhang Y, Wu H, Li C, Zhang G. RCC2, a regulator of the RalA signaling pathway, is identified as a novel therapeutic target in cisplatin-resistant ovarian cancer. FASEB J 2019; 33:5350-5365. [PMID: 30768358 DOI: 10.1096/fj.201801529rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Currently, cisplatin (DDP) is the first-line chemotherapeutic agent used for treatment of ovarian cancer, but gradually acquired drug resistance minimizes its therapeutic outcomes. We aimed to identify crucial genes associated with DDP resistance in ovarian cancer and uncover potential mechanisms. Two sets of gene expression data were downloaded from Gene Expression Omnibus, and bioinformatics analysis was conducted. In our study, the differentially expressed genes between DDP-sensitive and DDP-resistant ovarian cancer were screened in GSE15709 and GSE51373 database, and chromosome condensation 2 regulator (RCC2) and nucleoporin 160 were identified as 2 genes that significantly up-regulated in DDP-resistant ovarian cancer cell lines compared with DDP-sensitive cell lines. Moreover, RCC2, Ral small GTPase (RalA), and Ral binding protein-1 (RalBP1) expression was found to be significantly higher in DDP-resistant ovarian cancer tissues than in DDP-sensitive tissues. RCC2 plays a positive role in cell proliferation, apoptosis, and migration in DDP-resistant ovarian cancer cell lines in vitro and in vivo. Furthermore, RCC2 could interact with RalA, thus promoting its downstream effector RalBP1. RalA knockdown could reverse the effects of RCC2 overexpression on DDP-resistant ovarian cancer cell proliferation, apoptosis, and migration. Similarly, RalA overexpression could alleviate the effects of RCC2 knockdown in DDP-resistant ovarian cancer cells. Taken together, RCC2 may function as an oncogene, regulating the RalA signaling pathway, and intervention of RCC2 expression might be a promising therapeutic strategy for DDP-resistant ovarian cancer.-Gong, S., Chen, Y., Meng, F., Zhang, Y., Wu, H., Li, C., Zhang, G. RCC2, a regulator of the RalA signaling pathway, is identified as a novel therapeutic target in cisplatin-resistant ovarian cancer.
Collapse
Affiliation(s)
- Shipeng Gong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongning Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fanliang Meng
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yadi Zhang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huan Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
| | - Chanyuan Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guangping Zhang
- Department of Gynecology, People's Hospital of Huadu District, Guangzhou, China
| |
Collapse
|
6
|
Peng Q, Lin K, Shen Y, Zhou P, Fan S, Shen Y, Zhu Y. Identification of potential genes and pathways for response prediction of neoadjuvant chemoradiotherapy in patients with rectal cancer by systemic biological analysis. Oncol Lett 2019; 17:492-501. [PMID: 30655792 DOI: 10.3892/ol.2018.9598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023] Open
Abstract
Currently, neoadjuvant chemoradiotherapy (CRT) followed by radical surgery is the standard of care for locally advanced rectal cancer. However, to the best of our knowledge, there are no effective biomarkers for predicting patients who may benefit from neoadjuvant treatment. The aim of the current study was to screen potential crucial genes and pathways associated with the response to CRT in rectal cancer, and provide valid biological information to assist further investigation of CRT optimization. In the current study, differentially expressed (DE) genes were identified from the tumor samples of responders and non-responders to neoadjuvant CRT in the GSE35452 gene expression profile. Seven hub genes and one significant module were identified from the protein-protein interaction (PPI) network. Functional enrichment analysis of all the DE genes and the hub genes, retrieved from PPI network analysis, revealed their associations with CRT response. Genes were identified that may be used to discriminate patients who would or would not clinically benefit from neoadjuvant CRT. Several important pathways enriched by the DE genes, hub genes and selected module were identified, and revealed to be closely associated with radiation response, including excision repair, homologous recombination, Ras signaling pathway, the forkhead box O signaling pathway, focal adhesion and the Wnt signaling pathway. In conclusion, the current study demonstrated that the identified gene signatures and pathways may be used as molecular biomarkers for predicting CRT response. Furthermore, combinations of these biomarkers may be helpful for optimizing CRT treatment and promoting understanding of the molecular basis of response differences; this needs to be confirmed by further experiments.
Collapse
Affiliation(s)
- Qiliang Peng
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China.,Institute of Radiotherapy and Oncology, Soochow University, Jiangsu 215004, P.R. China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou, Jiangsu 215004, P.R. China
| | - Kaisu Lin
- Department of Oncology, Nantong Rich Hospital, Nantong, Jiangsu 226010, P.R. China
| | - Yi Shen
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Ping Zhou
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China.,Institute of Radiotherapy and Oncology, Soochow University, Jiangsu 215004, P.R. China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou, Jiangsu 215004, P.R. China
| | - Shaonan Fan
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China.,Institute of Radiotherapy and Oncology, Soochow University, Jiangsu 215004, P.R. China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou, Jiangsu 215004, P.R. China
| | - Yuntian Shen
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China.,Institute of Radiotherapy and Oncology, Soochow University, Jiangsu 215004, P.R. China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou, Jiangsu 215004, P.R. China
| | - Yaqun Zhu
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China.,Institute of Radiotherapy and Oncology, Soochow University, Jiangsu 215004, P.R. China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
7
|
Kalal BS, Fathima F, Pai VR, Sanjeev G, Krishna CM, Upadhya D. Inhibition of ERK1/2 or AKT Activity Equally Enhances Radiation Sensitization in B16F10 Cells. World J Oncol 2018; 9:21-28. [PMID: 29581812 PMCID: PMC5862079 DOI: 10.14740/wjon1088w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/28/2018] [Indexed: 12/11/2022] Open
Abstract
Background The aim of the study was to evaluate the radiation sensitizing ability of ERK1/2, PI3K-AKT and JNK inhibitors in highly radiation resistant and metastatic B16F10 cells which carry wild-type Ras and Braf. Methods Mouse melanoma cell line B16F10 was exposed to 1.0, 2.0 and 3.0 Gy of electron beam radiation. Phosphorylated ERK1/2, AKT and JNK levels were estimated by ELISA. Cells were exposed to 2.0 and 3.0 Gy of radiation with or without prior pharmacological inhibition of ERK1/2, AKT as well as JNK pathways. Cell death induced by radiation as well as upon inhibition of these pathways was measured by TUNEL assay using flow cytometry. Results Exposure of B16F10 cells to 1.0, 2.0 and 3.0 Gy of electron beam irradiation triggered an increase in all the three phosphorylated proteins compared to sham-treated and control groups. B16F10 cells pre-treated with either ERK1/2 or AKT inhibitors equally enhanced radiation-induced cell death at 2.0 as well as 3.0 Gy (P < 0.001), while inhibition of JNK pathway increased radiation-induced cell death to a lesser extent. Interestingly combined inhibition of ERK1/2 or AKT pathways did not show additional cell death compared to individual ERK1/2 or AKT inhibition. This indicates that ERK1/2 or AKT mediates radiation resistance through common downstream molecules in B16F10 cells. Conclusions Even without activating mutations in Ras or Braf genes, ERK1/2 and AKT play a critical role in B16F10 cell survival upon radiation exposure and possibly act through common downstream effector/s.
Collapse
Affiliation(s)
- Bhuvanesh Sukhlal Kalal
- Department of Biochemistry, Yenepoya Medical College, Yenepoya University, Mangalore, India.,Yenepoya Research Centre, Yenepoya University, Mangalore, India
| | - Faraz Fathima
- Yenepoya Research Centre, Yenepoya University, Mangalore, India
| | - Vinitha Ramanath Pai
- Department of Biochemistry, Yenepoya Medical College, Yenepoya University, Mangalore, India
| | - Ganesh Sanjeev
- Department of Physics, Mangalore University, Mangalore, India
| | | | - Dinesh Upadhya
- Yenepoya Research Centre, Yenepoya University, Mangalore, India.,Department of Anatomy, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
8
|
The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting. Crit Rev Oncol Hematol 2017; 111:7-19. [PMID: 28259298 DOI: 10.1016/j.critrevonc.2017.01.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/15/2016] [Accepted: 01/05/2017] [Indexed: 01/17/2023] Open
Abstract
RAS belongs to the super family of small G proteins and plays crucial roles in signal transduction from membrane receptors in the cell. Mutations of K-RAS oncogene lead to an accumulation of GTP-bound proteins that maintains an active conformation. In the pancreatic ductal adenocarcinoma (PDAC), one of the most deadly cancers in occidental countries, mutations of the K-RAS oncogene are nearly systematic (>90%). Moreover, K-RAS mutation is the earliest genetic alteration occurring during pancreatic carcinogenetic sequence. In this review, we discuss the central role of K-RAS mutations and their tremendous diversity of biological properties by the interconnected regulation of signaling pathways (MAPKs, NF-κB, PI3K, Ral…). In pancreatic ductal adenocarcinoma, transcriptome analysis and preclinical animal models showed that K-RAS mutation alters biological behavior of PDAC cells (promoting proliferation, migration and invasion, evading growth suppressors, regulating mucin pattern, and miRNA expression). K-RAS also impacts tumor microenvironment and PDAC metabolism reprogramming. Finally we discuss therapeutic targeting strategies of K-RAS that have been developed without significant clinical success so far. As K-RAS is considered as the undruggable target, targeting its multiple effectors and target genes should be considered as potential alternatives.
Collapse
|
9
|
Abstract
Inositol hexakisphosphate kinase 2 (IP6K2) potentiates pro-apoptotic signalling and increases the sensitivity of mammalian cells to cytotoxic agents. Diphosphoinositol pentakisphosphate kinase (PPIP5K) generates inositol pyrophosphates (InsPPs) that are structurally distinct from those produced by IP6K2 and their possible roles in affecting cell viability remain unclear. In the present study, we tested the impact of PPIP5K1 on cellular sensitivity to various genotoxic agents to determine if PPIP5K1 and IP6K2 contribute similarly to apoptosis. We observed that PPIP5K1 overexpression decreased sensitivity of cells toward several cytotoxic agents, including etoposide, cisplatin, and sulindac. We further tested the impact of PPIP5K1 overexpression on an array of apoptosis markers and observed that PPIP5K1 decreased p53 phosphorylation on key residues, including Ser-15, -46, and -392. Overexpression of a kinase-impaired PPIP5K1 mutant failed to protect cells from apoptosis, indicating this protection is a consequence PPIP5K1 catalytic activity, in contrast with the sensitivity conferred by IP6K2, which is dependent on both catalytic and non-catalytic functions. These observations reveal distinct roles for PPIP5K1 and IP6K2 and the InsPPs they produce in controlling cell death.
Collapse
|
10
|
Cancer Stem Cells and Radioresistance: Rho/ROCK Pathway Plea Attention. Stem Cells Int 2016; 2016:5785786. [PMID: 27597870 PMCID: PMC5002480 DOI: 10.1155/2016/5785786] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/20/2016] [Indexed: 12/11/2022] Open
Abstract
Radiation is the most potent mode of cancer therapy; however, resistance to radiation therapy results in tumor relapse and subsequent fatality. The cancer stem cell (CSC), which has better DNA repair capability, has been shown to contribute to tumor resistance and is an important target for treatment. Signaling molecules such as Notch, Wnt, and DNA repair pathways regulate molecular mechanisms in CSCs; however, none of them have been translated into therapeutic targets. The RhoGTPases and their effector ROCK-signaling pathway, though important for tumor progression, have not been well studied in the context of radioresistance. There are reports that implicate RhoA in radioresistance. ROCK2 has also been shown to interact with BRCA2 in the regulation of cell division. Incidentally, statins (drug for cardiovascular ailment) are functional inhibitors of RhoGTPases. Studies suggest that patients on statins have a better prognosis in cancers. Data from our lab suggest that ROCK signaling regulates radioresistance in cervical cancer cells. Collectively, these findings suggest that Rho/ROCK signaling may be important for radiation resistance. In this review, we enumerate the role of Rho/ROCK signaling in stemness and radioresistance and highlight the need to explore these molecules for a better understanding of radioresistance and development of therapeutics.
Collapse
|
11
|
Pawar A, Meier JA, Dasgupta A, Diwanji N, Deshpande N, Saxena K, Buwa N, Inchanalkar S, Schwartz MA, Balasubramanian N. Ral-Arf6 crosstalk regulates Ral dependent exocyst trafficking and anchorage independent growth signalling. Cell Signal 2016; 28:1225-1236. [PMID: 27269287 PMCID: PMC4973806 DOI: 10.1016/j.cellsig.2016.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 12/01/2022]
Abstract
Integrin dependent regulation of growth factor signalling confers anchorage dependence that is deregulated in cancers. Downstream of integrins and oncogenic Ras the small GTPase Ral is a vital mediator of adhesion dependent trafficking and signalling. This study identifies a novel regulatory crosstalk between Ral and Arf6 that controls Ral function in cells. In re-adherent mouse fibroblasts (MEFs) integrin dependent activation of RalA drives Arf6 activation. Independent of adhesion constitutively active RalA and RalB could both however activate Arf6. This is further conserved in oncogenic H-Ras containing bladder cancer T24 cells, which express anchorage independent active Ral that supports Arf6 activation. Arf6 mediates active Ral-exocyst dependent delivery of raft microdomains to the plasma membrane that supports anchorage independent growth signalling. Accordingly in T24 cells the RalB-Arf6 crosstalk is seen to preferentially regulate anchorage independent Erk signalling. Active Ral we further find uses a Ral-RalBP1-ARNO-Arf6 pathway to mediate Arf6 activation. This study hence identifies Arf6, through this regulatory crosstalk, to be a key downstream mediator of Ral isoform function along adhesion dependent pathways in normal and cancer cells. Ral mediates Arf6 activation downstream of integrins and oncogenic Ras. Arf6 mediates Ral-exocyst dependent delivery of raft microdomains. Active Ral supports anchorage independent Arf6 activation in bladder cancer T24 cells. Ral-Arf6 crosstalk in T24 cells regulates anchorage independent Erk signalling. A Ral-RalBP1-ARNO-Arf6 pathway mediates the Ral-Arf6 crosstalk.
Collapse
Affiliation(s)
- Archana Pawar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India
| | - Jeremy A Meier
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, United States
| | - Anwesha Dasgupta
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India
| | - Neha Diwanji
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India
| | - Neha Deshpande
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India
| | - Kritika Saxena
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India
| | - Natasha Buwa
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India
| | - Siddhi Inchanalkar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India
| | - Martin Alexander Schwartz
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, United States; Yale Cardiovascular Research Center, 300 George Street, 7th Floor, New Haven, CT 06511, United States
| | - Nagaraj Balasubramanian
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India.
| |
Collapse
|
12
|
Gao Y, Li S, Xu D, Wang J, Sun Y. Changes in apoptotic microRNA and mRNA expression profiling in Caenorhabditis elegans during the Shenzhou-8 mission. JOURNAL OF RADIATION RESEARCH 2015; 56:872-82. [PMID: 26286471 PMCID: PMC4628221 DOI: 10.1093/jrr/rrv050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/21/2015] [Indexed: 05/07/2023]
Abstract
Radiation and microgravity exposure have been proven to induce abnormal apoptosis in microRNA (miRNA) and mRNA expression, but whether space conditions, including radiation and microgravity, activate miRNAs to regulate the apoptosis is undetermined. For that purpose, we investigated miRNome and mRNA expression in the ced-1 Caenorhabditis elegans mutant vs the wild-type, both of which underwent spaceflight, spaceflight 1g-centrifuge control and ground control conditions during the Shenzhou-8 mission. Results showed that no morphological changes in the worms were detected, but differential miRNA expression increased from 43 (ground control condition) to 57 and 91 in spaceflight and spaceflight control conditions, respectively. Microgravity altered miRNA expression profiling by decreasing the number and significance of differentially expressed miRNA compared with 1 g incubation during spaceflight. Alterations in the miRNAs were involved in alterations in apoptosis, neurogenesis larval development, ATP metabolism and GTPase-mediated signal transduction. Among these, 17 altered miRNAs potentially involved in apoptosis were screened and showed obviously different expression signatures between space conditions. By integrated analysis of miRNA and mRNA, miR-797 and miR-81 may be involved in apoptosis by targeting the genes ced-10 and both drp-1 and hsp-1, respectively. Compared with ground condition, space conditions regulated apoptosis though a different manner on transcription, by altering expression of seven core apoptotic genes in spaceflight condition, and eight in spaceflight control condition. Results indicate that, miRNA of Caenorhabditis elegans probably regulates apoptotic gene expression in response to space environmental stress, and shows different behavior under microgravity condition compared with 1 g condition in the presence of space radiation.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Shuai Li
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Dan Xu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Junjun Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| |
Collapse
|
13
|
Vasseur R, Skrypek N, Duchêne B, Renaud F, Martínez-Maqueda D, Vincent A, Porchet N, Van Seuningen I, Jonckheere N. The mucin MUC4 is a transcriptional and post-transcriptional target of K-ras oncogene in pancreatic cancer. Implication of MAPK/AP-1, NF-κB and RalB signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1375-84. [PMID: 26477488 DOI: 10.1016/j.bbagrm.2015.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/28/2015] [Accepted: 10/14/2015] [Indexed: 01/26/2023]
Abstract
The membrane-bound mucinMUC4 is a high molecularweight glycoprotein frequently deregulated in cancer. In pancreatic cancer, one of the most deadly cancers in occidental countries, MUC4 is neo-expressed in the preneoplastic stages and thereafter is involved in cancer cell properties leading to cancer progression and chemoresistance. K-ras oncogene is a small GTPase of the RAS superfamily, highly implicated in cancer. K-ras mutations are considered as an initiating event of pancreatic carcinogenesis and K-ras oncogenic activities are necessary components of cancer progression. However, K-ras remains clinically undruggable. Targeting early downstream K-ras signaling in cancer may thus appear as an interesting strategy and MUC4 regulation by K-ras in pancreatic carcinogenesis remains unknown. Using the Pdx1-Cre; LStopL-K-rasG12D mouse model of pancreatic carcinogenesis, we show that the in vivo early neo-expression of the mucin Muc4 in pancreatic intraepithelial neoplastic lesions (PanINs) induced by mutated K-ras is correlated with the activation of ERK, JNK and NF-κB signaling pathways. In vitro, transfection of constitutively activated K-rasG12V in pancreatic cancer cells led to the transcriptional upregulation of MUC4. This activation was found to be mediated at the transcriptional level by AP-1 and NF-κB transcription factors via MAPK, JNK and NF-κB pathways and at the posttranscriptional level by a mechanism involving the RalB GTPase. Altogether, these results identify MUC4 as a transcriptional and post-transcriptional target of K-ras in pancreatic cancer. This opens avenues in developing new approaches to target the early steps of this deadly cancer.
Collapse
Affiliation(s)
- Romain Vasseur
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France; Univ Lille Nord de France, 42 rue Paul Duez, F-59000 Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille cedex, France
| | - Nicolas Skrypek
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France; Univ Lille Nord de France, 42 rue Paul Duez, F-59000 Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille cedex, France
| | - Belinda Duchêne
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France; Univ Lille Nord de France, 42 rue Paul Duez, F-59000 Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille cedex, France
| | - Florence Renaud
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France; Univ Lille Nord de France, 42 rue Paul Duez, F-59000 Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille cedex, France; Institut de Pathologie, Centre de Biologie Pathologie, Boulevard du Professeur Jules Leclercq, 59037 Lille Cedex, France
| | - Daniel Martínez-Maqueda
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France
| | - Audrey Vincent
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France; Univ Lille Nord de France, 42 rue Paul Duez, F-59000 Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille cedex, France
| | - Nicole Porchet
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France; Univ Lille Nord de France, 42 rue Paul Duez, F-59000 Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille cedex, France
| | - Isabelle Van Seuningen
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France; Univ Lille Nord de France, 42 rue Paul Duez, F-59000 Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille cedex, France
| | - Nicolas Jonckheere
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France; Univ Lille Nord de France, 42 rue Paul Duez, F-59000 Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille cedex, France
| |
Collapse
|
14
|
Clinical significance of serum autoantibodies against Ras-like GTPases, RalA, in patients with esophageal squamous cell carcinoma. Esophagus 2015. [DOI: 10.1007/s10388-015-0510-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
15
|
Gao H, Xue J, Zhou L, Lan J, He J, Na F, Yang L, Deng L, Lu Y. Bevacizumab radiosensitizes non-small cell lung cancer xenografts by inhibiting DNA double-strand break repair in endothelial cells. Cancer Lett 2015; 365:79-88. [PMID: 25982206 DOI: 10.1016/j.canlet.2015.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/06/2015] [Accepted: 05/10/2015] [Indexed: 02/05/2023]
Abstract
The aims of this study were to evaluate the effects of biweekly bevacizumab administration on a tumor microenvironment and to investigate the mechanisms of radiosensitization that were induced by it. Briefly, bevacizumab was administered intravenously to Balb/c nude mice bearing non-small cell lung cancer (NSCLC) H1975 xenografts; in addition, bevacizumab was added to NSCLC or endothelial cells (ECs) in vitro, followed by irradiation (IR). The anti-tumor efficacy, anti-angiogenic efficacy and repair of DNA double-strand breaks (DSBs) were evaluated. The activation of signaling pathways was determined using immunoprecipitation (IP) and WB analyses. Finally, biweekly bevacizumab administration inhibited the growth of H1975 xenografts and induced vascular normalization periodically. Bevacizumab more significantly increased cellular DSB and EC apoptosis when administered 1 h prior to 12 Gy/1f IR than when administered 5 days prior to IR, thereby inhibiting tumor angiogenesis and growth. In vitro, bevacizumab more effectively increased DSBs and apoptosis prior to IR and inhibited the clonogenic survival of ECs but not NSCLC cells. Using IP and WB analyses, we confirmed that bevacizumab can directly inhibit the phosphorylation of components of the VEGR2/PI3K/Akt/DNA-PKcs signaling pathway that are induced by IR in ECs. In conclusion, bevacizumab radiosensitizes NSCLC xenografts mainly by inhibiting DSB repair in ECs rather than by inducing vascular normalization.
Collapse
MESH Headings
- Angiogenesis Inhibitors/administration & dosage
- Angiogenesis Inhibitors/pharmacology
- Animals
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/pharmacology
- Apoptosis/drug effects
- Apoptosis/radiation effects
- Bevacizumab
- Carcinoma, Non-Small-Cell Lung/blood supply
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/therapy
- Cell Line, Tumor
- Chemoradiotherapy/methods
- DNA Breaks, Double-Stranded
- DNA Repair/drug effects
- Drug Administration Schedule
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelial Cells/radiation effects
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/metabolism
- Human Umbilical Vein Endothelial Cells/pathology
- Human Umbilical Vein Endothelial Cells/radiation effects
- Humans
- Lung Neoplasms/blood supply
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Neovascularization, Pathologic
- Radiation Dosage
- Radiation-Sensitizing Agents/administration & dosage
- Radiation-Sensitizing Agents/pharmacology
- Signal Transduction/drug effects
- Signal Transduction/radiation effects
- Time Factors
- Tumor Burden/drug effects
- Tumor Burden/radiation effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hui Gao
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Department of Oncology, Chengdu Military General Hospital, China
| | - Jianxin Xue
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Lin Zhou
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Jie Lan
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Jiazhuo He
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Feifei Na
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Lifei Yang
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Lei Deng
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - You Lu
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| |
Collapse
|
16
|
The RAS-RAL axis in cancer: evidence for mutation-specific selectivity in non-small cell lung cancer. Acta Pharmacol Sin 2015; 36:291-7. [PMID: 25557115 DOI: 10.1038/aps.2014.129] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/30/2014] [Indexed: 12/21/2022]
Abstract
Activating RAS mutations are common in human tumors. These mutations are often markers for resistance to therapy and subsequent poor prognosis. So far, targeting the RAF-MEK-ERK and PI3K-AKT signaling pathways downstream of RAS is the only promising approach in the treatment of cancer patients harboring RAS mutations. RAL GTPase, another downstream effector of RAS, is also considered as a therapeutic option for the treatment of RAS-mutant cancers. The RAL GTPase family comprises RALA and RALB, which can have either divergent or similar functions in different tumor models. Recent studies on non-small cell lung cancer (NSCLC) have showed that different RAS mutations selectively activate specific effector pathways. This observation requires broader validation in other tumor tissue types, but if true, will provide a new approach to the treatment of RAS-mutant cancer patients by targeting specific downstream RAS effectors according to the type of RAS mutation. It also suggests that RAL GTPase inhibition will be an important treatment strategy for tumors harboring RAS glycine to cysteine (G12C) or glycien to valine (G12V) mutations, which are commonly found in NSCLC and pancreatic cancer.
Collapse
|
17
|
Ral GTPases in tumorigenesis: emerging from the shadows. Exp Cell Res 2013; 319:2337-42. [PMID: 23830877 DOI: 10.1016/j.yexcr.2013.06.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/18/2013] [Accepted: 06/26/2013] [Indexed: 01/03/2023]
Abstract
Oncogenic Ras proteins rely on a series of key effector pathways to drive the physiological changes that lead to tumorigenic growth. Of these effector pathways, the RalGEF pathway, which activates the two Ras-related GTPases RalA and RalB, remains the most poorly understood. This review will focus on key developments in our understanding of Ral biology, and will speculate on how aberrant activation of the multiple diverse Ral effector proteins might collectively contribute to oncogenic transformation and other aspects of tumor progression.
Collapse
|
18
|
Toulany M, Schickfluss TA, Eicheler W, Kehlbach R, Schittek B, Rodemann HP. Impact of oncogenic K-RAS on YB-1 phosphorylation induced by ionizing radiation. Breast Cancer Res 2011; 13:R28. [PMID: 21392397 PMCID: PMC3219189 DOI: 10.1186/bcr2845] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/27/2010] [Accepted: 03/10/2011] [Indexed: 12/22/2022] Open
Abstract
Introduction Expression of Y-box binding protein-1 (YB-1) is associated with tumor progression and drug resistance. Phosphorylation of YB-1 at serine residue 102 (S102) in response to growth factors is required for its transcriptional activity and is thought to be regulated by cytoplasmic signaling phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. These pathways can be activated by growth factors and by exposure to ionizing radiation (IR). So far, however, no studies have been conducted on IR-induced YB-1 phosphorylation. Methods IR-induced YB-1 phosphorylation in K-RAS wild-type (K-RASwt) and K-RAS-mutated (K-RASmt) breast cancer cell lines was investigated. Using pharmacological inhibitors, small interfering RNA (siRNA) and plasmid-based overexpression approaches, we analyzed pathways involved in YB-1 phosphorylation by IR. Using γ-H2AX foci and standard colony formation assays, we investigated the function of YB-1 in repair of IR-induced DNA double-stranded breaks (DNA-DSB) and postirradiation survival was investigated. Results The average level of phosphorylation of YB-1 in the breast cancer cell lines SKBr3, MCF-7, HBL100 and MDA-MB-231 was significantly higher than that in normal cells. Exposure to IR and stimulation with erbB1 ligands resulted in phosphorylation of YB-1 in K-RASwt SKBr3, MCF-7 and HBL100 cells, which was shown to be K-Ras-independent. In contrast, lack of YB-1 phosphorylation after stimulation with either IR or erbB1 ligands was observed in K-RASmt MDA-MB-231 cells. Similarly to MDA-MB-231 cells, YB-1 became constitutively phosphorylated in K-RASwt cells following the overexpression of mutated K-RAS, and its phosphorylation was not further enhanced by IR. Phosphorylation of YB-1 as a result of irradiation or K-RAS mutation was dependent on erbB1 and its downstream pathways, PI3K and MAPK/ERK. In K-RASmt cells K-RAS siRNA as well as YB-1 siRNA blocked repair of DNA-DSB. Likewise, YB-1 siRNA increased radiation sensitivity. Conclusions IR induces YB-1 phosphorylation. YB-1 phosphorylation induced by oncogenic K-Ras or IR enhances repair of DNA-DSB and postirradiation survival via erbB1 downstream PI3K/Akt and MAPK/ERK signaling pathways.
Collapse
Affiliation(s)
- Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, Eberhard Karls University Tübingen, Roentgenweg 11, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Xu D, Allsop SA, Witherspoon SM, Snider JL, Yeh JJ, Fiordalisi JJ, White CD, Williams D, Cox AD, Baines AT. The oncogenic kinase Pim-1 is modulated by K-Ras signaling and mediates transformed growth and radioresistance in human pancreatic ductal adenocarcinoma cells. Carcinogenesis 2011; 32:488-95. [PMID: 21262926 DOI: 10.1093/carcin/bgr007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Oncogenic Pim-1 kinase is upregulated in multiple solid cancers, including human pancreatic ductal adenocarcinoma (PDAC), a highly lethal disease with few useful treatment options. Pim-1 is also transcriptionally induced upon oncogenic K-Ras-mediated transformation of the human pancreatic ductal epithelial (HPDE) cell model of PDAC. Given the near ubiquitous presence of mutant K-Ras in PDAC and its critical role in this disease, we wished to study the effects of oncogenic K-Ras signaling on Pim-1 expression, as well as the role of Pim-1 in growth transformation of PDAC cells. Pim-1 protein levels were upregulated in both PDAC cell lines and patient tumor tissues. Furthermore, ectopic oncogenic K-Ras increased Pim-1 expression in human pancreatic nestin-expressing (HPNE) cells, a distinct immortalized cell model of PDAC. Conversely, shRNA-mediated suppression of oncogenic K-Ras decreased Pim-1 protein in PDAC cell lines. These results indicate that oncogenic K-Ras regulates Pim-1 expression. The kinase activity of Pim-1 is constitutively active. Accordingly, shRNA-mediated suppression of Pim-1 in K-Ras-dependent PDAC cell lines decreased Pim-1 activity, as measured by decreased phosphorylation of the pro-apoptotic protein Bad and increased expression of the cyclin-dependent kinase inhibitor p27Kip1. Biological consequences of inhibiting Pim-1 expression included decreases in both anchorage-dependent and -independent cell growth, invasion through Matrigel and radioresistance as measured by standard clonogenic assays. These results indicate that Pim-1 is required for PDAC cell growth, invasion and radioresistance downstream of oncogenic K-Ras. Overall, our studies help to elucidate the role of Pim-1 in PDAC growth transformation and validate Pim-1 kinase as a potential molecular marker for mutated K-Ras activity.
Collapse
Affiliation(s)
- Dapeng Xu
- Department of Biology, Cancer Research Program, JLC-Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|