1
|
Smits E, Reid FE, Tamgue EN, Alvarado Arriaga P, Nguyen C, Britten RA. Sex-Dependent Changes in Risk-Taking Predisposition of Rats Following Space Radiation Exposure. Life (Basel) 2025; 15:449. [PMID: 40141792 PMCID: PMC11943666 DOI: 10.3390/life15030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
The Artemis missions will establish a sustainable human presence on the Moon, serving as a crucial steppingstone for future Mars exploration. Astronauts on these ambitious missions will have to successfully complete complex tasks, which will frequently involve rapid and effective decision making under unfamiliar or high-pressure conditions. Exposure to low doses of space radiation (SR) can impair key executive functions critical to decision making. This study examined the effects of exposure to 10 cGy of Galactic Cosmic Ray simulated radiation (GCRsim) on decision-making performance in male and female rats with a naturally low predisposition for risk-taking (RTP) prior to exposure. Rats were assessed at monthly intervals following SR exposure and the RTP performance contrasted with that observed during the prescreening process. Exposure to 10 cGy of GCRsim impaired decision making in both male and female rats, with sex-dependent outcomes. By 30 days after SR exposure, female rats became more risk-prone, making less profitable decisions, while male rats retained their decision-making strategies but took significantly longer to make selections. However, continued practice in the RTP tasks appeared to reduce/reverse these performance deficits. This study has expanded our understanding of the range of cognitive processes impacted by SR to include decision making.
Collapse
Affiliation(s)
- Elliot Smits
- EVMS School of Medicine, Macon and Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (E.S.); (F.E.R.)
| | - Faith E. Reid
- EVMS School of Medicine, Macon and Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (E.S.); (F.E.R.)
| | - Ella N. Tamgue
- EVMS Radiation Oncology, Eastern Virginia Medical School, Macon and Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA (P.A.A.); (C.N.)
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Macon and Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Paola Alvarado Arriaga
- EVMS Radiation Oncology, Eastern Virginia Medical School, Macon and Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA (P.A.A.); (C.N.)
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Macon and Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Charles Nguyen
- EVMS Radiation Oncology, Eastern Virginia Medical School, Macon and Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA (P.A.A.); (C.N.)
| | - Richard A. Britten
- EVMS Radiation Oncology, Eastern Virginia Medical School, Macon and Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA (P.A.A.); (C.N.)
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Macon and Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| |
Collapse
|
2
|
Wieg L, Ciola JC, Wasén CC, Gaba F, Colletti BR, Schroeder MK, Hinshaw RG, Ekwudo MN, Holtzman DM, Saito T, Sasaguri H, Saido TC, Cox LM, Lemere CA. Cognitive Effects of Simulated Galactic Cosmic Radiation Are Mediated by ApoE Status, Sex, and Environment in APP Knock-In Mice. Int J Mol Sci 2024; 25:9379. [PMID: 39273325 PMCID: PMC11394682 DOI: 10.3390/ijms25179379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Cosmic radiation experienced during space travel may increase the risk of cognitive impairment. While simulated galactic cosmic radiation (GCRsim) has led to memory deficits in wildtype (WT) mice, it has not been investigated whether GCRsim in combination with genetic risk factors for Alzheimer's disease (AD) worsens memory further in aging mice. Here, we investigated the central nervous system (CNS) effects of 0 Gy (sham) or 0.75 Gy five-ion GCRsim or 2 Gy gamma radiation (IRR) in 14-month-old female and male APPNL-F/NL-F knock-in (KI) mice bearing humanized ApoE3 or ApoE4 (APP;E3F and APP;E4F). As travel to a specialized facility was required for irradiation, both traveled sham-irradiated C57BL/6J WT and KI mice and non-traveled (NT) KI mice acted as controls for potential effects of travel. Mice underwent four behavioral tests at 20 months of age and were euthanized for pathological and biochemical analyses 1 month later. Fecal samples were collected pre- and post-irradiation at four different time points. GCRsim seemed to impair memory in male APP;E3F mice compared to their sham counterparts. Travel tended to improve cognition in male APP;E3F mice and lowered total Aβ in female and male APP;E3F mice compared to their non-traveled counterparts. Sham-irradiated male APP;E4F mice accumulated more fibrillar amyloid than their APP;E3F counterparts. Radiation exposure had only modest effects on behavior and brain changes, but travel-, sex-, and genotype-specific effects were seen. Irradiated mice had immediate and long-term differences in their gut bacterial composition that correlated to Alzheimer's disease phenotypes.
Collapse
Affiliation(s)
- Laura Wieg
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - Jason C. Ciola
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - Caroline C. Wasén
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - Fidelia Gaba
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - Brianna R. Colletti
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - Maren K. Schroeder
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - Robert G. Hinshaw
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Millicent N. Ekwudo
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - David M. Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, Nagoya 467-8601, Aichi, Japan;
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako City 351-0198, Saitama, Japan; (H.S.); (T.C.S.)
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako City 351-0198, Saitama, Japan; (H.S.); (T.C.S.)
| | - Laura M. Cox
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Cynthia A. Lemere
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
van Heuvelen MJG, van der Lei MB, Alferink PM, Roemers P, van der Zee EA. Cognitive deficits in human ApoE4 knock-in mice: A systematic review and meta-analysis. Behav Brain Res 2024; 471:115123. [PMID: 38972485 DOI: 10.1016/j.bbr.2024.115123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 07/09/2024]
Abstract
Apolipoprotein-E4 (ApoE4) is an important genetic risk factor for Alzheimer's disease. The development of targeted-replacement human ApoE knock-in mice facilitates research into mechanisms by which ApoE4 affects the brain. We performed meta-analyses and meta-regression analyses to examine differences in cognitive performance between ApoE4 and ApoE3 mice. We included 61 studies in which at least one of the following tests was assessed: Morris Water Maze (MWM), novel object location (NL), novel object recognition (NO) and Fear Conditioning (FC) test. ApoE4 vs. ApoE3 mice performed significantly worse on the MWM (several outcomes, 0.17 ≤ g ≤ 0.60), NO (exploration, g=0.33; index, g=0.44) and FC (contextual, g=0.49). ApoE4 vs. ApoE3 differences were not systematically related to sex or age. We conclude that ApoE4 knock-in mice in a non-AD condition show some, but limited cognitive deficits, regardless of sex and age. These effects suggest an intrinsic vulnerability in ApoE4 mice that may become more pronounced under additional brain load, as seen in neurodegenerative diseases.
Collapse
Affiliation(s)
- Marieke J G van Heuvelen
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, A. Deusinglaan 1, Groningen 9713AV, the Netherlands.
| | - Mathijs B van der Lei
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborg 7, Groningen 9747 AG, the Netherlands; Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, Edegem 2650, Belgium.
| | - Pien M Alferink
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, A. Deusinglaan 1, Groningen 9713AV, the Netherlands.
| | - Peter Roemers
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborg 7, Groningen 9747 AG, the Netherlands.
| | - Eddy A van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborg 7, Groningen 9747 AG, the Netherlands.
| |
Collapse
|
4
|
Kolesnikova IA, Lalkovičova M, Severyukhin YS, Golikova KN, Utina DM, Pronskikh EV, Despotović SZ, Gaevsky VN, Pirić D, Masnikosa R, Budennaya NN. The Effects of Whole Body Gamma Irradiation on Mice, Age-Related Behavioral, and Pathophysiological Changes. Cell Mol Neurobiol 2023; 43:3723-3741. [PMID: 37402948 PMCID: PMC11410007 DOI: 10.1007/s10571-023-01381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
We designed a study with the objective to determine the long-term radiation effects of gamma rays, originating from a single shot of Co60 at a dose of 2 Gy on the 7-month-old male mice of the ICR line in 30 days after the irradiation. The aim of this study was to characterize the behavior of animals using the Open Field test, immuno-hematological status, and morpho-functional changes in the central nervous system of mice. Irradiated animals displayed significantly different behavior in the OF in comparison with the control group. The radiation damage was confirmed by assessing the ratio of leukocytes in the peripheral blood of mice at a later date after exposure to Co60. After irradiation, a decrease in the glioneuronal complex was observed in the irritated group as well as histological changes of brain cells. To sum up, not only was the hematological status of mice altered upon the total gamma irradiation, but also their behavior, which was most probably due to significant alterations in the CNS. Study of influence of ionizing radiation on female mice, comparison between different age groups. Open Field test on the 30 days after 2 Gy of γ-rays and histological analysis indicated changes in behavioral patterns, leucocytes, and brain tissue.
Collapse
Affiliation(s)
- I A Kolesnikova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - M Lalkovičova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198.
- Department of Physical Chemistry, Pavol Jozef Safarik University in Košice, Šrobárova 2, 04154, Košice, Slovakia.
| | - Yu S Severyukhin
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
- State Budgetary Educational Institution of Higher Education of the Moscow Region University Dubna, Dubna, Russia
| | - K N Golikova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - D M Utina
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - E V Pronskikh
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
- State Budgetary Educational Institution of Higher Education of the Moscow Region University Dubna, Dubna, Russia
| | - Sanja Z Despotović
- Institute of Histology and Embryology, University of Belgrade, Belgrade, Serbia
| | - V N Gaevsky
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - D Pirić
- Department of Physical Chemistry, Institute of Nuclear Sciences Vinča, National Institute of Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11001, Belgrade, Serbia
| | - R Masnikosa
- Department of Physical Chemistry, Institute of Nuclear Sciences Vinča, National Institute of Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11001, Belgrade, Serbia
| | - N N Budennaya
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
- State Budgetary Educational Institution of Higher Education of the Moscow Region University Dubna, Dubna, Russia
| |
Collapse
|
5
|
Britten RA, Limoli CL. New Radiobiological Principles for the CNS Arising from Space Radiation Research. Life (Basel) 2023; 13:1293. [PMID: 37374076 DOI: 10.3390/life13061293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Traditionally, the brain has been regarded as a relatively insensitive late-reacting tissue, with radiologically detectable damage not being reported at doses < 60 Gy. When NASA proposed interplanetary exploration missions, it was required to conduct an intensive health and safety evaluation of cancer, cardiovascular, and cognitive risks associated with exposure to deep space radiation (SR). The SR dose that astronauts on a mission to Mars are predicted to receive is ~300 mGy. Even after correcting for the higher RBE of the SR particles, the biologically effective SR dose (<1 Gy) would still be 60-fold lower than the threshold dose for clinically detectable neurological damage. Unexpectedly, the NASA-funded research program has consistently reported that low (<250 mGy) doses of SR induce deficits in multiple cognitive functions. This review will discuss these findings and the radical paradigm shifts in radiobiological principles for the brain that were required in light of these findings. These included a shift from cell killing to loss of function models, an expansion of the critical brain regions for radiation-induced cognitive impediments, and the concept that the neuron may not be the sole critical target for neurocognitive impairment. The accrued information on how SR exposure impacts neurocognitive performance may provide new opportunities to reduce neurocognitive impairment in brain cancer patients.
Collapse
Affiliation(s)
- Richard A Britten
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Charles L Limoli
- Department Radiation Oncology, University of California-Irvine, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Rabin BM, Miller MG, Shukitt-Hale B. Effects of preexposure to a subthreshold dose of helium particles on the changes in performance produced by exposure to helium particles. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:88-96. [PMID: 37087183 DOI: 10.1016/j.lssr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
On exploratory class missions, such as a mission to Mars, astronauts will be exposed to doses of particles of high energy and charge and protons up to 30 - 40 cGy. These exposures will most likely occur at random intervals across the estimated 3-yr duration of the mission. As such, the possibility of an interaction between particles must be taken into account: a prior subthreshold exposure to one particle may prevent or minimize the effect of a subsequent exposure (adaptation), or there may be an additive effect such that the prior exposure may sensitize the individual to a subsequent exposure of the same or different radiations. Two identical replications were run in which rats were exposed to a below threshold dose of 4He particles and 2, 24 or 72 h later given either a second below threshold or an above threshold dose of 4He particles and tested for performance on an operant task. The results indicate that preexposure to a subthreshold dose of 4He particles can either sensitize or attenuate the effects of the subsequent dose, depending upon the interval between exposures and the doses. These results suggest that exposure to multiple doses of heavy particles may have implications for astronaut health on exploratory class missions.
Collapse
Affiliation(s)
- Bernard M Rabin
- Department of Psychology, UMBC, Baltimore, MD 21250, United States of America.
| | - Marshall G Miller
- Duke Molecular Physiology Institute and Center for the Study of Aging and Human Development, Duke Univ., Durham, NC 27710, United States of America
| | - Barbara Shukitt-Hale
- Human Nutrition Research Center on Aging, USDA, Tufts Univ., Boston, MA 02111, United States of America
| |
Collapse
|
7
|
Britten RA, Fesshaye A, Tidmore A, Blackwell AA. Similar Loss of Executive Function Performance after Exposure to Low (10 cGy) Doses of Single (4He) Ions and the Multi-Ion GCRSim Beam. Radiat Res 2022; 198:375-383. [DOI: 10.1667/rade-22-00022.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
|
8
|
Schaeffer EA, Blackwell AA, Oltmanns JRO, Einhaus R, Lake R, Hein CP, Baulch JE, Limoli CL, Ton ST, Kartje GL, Wallace DG. Differential organization of open field behavior in mice following acute or chronic simulated GCR exposure. Behav Brain Res 2022; 416:113577. [PMID: 34506841 DOI: 10.1016/j.bbr.2021.113577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 11/20/2022]
Abstract
Astronauts undertaking deep space travel will receive chronic exposure to the mixed spectrum of particles that comprise Galactic Cosmic Radiation (GCR). Exposure to the different charged particles of varied fluence and energy that characterize GCR may impact neural systems that support performance on mission critical tasks. Indeed, growing evidence derived from years of terrestrial-based simulations of the space radiation environment using rodents has indicated that a variety of exposure scenarios can result in significant and long-lasting decrements to CNS functionality. Many of the behavioral tasks used to quantify radiation effects on the CNS depend on neural systems that support maintaining spatial orientation and organization of rodent open field behavior. The current study examined the effects of acute or chronic exposure to simulated GCR on the organization of open field behavior under conditions with varied access to environmental cues in male and female C57BL/6 J mice. In general, groups exhibited similar organization of open field behavior under dark and light conditions. Two exceptions were noted: the acute exposure group exhibited significantly slower and more circuitous homeward progressions relative to the chronic group under light conditions. These results demonstrate the potential of open field behavior organization to discriminate between the effects of select GCR exposure paradigms.
Collapse
Affiliation(s)
- E A Schaeffer
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | - A A Blackwell
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | | | - R Einhaus
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | - R Lake
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | - C Piwowar Hein
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | - J E Baulch
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA
| | - C L Limoli
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA
| | - S T Ton
- Loyola University Health Sciences Division, Maywood, IL, USA; Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, IL, USA
| | - G L Kartje
- Loyola University Health Sciences Division, Maywood, IL, USA; Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, IL, USA
| | - D G Wallace
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA.
| |
Collapse
|
9
|
Long-Term Sex- and Genotype-Specific Effects of 56Fe Irradiation on Wild-Type and APPswe/PS1dE9 Transgenic Mice. Int J Mol Sci 2021; 22:ijms222413305. [PMID: 34948098 PMCID: PMC8703695 DOI: 10.3390/ijms222413305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
Space radiation presents a substantial threat to travel beyond Earth. Relatively low doses of high-energy particle radiation cause physiological and behavioral impairments in rodents and may pose risks to human spaceflight. There is evidence that 56Fe irradiation, a significant component of space radiation, may be more harmful to males than to females and worsen Alzheimer's disease pathology in genetically vulnerable models. Yet, research on the long-term, sex- and genotype-specific effects of 56Fe irradiation is lacking. Here, we irradiated 4-month-old male and female, wild-type and Alzheimer's-like APP/PS1 mice with 0, 0.10, or 0.50 Gy of 56Fe ions (1GeV/u). Mice underwent microPET scans before and 7.5 months after irradiation, a battery of behavioral tests at 11 months of age and were sacrificed for pathological and biochemical analyses at 12 months of age. 56Fe irradiation worsened amyloid-beta (Aβ) pathology, gliosis, neuroinflammation and spatial memory, but improved motor coordination, in male transgenic mice and worsened fear memory in wild-type males. Although sham-irradiated female APP/PS1 mice had more cerebral Aβ and gliosis than sham-irradiated male transgenics, female mice of both genotypes were relatively spared from radiation effects 8 months later. These results provide evidence for sex-specific, long-term CNS effects of space radiation.
Collapse
|
10
|
Minnier J, Emmett MR, Perez R, Ding LH, Barnette BL, Larios RE, Hong C, Hwang TH, Yu Y, Fallgren CM, Story MD, Weil MM, Raber J. Associations between lipids in selected brain regions, plasma miRNA, and behavioral and cognitive measures following 28Si ion irradiation. Sci Rep 2021; 11:14899. [PMID: 34290258 PMCID: PMC8295277 DOI: 10.1038/s41598-021-93869-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/29/2021] [Indexed: 11/09/2022] Open
Abstract
The space radiation environment consists of multiple species of charged particles, including 28Si ions, that may impact brain function during and following missions. To develop biomarkers of the space radiation response, BALB/c and C3H female and male mice and their F2 hybrid progeny were irradiated with 28Si ions (350 MeV/n, 0.2 Gy) and tested for behavioral and cognitive performance 1, 6, and 12 months following irradiation. The plasma of the mice was collected for analysis of miRNA levels. Select pertinent brain regions were dissected for lipidomic analyses and analyses of levels of select biomarkers shown to be sensitive to effects of space radiation in previous studies. There were associations between lipids in select brain regions, plasma miRNA, and cognitive measures and behavioral following 28Si ion irradiation. Different but overlapping sets of miRNAs in plasma were found to be associated with cognitive measures and behavioral in sham and irradiated mice at the three time points. The radiation condition revealed pathways involved in neurodegenerative conditions and cancers. Levels of the dendritic marker MAP2 in the cortex were higher in irradiated than sham-irradiated mice at middle age, which might be part of a compensatory response. Relationships were also revealed with CD68 in miRNAs in an anatomical distinct fashion, suggesting that distinct miRNAs modulate neuroinflammation in different brain regions. The associations between lipids in selected brain regions, plasma miRNA, and behavioral and cognitive measures following 28Si ion irradiation could be used for the development of biomarker of the space radiation response.
Collapse
Affiliation(s)
- Jessica Minnier
- Oregon Health & Science University-Portland State University School of Public Health, Knight Cancer Institute Biostatistics Shared Resource, and the Knight Cardiovascular Institute, OR Health & Science University, Portland, OR, 97239, USA
| | - Mark R Emmett
- Department of Biochemistry and Molecular Biology; Radiation Oncology, Pharmacology and Toxicology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch Cancer Center, Galveston, TX, 77555, USA
| | - Ruby Perez
- Department of Behavioral Neuroscience, L470, Oregon Health & Science University, 3181SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Liang-Hao Ding
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Brooke L Barnette
- Department of Biochemistry and Molecular Biology; Radiation Oncology, Pharmacology and Toxicology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch Cancer Center, Galveston, TX, 77555, USA
| | - Rianna E Larios
- Department of Biochemistry and Molecular Biology; Radiation Oncology, Pharmacology and Toxicology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch Cancer Center, Galveston, TX, 77555, USA
| | - Changjin Hong
- Lerner Research Institute, Cleveland Clinic Lerner College of Medicine US, Cleveland, OH, 44195, USA
| | - Tae Hyun Hwang
- Lerner Research Institute, Cleveland Clinic Lerner College of Medicine US, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, School of Medicine, GU Malignancies Program, Case Comprehensive Cancer Center, Genomic Medicine Institute, Case Western Reserve University US., Cleveland, OH, 10900, USA
| | - Yongjia Yu
- Department of Biochemistry and Molecular Biology; Radiation Oncology, Pharmacology and Toxicology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch Cancer Center, Galveston, TX, 77555, USA
| | - Christina M Fallgren
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael M Weil
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, L470, Oregon Health & Science University, 3181SW Sam Jackson Park Road, Portland, OR, 97239, USA.
- Division of Neuroscience ONPRC, Departments of Neurology, Psychiatry, and Radiation Medicine, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
11
|
Garrett L, Ung MC, Einicke J, Zimprich A, Fenzl F, Pawliczek D, Graw J, Dalke C, Hölter SM. Complex Long-term Effects of Radiation on Adult Mouse Behavior. Radiat Res 2021; 197:67-77. [PMID: 34237145 DOI: 10.1667/rade-20-00281.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/24/2021] [Indexed: 11/03/2022]
Abstract
We have shown previously that a single radiation event (0.063, 0.125 or 0.5 Gy, 0.063 Gy/min) in adult mice (age 10 weeks) can have delayed dose-dependent effects on locomotor behavior 18 months postirradiation. The highest dose (0.5 Gy) reduced, whereas the lowest dose (0.063 Gy) increased locomotor activity at older age independent of sex or genotype. In the current study we investigated whether higher doses administered at a higher dose rate (0.5, 1 or 2 Gy, 0.3 Gy/min) at the same age (10 weeks) cause stronger or earlier effects on a range of behaviors, including locomotion, anxiety, sensorimotor and cognitive behavior. There were clear dose-dependent effects on spontaneous locomotor and exploratory activity, anxiety-related behavior, body weight and affiliative social behavior independent of sex or genotype of wild-type and Ercc2S737P heterozygous mice on a mixed C57BL/6JG and C3HeB/FeJ background. In addition, smaller genotype- and dose-dependent radiation effects on working memory were evident in males, but not in females. The strongest dose-dependent radiation effects were present 4 months postirradiation, but only effects on affiliative social behaviors persisted until 12 months postirradiation. The observed radiation-induced behavioral changes were not related to alterations in the eye lens, as 4 months postirradiation anterior and posterior parts of the lens were still normal. Overall, we did not find any sensitizing effect of the mutation towards radiation effects in vivo.
Collapse
Affiliation(s)
- Lillian Garrett
- Helmholtz Zentrum München, German Research Centre for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Marie-Claire Ung
- Helmholtz Zentrum München, German Research Centre for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Jan Einicke
- Helmholtz Zentrum München, German Research Centre for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Annemarie Zimprich
- Technical University Munich, School of Life Science Weihenstephan, Freising, Germany
| | - Felix Fenzl
- Technical University Munich, School of Life Science Weihenstephan, Freising, Germany
| | - Daniel Pawliczek
- Helmholtz Zentrum München, German Research Centre for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Jochen Graw
- Helmholtz Zentrum München, German Research Centre for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Claudia Dalke
- Helmholtz Zentrum München, German Research Centre for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Sabine M Hölter
- Helmholtz Zentrum München, German Research Centre for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany.,Technical University Munich, School of Life Science Weihenstephan, Freising, Germany
| |
Collapse
|
12
|
Britten RA, Wellman LL, Sanford LD. Progressive increase in the complexity and translatability of rodent testing to assess space-radiation induced cognitive impairment. Neurosci Biobehav Rev 2021; 126:159-174. [PMID: 33766676 DOI: 10.1016/j.neubiorev.2021.01.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/15/2020] [Accepted: 01/07/2021] [Indexed: 11/29/2022]
Abstract
Ground-based rodent models have established that space radiation doses (approximately those that astronauts will be exposed to on a mission to Mars) significantly impair performance in a wide range of cognitive tasks. Over the last 40 years there has been a progressive increase in both the complexity and the translatability (to humans) of the cognitive tasks investigated. This review outlines technical and conceptual advances in space radiation rodent testing approaches, along with the advances in analytical approaches, that will make data from ground based studies more amenable to probabilistic risk analysis. While great progress has been made in determining the impact of space radiation on many advanced cognitive processes, challenges remain that need to be addressed prior to commencing deep space missions. A summary of on-going attempts to address existing knowledge gaps and the critical role that rodent studies will have in establishing the impact of space radiation on even more complex (human) cognitive tasks are presented and discussed.
Collapse
Affiliation(s)
- Richard A Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA; Leroy T Canoles Jr. Cancer Center, Eastern Virginia Medical School, Norfolk, VA, 23507, USA; Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.
| | - Laurie L Wellman
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, 23507, USA; Department of Pathology & Anatomy, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Larry D Sanford
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, 23507, USA; Department of Pathology & Anatomy, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| |
Collapse
|
13
|
Davis CM, Allen AR, Bowles DE. Consequences of space radiation on the brain and cardiovascular system. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:180-218. [PMID: 33902387 DOI: 10.1080/26896583.2021.1891825] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Staying longer in outer space will inevitably increase the health risks of astronauts due to the exposures to galactic cosmic rays and solar particle events. Exposure may pose a significant hazard to space flight crews not only during the mission but also later, when slow-developing adverse effects could finally become apparent. The body of literature examining ground-based outcomes in response to high-energy charged-particle radiation suggests differential effects in response to different particles and energies. Numerous animal and cellular models have repeatedly demonstrated the negative effects of high-energy charged-particle on the brain and cognitive function. However, research on the role of space radiation in potentiating cardiovascular dysfunction is still in its early stages. This review summarizes the available data from studies using ground-based animal models to evaluate the response of the brain and heart to the high-energy charged particles of GCR and SPE, addresses potential sex differences in these effects, and aims to highlight gaps in the current literature for future study.
Collapse
Affiliation(s)
- Catherine M Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Dawn E Bowles
- Division of Surgical Sciences, Department of Surgery, Duke University, Durham, NC, USA
| |
Collapse
|
14
|
Cahoon DS, Shukitt-Hale B, Bielinski DF, Hawkins EM, Cacioppo AM, Rabin BM. Effects of partial- or whole-body exposures to 56Fe particles on brain function and cognitive performance in rats. LIFE SCIENCES IN SPACE RESEARCH 2020; 27:56-63. [PMID: 34756230 DOI: 10.1016/j.lssr.2020.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/01/2020] [Accepted: 07/22/2020] [Indexed: 05/03/2023]
Abstract
On exploratory class missions, such as a mission to Mars, astronauts will be exposed to particles of high energy and charge (HZE particles). Exposure to HZE particles produces changes in neuronal function and can disrupt cognitive performance. Cells throughout the entire body, not just the brain, will be impacted by these particles. To determine the possible effects that irradiation of the body might have on neuronal function and cognitive performance, rats were given head-only, body-only or whole-body exposures to 56Fe particles. Cognitive performance (novel object recognition, operant responding) was tested in one set of animals; changes in brain function (oxidative stress, neuroinflammation) was tested in a second set of rats. The results indicated that there were no consistent differences in either behavioral or neurochemical endpoints as a function of the location of the irradiation. These results suggest that radiation to the body can impact the brain, therefore it may be necessary to re-evaluate the estimates of the risk of HZE particle-induced changes in neuronal function and cognitive performance.
Collapse
Affiliation(s)
- Danielle S Cahoon
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts Univ., Boston, MA 02111, USA
| | - Barbara Shukitt-Hale
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts Univ., Boston, MA 02111, USA
| | - Donna F Bielinski
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts Univ., Boston, MA 02111, USA
| | | | | | | |
Collapse
|
15
|
Parihar VK, Angulo MC, Allen BD, Syage A, Usmani MT, Passerat de la Chapelle E, Amin AN, Flores L, Lin X, Giedzinski E, Limoli CL. Sex-Specific Cognitive Deficits Following Space Radiation Exposure. Front Behav Neurosci 2020; 14:535885. [PMID: 33192361 PMCID: PMC7525092 DOI: 10.3389/fnbeh.2020.535885] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
The radiation fields in space define tangible risks to the health of astronauts, and significant work in rodent models has clearly shown a variety of exposure paradigms to compromise central nervous system (CNS) functionality. Despite our current knowledge, sex differences regarding the risks of space radiation exposure on cognitive function remain poorly understood, which is potentially problematic given that 30% of astronauts are women. While work from us and others have demonstrated pronounced cognitive decrements in male mice exposed to charged particle irradiation, here we show that female mice exhibit significant resistance to adverse neurocognitive effects of space radiation. The present findings indicate that male mice exposed to low doses (≤30 cGy) of energetic (400 MeV/n) helium ions (4He) show significantly higher levels of neuroinflammation and more extensive cognitive deficits than females. Twelve weeks following 4He ion exposure, irradiated male mice demonstrated significant deficits in object and place recognition memory accompanied by activation of microglia, marked upregulation of hippocampal Toll-like receptor 4 (TLR4), and increased expression of the pro-inflammatory marker high mobility group box 1 protein (HMGB1). Additionally, we determined that exposure to 4He ions caused a significant decline in the number of dendritic branch points and total dendritic length along with the hippocampus neurons in female mice. Interestingly, only male mice showed a significant decline of dendritic spine density following irradiation. These data indicate that fundamental differences in inflammatory cascades between male and female mice may drive divergent CNS radiation responses that differentially impact the structural plasticity of neurons and neurocognitive outcomes following cosmic radiation exposure.
Collapse
Affiliation(s)
- Vipan K Parihar
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Maria C Angulo
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Amber Syage
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Manal T Usmani
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | | | - Amal Nayan Amin
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Lidia Flores
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Xiaomeng Lin
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Erich Giedzinski
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
16
|
Raber J, Fuentes Anaya A, Torres ERS, Lee J, Boutros S, Grygoryev D, Hammer A, Kasschau KD, Sharpton TJ, Turker MS, Kronenberg A. Effects of Six Sequential Charged Particle Beams on Behavioral and Cognitive Performance in B6D2F1 Female and Male Mice. Front Physiol 2020; 11:959. [PMID: 32982769 PMCID: PMC7485338 DOI: 10.3389/fphys.2020.00959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
The radiation environment astronauts are exposed to in deep space includes galactic cosmic radiation (GCR) with different proportions of all naturally occurring ions. To assist NASA with assessment of risk to the brain following exposure to a mixture of ions broadly representative of the GCR, we assessed the behavioral and cognitive performance of female and male C57BL/6J × DBA2/J F1 (B6D2F1) mice two months following rapidly delivered, sequential 6 beam irradiation with protons (1 GeV, LET = 0.24 keV, 50%), 4He ions (250 MeV/n, LET = 1.6 keV/μm, 20%), 16O ions (250 MeV/n, LET = 25 keV/μm 7.5%), 28Si ions (263 MeV/n, LET = 78 keV/μm, 7.5%), 48Ti ions (1 GeV/n, LET = 107 keV/μm, 7.5%), and 56Fe ions (1 GeV/n, LET = 151 keV/μm, 7.5%) at 0, 25, 50, or 200 cGy) at 4-6 months of age. When the activity over 3 days of open field habituation was analyzed in female mice, those irradiated with 50 cGy moved less and spent less time in the center than sham-irradiated mice. Sham-irradiated female mice and those irradiated with 25 cGy showed object recognition. However, female mice exposed to 50 or 200 cGy did not show object recognition. When fear memory was assessed in passive avoidance tests, sham-irradiated mice and mice irradiated with 25 cGy showed memory retention while mice exposed to 50 or 200 cGy did not. The effects of radiation passive avoidance memory retention were not sex-dependent. There was no effect of radiation on depressive-like behavior in the forced swim test. There was a trend toward an effect of radiation on BDNF levels in the cortex of males, but not for females, with higher levels in male mice irradiated with 50 cGy than sham-irradiated. Finally, sequential 6-ion irradiation impacted the composition of the gut microbiome in a sex-dependent fashion. Taxa were uncovered whose relative abundance in the gut was associated with the radiation dose received. Thus, exposure to sequential six-beam irradiation significantly affects behavioral and cognitive performance and the gut microbiome.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Departments of Neurology and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR, United States
| | - Andrea Fuentes Anaya
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Eileen Ruth S. Torres
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Joanne Lee
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Sydney Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Dmytro Grygoryev
- Oregon Institute of Occupational Health Sciences and Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, United States
| | - Austin Hammer
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Kristin D. Kasschau
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Thomas J. Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
- Department of Statistics, Oregon State University, Corvallis, OR, United States
| | - Mitchell S. Turker
- Oregon Institute of Occupational Health Sciences and Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, United States
| | - Amy Kronenberg
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
17
|
Kim S, Nam Y, Kim C, Lee H, Hong S, Kim HS, Shin SJ, Park YH, Mai HN, Oh SM, Kim KS, Yoo DH, Chung WK, Chung H, Moon M. Neuroprotective and Anti-Inflammatory Effects of Low-Moderate Dose Ionizing Radiation in Models of Alzheimer's Disease. Int J Mol Sci 2020; 21:E3678. [PMID: 32456197 PMCID: PMC7279400 DOI: 10.3390/ijms21103678] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. The neuropathological features of AD include amyloid-β (Aβ) deposition and hyperphosphorylated tau accumulation. Although several clinical trials have been conducted to identify a cure for AD, no effective drug or treatment has been identified thus far. Recently, the potential use of non-pharmacological interventions to prevent or treat AD has gained attention. Low-dose ionizing radiation (LDIR) is a non-pharmacological intervention which is currently being evaluated in clinical trials for AD patients. However, the mechanisms underlying the therapeutic effects of LDIR therapy have not yet been established. In this study, we examined the effect of LDIR on Aβ accumulation and Aβ-mediated pathology. To investigate the short-term effects of low-moderate dose ionizing radiation (LMDIR), a total of 9 Gy (1.8 Gy per fraction for five times) were radiated to 4-month-old 5XFAD mice, an Aβ-overexpressing transgenic mouse model of AD, and then sacrificed at 4 days after last exposure to LMDIR. Comparing sham-exposed and LMDIR-exposed 5XFAD mice indicated that short-term exposure to LMDIR did not affect Aβ accumulation in the brain, but significantly ameliorated synaptic degeneration, neuronal loss, and neuroinflammation in the hippocampal formation and cerebral cortex. In addition, a direct neuroprotective effect was confirmed in SH-SY5Y neuronal cells treated with Aβ1-42 (2 μM) after single irradiation (1 Gy). In BV-2 microglial cells exposed to Aβ and/or LMDIR, LMDIR therapy significantly inhibited the production of pro-inflammatory molecules and activation of the nuclear factor-kappa B (NF-κB) pathway. These results indicate that LMDIR directly ameliorated neurodegeneration and neuroinflammation in vivo and in vitro. Collectively, our findings suggest that the therapeutic benefits of LMDIR in AD may be mediated by its neuroprotective and anti-inflammatory effects.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.K.); (Y.N.); (S.H.); (H.S.K.); (S.J.S.); (Y.H.P.); (S.-M.O.)
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.K.); (Y.N.); (S.H.); (H.S.K.); (S.J.S.); (Y.H.P.); (S.-M.O.)
| | - Chanyang Kim
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea;
| | - Hyewon Lee
- Department of Occupational Therapy, Konyang University, Daejeon 35365, Korea; (H.L.); (D.-H.Y.)
| | - Seojin Hong
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.K.); (Y.N.); (S.H.); (H.S.K.); (S.J.S.); (Y.H.P.); (S.-M.O.)
| | - Hyeon Soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.K.); (Y.N.); (S.H.); (H.S.K.); (S.J.S.); (Y.H.P.); (S.-M.O.)
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.K.); (Y.N.); (S.H.); (H.S.K.); (S.J.S.); (Y.H.P.); (S.-M.O.)
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.K.); (Y.N.); (S.H.); (H.S.K.); (S.J.S.); (Y.H.P.); (S.-M.O.)
| | - Han Ngoc Mai
- Department of Radiation Oncology, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea;
| | - Sang-Muk Oh
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.K.); (Y.N.); (S.H.); (H.S.K.); (S.J.S.); (Y.H.P.); (S.-M.O.)
| | - Kyoung Soo Kim
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul 02447, Korea;
| | - Doo-Han Yoo
- Department of Occupational Therapy, Konyang University, Daejeon 35365, Korea; (H.L.); (D.-H.Y.)
| | - Weon Kuu Chung
- Department of Radiation Oncology, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea;
| | - Hyunju Chung
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea;
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.K.); (Y.N.); (S.H.); (H.S.K.); (S.J.S.); (Y.H.P.); (S.-M.O.)
| |
Collapse
|
18
|
Liu B, Hinshaw RG, Le KX, Park MA, Wang S, Belanger AP, Dubey S, Frost JL, Shi Q, Holton P, Trojanczyk L, Reiser V, Jones PA, Trigg W, Di Carli MF, Lorello P, Caldarone BJ, Williams JP, O'Banion MK, Lemere CA. Space-like 56Fe irradiation manifests mild, early sex-specific behavioral and neuropathological changes in wildtype and Alzheimer's-like transgenic mice. Sci Rep 2019; 9:12118. [PMID: 31431669 PMCID: PMC6702228 DOI: 10.1038/s41598-019-48615-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022] Open
Abstract
Space travel will expose people to high-energy, heavy particle radiation, and the cognitive deficits induced by this exposure are not well understood. To investigate the short-term effects of space radiation, we irradiated 4-month-old Alzheimer’s disease (AD)-like transgenic (Tg) mice and wildtype (WT) littermates with a single, whole-body dose of 10 or 50 cGy 56Fe ions (1 GeV/u) at Brookhaven National Laboratory. At ~1.5 months post irradiation, behavioural testing showed sex-, genotype-, and dose-dependent changes in locomotor activity, contextual fear conditioning, grip strength, and motor learning, mainly in Tg but not WT mice. There was little change in general health, depression, or anxiety. Two months post irradiation, microPET imaging of the stable binding of a translocator protein ligand suggested no radiation-specific change in neuroinflammation, although initial uptake was reduced in female mice independently of cerebral blood flow. Biochemical and immunohistochemical analyses revealed that radiation reduced cerebral amyloid-β levels and microglia activation in female Tg mice, modestly increased microhemorrhages in 50 cGy irradiated male WT mice, and did not affect synaptic marker levels compared to sham controls. Taken together, we show specific short-term changes in neuropathology and behaviour induced by 56Fe irradiation, possibly having implications for long-term space travel.
Collapse
Affiliation(s)
- Bin Liu
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Robert G Hinshaw
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kevin X Le
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Mi-Ae Park
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Shuyan Wang
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Anthony P Belanger
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Shipra Dubey
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Jeffrey L Frost
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Qiaoqiao Shi
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Peter Holton
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Lee Trojanczyk
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | | | - Paul A Jones
- GE Healthcare, Chalfont St Giles, HP8 4SP, United Kingdom
| | - William Trigg
- GE Healthcare, Chalfont St Giles, HP8 4SP, United Kingdom
| | - Marcelo F Di Carli
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Paul Lorello
- Harvard Medical School Mouse Behavior Core, Boston, MA, 02115, USA
| | | | - Jacqueline P Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Cynthia A Lemere
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA. .,Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
19
|
Kiffer F, Boerma M, Allen A. Behavioral effects of space radiation: A comprehensive review of animal studies. LIFE SCIENCES IN SPACE RESEARCH 2019; 21:1-21. [PMID: 31101151 PMCID: PMC7150604 DOI: 10.1016/j.lssr.2019.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 05/04/2023]
Abstract
As NASA prepares for the first manned mission to Mars in the next 20 years, close attention has been placed on the cognitive welfare of astronauts, who will likely endure extended durations in confinement and microgravity and be subjected to the radioactive charged particles travelling at relativistic speeds in interplanetary space. The future of long-duration manned spaceflight, thus, depends on understanding the individual hazards associated with the environment beyond Earth's protective magnetosphere. Ground-based single-particle studies of exposed mice and rats have, in the last 30 years, overwhelmingly reported deficits in their cognitive behaviors. However, as particle-accelerator technologies at NASA's Space Radiation Laboratory continue to progress, more realistic representations of space radiation are materializing, including multiple-particle exposures and, eventually, at multiple energy distributions. These advancements help determine how to best mitigate possible hazards due to space radiation. However, risk models will depend on delineating which particles are most responsible for specific behavioral outcomes and whether multiple-particle exposures produce synergistic effects. Here, we review the literature on animal exposures by particle, energy, and behavioral assay to inform future mixed-field radiation studies of possible behavioral outcomes.
Collapse
Affiliation(s)
- Frederico Kiffer
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| | - Marjan Boerma
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| | - Antiño Allen
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Neurobiology & Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
20
|
Kiffer F, Alexander T, Anderson JE, Groves T, Wang J, Sridharan V, Boerma M, Allen AR. Late Effects of 16O-Particle Radiation on Female Social and Cognitive Behavior and Hippocampal Physiology. Radiat Res 2019; 191:278-294. [PMID: 30664396 DOI: 10.1667/rr15092.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The radiation environment in space remains a major concern for manned space exploration, as there is currently no shielding material capable of fully protecting flight crews. Additionally, there is growing concern for the social and cognitive welfare of astronauts, due to prolonged radiation exposure and confinement they will experience on a mission to Mars. In this artice, we report on the late effects of 16O-particle radiation on social and cognitive behavior and neuronal morphology in the hippocampus of adult female mice. Six-month-old mice received 16O-particle whole-body irradiation at doses of either 0.25 or 0.1 Gy (600 MeV/n; 18-33 cGy/min) at the NASA's Space Radiation Laboratory in Upton, NY. At nine months postirradiation, the animals underwent behavioral testing in the three-chamber sociability, novel object recognition and Y-maze paradigms. Exposure to 0.1 or 0.25 Gy 16O significantly impaired object memory, a 0.25 Gy dose impaired social novelty learning, but neither dosage impaired short-term spatial memory. We observed significant decreases in mushroom spine density and dendrite morphology in the dentate gyrus, cornu ammonis 3, 2 and 1 of the hippocampus, which are critical areas for object novelty and sociability processing. Our data suggest exposure to 16O modulates hippocampal pyramidal and granular neurons and induces behavioral deficits at a time point of nine months after exposure in females.
Collapse
Affiliation(s)
- Frederico Kiffer
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,b Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Tyler Alexander
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,b Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Julie E Anderson
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,b Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Thomas Groves
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,b Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,c Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Jing Wang
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,b Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Vijayalakshmi Sridharan
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,b Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Marjan Boerma
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,b Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Antiño R Allen
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,b Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,c Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
21
|
Female mice are protected from space radiation-induced maladaptive responses. Brain Behav Immun 2018; 74:106-120. [PMID: 30107198 PMCID: PMC8715721 DOI: 10.1016/j.bbi.2018.08.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/15/2023] Open
Abstract
Interplanetary exploration will be humankind's most ambitious expedition and the journey required to do so, is as intimidating as it is intrepid. One major obstacle for successful deep space travel is the possible negative effects of galactic cosmic radiation (GCR) exposure. Here, we investigate for the first time how combined GCR impacts long-term behavioral and cellular responses in male and female mice. We find that a single exposure to simulated GCR induces long-term cognitive and behavioral deficits only in the male cohorts. GCR exposed male animals have diminished social interaction, increased anxiety-like phenotype and impaired recognition memory. Remarkably, we find that the female cohorts did not display any cognitive or behavioral deficits after GCR exposure. Mechanistically, the maladaptive behavioral responses observed only in the male cohorts correspond with microglia activation and synaptic loss in the hippocampus, a brain region involved in the cognitive domains reported here. Furthermore, we measured reductions in AMPA expressing synaptic terminals in the hippocampus. No changes in any of the molecular markers measured here are observed in the females. Taken together these findings suggest that GCR exposure can regulate microglia activity and alter synaptic architecture, which in turn leads to a range of cognitive alterations in a sex dependent manner. These results identify sex-dependent differences in behavioral and cognitive domains revealing promising cellular and molecular intervention targets to reduce GCR-induced chronic cognitive deficits thereby boosting chances of success for humans in deep space missions such as the upcoming Mars voyage.
Collapse
|
22
|
Whole-Body 12C Irradiation Transiently Decreases Mouse Hippocampal Dentate Gyrus Proliferation and Immature Neuron Number, but Does Not Change New Neuron Survival Rate. Int J Mol Sci 2018; 19:ijms19103078. [PMID: 30304778 PMCID: PMC6213859 DOI: 10.3390/ijms19103078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 02/08/2023] Open
Abstract
High-charge and -energy (HZE) particles comprise space radiation and they pose a challenge to astronauts on deep space missions. While exposure to most HZE particles decreases neurogenesis in the hippocampus—a brain structure important in memory—prior work suggests that 12C does not. However, much about 12C’s influence on neurogenesis remains unknown, including the time course of its impact on neurogenesis. To address this knowledge gap, male mice (9–11 weeks of age) were exposed to whole-body 12C irradiation 100 cGy (IRR; 1000 MeV/n; 8 kEV/µm) or Sham treatment. To birthdate dividing cells, mice received BrdU i.p. 22 h post-irradiation and brains were harvested 2 h (Short-Term) or three months (Long-Term) later for stereological analysis indices of dentate gyrus neurogenesis. For the Short-Term time point, IRR mice had fewer Ki67, BrdU, and doublecortin (DCX) immunoreactive (+) cells versus Sham mice, indicating decreased proliferation (Ki67, BrdU) and immature neurons (DCX). For the Long-Term time point, IRR and Sham mice had similar Ki67+ and DCX+ cell numbers, suggesting restoration of proliferation and immature neurons 3 months post-12C irradiation. IRR mice had fewer surviving BrdU+ cells versus Sham mice, suggesting decreased cell survival, but there was no difference in BrdU+ cell survival rate when compared within treatment and across time point. These data underscore the ability of neurogenesis in the mouse brain to recover from the detrimental effect of 12C exposure.
Collapse
|
23
|
Detrimental Effects of Helium Ion Irradiation on Cognitive Performance and Cortical Levels of MAP-2 in B6D2F1 Mice. Int J Mol Sci 2018; 19:ijms19041247. [PMID: 29677125 PMCID: PMC5979430 DOI: 10.3390/ijms19041247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 11/17/2022] Open
Abstract
The space radiation environment includes helium (⁴He) ions that may impact brain function. As little is known about the effects of exposures to ⁴He ions on the brain, we assessed the behavioral and cognitive performance of C57BL/6J × DBA2/J F1 (B6D2F1) mice three months following irradiation with ⁴He ions (250 MeV/n; linear energy transfer (LET) = 1.6 keV/μm; 0, 21, 42 or 168 cGy). Sham-irradiated mice and mice irradiated with 21 or 168 cGy showed novel object recognition, but mice irradiated with 42 cGy did not. In the passive avoidance test, mice received a slight foot shock in a dark compartment, and latency to re-enter that compartment was assessed 24 h later. Sham-irradiated mice and mice irradiated with 21 or 42 cGy showed a higher latency on Day 2 than Day 1, but the latency to enter the dark compartment in mice irradiated with 168 cGy was comparable on both days. ⁴He ion irradiation, at 42 and 168 cGy, reduced the levels of the dendritic marker microtubule-associated protein-2 (MAP-2) in the cortex. There was an effect of radiation on apolipoprotein E (apoE) levels in the hippocampus and cortex, with higher apoE levels in mice irradiated at 42 cGy than 168 cGy and a trend towards higher apoE levels in mice irradiated at 21 than 168 cGy. In addition, in the hippocampus, there was a trend towards a negative correlation between MAP-2 and apoE levels. While reduced levels of MAP-2 in the cortex might have contributed to the altered performance in the passive avoidance test, it does not seem sufficient to do so. The higher hippocampal and cortical apoE levels in mice irradiated at 42 than 168 cGy might have served as a compensatory protective response preserving their passive avoidance memory. Thus, there were no alterations in behavioral performance in the open filed or depressive-like behavior in the forced swim test, while cognitive impairments were seen in the object recognition and passive avoidance tests, but not in the contextual or cued fear conditioning tests. Taken together, the results indicate that some aspects of cognitive performance are altered in male mice exposed to ⁴He ions, but that the response is task-dependent. Furthermore, the sensitive doses can vary within each task in a non-linear fashion. This highlights the importance of assessing the cognitive and behavioral effects of charged particle exposure with a variety of assays and at multiple doses, given the possibility that lower doses may be more damaging due to the absence of induced compensatory mechanisms at higher doses.
Collapse
|
24
|
Paradoxical effects of 137Cs irradiation on pharmacological stimulation of reactive oxygen species in hippocampal slices from apoE2 and apoE4 mice. Oncotarget 2017; 8:76587-76605. [PMID: 29100334 PMCID: PMC5652728 DOI: 10.18632/oncotarget.20603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/17/2017] [Indexed: 11/29/2022] Open
Abstract
In humans, apoE, which plays a role in repair, is expressed in three isoforms: E2, E3, and E4. E4 is a risk factor for age-related cognitive decline (ACD) and Alzheimer's disease (AD), particularly in women. In contrast, E2 is a protective factor for ACD and AD. E2 and E4 might also differ in their response to cranial 137Cs irradiation, a form of radiation typically used in a clinical setting for the treatment of cancer. This might be mediated by reactive oxygen species (ROS) in an-apoE isoform-dependent fashion. E2 and E4 female mice received sham-irradiation or cranial irradiation at 8 weeks of age and a standard mouse chow or a diet supplemented with the antioxidant alpha-lipoic acid (ALA) starting at 6 weeks of age. Behavioral and cognitive performance of the mice were assessed 12 weeks later. Subsequently, the generation of ROS in hippocampal slices was analyzed. Compared to sham-irradiated E4 mice, irradiated E4 mice showed enhanced spatial memory in the water maze. This was associated with increased hippocampal PMA-induction of ROS. Similar effects were not seen in E2 mice. Irradiation increased endogenous hippocampal ROS levels in E2 mice while decreasing those in E4 mice. NADPH activity and MnSOD levels were higher in sham-irradiated E2 than E4 mice. Irradiation increased NADPH activity and MnSOD levels in hemi brains of E4 mice but not in those of E2 mice. ALA did not affect behavioral and cognitive performance or hippocampal formation of ROS in either genotype. Thus, apoE isoforms modulate the radiation response.
Collapse
|
25
|
Raber J, Davis MJ, Pfankuch T, Rosenthal R, Doctrow SR, Moulder JE. Mitigating effect of EUK-207 on radiation-induced cognitive impairments. Behav Brain Res 2016; 320:457-463. [PMID: 27789343 DOI: 10.1016/j.bbr.2016.10.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/21/2016] [Accepted: 10/23/2016] [Indexed: 10/20/2022]
Abstract
The brain could be exposed to irradiation as part of a nuclear accident, radiological terrorism (dirty bomb scenario) or a medical radiological procedure. In the context of accidents or terrorism, there is considerable interest in compounds that can mitigate radiation-induced injury when treatment is initiated a day or more after the radiation exposure. As it will be challenging to determine the radiation exposure an individual has received within a relatively short time frame, it is also critical that the mitigating agent does not negatively affect individuals, including emergency workers, who might be treated, but who were not exposed. Alterations in hippocampus-dependent cognition often characterize radiation-induced cognitive injury. The catalytic ROS scavenger EUK-207 is a member of the class of metal-containing salen manganese (Mn) complexes that suppress oxidative stress, including in the mitochondria, and have been shown to mitigate radiation dermatitis, promote wound healing in irradiated skin, and mitigate vascular injuries in irradiated lungs. As the effects of EUK-207 against radiation injury in the brain are not known, we assessed the effects of EUK-207 on sham-irradiated animals and the ability of EUK-207 to mitigate radiation-induced cognitive injury. The day following irradiation or sham-irradiation, the mice started to receive EUK-207 and were cognitively tested 3 months following exposure. Mice irradiated at a dose of 15Gy showed cognitive impairments in the water maze probe trial. EUK-207 mitigated these impairments while not affecting cognitive performance of sham-irradiated mice in the water maze probe trial. Thus, EUK-207 has attractive properties and should be considered an ideal candidate to mitigate radiation-induced cognitive injury.
Collapse
Affiliation(s)
- J Raber
- Department of Behavioral Neuroscience, L470, Oregon Health and Science University, Portland, OR 97239, USA; Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, L470, Oregon Health and Science University, Portland, Oregon 97239, USA.
| | - M J Davis
- Department of Behavioral Neuroscience, L470, Oregon Health and Science University, Portland, OR 97239, USA
| | - T Pfankuch
- Department of Behavioral Neuroscience, L470, Oregon Health and Science University, Portland, OR 97239, USA
| | - R Rosenthal
- Pulmonary Center, Boston University School of Medicine, MA 02215, USA
| | - S R Doctrow
- Pulmonary Center, Boston University School of Medicine, MA 02215, USA
| | - J E Moulder
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
26
|
Villasana LE, Weber S, Akinyeke T, Raber J. Genotype differences in anxiety and fear learning and memory of WT and ApoE4 mice associated with enhanced generation of hippocampal reactive oxygen species. J Neurochem 2016; 138:896-908. [PMID: 27412623 DOI: 10.1111/jnc.13737] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 12/14/2022]
Abstract
Apolipoprotein E (apoE), involved in cholesterol and lipid metabolism, also influences cognitive function and injury repair. In humans, apoE is expressed in three isoforms. E4 is a risk factor for age-related cognitive decline and Alzheimer's disease, particularly in women. E4 might also be a risk factor for developing behavioral and cognitive changes following (56) Fe irradiation, a component of the space environment astronauts are exposed to during missions. These changes might be related to enhanced generation of reactive oxygen species (ROS). In this study, we compared the behavioral and cognitive performance of sham-irradiated and irradiated wild-type (WT) mice and mice expressing the human E3 or E4 isoforms, and assessed the generation of ROS in hippocampal slices from these mice. E4 mice had greater anxiety-like and conditioned fear behaviors than WT mice, and these genotype differences were associated with greater levels of ROS in E4 than WT mice. The greater generation of ROS in the hippocampus of E4 than WT mice might contribute to their higher anxiety levels and enhanced fear conditioning. In E4, but not WT, mice, phorbol-12-myristate-13-acetate-treated hippocampal slices showed more dihydroxy ethidium oxidation in sham-irradiated than irradiated mice and hippocampal heme oxygenase-1 levels were higher in irradiated than sham-irradiated E4 mice. Mice with apolipoprotein E4 (E4), a risk factor for Alzheimer's disease, have greater anxiety-like and conditioned fear behaviors than wild-type (WT) mice. Generation of reactive oxygen species (ROS, in red) 3 months following (56) Fe irradiation, a component of the space environment astronauts are exposed to, is more pronounced in the hippocampus of E4 than WT mice. In E4, but not WT, mice, hippocampal levels of the oxidative stress-relevant marker heme oxygenase-1 are higher in irradiated than sham-irradiated E4 mice.
Collapse
Affiliation(s)
- Laura E Villasana
- Division of Neuroscience, Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, Oregon, USA
| | - Sydney Weber
- Division of Neuroscience, Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, Oregon, USA
| | - Tunde Akinyeke
- Division of Neuroscience, Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, Oregon, USA
| | - Jacob Raber
- Division of Neuroscience, Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, Oregon, USA. .,Division of Neuroscience, Departments of Neurology and Radiation Medicine, ONPRC, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
27
|
Raber J, Allen AR, Weber S, Chakraborti A, Sharma S, Fike JR. Effect of behavioral testing on spine density of basal dendrites in the CA1 region of the hippocampus modulated by (56)Fe irradiation. Behav Brain Res 2016; 302:263-8. [PMID: 26801826 DOI: 10.1016/j.bbr.2016.01.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/13/2016] [Accepted: 01/16/2016] [Indexed: 01/11/2023]
Abstract
A unique feature of the space radiation environment is the presence of high-energy charged particles, including (56)Fe ions, which can present a significant hazard to space flight crews during and following a mission. (56)Fe irradiation-induced cognitive changes often involve alterations in hippocampal function. These alterations might involve changes in spine morphology and density. In addition to irradiation, performing a cognitive task can also affect spine morphology. Therefore, it is often hard to determine whether changes in spine morphology and density are due to an environmental challenge or group differences in performance on cognitive tests. In this study, we tested the hypothesis that the ability of exploratory behavior to increase specific measures of hippocampal spine morphology and density is affected by (56)Fe irradiation. In sham-irradiated mice, exploratory behavior increased basal spine density in the CA1 region of the hippocampus and the enclosed blade of the dentate gyrus. These effects were not seen in irradiated mice. In addition, following exploratory behavior, there was a trend toward a decrease in the percent stubby spines on apical dendrites in the CA3 region of the hippocampus in (56)Fe-irradiated, but not sham-irradiated, mice. Other hippocampal regions and spine measures affected by (56)Fe irradiation showed comparable radiation effects in behaviorally naïve and cognitively tested mice. Thus, the ability of exploratory behavior to alter spine density and morphology in specific hippocampal regions is affected by (56)Fe irradiation.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR 97239, United States; Departments of Neurology, Radiation Medicine and Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR 97239, United States.
| | - Antiño R Allen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Sydney Weber
- Department of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR 97239, United States
| | - Ayanabha Chakraborti
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, CA 94110, United States; The Brain Research Institute at Monash Sunway, Selangor Darul Ehsan, Malaysia
| | - Sourabh Sharma
- Departments of Neurology, Radiation Medicine and Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR 97239, United States
| | - John R Fike
- Departments of Neurology, Radiation Medicine and Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR 97239, United States; Department of Radiation Oncology, University of California, San Francisco, CA 94110, United States
| |
Collapse
|
28
|
Tomé WA, Gökhan Ş, Gulinello ME, Brodin NP, Heard J, Mehler MF, Guha C. Hippocampal-dependent neurocognitive impairment following cranial irradiation observed in pre-clinical models: current knowledge and possible future directions. Br J Radiol 2015; 89:20150762. [PMID: 26514377 DOI: 10.1259/bjr.20150762] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We reviewed the literature for studies pertaining to impaired adult neurogenesis leading to neurocognitive impairment following cranial irradiation in rodent models. This compendium was compared with respect to radiation dose, converted to equivalent dose in 2 Gy fractions (EQD2) to allow for direct comparison between studies. The effects of differences between animal species and the dependence on animal age as well as for time after irradiation were also considered. One of the major sites of de novo adult neurogenesis is the hippocampus, and as such, this review also focuses on assessing evidence related to the expression and potential effects of inflammatory cytokines on neural stem cells in the subgranular zone of the dentate gyrus and whether this correlates with neurocognitive impairment. This review also discusses potential strategies to mitigate the detrimental effects on neurogenesis and neurocognition resulting from cranial irradiation, and how the rationale for these strategies compares with the current outcome of pre-clinical studies.
Collapse
Affiliation(s)
- Wolfgang A Tomé
- 1 Institute for Onco-Physics, Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA.,2 Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA.,3 Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Şölen Gökhan
- 3 Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria E Gulinello
- 4 Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - N Patrik Brodin
- 1 Institute for Onco-Physics, Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA.,2 Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA
| | - John Heard
- 2 Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA
| | - Mark F Mehler
- 3 Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA.,4 Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.,5 Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chandan Guha
- 1 Institute for Onco-Physics, Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA.,2 Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
29
|
Kugelman T, Zuloaga DG, Weber S, Raber J. Post-training gamma irradiation-enhanced contextual fear memory associated with reduced neuronal activation of the infralimbic cortex. Behav Brain Res 2015; 298:1-11. [PMID: 26522840 DOI: 10.1016/j.bbr.2015.10.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/21/2015] [Accepted: 10/25/2015] [Indexed: 01/07/2023]
Abstract
The brain might be exposed to irradiation under a variety of situations, including clinical treatments, nuclear accidents, dirty bomb scenarios, and military and space missions. Correctly recalling tasks learned prior to irradiation is important but little is known about post-learning effects of irradiation. It is not clear whether exposure to X-ray irradiation during memory consolidation, a few hours following training, is associated with altered contextual fear conditioning 24h after irradiation and which brain region(s) might be involved in these effects. Brain immunoreactivity patterns of the immediately early gene c-Fos, a marker of cellular activity was used to determine which brain areas might be altered in post-training irradiation memory retention tasks. In this study, we show that post-training gamma irradiation exposure (1 Gy) enhanced contextual fear memory 24h later and is associated with reduced cellular activation in the infralimbic cortex. Reduced GABA-ergic neurotransmission in parvalbumin-positive cells in the infralimbic cortex might play a role in this post-training radiation-enhanced contextual fear memory.
Collapse
Affiliation(s)
- Tara Kugelman
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Damian G Zuloaga
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sydney Weber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA; Oregon Health and Science University, Portland, OR 97239, USA; Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
30
|
Raber J, Marzulla T, Stewart B, Kronenberg A, Turker MS. 28Silicon Irradiation Impairs Contextual Fear Memory in B6D2F1 Mice. Radiat Res 2015; 183:708-12. [DOI: 10.1667/rr13951.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Reverte I, Domingo JL, Colomina MT. Neurodevelopmental effects of decabromodiphenyl ether (BDE-209) in APOE transgenic mice. Neurotoxicol Teratol 2014; 46:10-7. [DOI: 10.1016/j.ntt.2014.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 11/26/2022]
|
32
|
Xie Y, Zhao QY, Li HY, Zhou X, Liu Y, Zhang H. Curcumin ameliorates cognitive deficits heavy ion irradiation-induced learning and memory deficits through enhancing of Nrf2 antioxidant signaling pathways. Pharmacol Biochem Behav 2014; 126:181-6. [PMID: 25159739 DOI: 10.1016/j.pbb.2014.08.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 07/25/2014] [Accepted: 08/02/2014] [Indexed: 12/15/2022]
Abstract
Oxidative stress is one of the major mechanisms implicated in carbon ion irradiation. Curcumin is a natural phenolic compound with impressive antioxidant properties. What's more, curcumin is recently proved to exert its effects partly radioprotection. In vivo, we investigated the protective effects of curcumin against (12)C(6+)radiation-induced cerebral injury. Our results showed that 4Gy heavy ion radiation-induced spatial strategy and memory decline and reduction of brain superoxide dismutase (SOD) activity levels were all consistently improved by curcumin, and the augmentation of cerebral malonaldehyde (MDA) was lowered by curcumin. Furthermore, both the cerebral cells nuclear erythroid 2-related factor 2 (Nrf2) protein and three typically recognized Nrf2 downstream genes, NAD(P)H quinine oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), and γ-glutamyl cysteine synthetase (γ-GCS) were consistently up-regulated in curcumin-pretreated mice. Our study confirmed the antagonistic roles of curcumin to counteract radiation-induced cerebral injury in vivo and suggested that the potent Nrf2 activation capability might be valuable for the protective effects of curcumin against radiation. This provides a potential useful radioprotection dietary component for human populations.
Collapse
Affiliation(s)
- Yi Xie
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Nanchang Road, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Nanchang Road, Lanzhou 730000, China
| | - Qiu Yue Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Nanchang Road, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Nanchang Road, Lanzhou 730000, China; Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| | - Hong Yan Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Nanchang Road, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Nanchang Road, Lanzhou 730000, China; Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| | - Xin Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Nanchang Road, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Nanchang Road, Lanzhou 730000, China
| | - Yang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Nanchang Road, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Nanchang Road, Lanzhou 730000, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Nanchang Road, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Nanchang Road, Lanzhou 730000, China.
| |
Collapse
|
33
|
Olsen RHJ, Marzulla T, Raber J. Impairment in extinction of contextual and cued fear following post-training whole-body irradiation. Front Behav Neurosci 2014; 8:231. [PMID: 25071488 PMCID: PMC4078460 DOI: 10.3389/fnbeh.2014.00231] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/07/2014] [Indexed: 12/30/2022] Open
Abstract
Because of the use of radiation in cancer therapy, the risk of nuclear contamination from power plants, military conflicts, and terrorism, there is a compelling scientific and public health interest in the effects of environmental radiation exposure on brain function, in particular hippocampal function and learning and memory. Previous studies have emphasized changes in learning and memory following radiation exposure. These approaches have ignored the question of how radiation exposure might impact recently acquired memories, which might be acquired under traumatic circumstances (cancer treatment, nuclear disaster, etc.). To address the question of how radiation exposure might affect the processing and recall of recently acquired memories, we employed a fear conditioning paradigm wherein animals were trained, and subsequently irradiated (whole-body X-ray irradiation) 24 h later. Animals were given 2 weeks to recover, and were tested for retention and extinction of hippocampus-dependent contextual fear conditioning or hippocampus-independent cued fear conditioning. Exposure to irradiation following training was associated with reduced daily increases in body weights over the 22-days of the study and resulted in greater freezing levels and aberrant extinction 2 weeks later. This was also observed when the intensity of the training protocol was increased. Cued freezing levels and measures of anxiety 2 weeks after training were also higher in irradiated than sham-irradiated mice. In contrast to contextual freezing levels, cued freezing levels were even higher in irradiated mice receiving 5 shocks during training than sham-irradiated mice receiving 10 shocks during training. In addition, the effects of radiation on extinction of contextual fear were more profound than those on the extinction of cued fear. Thus, whole-body irradiation elevates contextual and cued fear memory recall.
Collapse
Affiliation(s)
- Reid H J Olsen
- Department of Behavioral Neuroscience, Oregon Health and Science University , Portland, OR , USA
| | - Tessa Marzulla
- Department of Behavioral Neuroscience, Oregon Health and Science University , Portland, OR , USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University , Portland, OR , USA ; Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University , Portland, OR , USA ; Department of Neurology, Oregon Health and Science University , Portland, OR , USA ; Department of Radiation Medicine, Oregon Health and Science University , Portland, OR , USA
| |
Collapse
|
34
|
Rabin BM, Shukitt-Hale B, Carrihill-Knoll KL, Gomes SM. Comparison of the Effects of Partial- or Whole-Body Exposures to16O Particles on Cognitive Performance in Rats. Radiat Res 2014; 181:251-7. [DOI: 10.1667/rr13469.1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Dynlacht JR. The role of age, sex and steroid sex hormones in radiation cataractogenesis. Radiat Res 2013; 180:559-66. [PMID: 24261552 DOI: 10.1667/rr13549.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It is critical to identify and gain a better understanding of the factors that enhance or reduce the risk of cataractogenesis, to minimize the possibility of occurrence after deliberate (e.g., radiation therapy, interplanetary travel) or unintentional exposure to ionizing radiation. Both gender and age at the time of exposure have been established as key determinants of cataractogenesis induced by sparsely ionizing (low-LET) and densely ionizing (high-LET) radiation. However, animal data from several older studies are often conflicting and somewhat difficult to interpret, in that the experiments suffered from small group sizes, limited dose ranges or short periods of observation, and human data are sparse or statistical significance is sometimes limited. Steroid sex hormones (SSH) may underlie age and gender-based differences in the progression and prevalence of cataracts that otherwise occur spontaneously in humans and animal models, and may also underlie age and sex-related differences in radiation cataractogenesis. Here, we review data that have aided in our understanding of the role of age, sex and steroid sex hormones in radiation cataractogenesis.
Collapse
Affiliation(s)
- Joseph R Dynlacht
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
36
|
Villasana L, Dayger C, Raber J. Dose- and ApoE Isoform-Dependent Cognitive Injury after Cranial56Fe Irradiation in Female Mice. Radiat Res 2013; 179:493-500. [DOI: 10.1667/rr3210.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Haley GE, Yeiser L, Olsen RHJ, Davis MJ, Johnson LA, Raber J. Early effects of whole-body (56)Fe irradiation on hippocampal function in C57BL/6J mice. Radiat Res 2013; 179:590-6. [PMID: 23510274 DOI: 10.1667/rr2946.1] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Relatively little is known about early irradiation effects on hippocampal function in wild-type mice. In this study, the effects of (56)Fe irradiation on hippocampal function were assessed starting 2 weeks after whole-body irradiation. Compared to sham irradiation, radiation impaired novel object recognition in female and male C57BL/6J wild-type mice. There were no effects of irradiation on contextual fear conditioning or spatial memory retention in the water maze. It is possible that oxidative damage might contribute to radiation-induced cognitive changes. Therefore, hippocampal and cortical levels of 3-nitrotyrosine (3NT) and lipid peroxidation, measures of oxidative damage were assessed. There were no effects of irradiation on these measures of oxidative damage. As (56)Fe irradiation can increase reactive oxygen species (ROS) levels, which may contribute to the impairments in novel object recognition, the effects of the antioxidant alpha-lipoic acid (ALA) on cognition following sham irradiation and irradiation were also assessed. ALA did not prevent radiation-induced impairments in novel object recognition and impaired spatial memory retention of sham-irradiated and irradiated mice in the probe trial after the first day of hidden platform training in the water maze. Thus, the novel object recognition test is particularly sensitive to detect early cognitive effects of (56)Fe irradiation through a mechanism unlikely involving ROS or oxidative damage.
Collapse
Affiliation(s)
- Gwendolen E Haley
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
38
|
Effects of (56)Fe radiation on hippocampal function in mice deficient in chemokine receptor 2 (CCR2). Behav Brain Res 2013; 246:69-75. [PMID: 23500678 DOI: 10.1016/j.bbr.2013.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 02/26/2013] [Accepted: 03/02/2013] [Indexed: 12/19/2022]
Abstract
(56)Fe irradiation affects hippocampus-dependent cognition. The underlying mechanisms may involve alterations in neurogenesis, expression of the plasticity-related immediate early gene Arc, and inflammation. Chemokine receptor-2 (CCR2), which mediates the recruitment of infiltrating and resident microglia to sites of CNS inflammation, is upregulated by (56)Fe irradiation. CCR2 KO and wild-type mice were used to compare effects of (56)Fe radiation (600MeV, 0.25Gy) on hippocampal function using contextual fear conditioning involving tone shock pairing during training (+/+) and exposure to the same environment without tone shock pairings (-/-). In the -/- condition, irradiation enhanced habituation in WT mice, but not CCR2 KO mice, suggesting that a lack of CCR2 was associated with reduced cognitive performance. In the +/+ condition, irradiation reduced freezing but there was no genotype differences. There were no significant correlations between the number of Arc-positive cells in the dentate gyrus and freezing in either genotype. While measures of neurogenesis and gliogenesis appeared to be modulated by CCR2, there were no effects of genotype on the total numbers of newly born activated microglia before or after irradiation, indicating that other mechanisms are involved in the genotype-dependent radiation response.
Collapse
|
39
|
Yeiser LA, Villasana LE, Raber J. ApoE isoform modulates effects of cranial ⁵⁶Fe irradiation on spatial learning and memory in the water maze. Behav Brain Res 2012; 237:207-14. [PMID: 23018124 DOI: 10.1016/j.bbr.2012.09.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/15/2012] [Accepted: 09/18/2012] [Indexed: 10/27/2022]
Abstract
Apolipoprotein E, which plays an important role in lipid transport and metabolism and neuronal repair, might modulate the CNS risk following (56)Fe irradiation exposure during space missions. In this study, we investigated this risk by behavioral and cognitive testing male E2, E3, and E4 mice 3 months following cranial (56)Fe irradiation. In the open field, mice irradiated with 2 Gy showed higher activity levels than sham-irradiated mice or mice irradiated with 1 Gy. In addition, E2 mice showed higher activity and lower measures of anxiety than E3 and E4 mice in the open field and elevated zero maze. During hidden platform training, sham-irradiated mice showed most robust learning, 1 Gy irradiated mice reduced learning, and 2 Gy irradiated mice no improvement over the four sessions. In the water maze probe trials, sham-irradiated E2, E3, and E4 mice and E2 and E4 mice irradiated with 1 Gy showed spatial memory retention, but E3 mice irradiated with 1 Gy, and E2, E3, and E4 mice irradiated with 2 Gy did not. Thus, cranial (56)Fe irradiation increases activity levels in the open field and impairs spatial learning and memory in the water maze. E3 mice are more susceptible than E2 or E4 mice to impairments in spatial memory retention in the water maze, indicating that apoE isoform modulates the CNS risk following space missions.
Collapse
Affiliation(s)
- Lauren A Yeiser
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, United States
| | | | | |
Collapse
|
40
|
Haley GE, Villasana L, Dayger C, Davis MJ, Raber J. Apolipoprotein e genotype-dependent paradoxical short-term effects of (56)fe irradiation on the brain. Int J Radiat Oncol Biol Phys 2012; 84:793-9. [PMID: 22401921 DOI: 10.1016/j.ijrobp.2011.12.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 12/07/2011] [Accepted: 12/12/2011] [Indexed: 10/28/2022]
Abstract
PURPOSE In humans, apolipoprotein E (apoE) is encoded by three major alleles (ε2, ε3, and ε4) and, compared to apoE3, apoE4 increases the risk of developing Alzheimer disease and cognitive impairments following various environmental challenges. Exposure to irradiation, including that of (56)Fe, during space missions poses a significant risk to the central nervous system, and apoE isoform might modulate this risk. METHODS AND MATERIALS We investigated whether apoE isoform modulates hippocampus-dependent cognitive performance starting 2 weeks after (56)Fe irradiation. Changes in reactive oxygen species (ROS) can affect cognition and are induced by irradiation. Therefore, after cognitive testing, we assessed hippocampal ROS levels in ex vivo brain slices, using the ROS-sensitive fluorescent probe, dihydroethidium (DHE). Brain levels of 3-nitrotyrosine (3-NT), CuZn superoxide dismutase (CuZnSOD), extracellular SOD, and apoE were assessed using Western blotting analysis. RESULTS In the water maze, spatial memory retention was impaired by irradiation in apoE2 and apoE4 mice but enhanced by irradiation in apoE3 mice. Irradiation reduced DHE-oxidation levels in the enclosed blade of the dentate gyrus and levels of 3-NT and CuZnSOD in apoE2 but not apoE3 or apoE4 mice. Finally, irradiation increased apoE levels in apoE3 but not apoE2 or apoE4 mice. CONCLUSIONS The short-term effects of (56)Fe irradiation on hippocampal ROS levels and hippocampus-dependent spatial memory retention are apoE isoform-dependent.
Collapse
Affiliation(s)
- Gwendolen E Haley
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|